Buy ebook Carbon monoxide in organic synthesis - carbonylation chemistry gabriele bartolo. (ed.) che

Page 1


Carbon Monoxide in Organic Synthesis - Carbonylation Chemistry Gabriele Bartolo. (Ed.)

Visit to download the full and correct content document: https://ebookmass.com/product/carbon-monoxide-in-organic-synthesis-carbonylationchemistry-gabriele-bartolo-ed/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Organic chemistry 7th Edition Paula Yurkanis Bruice

https://ebookmass.com/product/organic-chemistry-7th-editionpaula-yurkanis-bruice/

Strategies and Tactics in Organic Synthesis 1st Edition

Michael Harmata

https://ebookmass.com/product/strategies-and-tactics-in-organicsynthesis-1st-edition-michael-harmata/

Organic Synthesis Using Biocatalysis 1st Edition

Goswami

https://ebookmass.com/product/organic-synthesis-usingbiocatalysis-1st-edition-goswami/ eTextbook 978-0321971371 Organic Chemistry

https://ebookmass.com/product/etextbook-978-0321971371-organicchemistry/

Carbon Dots in Analytical Chemistry: Detection and Imaging Suresh Kumar Kailasa

https://ebookmass.com/product/carbon-dots-in-analyticalchemistry-detection-and-imaging-suresh-kumar-kailasa/

Organic Chemistry 9th Edition, (Ebook PDF)

https://ebookmass.com/product/organic-chemistry-9th-editionebook-pdf/

Organic Chemistry (8th Edition ) 8th Edition

https://ebookmass.com/product/organic-chemistry-8th-edition-8thedition/

Organic Chemistry Janice Gorzynski Smith Dr

https://ebookmass.com/product/organic-chemistry-janice-gorzynskismith-dr/

Organic chemistry 10th Edition John Mcmurry

https://ebookmass.com/product/organic-chemistry-10th-editionjohn-mcmurry/

CarbonMonoxideinOrganicSynthesis

CarbonMonoxideinOrganicSynthesis

CarbonylationChemistry

Editor

Prof.BartoloGabriele UniversityofCalabria DepartmentofChemistry&Chemical Technologies

ViaPietroBucci12/C 87036ArcavacatadiRende(CS) Italy

CoverImage: ©azatvaleev/GettyImages

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefromthe BritishLibrary.

BibliographicinformationpublishedbytheDeutsche Nationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-34795-7

ePDFISBN: 978-3-527-82933-0

ePubISBN: 978-3-527-82934-7

oBookISBN: 978-3-527-82935-4

Typesetting Straive,Chennai,India

Printedonacid-freepaper

10987654321

Thisbookisdedicatedtothememoryofmybelovedparents,GiuseppeGabrieleand AnnaLaValle.

Contents

Preface xiii

1Introduction:CarbonMonoxideasSynthoninOrganic Synthesis 1 BartoloGabriele References 7

PartICarbonylationsPromotedbyFirstRowTransition MetalCatalysts 13

2Cobalt-CatalyzedCarbonylations 15

JérômeVolkmanandPhilippeKalck

2.1Introduction 15

2.2CarbonMonoxideandItsSurrogates 16

2.3HydroformylationofAlkenes 18

2.4CarbonylationofAlkynesbythePauson–Khand[2+2+1]Reaction 23

2.5CarbonylationofMethanol 28

2.6CarbonylationofHeterocycles 30

2.7CarbonylationofAlkylandArylHalides 36

2.8C—HBondCarbonylations 37

2.9MiscellaneousCo-CatalyzedCarbonylations 39

2.10SummaryandConclusions 40 References 41

3Nickel-CatalyzedCarbonylations 51 DebaratiDasandBhalchandraM.Bhanage

3.1Introduction 51

3.2NickelHalidesinCarbonylationReaction 52

3.3Ni-ChelatesasPrecatalysts 56

3.4NanoparticlesasActiveCatalysts 60

3.5DinickelComplexesasCatalysts 62

3.6Ni/ACasaPromisingHeterogeneousCatalyst 63

3.7UseofCOSurrogateswithNickelCatalysts 64

3.7.1MetalCarbonylsasCOSurrogates 64

3.7.2FormatesasCOSurrogates 67

3.7.3AcidorAcidChloridesasCOSurrogates 69

3.8OtherProminentRolesofNickelinCarbonylation 73

3.9ConclusionandFutureOutlook 77 References 78

4CarbonylationsCatalyzedbyOtherFirstRowTransition-Metal Catalysts(Manganese,Iron,Copper) 83 Chong-LiangLi,HaiWang,andXiao-FengWu

4.1Introduction 83

4.2SynthesisofKetones 83

4.3SynthesisofEsters 90

4.4SynthesisofAmides 95

4.5SynthesisofOtherProducts 104

4.6SummaryandConclusions 110 References 110

PartIICarbonylationsPromotedbySecondRowTransition MetalCatalysts 113

5Ruthenium-CatalyzedCarbonylations 115 HelfriedNeumannandRajenahallyV.Jagadeesh

5.1Introduction 115

5.2CHActivationofNitrogen-ContainingAreneDerivatives 116

5.3Ruthenium-CatalyzedCarbonylationsofOlefinsandNitroarenes 123

5.3.1Ruthenium-CatalyzedHydroformylations 123

5.3.2Ruthenium-CatalyzedAlkoxycarbonylationofOlefins 126

5.3.3CarbonylationofNitroarenes 129

5.4Ruthenium-CatalyzedCarbonylationofAminesandAlcohols 132

5.5Ruthenium-CatalyzedCyclocarbonylations 133

5.6Ruthenium-CatalyzedReactionsUsingSyngas 138

5.6.1Fischer–TropschSynthesis 138

5.6.2SynthesisofOxoProductsfromSyngas 140

5.7SynthesisofOxoProductsfromH2 andCO2 142

5.8Conclusions 144 References 144

6Rhodium-CatalyzedCarbonylations 149 OrestePiccoloandStefanoPaganelli

6.1Introduction 149

6.2Hydroformylation 151

6.2.1CatalystRecovery 152

6.2.2AqueousBiphaseHydroformylation 156

6.2.3EnantioselectiveHydroformylation 161

6.2.4TandemHydroformylation 164

6.2.5SyngasSurrogates 169

6.3Carbonylation 171

6.4SomeRelevantPatentsandPatentApplications(2015–2020) 184

6.4.1Hydroformylation 184

6.4.2PreparationofAceticAcidandSimilarCompoundsand Derivatives 185

6.4.3Alcohols 185

6.5SummaryandConclusions 185 References 186

7Palladium(0)-CatalyzedCarbonylations 197 JianmingLiu,ChengtaoYue,andFuweiLi

7.1Introduction 197

7.2Palladium(0)-CatalyzedCarbonylativeSynthesisofEster Derivatives 198

7.2.1Palladium(0)-CatalyzedCarbonylativeSynthesisofEsterDerivatives fromArylHalides 198

7.2.2Palladium(0)-CatalyzedCarbonylativeSynthesisofEsterDerivatives fromAlkynes 201

7.2.3Palladium(0)-CatalyzedCarbonylativeSynthesisofEsterDerivatives UsingBenzylAmines 208

7.3Palladium(0)-CatalyzedCarbonylativeSynthesisofAmide Derivatives 209

7.3.1Palladium(0)-CatalyzedCarbonylativeSynthesisof β-Lactams 209

7.3.2Palladium(0)-CatalyzedCarbonylativeSynthesisofFive,Six, Seven-MemberedCyclicAmides 211

7.3.3Palladium(0)-CatalyzedCarbonylativeSynthesisofBenzamide Derivatives 214

7.4Palladium(0)-CatalyzedCarbonylativeSynthesisofKetone Derivatives 217

7.4.1Palladium(0)-CatalyzedCarbonylativeSynthesisofKetoneDerivatives fromArylHalides 217

7.4.2Palladium(0)-CatalyzedCarbonylativeSynthesisofKetoneDerivatives fromOtherSubstrates 223

7.5Palladium(0)-CatalyzedCarbonylativeSynthesisof α,β-AlkynylKetones Derivatives 223

7.6Palladium(0)-CatalyzedCarbonylativeSynthesisofOtherCarbonyl Compounds 225

7.7SummaryandConclusions 232 References 232

8Palladium(II)-CatalyzedCarbonylations 235 BartoloGabriele,NicolaDellaCa’,RaffaellaMancuso,LuciaVeltri, andIdaZiccarelli

8.1Introduction 235

8.2Palladium(II)-CatalyzedCarbonylationofAlkanesandSaturatedC—H Bonds 236

8.3Palladium(II)-CatalyzedCarbonylationofArenesand Heteroarenes 239

8.4Palladium(II)-CatalyzedCarbonylationofAlkenes 243

8.4.1Palladium(II)-CatalyzedCarbonylationofUnfunctionalizedAlkenes, Dienes,andAllenes 243

8.4.2Palladium(II)-CatalyzedCarbonylationofFunctionalizedAlkenesand Allenes 250

8.5Palladium(II)-CatalyzedCarbonylationofAlkynes 255

8.5.1Palladium(II)-CatalyzedCarbonylationofUnfunctionalized Alkynes 255

8.5.2Palladium(II)-CatalyzedCarbonylationofFunctionalizedAlkynes 264

8.6Palladium(II)-CatalyzedCarbonylationofOtherSubstrates 274

8.7SummaryandConclusions 277 References 278

9CarbonylationsCatalyzedbyOtherSecond-RowTransition MetalCatalysts 295 FrancescaFoschiandGianluigiBroggini

9.1Introduction 295

9.2ZirconiumCompoundsasCarbonylationCatalysts 295

9.2.1CarbonylationwithCarbonMonoxideonSulfated-DopedZirconiaasthe SolidAcidCatalyst 295

9.2.2CarbonylationofZirconoceneComplexes 299

9.3SilverCompoundsinCarbonylationReactions 307

9.3.1Koch-TypeReactionsinthePresenceofSilverCarbonylIon Catalyst 307

9.3.2Koch-TypeReactionsinthePresenceofSilverLewisAcidsunderCO Atmosphere 309

9.3.3CarbonylativeCouplingReactionsPromotedbyMetal–SilverBimetallic Catalysts 309

9.4MolybdenumCompoundsinCarbonylationReactions 312

9.4.1FormalCarbonylationProcesses:CarbonylationofEthyleneand Methanol 312

9.4.2MolybdenumCarbonylComplexesasCatalystsandCOSourcein IntermolecularCarbonylationCouplingReactionsofArylorAlkenyl Halides 314

9.4.3MolybdenumCarbonylComplexesasBothCatalystsandCOSourcein IntramolecularCarbonylationCouplingReactions 317

9.4.4Metal-CatalyzedCouplingProceduresUsingMolybdenumastheCO Source 319

9.4.4.1IntermolecularCross-CouplingProcedures 320

9.4.4.2CascadeandIntramolecularCross-CouplingProcedures 323

9.4.4.3CarbonylativeCross-CouplinginthePresenceofTransmetalation Partners 326

9.5SummaryandConclusions 327 References 328

PartIIIMiscellaneousCarbonylationReactions 333

10CarbonylationsPromotedbyThird-RowTransitionMetal Catalysts 335 AnthonyHaynes

10.1Introduction 335

10.2MethanolCarbonylation 336

10.2.1AceticAcidProduction 336

10.2.2ProcessConsiderationsandMechanismforRhCatalyst 337

10.2.3IridiumCatalysts 339

10.2.3.1MechanismforIridiumCatalyst 339

10.2.3.2RoleofPromotersinIridium-CatalyzedMethanolCarbonylation 342

10.2.3.3RecentDevelopments 344

10.3Hydroformylation 345

10.3.1IridiumCatalysts 346

10.3.2PlatinumCatalysts 349

10.3.3OsmiumCatalysts 351

10.4OtherCarbonylationReactions 351

10.4.1AlkoxycarbonylationofAlkenes 352

10.4.2CarbonylationReactionsInvolvingAlkynes 353

10.4.3OxidativeCarbonylations 354

10.5SummaryandConclusions 355 References 356

11TransitionMetal-FreeCarbonylationProcesses 363 LuCheng,BinbinLiu,FangningXu,andWeiHan

11.1Introduction 363

11.2Transition-Metal-FreeCarbonylationfortheSynthesisofAldehydesand Ketones 364

11.3Transition-Metal-FreeCarbonylationfortheSynthesisofEstersand Lactones 375

11.4Transition-Metal-FreeCarbonylationfortheSynthesisofAmides 385

11.5Transition-Metal-FreeCarbonylationfortheSynthesisofAcidsand Anhydrides 386

xii Contents

11.6Transition-Metal-FreeCarbonylationfortheSynthesisofAcylChlorides andAlcohols 388

11.7SummaryandConclusions 392 References 393

12ConclusionsandPerspectives 397 BartoloGabriele Index 401

Preface

ThisbookisdedicatedtotheuseofcarbonmonoxideasaC-1buildingblockin organicsynthesis.Theincorporationofcarbonmonoxideintoanorganicsubstrate togiveacarbonylcompoundiscalled“carbonylation.”Carbonylationreactions, discoveredin1930sthankstothepioneeringworkbyRoelenandReppe,arenow establishedasamostpowerfulmethodologyforthedirectsynthesisofcarbonyl derivativesusingthesimplestandreadilyavailableC-1unit.Impressiveprogress hasbeenmadeinthisfieldatbothindustrialandacademiclevels,sonowadays carbonylationsarewidelyappliednotonlyfortheproductionofindustriallyrelevant,relativelysimplecarbonylcompoundsbutalsoforthepreparationofcomplex moleculararchitecturesandevenaskeystepsinnaturalproductsynthesis.

Ihavebeeninvolvedinthisfascinatingareaofresearchformanyyears,with particularinterestinpalladium-catalyzedprocesses.Aftermydegreeinchemistry attheUniversityofCalabriawithathesisonPd(II)-catalyzedalkynecarbonylation (1990),in1991,IjoinedthegroupofProfessorsGianPaoloChiusoliandMircoCosta attheUniversityofParmaforaresearchstage.Atthattime,theuseofCOasC-1 unitinsynthesiswasamongtheprimaryresearchinterestsofProfessorsChiusoli andCosta,andIwasveryhappytobeinvolvedinthisemergingresearcharea.Since then,IcontinuedtoworkinthisfieldduringmyPhD(attheUniversityofCalabria, withProfessorGiuseppeSalerno)andtheninthecoursemyindependentcareer.

Therefore,attheend2019,whenDr.AnneBrennführerinvitedmetosubmit abookproposaloncarbonylationchemistryforWiley-VCH,Iwasveryhappyto accept.Iwasawarethatotherimportantandexcellentbookshadbeenpublished before(themostrecentonein2014).However,Iwasconvincedthatanewupdated bookinthisfield,organizedinadifferentwaywithrespecttothosealready published,couldbeusefultothescientificcommunity.Infact,anewbookcould beofinterestnotonlyforthoseresearchersdirectlyinvolvedincarbonylation chemistry(frombothacademiaandindustry)butalsoforresearchers,postdocs, andPhDstudentsinterestedinthemostrecenttrendsinorganicsynthesis.

Mostcarbonylationprocessesarecatalyzedbytransitionmetalspecies.Different fromthepreviousbooksoncarbonylations,whichwereorganizedonthebasisof theprocesstypeorthenatureofthecarbonylatedproductobtained,thisbookhas beenstructuredaccordingtothemetalpromotingthecarbonylationprocess.The aimofthiskindofclassificationwastohelpthereadertobetterfocusonthecatalytic

xiv Preface abilitiesandspecificitiesofdifferentmetalcatalystsinpromotingvariouskindsof carbonylations.However,consideringtheincreasingimportanceofmetal-freecarbonylationreactions(radicalcarbonylations,inparticular),afinalchapterhasbeen alsodevotedtothisemergingareaofresearch.

Thebookcontributorsareleadingscientistsinthefield,whohavekindlyaccepted myinvitationtospendsomeoftheirtimefortherealizationofthisexcitingproject, andIextendmywarmestthankstothem.Ialsowouldliketothankverymuchthe Wiley-VCHeditors,inparticularDr.AnneBrennführerandMs.KatherineWong,for thekindinvitationtoeditthisbookandfortheirinvaluablecooperationandsupport throughouttheentirepreparationofthebook.

IhopeyouwillenjoyreadingthebookatleastasmuchasIhaveenjoyedin editingit!

ArcavacatadiRende(CS)

January18,2021 BartoloGabriele

Introduction:CarbonMonoxideasSynthoninOrganic Synthesis

UniversityofCalabria,LaboratoryofIndustrialandSyntheticOrganicChemistry(LISOC),Departmentof ChemistryandChemicalTechnologies,ViaPietroBucci12/C,87036ArcavacatadiRende,Italy

Thisbookdiscussesthesynthesisofcarbonylatedcompoundsbyintroducingthe carbonylfunctionintoanorganicsubstrate(carbonylation)employingthesimplest C-1unitascarbonylatingagent,carbonmonoxide.Carbonmonoxideisalargely availablefeedstock.Itisproducedindustriallybypartialoxidationofpetroleum hydrocarbonsandsteamreformingoflighthydrocarbons(includingnaturalgas)or gasificationofcoaltogivesyngas(COandH2 )[1].Inthefuture,itisexpectedthat agrowingamountofcarbonmonoxidewillbeavailablefromrenewablefeedstocks, suchasbiowastesandCO2 [2].COisalsothesimplestunitthat,uponinsertion intoanorganicsubstrate,canbedirectlytransformed,withoutatomloss,intoa carbonylgroup.Itisthereforeadesirableandusefulbuildingblockinsynthesisto producehighvalue-addedindustriallyrelevantmoleculesandfinechemicals.

Carbonylationreactionsweredisclosedinthe1930sbytheseminalworks ofRoelen[3]andReppe[4](whoalsocoinedtheterm“carbonylation”)for industrialapplications.Sincethen,thescientificprogressinthisfieldhasbeen enormous,thanks,inparticular,tothedevelopmentofmoreandmoreselective andefficientcatalysts.Thesecatalystsareabletopromoteaplethoraofcarbonylationsundermildconditions,whichcanbeappliedtoalargevarietyof organicsubstrates.Accordingly,carbonylationswithCOhavebecomeincreasinglymoreandmoreimportant,attheindustrialandacademiclevel,astestified bytheconsiderablenumberofbooks[5–12]andreviews[13–115]dedicated tothistopicandbytheincreasingnumberofindustrialpatentsandscientific publications.

Assaidabove,the incorporationofcarbonmonoxideintoanorganicsubstrate to giveacarbonylcompoundiscalled carbonylation.Interestingly,duringthelastyears, considerableefforthasbeenmadebythescientificcommunitytouseCOsurrogates asindirectcarbonylatingagentsoras insitu sourcesofCO(bothinindustryandin academia,toavoidthedirecthandlingofgaseousandtoxicCO).Inthisbook,severalrepresentativeexamplesofCOsurrogateswillalsobepresentedanddiscussed. AlthoughCOsurrogatescanbeinterestingfromapracticalpointofview,itshould

CarbonMonoxideinOrganicSynthesis:CarbonylationChemistry, FirstEdition.EditedbyBartoloGabriele. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1Introduction:CarbonMonoxideasSynthoninOrganicSynthesis stillbeconsideredthatcarbonmonoxideischeaperthanitssurrogatesandthatcarbonylationswithCOoccurwithahigheratomeconomy.

Carbonmonoxidepossessesthestrongestbondcurrentlyknown(257.3kcal/mol) [116].Thisbondisonlyweaklypolarizedinthedirectionofcarbon(theexperimentaldipolemomentis0.122D)[117].Thesecharacteristicsmakecarbonmonoxide arelativelystableandinertmolecule.Consequently,COcanbeattackedbyhighly reactivespecies,suchasfreeradicals,carbocations,andstrongnucleophiles(like alkoxides,amideanions,andorganolithiumreagents)(Scheme1.1).Thesereactions formacylradicals,acylcarbocations,and[NuCO] intermediates(alkoxycarbonyl anions,carbamoylanions,andacylanions).Theyevolvetowardformingthefinal carbonylationproductdependingonthenatureofreactantsandreactionconditions (Scheme1.1).

product(s)

product(s)

product(s)

Scheme1.1 Reactionsofcarbonmonoxidewithfreeradicals,carbocations,orstrong nucleophiles(suchasRO ,R2 N ,RLi).

However,themostcommonwaytoactivateCOincarbonylationreactionsunder relativelymildconditionsismetalcoordination.Infact,uponcoordinationto ametalcenterM,thecarbonatombecomesmoreelectrophilic.Itaccordingly becomessusceptibletoattackevenbyarelativelyweaknucleophile,eitherexternal orcoordinatedtothemetal(Scheme1.2;formalchargesareomittedforclarity). Whenoccurringwithinthecoordinationsphereofthemetal,thisprocessiscalled migratoryinsertion.Inthiscase,themetalalsofavorstheattacktocoordinated COforentropicreasons.Ineithercase(externalattack,Scheme1.2a,ormigratory insertion,Scheme1.2b),thecoordinatedcarbonmonoxideistransformedintoa speciesinwhichthecarbonylgroupisbondedtoM,andwhoseparticularstructure depends,apartfromthemetal,onthenatureofthenucleophile.Thus,ifthe nucleophilicspeciesisacarbongroup(alkyl,alkenyl,oraryl) σ-bondedtothe metalundergoingmigratoryinsertion,anacyl-oraroyl-metalspeciesisformed.On theotherhand,oxygenandnitrogennucleophileswillleadtohydroxycarbonyl-, alkoxycarbonyl-,orcarbamoyl-metalcomplexes,respectively(Scheme1.2). Theseintermediates’fatewilldependonthenatureofthemetalandofthereactantstakingpartinthecarbonylationprocessandonreactionconditions.Inmost cases,thefinalcarbonylatedorganicproductisformedwiththereleaseofthemetal, eitherinitsoriginalorinadifferentoxidationstate.Inthefirstcase,acatalytic cycleisdirectlyattained.Incontrast,inthesecondcase,themetalspeciesmustbe reportedinitsoriginaloxidationstate(usingasuitableredoxagent)toachieveacatalyticprocess.Forexample,anacyl-oraroyl-metalintermediateR(CO)–M[+n]–X

Carbonylated
Carbonylated
Carbonylated

(b)

Carbonylated product(s)

Carbonylated product(s) (Nu = nucleophile; Y = Nu, alkyl, alkenyl, aryl)

Specific examples of M(CO)Nu and M(CO)Y species:

Scheme1.2 Carbonmonoxidecoordinatedtoametalcenterbecomesmoresusceptibleto nucleophilicattack,eitherintermolecularly(a)orintramolecularly(migratoryinsertion)(b).

(X = halideorotherligands,withMintheoxidationstate[+n])mayundergoa nucleophilicattackbyanucleophileNuH(likewater,alcohol,oranamine),with theformationofthecarbonylatedproductR(CO)Nu(suchasacarboxylicacid,an ester,oranamide),HX,andthereducedmetalM[+(n 2)](reductivedisplacement ornucleophilicdisplacement;Scheme1.3). R O M[+n] X + NuH

Reductive displacement or nucleophilic displacement

HX + M[+(n–2)]

Nu

Scheme1.3 Anacyl-oraroyl-metalintermediate(R = carbongroup)undergoingreductive displacement(alsocallednucleophilicdisplacement).

Ifthemetalinitiatedtheprocessinits[+(n 2)]oxidationstate(forexample,by oxidativeadditionofR–XtothemetalcentertogiveR–M[+n]–XfollowedbyCO migratoryinsertion),acatalyticcycleisdirectlyachieved(Scheme1.4).Ontheother hand,ifthemetalinitiatedtheprocessinits[+n]oxidationstate(forexample,by metalationofR–HbyM[+n]X2 withtheformationofR–M[+n]–X + HX,followed byCOmigratoryinsertion),theuseofasuitableexternaloxidantisnecessaryto reconvertthereducedmetalM[+(n 2)]toM[+n]andrealizeacatalyticprocess

M[+(n–2)]

M[+n] X NuH nucleophilic displacement Oxidative addition –HX –M[+(n–2)] R M[+n] X Migratory insertion

Scheme1.4 Anexampleofcatalyticcarbonylationprocessinwhichthemetalis eliminatedattheendoftheprocessinitsoriginaloxidationstate.

1Introduction:CarbonMonoxideasSynthoninOrganicSynthesis (Scheme1.5).Clearly,fromapracticalandeconomicalpointofview,theoccurrence ofacarbonylativecatalyticcycleishighlydesirable.Inthelastdecades,therehas beenconsiderableattentiontodevelopingmoreandmorerobustandefficientmetal catalysts,alsoheterogeneousand/orwiththepossibilityofbeingeffectivelyrecycled.

Scheme1.5 Anexampleofcatalyticcarbonylationprocessinwhichthemetalisreduced attheendoftheprocessandisreoxidizedtoitsoriginaloxidationstatebytheactionofan externaloxidant.

ThenucleophilicattackofNuHtoanacyl-oraroyl-metalintermediate(either inter-orintramolecular)isacommonandimportantprocessbywhichthefinal carbonylatedcompoundisdeliveredinacarbonylationreaction.Thisprocessis called reductivedisplacement or nucleophilicdisplacement.Theexactmechanism thisstepmaytakeplacedependsonreactionconditions,and,inparticular,ifthe carbonylationprocessisdoneunderacidic,neutral,orbasicconditions.Under acidicandneutralconditions,thenucleophiletendstoattackthecarbonyl(possibly protonated)oftheR(CO)–M[+n]–Xcomplex,withtheformationofatetrahedral intermediate.Thisintermediateundergoes β-HeliminationfromtheH–O–C–MX moietytogiveR(CO)NuandametalhydridespeciesH–M[+n]–X,inequilibrium withM[+(n 2)] + HX(addition–eliminationmechanism,Scheme1.6a).Onthe otherhand,underbasicconditions,NuH(possiblyinitsanionicNu form) preferablyattacksthemetalcenter,withformaleliminationofX andformation

Scheme1.6 Possiblemechanisticpathwaysinthenucleophilicdisplacementstep: (a)nucleophilicattacktothecarbonylfollowedby β-HeliminationfromtheH–O–C–MX unit(addition–eliminationmechanism);(b)nucleophilicattacktothemetalcenterfollowed byreductiveelimination(ligandexchangemechanism);(c)reactionwithanorganometallic reagentR′ M′ followedbyreductiveelimination(transmetalationmechanism).

1Introduction:CarbonMonoxideasSynthoninOrganicSynthesis 5 oftheR(CO)–M[+n]–Nucomplex.ReductiveeliminationthenleadstoR(CO)Nu andM[+(n 2)](ligandexchangemechanism;Scheme1.6b).Thislattercasealso occurswhentheR(CO)–M[+n]–Xspeciesisattackedbyanorganometallicreagent R′ M′ withtheformationofM′ XandR(CO)–M[+n]–R′ thatundergoesreductive eliminationtogiveR(CO)R′ (asoccursintheso-calledcarbonylativecross-coupling reactions)(transmetalationmechanism;Scheme1.6c).

Dependingontheexactstoichiometryoftheprocess,carbonylationscanbe broadlyclassifiedinto direct, substitutive, additive, oxidative,and reductivecarbonylations.In directcarbonylation,carbonmonoxideisformallyinsertedintoanA—B bondofanorganicsubstratetogiveacarbonylatedproductbearingtheA(CO)B functionality(Scheme1.7a).Anexampleisthedirectcatalyticcarbonylationof methanoltoaceticacid(Scheme1.7b),aparticularlyimportantindustrialprocess.

Scheme1.7 Agenericdirectcarbonylationprocess(a)anddirectcarbonylationof methanoltoaceticacid(b).

Ontheotherhand, substitutivecarbonylation correspondstotheformalsubstitutionofacertainfunctionalgroupWofanorganicsubstratewithacarbonylic functionalgroup(CO)Z(Scheme1.8a).AnexampleisgivenbythesubstitutivecarbonylationofanallylalcoholRCH=CHCH2 OHcarriedoutwithCOandanalcohol(R′ OH)togivea β,γ-unsaturatedesterwithwaterascoproduct,asshownin Scheme1.8b.

′ + H2O (a) (b)

+ CO + R′OH

Scheme1.8 Agenericsubstitutivecarbonylationprocess(a)andsubstitutive carbonylationofallylalcoholsto β,γ-unsaturatedesters(b).

Additivecarbonylation isaprocessinwhichcarbonmonoxide,togetherwith anH–Yspecies(Y = hydrogenoranucleophilicgroup),addstoanunsaturated carbon–carbonbond,asexemplifiedinScheme1.9aforthedoublebond.Examples aregivenbythehydroformylationofolefins(inwhichY = H,withtheformal additiontothedoublebondofahydrogenatomononecarbonandtheformyl groupontheotherone,Scheme1.9b)ortheReppealkoxycarbonylationofanolefin withCOandanalcohol(Y = OR′ ,withtheformaladditiontothedoublebondof ahydrogenatomononecarbonandthealkoxycarbonylgroupontheotherone, Scheme1.9c).

1Introduction:CarbonMonoxideasSynthoninOrganicSynthesis

RCH=CHR + CO + Y–H

RCH=CHR + CO + H2

RCH=CHR + CO + R′OH

Scheme1.9 Agenericadditivecarbonylationprocessforanolefin(a),additive carbonylationofanolefinwithH2 (hydroformylation)(b),andadditivecarbonylationofan olefinwithanalcohol(Reppecarbonylation)(c).

Inanoxidativecarbonylationreaction,theprocessoccurswiththeformalsimultaneouseliminationofmolecularhydrogenfromthesubstrate(s)(Scheme1.10a). Althoughafewexamplesareknownintheliteratureinwhichmolecularhydrogen isindeedformedasthereactioncoproduct,inthemajorityofthecases,the process,promotedbyametalcatalystM[+n],occurswithsimultaneousreduction ofthemetalbytwounitsandwiththeconcomitantformationof2molofH+ (Scheme1.10b).Aprocesslikethisisnotcatalyticunlessasuitableexternaloxidant (abletoreconvertthereducedmetalintoitsoriginaloxidationstate,Scheme1.10c) isaddedamongthereactants(Scheme1.10d).AnexampleisthePdI2 -catalyzed oxidativedialkoxycarbonylationofalkynestogivemaleicdiesterscarriedoutwith molecularoxygenastheexternaloxidant,asshowninScheme1.11.

+ CO

Scheme1.10 Agenericoxidativecarbonylationprocess(a)withtheeliminationof molecularhydrogenfromsubstrate(s)SH2 andformationofcarbonylatedproduct(s)S(CO) or(b)withreductionbytwounitsofametalspeciespromotingtheprocessor(d)carried outinthepresenceofanexternaloxidant,abletoreconvertthepromotingmetalinits originaloxidationstate(c).Thecombinationbetweenthestoichiometricprocess(b)with metalreoxidation(c)givesthereaction(d)catalyticinthemetal.

Ontheotherhand, reductivecarbonylation iswhenmolecularhydrogenis formallyinsertedtogetherwithCOintotheorganicreactant(s)(Scheme1.12a).The hydroformylationreactionofolefins,showninScheme1.9b,isthemostimportant exampleinwhichmolecularhydrogenisusedasacoreactant.Amorecomplex exampleisgivenbythereductivecarbonylationofalkynes,inwhichmolecular hydrogenisformallyreleasedfromthewater-shiftreaction(CO + H2 O → CO2 + H2 )

SH2

+ 2CO + 2R′OH + PdI2

Pd(0) + 2HI + (1/2)O2 PdI2 + H2O

+ 2CO + 2R′OH + (1/2)O2 PdI2 cat

+ Pd(0) + 2HI

Scheme1.11 PdI2 -catalyzedoxidativedialkoxycarbonylationofalkynestomaleic diesters.Thecatalyticprocessistheresultofthecombinationbetweenthe dialkoxycarbonylationprocessoccurringwithreductionofPdI2 toPd(0)followedby reoxidationofPd(0)toPdI2 bytheactionoftheexternaloxidant(molecularoxygen).

andreducesonecarbonylunitintoa–CH2 O–moietywithinthefinalunsaturated γ-lactonering(Scheme1.12b). S + CO + H2 H2S(CO)

cat + CO2 (a) (b)

CCH + 3CO + H2O

Scheme1.12 (a)Agenericreductivecarbonylationprocesswithmolecularhydrogenas reducingagentand(b)reductivecarbonylationofalkynestofuran-2(5H )-ones(inwhichH2 isformallyproduced insitu bythewater-shiftreaction,CO + H2 O → CO2 + H2 ).

Themajoremphasisofthebookisbasedontheincreasingimportanceandversatilityoftransitionmetal-catalyzedcarbonylationprocesses.Thebookrepresents thefirstattempttopresentcarbonylationsbasedonthekindofmetalpromoting thecarbonylationprocessratherthanonthecarbonylationprocesstypeorthecarbonylatedproduct’snature.PartIofthebookdealswithcarbonylationspromotedby first-rowtransitionmetalcatalysts(cobalt,nickel,manganese,iron,copper).PartII describescarbonylationspromotedbysecond-rowtransitionmetalcatalysts(ruthenium,rhodium,palladium,othersecond-rowmetals).Carbonylationpromotedby third-rowtransitionmetalcatalystsisdiscussedinPartIII.Chapter11isalsodevoted tometal-freecarbonylationprocesses.

References

1 Reimert,R.,Marschner,F.,Renner,H.-J.,Boll,W.,Supp,E.,Brejc,M.,Liebner, W.,andSchaub,G.(2011).Gasproduction,2.In: Ullmann’sEncyclopedia ofIndustrialChemistry (eds.H.Baltes,W.GöpelandJ.Hesse),423–479. Weinheim,Germany:Wiley-VCH.

2 Karl,J.andPröll,T.(2018). RenewableSustainableEnergyRev. 98:64–78.

3 Roelen,O.(RührchemieAG)(1938).VerfahrenzurHerstellungvonsauerstoffhaltigenVerbindungen.GermanPatent849548,filed20September1938 andissued15September1952.

1Introduction:CarbonMonoxideasSynthoninOrganicSynthesis

4 Reppe,W.(IGFarben)(1939).VerfahrenzurHerstellungvonAcrylsaeureoder ihrenSubstitutionserzeugnissen.GermanPatent855110,filed02August1939 andissued10November1952.

5 Falbe,J.(ed.)(1970). CarbonMonoxideinOrganicSynthesis.Berlin: Springer-Verlag.

6 Falbe,J.(ed.)(1980). NewSyntheseswithCarbonMonoxide.Berlin,Germany: Springer-Verlag.

7 Colquhoun,H.M.,Thompson,D.J.,andTwigg,M.V.(1991). Carbonylation–DirectSynthesisofCarbonylCompounds.NewYork,NY:PlenumPress.

8 Beller,M.(ed.)(2006).Catalyticcarbonylationreactions.In: Topicsin OrganometallicChemistry,vol.18,1–272.Berlin,Germany:Springer.

9 Kollár,L.(ed.)(2008). ModernCarbonylationMethods.Weinheim,Germany: Wiley-VCH.

10 Beller,M.andWu,X.-F.(2013). TransitionMetalCatalyzedCarbonylationReactions–CarbonylativeActivationofC–XBonds.Berlin,Germany:Springer.

11 Tambade,P.,Bhanage,B.,andPatil,Y.(2014). StudiesinCatalyticCarbonylationReactions.Riga,Latvia:LAPLambertAcademicPublishing.

12 Wu,X.-F.andBeller,M.(eds.)(2016).TransitionmetalcatalyzedCarbonylative synthesisofheterocycles.In: TopicsinHeterocyclicChemistry,vol.42,1–166. Berlin:Springer.

13 Ren,Z.,Lyu,Y.,Song,X.,andDing,Y.(2020). Appl.Catal.,A 595:117488.

14 Nogi,K.andYorimitsu,H.(2020). Chem.AsianJ. 15:441–449.

15 Kalck,P.,LeBerre,C.,andSerp,P.(2020). Coord.Chem.Rev. 402,UNSP 213078.

16 Jones,D.J.,Lautens,M.,andMcGlacken,G.P.(2019). Nat.Catal. 2:843–851.

17 Perrone,S.,Troisi,L.,andSalomone,A.(2019). Eur.J.Org.Chem.:4626–4643.

18 Zhao,S.andMankad,N.P.(2019). Catal.Sci.Technol. 9:3603–3613.

19 Mancuso,R.,DellaCa’,N.,Veltri,L.,Ziccarelli,I.,andGabriele,B.(2019). Catalysts 9:610.

20 Peng,J.-B.,Geng,H.-Q.,andWu,X.-F.(2019). Chem 5:526–552.

21 Urban,B.,Papp,M.,andSkoda-Foldes,R.(2019). Curr.GreenChem. 6:78–95.

22 Ma,K.,Martin,B.S.,Yin,X.,andDai,M.J.(2019). Nat.Prod.Rep. 36:174–219.

23 Nielsen,D.U.,Neumann,K.T.,Lindhardt,A.T.,andSkrydstrup,T.(2019). J. LabelledCompd.Radiopharm. 61:949–987.

24 Xu,F.N.andHan,W.(2019). Chin.J.Org.Chem. 38:2519–2533.

25 Taddei,C.andGee,A.D.(2019). J.LabelledCompd.Radiopharm. 61:237–251.

26 Matsubara,H.,Kawamoto,T.,Fukuyama,T.,andRyu,I.(2018). Acc.Chem. Res. 51:2023–2035.

27 Gabriele,B.(2018).Synthesisofheterocyclesbypalladium-catalyzedcarbonylativereactions.In: AdvancesinTransition-MetalMediatedHeterocyclicSynthesis (eds.D.SoléandI.Fernández),55–127.London,UK:AcademicPress/Elsevier.

28 Gabriele,B.(2018). TargetsinHeterocyclicSystems,vol.22(eds.O.A.Attanasi, P.MerinoandD.Spinelli),41–55.Rome,Italy:ItalianChemicalSociety.

29 Peng,J.-B.andWu,X.-F.(2018). Angew.Chem.Int.Ed. 57:1152–1160.

30 Li,Y.,Hu,Y.,andWu,X.-F.(2018). Chem.Soc.Rev. 47:172–194.

31 Albano,G.andAronica,L.A.(2017). Eur.J.Org.Chem.:7204–7221.

32 Piens,N.andD’hooghe,M.(2017). Eur.J.Org.Chem.:5943–5960.

33 Shen,C.andWu,X.-F.(2017). Chem.Eur.J. 23:2973–2978.

34 Pineiro,M.,Dias,L.D.,Damas,L.,Aquino,G.L.B.,Calvete,M.J.F.,andPereira, M.M.(2017). Inorg.Chim.Acta 455:364–377.

35 Peng,J.B.,Qi,X.,andWu,X.-F.(2017). Synlett 28:175–194.

36 Feng,J.-B.andWu,X.-F.(2017). Adv.Heterocycl.Chem. 121:207–246.

37 Zhu,Z.,Zhang,W.,andGao,Z.(2016). Progr.Chem. 28:1626–1633.

38 Song,H.,Kang,M.,Jin,R.,Jin,F.,andChen,J.(2016). Progr.Chem. 28: 1313–1327.

39 Zoeller,J.R.(2016). Org.ProcessRes.Dev. 20:1016–1025.

40 Gehrtz,P.H.,Hirschbeck,V.,Ciszek,B.,andFleischer,I.(2016). Synthesis 48: 1573–1596.

41 Friis,S.D.,Lindhardt,A.T.,andSkrydstrup,T.(2016). Acc.Chem.Res. 49: 594–605.

42 Kalck,P.andUrrutigoity,M.(2015). Inorg.Chim.Acta 431:110–121.

43 Rahman,O.(2015). J.LabelledCompd.Radiopharm. 58:86–98.

44 Cavinato,G.andToniolo,L.(2014). Molecules 19:15116–15161.

45 Fang,W.,Zhu,H.,Deng,Q.,Liu,S.,Liu,X.,Shen,Y.,andTu,T.(2014). Synthesis 46:1689–1708.

46 Sumino,S.,Fusano,A.,Fukuyama,T.,andRyu,I.(2014). Acc.Chem.Res. 47: 1563–1574.

47 Wu,X.-F.,Fang,X.,Wu,L.,Jackstell,R.,Neumann,H.,andBeller,M.(2014). Acc.Chem.Res. 47:1041–1053.

48 Kealey,S.,Gee,A.,andMiller,P.W.(2014). J.LabelledCompd.Radiopharm. 57: 195–201.

49 Fukuyama,T.,Totoki,T.,andRyu,I.(2014). GreenChem. 16:2042–2050.

50 Wu,L.,Fang,X.,Liu,Q.,Jackstell,Beller,M.,andWu,X.-F.(2014). ACSCatal. 4:2977–2989.

51 Gadge,S.T.andBhanage,B.M.(2014). RSCAdv. 4:10367–10389.

52 Wu,X.-F.,Neumann,H.,andBeller,M.(2013). ChemSusChem 6:229–241.

53 Wu,X.-F.,Neumann,H.,andBeller,M.(2013). Chem.Rev. 113:1–35.

54 Gabriele,B.,Mancuso,R.,andSalerno,G.(2012). Eur.J.Org.Chem.: 6825–6839.

55 Diebolt,O.,vanLeeuwen,P.W.N.M.,andKamer,P.C.J.(2012). ACSCatal. 2: 2357–2370.

56 Fan,Q.,Liu,J.,Chen,J.,andXia,C.(2012). Chin.J.Catal. 33:1435–1447.

57 Wu,X.-F.andNeumann,H.(2012). ChemCatChem 4:447–458.

58 Liu,Q.,Zhang,H.,andLei,A.(2011). Angew.Chem.Int.Ed. 50:10788–10799.

59 Omae,I.(2011). Coord.Chem.Rev. 255:139–160.

60 Occhiato,E.G.,Scarpi,D.,andPrandi,C.(2010). Heterocycles 80:697–724.

61 Haynes,A.(2010). Adv.Catal. 53:1–45.

62 Liu,J.,Chen,J.,Sun,W.,andXia,C.(2010). Chin.J.Catal. 31:1–11.

63 Brennführer,A.,Neumann,H.,andBeller,M.(2009). ChemCatChem 1:28–41.

1Introduction:CarbonMonoxideasSynthoninOrganicSynthesis

64 Brennführer,A.,Neumann,H.,andBeller,M.(2009). Angew.Chem.Int.Ed. 48: 4114–4133.

65 Ragaini,F.(2009). DaltonTrans.:6251–6266.

66 Barnard,C.F.J.(2008). Organometallics 27:5402–5422.

67 Chaudhari,R.V.(2008). Curr.Opin.DrugDiscoveryDev. 11:820–828.

68 Veige,A.S.(2008). Polyhedron 27:3177–3189.

69 Boyarskii,V.P.(2008). Russ.J.Gen.Chem. 78:1742–1753.

70 Liu,M.,Wu,Y.,Du,Z,Yuan,H.,andGe,J.(2008). Chin.J.Catal. 29:489–496.

71 Diaz,D.J.,Darko,A.K.,andMcElwee-White,L.(2007). Eur.J.Org.Chem.: 4453–4465.

72 Langstom,B.,Itsenko,O.,andRahman,O.(2007). J.LabelledCompd.Radiopharm. 50:794–810.

73 Church,T.L.,Getzler,Y.D.Y.L.,Byrne,C.M.,andCoates,G.W.(2007). Chem. Commun.:657–674.

74 Shibata,T.(2006). Adv.Synth.Catal. 348:2328–2336.

75 Vasapollo,G.andMele,G.(2006). Curr.Org.Chem. 10:1397–1421.

76 Ragaini,F.,Cenini,S.,Gallo,E.,Caselli,A.,andFantauzzi,S.(2006). Curr.Org. Chem. 10:1479–1510.

77 Ungvary,F.(2005). Coord.Chem.Rev. 249:2946–2961.

78 Trzeciak,A.M.andZiolkowski,J.J.(2005). Coord.Chem.Rev. 249:2308–2322.

79 Muzart,J.(2005). Tetrahedron 61:9423–9463.

80 Park,K.H.andChung,Y.K.(2005). Synlett:545–559.

81 Gibson,S.E.andMainolfi,N.(2005). Angew.Chem.Int.Ed. 44:3022–3037.

82 Gabriele,B.,Salerno,G.,Costa,M.,andChiusoli,G.P.(2004). Curr.Org.Chem. 8:919–946.

83 Vizer,S.A.,Yerzhanov,K.B.,AlQuntar,A.A.A.,andDembitsky,V.M.(2004). Tetrahedron 60:5499–5538.

84 Green,M.J.,Cavell,K.J.,Edwards,P.G.,Tooze,R.P.,Skelton,B.W.,andWhite, A.H.(2004). DaltonTrans.:3251–3260.

85 Thomas,C.M.andSuss-Fink,G.(2004). Coord.Chem.Rev. 243:125–142.

86 Cornils,B.andHerrmann,W.A.(2003). J.Catal. 216:23–31.

87 desAbbayes,H.andSalaun,J.Y.(2003). DaltonTrans.:1041–1052.

88 Gabriele,B.,Salerno,G.,Costa,M.,andChiusoli,G.P.(2003). J.Organomet. Chem. 687:219–228.

89 Skoda-Foldes,R.andKollár,L.(2002). Curr.Org.Chem. 6:1097–1119.

90 Kiss,G.(2001). Chem.Rev. 101:3435–3456.

91 delRio,I.,Claver,C.,andvanLeeuwen,P.W.N.M.(2001). Eur.J.Inorg.Chem.: 2719–2738.

92 Bertoux,F.,Monflier,E.,Castanet,Y.,andMortreux,A.(1999). J.Mol.Catal.A: Chem. 143:11–22.

93 Wender,I.(1996). FuelProcess.Technol. 48:189–297.

94 Ragaini,F.andCenini,S.(1996). J.Mol.Catal.A:Chem. 109:1–25.

95 Ryu,I.andSonoda,N.(1996). Angew.Chem.Int.Ed. 35:1050–1066.

96 Beller,M.,Cornils,B.,Frohning,C.D.,andKohlpaintner,C.W.(1995). J.Mol. Catal.A:Chem. 104:17–85.

97 Khumtaveeporn,K.andAlper,H.(1995). Acc.Chem.Res. 28:414–422.

98 Yamamoto,A.(1995). Bull.Chem.Soc.Jpn. 68:433–446.

99 Tsuji,J.andMandai,T.(1993). J.Organomet.Chem. 451:15–21.

100 Ford,P.C.,Ryba,D.W.,andBelt,S.T.(1993). Adv.Chem. 238:27–43.

101 Lin,J.J.andKnifton,J.F.(1992). Adv.Chem.Ser.D 230:235–247.

102 Ojima,A.,Zhang,Z.,Korda,A.,Ingallina,P.,andClos,N.(1992). Adv.Chem. Ser.D 230:277–296.

103 Braca,G.,Galletti,A.M.R.,Sbrana,G.,andTrabuco,E.(1992). Adv.Chem.Ser. D 230:309–322.

104 Moloy,K.G.andWegman,R.W.(1992). Adv.Chem.Ser.D 230:323–338.

105 Zoeller,J.R.,Cloyd,J.D.,Lafferty,N.L.,Nicely,V.A.,Polichnowski,S.W.,and Cook,S.L.(1992). Adv.Chem.Ser.D 230:377–394.

106 Oswald,A.A.,Hendriksen,D.E.,Kastrup,R.V.,andMozeleski,E.J.(1992). Adv. Chem.Ser.D:395–418.

107 Chiusoli,G.P.(1991). TransitionMet.Chem. 16:553–564.

108 Iwasaki,M.,Ishii,Y.,andHidai,M.(1991). J.Synth.Org.Chem.Jpn. 49: 909–918.

109 Jenner,G.(1989). Appl.Catal. 50:99–118.

110 Lapidus,A.L.andPirozhkov,S.D.(1989). Usp.Khim. 58:197–233.

111 Collin,J.(1988). Bull.Soc.Chim.Fr. 6:976–981.

112 Gulevich,Y.V.,Bumagin,N.A.,andBeletskaya,I.P.(1988). Usp.Khim. 57: 529–561.

113 Chiusoli,G.P.(1987). TransitionMet.Chem. 12:89–96.

114 Narayana,C.andPeriasamy,M.(1985). Synthesis:253–268.

115 Brown,H.C.(1969). Acc.Chem.Res. 2:65–72.

116 Liu,Y.-R.(2007). ComprehensiveHandbookofChemicalBondEnergies.Boca Raton,FL:TaylorandFrancis.

117 Scuseria,G.E.,Miller,M.D.,Jensen,F.,andGeertsen,J.(1991). J.Chem.Phys. 94:6660–6663.

PartI

CarbonylationsPromotedbyFirstRowTransitionMetal Catalysts

Cobalt-CatalyzedCarbonylations

JérômeVolkmanandPhilippeKalck

UniversityofToulouseUPS-INP,ComposanteENSIACETdel’InstitutNationalPolytechniquedeToulouse, LaboratoiredeChimiedeCoordinationduCNRSUPR8241,4alléeEmileMonso,31030ToulouseCedex4, France

2.1Introduction

Theproductionofmethanecatalyzedbyreducednickelfromcarbonmonoxide andhydrogenwasdiscoveredbyPaulSabatierandJean-BaptisteSanderens [1].Thisseminalworkwasfollowedbynumerousstudiesontheconversionof charcoalintohydrocarbonsbythehydrogenationofcarbonmonoxide[2].Inthe 1920s,FranzFischerandHansTropschcarriedouttheseinvestigationsatthe Kaiser-Wilhelm-InstitutfürKohlenforschungatMülheimanderRuhr,Germany. Syntheticfuelswereproducedusingiron-andcobalt-basedcatalystsoperatingat atmosphericpressureandattemperaturesbelow300 ∘ C.OttoRoelen,assistantto F.Fischersince1924,wasinchargeofbuildingthefirstpilotplantin1927.Hethen movedtotheResearchLaboratoryofRuhrchemieAGatOberhausenwherethefirst industrialplantwasoperating.On26July1938,hedecidedtorecycleethyleneinthe Fischer–Tropschsynthesistoincreasetheformationoflonger-chainhydrocarbons. OttoRoelenandhisassistantAlfredLandgrafobservedtheformationofpropanal asamainconstituentoftheconversionofequalvolumesofCH2 =CH2 /CO/H2 . Thistransformationwascarriedoutoverafixedbedoperatingat150 ∘ Cand 100barwithacobaltcatalystalongwithmagnesiaandthoriapromoterssupported onkieselguhr.Thisreactionwasfurtherextendedtovariousalkenes,andthe correspondingaldehydesweresynthesizedasmainproducts.Sixweeksafterthe firstexperiment,apatentapplicationwasfiledon19September1938andonly deliveredin1952[3].TwopatentshoweverappearedearlierintheUnitedStates [4]andFrance[5].TheFischer–Tropschreactionwasdescribedin1940[6],then byO.Roelenhimself[7],andlaterinmanypapers,patents,andreviewsorbook chapters,whicharecitedbyrecentreferences[8–10].

Furthermore,carbonmonoxidewasshowntoreactwithmethanoltoproduce aceticacidasearlyas1913[11].ReppeandhisresearchgroupatI.G.Farbenand thenBASFpatentedthecatalyticactivityofiron,cobalt,andnickelinthepresence ofaniodidecoppersalttocarbonylatemethanolintoaceticacidandmethylacetate.

CarbonMonoxideinOrganicSynthesis:CarbonylationChemistry, FirstEdition.EditedbyBartoloGabriele. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

2Cobalt-CatalyzedCarbonylations

Mostexampleswerefocusedonnickelat230–340 ∘ Cand180–200bar[12].BASFand laterBritishCelaneseintenselyworkedonthecarbonylationreactionathighpressuresandtemperaturesusingcobaltornickelcarbonylsinthepresenceofiodineor iodidesalts.Thisresultedinmanypatentclaims[13].Thecorrosionissuesencounteredwhenusingiodidepromoterswereonlysolvedinthelatterpartofthe1950s, whenthehighlyresistantMo–Nialloys(Hastelloy®)weredeveloped[14].However, thetoxicityoftheNi(CO)4 producedduringthereactionwassuchthatonlythe cobaltpowder/CuIsystemwasfurtherdeveloped,eventhoughitislessefficient(16% aceticacidand54%methylacetate)[15].Evenunderharshoperatingconditions (250 ∘ Cand680bar)[12],theselectivitytoaceticacidwas90%basedonmethanol and70%basedonCO,mainlyduetothewater–gasshift(WGS)reaction(Eq.(2.1)) [15,16]:

Thiscobalt-catalyzedmethanolcarbonylationwasindustrializedbyBASFin1960 andcommercializedin1963.Twentyyearslater,twoplantswereoperatinginGermany(50000t/y)andintheUnitedStates(Louisiana,BordenCoplant,65000t/y). Thisprocesswasabandonedduetothehigh-pressureconditionsandthemediocre selectivitybycomparisonwiththerhodiumMonsantoprocess[14,16].

Thus,COandtransitionmetalcomplexesasareagentandcatalystshavebeen usedtomainlyproducelargequantitiesofhydrocarbonsandusefulintermediates suchasaceticacidandaldehydes.Recently,wecanobservearenewedinterest infirst-rowtransitionmetalcatalysisandparticularlyintheuseofcobaltinfine chemistryandpharmaceuticalindustry[17,18].Inthiscontext,thedevelopment ofefficientcatalystsinchemo-,regio-,andevendiastereo-orenantioselective synthesesofhigh-valueproductsisquitechallenging.

Thischapterwillanalyzetherecentuseofcarbonmonoxideinconjunctionwith cobaltcatalyststoobtainintermediatesortargetproductsinfinechemistry.Wewill befocusingonthemainconceptsthatgovernthecatalysisofthesereactionsandthe syntheticstrategiesthatcanbeanticipated.

2.2CarbonMonoxideandItsSurrogates

TheCO/H2 syntheticgas(syngas)wasinitiallyobtainedfortheFischer–Tropsch processbycoalgasificationthroughpartialoxidationreactionsatatmosphericpressureandaround200 ∘ C[2,19].Syngaswasthenconvertedintohigherhydrocarbons thatwereusedasfuel[20,21].Today,variouscarbonsourcesareusedforgasification:coal,naturalgas,petroleumandpetroleumresidues,biomassfeedstocks,and municipalsolidwastes[22–25].Currently,syngas(andfromitCOorH2 )isproduced bylargeindustrialplantstomanufacturevariouscompoundsonlargescale.Itis necessarytopurifysyngassinceitcontainssulfurspecies(H2 SandCOS),HCl,NH3 , HCN,CO2 ,andvolatilederivativesofvariousmetalssuchasHg,As,andSe.Sincethe

CO + H2O CO2

2.2CarbonMonoxideandItsSurrogates 17 firstFischer–Tropschunitoperatedin1936atRuhrchemieAG,thisprocesshasbeen continuouslyimprovedandisstilltodayproducinglargeamountsofhydrocarbons. Cobaltcatalystsarestillutilizedandpreferredoverironandnickelcatalysts;indeed, theyarecharacterizedbytheirlong-lastingstability,highactivityandselectivity forheavyhydrocarbons,andlowWGSactivity.In2011,thelastgas-to-liquidplant startedupinQatar(ShellPearlGTL)andin2012reacheditsfullcapacityof7million t/y[26].

However,transportofcarbonmonoxideviapipelinesisquitedifficult,inparticularduetothehightoxicityofthisgas[27,28].Still,smallfinechemistryunits,not alwaysincloseproximityoflargeplants,requireaccesstopurecarbonmonoxide fortheircarbonylationreactions.Itsproductiononsiteisthereforenecessary,and manyhaveoptedforCOsurrogates.Suchstrategyhasalsobeenadoptedinseveral academicresearchlaboratories.Variousabundantandcheapmoleculescanthus beutilizedtogeneratehigh-purityCOorCO/H2 withinthecarbonylationreactor [29,30].Inparticular,formaldehydeoritspolymer,paraformaldehyde,which contain93.3wt%ofCO,allowstoperformcarbonylationreactions[31–34].In particular,hydroformylationreactionsarecarriedoutbydecomposingHCHOinto CO/H2 orbyoxidativeadditiononthemetalcentertogeneratean[H–M–CHO] activespecies.Similarly,formicacid,methylformate,formamides,formicanhydride,chloroform,andmethanol,amongothers[27–30],havebeenreportedas goodsourcesofCOorsyngas.Bothformaldehydeandmethanolhavealsobeen utilized[35].Higher-molecular-weightaldehydesandalcoholsfrombiomasscan generatesyngas.Allthesereactionsusingsurrogateshavebeenreviewed[29–39].

LargeamountsofsyngasarealsoproducedfromCO2 fromthereactionwithH2 viathereversedWGS(Eq.(2.2))catalyzedbyrutheniumcomplexessupportedon weaklyacidicalumina[27,28]:

Inaddition,[Mo(CO)6 ]inthepresenceof1,8-diazabicyclo[5.4.0]undec-7-ene(DBU) isasourceofCO[40].[Cr(CO)6 ],[W(CO)6 ],and[Co2 (CO)8 ]complexesarealso efficientCOsources.Furthermore,labeled 13 COcarbonylationscanbecarriedout using 13 C-labeledpivaloylchlorideviaitsdecompositionbyapalladium(0)complex inatwo-chambersystem(areleaseandaconsumptionchamber)[41].Labeling with 11 Cand 14 Cofbioactivecompoundshasextendedthe 13 Ccarbonylation reactions[42].Recently,crystalline9-methyl-9H -fluorene-9-carbonylchlorideand methyldiphenylsilacarboxylicacid,obtainedfromlabeledCO2 ,wereshownto releaselabeledCO[43].

Finally,thegreenhousegasmixtureofCH4 andCO2 canbecleanlyconverted intosyngasviathe“dryreformingofmethane”onnickel–cobalt-supportedcatalysts operatingataround900 ∘ C[44,45].Anotherstrategyistooperatethephotocatalytic orphotoelectrochemicalreductionofCO2 andH2 Ointhepresenceofheterogeneous semiconductor-basedcatalysts[46].Thisapproachmaybeopeninganewrouteto producehigh-purityCOforfinechemistryandpharmaceuticalplants.

CO2 + H2 CO + H2O
(2.2)

2.3HydroformylationofAlkenes

OttoRoelendiscoveredthecobalt-catalyzedhydrocarbonylationofetheneand byextensionofvariousalkenestoyieldthecorrespondingaldehydes.Theformal additionofahydrogenatomandaformylgrouptoaC=Cdoublebondledtothe name hydroformylation.Exceptforethene,alinear(l)aldehydeandabranched (b)aldehydeareproduced(Scheme2.1).Thefollowingschemesthatrepresent hydroformylationreactionsarecolor-codedwithCOinredandH2 inblue.

ThehydroformylationofolefinswithsyngasistheprincipalroutetoC3 –C15 aldehydes,whichareconvertedintoalcohols,acids,orotherderivatives.Byfarthe mostimportantindustrialproductis(l)-butanalforplasticizeralcohols,followed byC6 –C13 aldehydes(l and b).Inaddition,methyl-2-propanal,(l)-pentanal,and C12 –C18 aldehydesaresynthesizedfortheproductionofdetergentalcohols.In 1980,thecobalt-catalyzedhydroformylationofpropeneandheavieralkeneswas detailedbyCornilsinFalbe’sbook[47].Morerecently,reviewsandbookchapters haveappearedmainlyfocusedonthemechanismofthisreaction[48–50]andthe reactivityofmetalcarbonylspeciesandindustrialapplications[51–54].

Theinitialhydroformylationprocessescatalyzedbycobaltcarbonylswerecarried outunderhighpressure(300bar)toproduceamixtureofaldehydesandhydrogenatedalkenes.Bytheendofthe1960s,mostplantsrunningthecobaltprocess wereoperatingundersevereconditions(200–450barand140–180 ∘ C).

Amodifiedprocesswasdevelopedbytheadditionofatrialkylphosphineligand (mainlyPBu3 )toperformthehydroformylationofpropeneatabout50bar.This processalsogaveimprovedselectivityforthepreferred(l)-butanalwithanisomeric l:b ratioof7:1,insteadof3:1.Furthermore,ShellandSasolintroducedsterically hinderedphosphabicyclononaneligandstofurtherimprovethe l:b ratio(Chart2.1) [55–60].Thesebulkyligands[57]areparticularlyinteresting,notablythetwo phobanes[4.2.1]and[3.3.1]andthe4,8-dimethyl-2-phosphabicyclo[3.3.1]nonane. Highconversionofoct-1-ene(95%)andlinearityinnonanol(90%)areobtained.

AninnovativeapproachwasreportedbyStanleyandcoworkers,usinga monomericcationichydridocobalt(II)complex[61].Thehighactivityofcationic Co(II)bisphosphinecatalystsallowstooperateundermoderatepressureand temperature.Forexample,a[Co(acac)(diethylphosphinoethane)](BF4 )solutionin dimethoxytetraglyme(1mM)canbeactivatedat140 ∘ Cunder34barof1:1CO:H2 forfiveminutes.Hex-1-ene(1M)wasconvertedat100 ∘ Cand10barintoheptanal withaturnovernumberof68in1hourand619in29hours.The l:b aldehyderatio

Scheme2.1 Generalhydroformylationtransformationofaterminalalkeneyieldinga linear(l)aldehydeandabranched(b)aldehyde.

Phoban[4.2.1]Phoban[3.3.1]

4,8-Dimethyl-2-phosphabicyclo[3.3.1]nonane

1,3,5,7-Tetramethyl-2,4,6-trioxa-8phosphatricyclo[3.3.1.13,7]decane

Chart2.1 Stericallyhinderedphosphabicyclononaneligands.Sources:Masonandvan Winkle[55],VanWinkleetal.[56],Bunguetal.[57],Eberhardetal.[58],Steynbergetal. [59],Polasetal.[60].

is0.8andnoalkaneandalcoholweredetected.Interestingly,operatingat140 ∘ C and30bar,2,3-dimethyl-but-2-eneand4-methyl-pent-2-enewereconvertedinto thecorrespondingaldehydeswithsomeisomerization.

Sincethe1970s,theemergenceofRh-catalyzedhydroformylationreactionshas takenaparamountimportanceforlightalkenes(C2 –C5 )duetothelowtemperaturesandpressuresutilized,aswellastheimprovedchemo-andregioselectivities [28,47,54,62–64].However,cobaltcatalystsarestillusedindustriallyinsomehydroformylationapplications,particularlyfortheproductionofplasticizeralcoholsfrom ethyleneoligomers,butenedimers,andpropenetrimers.Indeed,forheavieralkenes requiringhigheroperatingtemperatures,rhodiumcomplexesareunstable.

Concerningthemechanismofthecobalt-catalyzedhydroformylationreaction, the[Co(H)(CO)3 ]hasbeenestablishedastheactivespecies(Eq.(2.3)).Thisresult wasconfirmedbymanytheoreticalcalculationsandkineticstudiesvalidatingthe catalyticcycleproposedbyHeckandBreslow[65–71]:

The[Co(H)(CO)4 ]restingstatecomplexispreparedunderpressureofsyngas (CO/H2 )fromvarioussourcesofcobalt.Infact,[Co2 (CO)8 ]issystematically generatedasanintermediateintheequilibrium(Eq.(2.3))with[Co(H)(CO)4 ]and [Co(H)(CO)3 ],asobservedbyhigh-pressureIRandNMRspectroscopies[60,72].

Thetetra-coordinated[Co(H)(CO)n+1 (L)2 n ](1)istheactivespecies(with n = 0–2 andL = monophosphine,orL2 = diphosphine,asrecentlyreportedbyChirikand coworkerswiththe(R,R)iPr DuPhosligand[73]).Complex 2,abipyramidaltrigonal cobalt(I),resultsfromthecoordinationofthealkeneinoneoftheequatorialpositions.Thehydrideligandoccupiesanaxialposition(Scheme2.2).Themigratory insertionofthealkeneleadstotwoalkylspecies,thelinear(3)andbranched (notshown)isomers.The l isomeristhemajorintermediatewhentheRgroup iselectrondonating[54].Asdiscussedearlier(Chart2.1),this l:b selectivitycan beimprovedwiththedesignofstericallyhinderedandbasicbicyclicmonophosphineligands.Theacylcobaltcomplex 4 isthenobtainedbythecoordinationof COfollowedbyamigratoryinsertion.Recentdensity-functionaltheory(DFT) calculationsandpredictionsofreactionpathsconfirmthatthismigratoryinsertion stepisrate-determiningwithanactivationenergyof10–16kcalmol 1 [69,71,74].

Scheme2.2 Simplifiedmechanismofthecobalt-mediatedhydroformylationofamonosubstitutedterminalalkenefromtheactivespecies 1 (onlythelinearisomerhasbeen represented).

Figure2.1 η2 -acylstructureoftheunsaturated [Co(COR)(CO)2 (PR′ 3 )]species.

Ananalogousacyl[Co[C(O)R](CO)3 (N2 )]complexhasbeencharacterizedunder N2 andlowH2 partialpressure[75].Similarly,various[Co[C(O)R](CO)3 (L)] (L = monophosphine)havebeenisolatedandshowntobeactiveinthecatalytic reaction.Akineticinvestigationofthestoichiometrichydrogenolysisofacyl [Co(COR)(CO)3 L]complexes(L = monophosphine)byhigh-pressureinfrared spectroscopyhasshownthatthedissociationofaCOligandprecedestheoxidative additionofH2 .DFTanalysisofthe[Co(COR)(CO)2 L]intermediateisconsistent withan η2 -CORligand(Figure2.1)ratherthanthepossibleagosticC–Hinteraction oftheRgroup[71,76,77].

Finally,afteroxidativeadditionofH2 ,thedihydridecobalt(III)complex 5 is formed.Reductiveeliminationofthealdehyderegenerates 1,theactivespecies.

Interestingly,complex 1 isalsoabletocompetitivelyisomerizeinternalalkenes toyieldsignificantquantitiesofterminalalkenebyasuccessionofmigratory insertion/β-Heliminationsequences.

IncontrasttotheCo(I)/Co(III)catalyticsystemsdescribedabove,Stanley’s catalyst[61]appearstoinvolveCo(II)complexes.Mostcatalyticstepsare

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Buy ebook Carbon monoxide in organic synthesis - carbonylation chemistry gabriele bartolo. (ed.) che by Education Libraries - Issuu