Instant ebooks textbook Solutions manual to accompany an introduction to numerical methods and analy

Page 1


Solutions Manual to accompany An Introduction to Numerical Methods and Analysis James F. Epperson

Visit to download the full and correct content document: https://ebookmass.com/product/solutions-manual-to-accompany-an-introduction-to-nu merical-methods-and-analysis-james-f-epperson/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Student Solutions Manual to Accompany Atkins' Physical Chemistry 11th Edition Peter Bolgar

https://ebookmass.com/product/student-solutions-manual-toaccompany-atkins-physical-chemistry-11th-edition-peter-bolgar/

An Introduction to Statistical Methods and Data Analysis 7th Edition, (Ebook PDF)

https://ebookmass.com/product/an-introduction-to-statisticalmethods-and-data-analysis-7th-edition-ebook-pdf/

Solutions Manual to Introduction to Robotics Mechanics and Control Third Edition John J. Craig

https://ebookmass.com/product/solutions-manual-to-introductionto-robotics-mechanics-and-control-third-edition-john-j-craig/

Introduction to Managerial Accounting - Solutions Manual Fifth Canadian Edition Peter Brewer

https://ebookmass.com/product/introduction-to-managerialaccounting-solutions-manual-fifth-canadian-edition-peter-brewer/

Introduction

to Research Methods and Data

Analysis

in Psychology Darren Langdridge

https://ebookmass.com/product/introduction-to-research-methodsand-data-analysis-in-psychology-darren-langdridge/

Experiments Manual To Accompany Digital Electronics: Principles and Applications, 9th Edition Tokheim

https://ebookmass.com/product/experiments-manual-to-accompanydigital-electronics-principles-and-applications-9th-editiontokheim/

An Introduction to Physical Science 15th Edition James Shipman

https://ebookmass.com/product/an-introduction-to-physicalscience-15th-edition-james-shipman/

Laboratory manual [to accompany] Physical examination & health assessment 7th Edition Edition Jarvis

https://ebookmass.com/product/laboratory-manual-to-accompanyphysical-examination-health-assessment-7th-edition-editionjarvis/

An Introduction to Genetic Analysis 11th Edition, (Ebook PDF)

https://ebookmass.com/product/an-introduction-to-geneticanalysis-11th-edition-ebook-pdf/

An Introduction to Numerical Methods and Analysis Solutions Manual

to Accompany

Solutions Manual to Accompany

An Introduction to Numerical Methods and Analysis

Third Edition

JamesF.Epperson

MathematicalReviews,AmericanMathematicalSociety

Thisthirdeditionfirstpublished2021 ©2021JohnWiley&Sons,Inc.

EditionHistory

JohnWileyandSons,Inc.(2e,2014)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of James F. Epperson to be identified as the author of this work has been asserted in accordance with law.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceof furtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservices theorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkis soldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Library of Congress Cataloging-in-Publication Data Applied for ISBN: 9781119604532

Cover design by Wiley

Setin9/11ptNimbusRomNo9LbyStraive,Chennai,India 10987654321

3.4Application:DivisionUsingNewton’sMethod

3.10RootsofPolynomials(Part1)

3.11SpecialTopicsinRoot-findingMethods

4.4Application:Muller’sMethodandInverseQuadraticInterpolation119 4.5Application:MoreApproximationstotheDerivative

5.1AReviewoftheDefiniteIntegral

5.2ImprovingtheTrapezoidRule

5.3Simpson’sRuleandDegreeofPrecision

5.4TheMidpointRule

5.5Application:Stirling’sFormula

5.6GaussianQuadrature

6.1TheInitialValueProblem—Background

6.3AnalysisofEuler’sMethod

6.5SingleStepMethods—Runge-Kutta

6.7StabilityIssues

6.8ApplicationtoSystemsofEquations

7NumericalMethodsfortheSolutionofSystemsofEquations

7.1LinearAlgebraReview

7.2LinearSystemsandGaussianElimination

7.3OperationCounts

7.4The LU Factorization

7.5Perturbation,ConditioningandStability

7.6SPDMatricesandtheCholeskyDecomposition

7.7Application:NumericalSolutionofLinearLeastSquaresProblems236

7.8SparseandStructuredMatrices

7.9IterativeMethodsforLinearSystems–ABriefSurvey

7.10NonlinearSystems:Newton’sMethodandRelatedIdeas

7.11Application:NumericalSolutionofNonlinearBVP’s

8ApproximateSolutionoftheAlgebraicEigenvalueProblem

8.1EigenvalueReview

8.4BisectionandInertiatoComputeEigenvaluesofSymmetricMatrices253 8.5AnOverviewofthe QR Iteration

9ASurveyofNumericalMethods

10AnIntroductiontoSpectralMethods

PrefacetotheSolutionsManualfortheThirdEdition

Thismanualiswrittenforinstructors,notstudents.Itincludesworkedsolutionsformany (roughly75%)oftheproblemsinthetext.ForthecomputationalexercisesIhavegiventhe outputgeneratedbymyprogram,orsometimesaprogramlisting.Mostoftheprogramming wasdoneinMATLAB,someinFORTRAN.(TheauthoriswellawarethatFORTRAN isarchaic,butthereisalotof“legacycode"inFORTRAN,andtheauthorbelievesthere isvalueinlearninganewlanguage,evenanarchaicone.)Whenthetexthasaseriesof exercisesthatareobviouslysimilarandhavesimilarsolutions,thensometimesonlyoneof theseproblemshasaworkedsolutionincluded.Whencomputationalresultsareaskedfor aseriesofsimilarfunctionsorproblems,onlyasubsetofsolutionsarereported,largely forthesakeofbrevity.Someexercisesthatsimplyaskthestudenttoperformastraightforwardcomputationareskipped.Exercisesthatrepeatthesamecomputationbutwitha differentmethodarealsooftenskipped,asareexercisesthataskthestudentto“verify”a straight-forwardcomputation.

Someoftheexercisesweredesignedtobeopen-endedandalmost“essay-like.”For theseexercises,theonlysolutiontypicallyprovidedisashorthintorbriefoutlineofthe kindofdiscussionanticipatedbytheauthor.

Inmanyexercisesthestudentneedstoconstructanupperboundonaderivativeofsome functioninordertodeterminehowsmallaparameterhastobetoachieveadesiredlevelof accuracy.Formanyofthesolutionsthiswasdoneusingacomputeralgebrapackageand thedetailsarenotgiven.

Studentswhoacquireacopyofthismanualinordertoobtainworkedsolutionsto homeworkproblemsshouldbeawarethatnoneofthesolutionsaregiveninenoughdetail toearnfullcreditfromaninstructor.

Theauthorfreelyadmitsthepotentialforerrorinanyofthesesolutions,especiallysince manyoftheexercisesweremodifiedafterthefinalversionofthetextwassubmittedtothe publisherandbecausetheorderingoftheexerciseswaschangedbetweeneditions.While wetriedtomakealltheappropriatecorrections,thepossibilityoferrorisstillpresent,and undoubtedlytheauthor’sresponsibility.

Becausemuchofthemanualwasconstructedbydoing“copy-and-paste”fromthefiles forthetext,theenumerationofmanytablesandfigureswillbedifferent.Ihavetriedto notewhatthenumberisinthetext,butcertainlymayhavemissedsomeinstances.

Suggestionsfornewexercisesandcorrectionstothesesolutionsareverywelcome. Contacttheauthorat jfe@ams.org or jfepperson@gmail.com

Differences from the text

The text itself went through a copy-editing process after this manual was completed. As was to be expected, the wording of several problems was slightly changed. None of these changes should affect the problem in terms of what is expected of students; the vast majority of the changes were to replace “previous problem” (a bad habit of mine) with “Problem X.Y” (which I should have done on my own, in the first place). Some punctuation was also changed. The point of adding this note is to explain the textual differences which might be noticed between the text and this manual. If something needs clarification, please contact me at the above email.

CHAPTER1

INTRODUCTORYCONCEPTSAND CALCULUSREVIEW

1.1BASICTOOLSOFCALCULUS

Exercises:

1.Showthatthethird-orderTaylorpolynomialfor

2.Whatisthethird-orderTaylorpolynomialfor f(x)= √x +1,about x0 =0?

,is

Solution: Wehave f(x0)=1 and f ′(x)= 1 2(x +1)1/2 ,f ′′(x)= 1 4(x +1)3/2 ,f ′′′(x)= 3 8(x +1)5/2 ,

sothat f ′(0)=1/2, f ′′(0)= 1/4, f ′′′ =3/8.Therefore

3(x)= f

1 2 x 2

′′(0)+ 1 6 x 3f ′′′(x) =1+ x(1/2)+ 1 2 x 2( 1/4)+ 1 6 x 3(3/8) =1 (1/2)x (1/8)x 2 +(1/16)x 3 .

3.Whatisthesixth-orderTaylorpolynomialfor f(x)= √1+ x2,using x0 =0?Hint: Considerthepreviousproblem.

4.Giventhat R(x)= |x|6 6! eξ for x ∈ [ 1, 1],where ξ isbetween x and 0,findanupperboundfor |R|,validfor all x ∈ [ 1, 1],thatisindependentof x and ξ.

5.Repeattheabove,butthistimerequirethattheupperboundbevalidonlyforall x ∈ [ 1 2 , 1 2 ]

Solution: Theonlysignificantdifferenceistheintroductionofafactorof 26 inthe denominator: |R(x)|≤ √e 26 × 720 =3 6 × 10 5

6.Giventhat

for x ∈ [ 1 2 , 1 2 ],where ξ isbetween x and 0,findanupperboundfor |R|,validfor all x ∈ [ 1 2 , 1 2 ],thatisindependentof x and ξ.

7.UseaTaylorpolynomialtofindanapproximatevaluefor √e thatisaccurateto within 10 3

Solution: Therearetwowaystodothis.Wecanapproximate f(x)= ex anduse x =1/2,orwecanapproximate g(x)= √x anduse x = e.Inaddition,wecanbe conventionalandtake x0 =0,orwecantake x0 =0 inordertospeedconvergence. Themoststraightforwardapproach(inmyopinion)istouseaTaylorpolynomialfor ex about x0 =0.Theremainderafter k termsis

Wequicklyhavethat

andalittleplayingwithacalculatorshowsthat

but

Sowewoulduse

Tofourteendigits, √e =1 64872127070013,andtheerroris 2 84 × 10 4,much smallerthanrequired.

8.Whatisthefourth-orderTaylorpolynomialfor f(x)=1/(x +1),about x0 =0?

Solution: Wehave f(0)=1 and

, sothat f ′(0)= 1, f ′′(0)=2, f ′′′ = 6,f ′′′′(0)=24.Thus,

9.Whatisthefourth-orderTaylorpolynomialfor f(x)=1/x,about x0 =1?

10.FindtheTaylorpolynomialofthird-orderfor sin x,using:

(a) x0 = π/6

Solution: Wehave f(x0)= 1 2 ,f ′(x

(b) x0 = π/4; (c) x0 = π/2

11.Foreachfunctionbelowconstructthethird-orderTaylorpolynomialapproximation, using x0 =0,andthenestimatetheerrorbycomputinganupperboundonthe remainder,overthegiveninterval.

(a) f(x)= e x , x ∈ [0, 1];

(b) f(x)=ln(1+ x), x ∈ [ 1, 1];

(c) f(x)=sin x, x ∈ [0,π];

(d) f(x)=ln(1+ x), x ∈ [ 1/2, 1/2];

(e) f(x)=1/(x +1), x ∈ [ 1/2, 1/2].

Solution:

(a)Thepolynomialis p3(x)=1 x + 1 2 x 2 1 6 x 3 , withremainder

3(x)= 1 24 x 4 e ξ

Thiscanbeboundedabove,forall x ∈ [0, 1],by

(b)Thepolynomialis

3(x)= x 1 2 x 2 + 1 3 x 3 , withremainder

3(x)= 1 4 x 4 1 (1+ ξ)4

We can’t boundthisforall x ∈ [ 1, 1],becauseofthepotentialdivisionby zero.

(c)Thepolynomialis

3(x)= x 1 6 x 3 , withremainder

Thiscanbeboundedabove,forall x ∈ [0,π],by

(d)Thepolynomialisthesameasin(b),ofcourse, p3(x)= x 1 2 x 2 + 1 3 x 3 , withremainder R3(x)= 1 4 x 4 1 (1+ ξ)4

Forall x ∈ [ 1/2, 1/2] thiscanbeboundedby

(e)Thepolynomialis p3(x)=1 x + x 2 x 3 , withremainder

R3(x)= x 4 1 (1+ ξ)5 .

Thiscanbeboundedabove,forall x ∈ [ 1/2, 1/2],by |R3(x)|≤ (1/2)4 1 (1 1/2)5 =2

Obviously,thisisnotanespeciallygoodapproximation.

12.ConstructaTaylorpolynomialapproximationthatisaccuratetowithin 10 3,over theindicatedinterval,foreachofthefollowingfunctions,using x0 =0

(a) f(x)=sin x, x ∈ [0,π];

(b) f(x)= e x , x ∈ [0, 1];

(c) f(x)=ln(1+ x), x ∈ [ 1/2, 1/2];

(d) f(x)=1/(x +1), x ∈ [ 1/2, 1/2];

(e) f(x)=ln(1+ x), x ∈ [ 1, 1]

Solution:

(a)Theremainderhereis

Rn(x)= ( 1)n+1 (2n +1)! x 2n+1 cos c, for c ∈ [0,π].Therefore,wehave |Rn

Simplemanipulationswithacalculatorthenshowthat

x∈[0,π] |R6(x)|≤ 0 4663028067 × 10 3 but max x∈[0,π] |R5(x)|≤ 0 7370430958 × 10 2

ThereforethedesiredTaylorpolynomialis

(b)Theremainderhereis

n(x)= ( 1)n+1 (n +1)! xn+1e c , for c ∈ [0, 1].Therefore,wehave |Rn(x)|≤ 1 (n +1)! |x|n+1 ≤ 1 (n +1)! .

Simplemanipulationswithacalculatorthenshowthat

x∈[0,1] |R6(x)|≤ 0 0001984126984

but

x∈[0,1] |R5(x)|≤ 0 1388888889 × 10 2

ThereforethedesiredTaylorpolynomialis

(c) f(x)=ln(1+ x), x ∈ [0, 3/4]

(d) Solution: Theremainderisnow |Rn(x)|≤ (1/2)n+1 (n +1) , and n =8 makestheerrorsmallenough.

(e) f(x)=ln(1+ x), x ∈ [0, 1/2].

13.Repeattheabove,thistimewithadesiredaccuracyof 10 6

14.Since π 4 =arctan1,

wecanestimate π byestimating arctan1.HowmanytermsareneededintheGregory seriesforthearctangenttoapproximate π to100decimalplaces?1,000?Hint:Use theerrortermintheGregoryseriestopredictwhentheerrorgetssufficientlysmall.

Solution: TheremainderintheGregoryseriesapproximationis

sotoget100decimalplacesofaccuracyfor x =1,werequire |

thus,wehavetotake n ≥ (10100 3)/2 terms.For1,000placesofaccuracywe thereforeneed n ≥ (101000 3)/2 terms.

Obviously,thisisnotthebestprocedureforcomputingmanydigitsof π!

15.Elementarytrigonometrycanbeusedtoshowthat arctan(1/239)=4arctan(1/5) arctan(1)

Thisformulawasdevelopedin1706bytheEnglishastronomerJohnMachin.Use thistodevelopamoreefficientalgorithmforcomputing π.Howmanytermsare neededtoget100digitsofaccuracywiththisform?Howmanytermsareneeded toget1,000digits?Historicalnote:Until1961,thiswasthebasisforthemost commonlyusedmethodforcomputing π tohighaccuracy.

Solution: WenowhavetwoGregoryseries,thuscomplicatingtheproblemabit. Wehave π =4arctan(1)=16arctan(1/5) 4arctan(1/239)

Define pm,n ≈ π astheapproximationgeneratedbyusingan m termGregoryseries toapproximate arctan(1/5) andan n termGregoryseriesfor arctan(1/239).Then wehave

, where Rk istheremainderintheGregoryseries.Therefore,

Tofinishtheproblemwehavetoapportiontheerrorbetweenthetwoseries,which introducessomearbitrarinessintotheproblem.Ifwerequirethattheybeequally accurate,thenwehavethat

Usingpropertiesoflogarithms,thesebecome log(2m +3)+(2m +3)log5 ≥ log16 log ϵ and log(2n +3)+(2n +3)log239 ≥ log4 log ϵ.

For ϵ =(1/2) × 10 100,thesearesatisfiedfor m =70, n =20.For ϵ = (1/2) × 10 1000,weget m =712, n =209.Changingtheapportionmentofthe errordoesn’tchangetheresultsbymuchatall.

16.In1896,avariationonMachin’sformulawasfound:

arctan(1/239)=arctan(1) 6arctan(1/8) 2arctan(1/57), andthisbegantobeusedin1961tocompute π tohighaccuracy.Howmanyterms areneededwhenusingthisexpansiontoget100digitsof π?1,000digits?

Solution: Wenowhavethreeseriestoworkwith,whichcomplicatesmattersonly slightlymorecomparedtothepreviousproblem.Ifwedefine pk,m,n ≈ π basedon π =4arctan(1)=24arctan(1/8)+8arctan(1/57)+4arctan(1/239), taking k termsintheseriesfor arctan(1/8), m termsintheseriesfor arctan(1/57), and n termsintheseriesfor arctan(1/239),thenweareledtotheinequalities

log(2k +3)+(2k +3)log8 ≥ log24 log ϵ,

log(2m +3)+(2m +3)log57 ≥ log8 log ϵ, and

log(2n +3)+(2n +3)log239 ≥ log4 log ϵ.

For ϵ =(1/3) × 10 100,weget k =54, m =27,and n =19;for ϵ =(1/3) × 10 1000 weget k =552, m =283,and n =209

Note:Inbothoftheseproblemsaslightlymoreinvolvedtreatmentoftheerrormight leadtofewertermsbeingrequired.

17.WhatistheTaylorpolynomialoforder3for f(x)= x4 +1,using x0 =0?

Solution: Thisisverydirect: f ′(x)=4x 3,f ′′(x)=12x 2,f ′′′(x)=24x,

sothat p3(x)=1+ x(0)+ 1 2 x 2(0)+ 1 6 x 3(0)=1

18.WhatistheTaylorpolynomialoforder4for f(x)= x4 +1,using x0 =0?Simplify asmuchaspossible.

19.WhatistheTaylorpolynomialoforder2for f(x)= x3 + x,using x0 =1?

20.WhatistheTaylorpolynomialoforder3for f(x)= x3 + x,using x0 =1?Simplify asmuchaspossible.

Solution: Wenotethat f ′′′(1)=6,sowehave(usingthesolutionfromtheprevious problem) p4(x)=3x 2 2x +1+ 1 6 (x 1)3(6)= x 3 + x.

ThepolynomialisitsownTaylorpolynomial.

21.Let p(x) beanarbitrarypolynomialofdegreelessthanorequalto n.Whatisits Taylorpolynomialofdegree n,aboutanarbitrary x0?

22.TheFresnelintegralsaredefinedas C(x)= x 0 cos(πt2/2)dt, and S(x)= x 0 sin(πt2/2)dt.

UseTaylorexpansionstofindapproximationsto C(x) and S(x) thatare 10 4 accurateforall x with |x|≤ 1 2 .Hint:Substitute x = πt2/2 intotheTaylor expansionsforthecosineandsine.

Solution: Wewillshowtheworkforthecaseof S(x),only.Wehave S(x)= x 0 sin(πt2/2)dt = x 0 pn(t2)dt + x 0 Rn(t2)dt.

Lookingmorecarefullyattheremainderterm,weseethatitisgivenby rn(x)= ± x 0 t2(2n+3) (2n +3)! cos ξdt.

Therefore, |rn(x)|≤ 1/2 0 t2(2n+3) (2n +3)! dt = (1/2)4n+7 (4n +7)(2n +3)!

Alittleeffortwithacalculatorshowsthatthisislessthan 10 4 for n ≥ 1;therefore thepolynomialis

23.UsetheIntegralMeanValueTheoremtoshowthatthe“pointwise”form(1.3)of theTaylorremainder(usuallycalledthe Lagrange form)followsfromthe“integral” form(1.2)(usuallycalledthe Cauchy form).

24.ForeachfunctioninProblem11,usetheMeanValueTheoremtofindavalue M suchthat

isvalidforall x1, x2 intheintervalusedinProblem11.

Solution: Thisamountstofindinganupperboundon |f ′| overtheintervalgiven. Theanswersareasgivenbelow.

(a) f(x)= e x , x ∈ [0, 1]; M ≤ 1

(b) f(x)=ln(1+ x), x ∈ [ 1, 1]; M isunbounded,since f ′(x)=1/(1+ x) and x = 1 ispossible.

(c) f(x)=sin x, x ∈ [0,π]; M ≤ 1

(d) f(x)=ln(1+ x), x ∈ [ 1/2, 1/2]; M ≤ 2.

(e) f(x)=1/(x +1), x ∈ [ 1/2, 1/2]. M ≤ 4.

25.Afunctioniscalled monotone onanintervalifitsderivativeisstrictlypositiveor strictlynegativeontheinterval.Suppose f iscontinuousandmonotoneonthe interval [a,b],and f(a)f(b) < 0;provethatthereisexactlyonevalue α ∈ [a,b] suchthat f(α) =0.

Solution: Since f iscontinuousontheinterval [a,b] and f(a)f(b) < 0,theIntermediateValueTheoremguaranteesthatthereisapoint c where f(c)=0,i.e., thereisatleastoneroot.Supposenowthatthereexistsasecondroot, γ.Then f(c)= f(γ)=0.BytheMeanValueTheorem,then,thereisapoint ξ between c and γ suchthat

f ′(ξ)= f(γ) f(c) γ c =0.

Butthisviolatesthehypothesisthat f ismonotone,sinceamonotonefunction musthaveaderivativethatisstrictlypositiveorstrictlynegative.Thuswehavea contradiction,thustherecannotexistthesecondroot. Averyacceptableargumentcanbemadebyappealingtoagraphofthefunction.

26.FinishtheproofoftheIntegralMeanValueTheorem(Theorem1.5)bywritingup theargumentinthecasethat g isnegative.

INTRODUCTORYCONCEPTSANDCALCULUSREVIEW

Solution: Allthatisrequiredistoobservethatif g isnegative,thenwehave

and

Theproofiscompletedasinthetext.

27.ProveTheorem1.6,providingalldetails.

28.Let ck > 0,begiven, 1 ≤ k ≤ n,andlet xk ∈ [a,b], 1 ≤ k ≤ n.Then,usethe DiscreteAverageValueTheoremtoprovethat,foranyfunction f ∈ C([a,b]),

forsome ξ ∈ [a,b]

Solution: Wecan’tapplytheDiscreteAverageValueTheoremtotheproblemasit isposedoriginally,sowehavetomanipulateabit.Define

then

andnowwecanapplytheDiscreteAverageValueTheoremtofinishtheproblem.

29.Discuss,inyourownwords,whetherornotthefollowingstatementistrue:“The Taylorpolynomialofdegree n isthebestpolynomialapproximationofdegree n to thegivenfunctionnearthepoint x0.”

NOTATION

Exercises:

1.UseTaylor’sTheoremtoshowthat ex =1+ x + O(x2) for x sufficientlysmall.

2.UseTaylor’sTheoremtoshowthat 1 cos x x = 1 2 x + O(x3) for x sufficientlysmall.

Solution: WecanexpandthecosineinaTaylorseriesas

Ifwesubstitutethisinto (1 cos x)/x andsimplify,weget 1

sothatwehave

/24.Therefore,

3.UseTaylor’sTheoremtoshowthat

) for x sufficientlysmall.

Solution: Wehave,fromTaylor’sTheorem,with x0 =0,

forsome ξ between 0 and x.Since

forall x sufficientlysmall,theresultfollows.Forexample,wehave

| forall x ∈ [ 1/2, 1/2].

4.UseTaylor’sTheoremtoshowthat

for x sufficientlysmall.

Solution: Thistime,Taylor’sTheoremgivesusthat (1+ x) 1 =1

x 3/(1+

)4 forsome ξ between 0 and x.Thus,forall x suchthat |x|≤ m, (1+ x) 1 (1 x + x 2) = x 3/(1+ ξ)4 ≤|x|3/(1 m)4 = C|x|3 , where C =1/(1 m)4 .

5.Showthat

6.Recallthesummationformula

Usethistoprovethat n k=0 r k = 1 1 r + O(rn+1).

Hint:Whatisthe definition ofthe O notation?

7.Usetheaboveresulttoshowthat10terms(k =9)areallthatisneededtocompute

towithin 10 4 absoluteaccuracy.

Solution: Theremainderinthe9termpartialsumis

8.Recallthesummationformula

Usethistoshowthat n k=1 k = 1 2 n 2 + O(n).

9.StateandprovetheversionofTheorem1.7whichdealswithrelationshipsofthe form x = xn + O(β(n)).

Solution: Thetheoremstatementmightbesomethinglikethefollowing:

Theorem: Let x = xn + O(β(n)) and y = yn + O(γ(n)),with bβ(n) >γ(n) for all n sufficientlylarge.Then x + y = xn + yn + O(β(n)+ γ(n)), x + y = xn + yn + O(β(n)), Ax = Axn + O(β(n))

Inthelastequation, A isanarbitraryconstant,independentof n Theproofparallelstheoneinthetextalmostperfectly,andsoisomitted.

10.Usethedefinitionof O toshowthatif y = yh + O(hp),then hy = hyh + O(hp+1)

11.Showthatif an = O(np) and bn = O(nq),then anbn = O(np+q)

Solution: Wehave

and |bn|≤ Cb|nq|

Thesefollowfromthedefinitionofthe O notation.Therefore,

whichimpliesthat anbn = O(np+q).

12.Supposethat y = yh + O(β(h)) and z = zh + O(β(h)),for h sufficientlysmall. Doesitfollowthat y z = yh zh (for h sufficientlysmall)?

13.Showthat

forall h sufficientlysmall.Hint:Expand f(x ± h) outtothefourthorderterms.

Solution: Thisisastraight-forwardmanipulationwiththeTaylorexpansions

and

Addthetwoexpansionstoget

Nowsolvefor f ′′(x).

14.Explain,inyourownwords,whyitisnecessarythattheconstant C in(1.8)be independentof h

Exercises:

1.Ineachproblembelow, A istheexactvalue,and Ah isanapproximationto A.Find theabsoluteerrorandtherelativeerror.

(a) A = π, Ah =22/7;

(b) A = e, Ah =2.71828;

(c) A = 1 6 , Ah =0.1667;

(d) A = 1 6 , Ah =0 1666

Solution:

(a)Abs.error ≤ 1 265 × 10 3,rel.error ≤ 4 025 × 10 4;

(b)Abs.error ≤ 1.828 × 10 6,rel.error ≤ 6.72 × 10 7;

(c)Abs.error ≤ 3.334 × 10 5,rel.error ≤ 2.000 × 10 4;

(d)Abs.error ≤ 6 667 × 10 5,rel.error ≤ 4 × 10 4

2.Performtheindicatedcomputationsineachofthreeways:(i)Exactly;(ii)Using three-digitdecimalarithmetic,withchopping;(iii)Usingthree-digitdecimalarithmetic,withrounding.Forbothapproximations,computetheabsoluteerrorandthe relativeerror.

(a) 1 6 + 1 10 ;

(b) 1 6 × 1 10 ;

(c) 1 9 + 1 7 + 1 6 ;

(d) 1 7 + 1 6 + 1 9 .

3.Foreachfunctionbelowexplainwhyanaiveconstructionwillbesusceptibleto significantroundingerror(for x nearcertainvalues),andexplainhowtoavoidthis error.

(a) f(x)=(√x +9 3)x 1;

(b) f(x)= x 1(1 cos x);

(c) f(x)=(1 x) 1(ln x sin πx);

(d) f(x)=(cos(π + x) cos π)x 1;

(e) f(x)=(e1+x e1 x)(2x) 1 .

Solution: Ineachcase,thefunctionissusceptibletosubtractivecancellationwhich willbeamplifiedbydivisionbyasmallnumber.Thewaytoavoidtheproblemisto useaTaylorexpansiontomakethesubtractionanddivisionbothexplicitoperations. Forinstance,in(a),wewouldwrite

f(x)=((3+(1/6)x (1/216)x 2 +O(x 3)) 3)x 1 =(1/6) (1/216)x+O(x 2).

Togetgreateraccuracy,takemoretermsintheTaylorexpansion.

4.For f(x)=(ex 1)/x,howmanytermsinaTaylorexpansionareneededtoget singleprecisionaccuracy(7decimaldigits)forall x ∈ [0, 1 2 ]?Howmanytermsare neededfordoubleprecisionaccuracy(14decimaldigits)overthissamerange?

5.Usingsingleprecisionarithmetic,only,carryouteachofthefollowingcomputations, usingfirsttheformontheleftsideoftheequalssign,thenusingtheformontheright side,andcomparethetworesults.Commentonwhatyougetinlightofthematerial in 1.3. (a) (x + ϵ)3 1= x3 +3x2ϵ +3xϵ2 + ϵ3 1, x =1 0, ϵ =0 000001 (b) b + √b2 2c =2c( b √b2 2c) 1 , b =1, 000, c = π.

Solution: “Singleprecision”means6or7decimaldigits,sothepointoftheproblem istodothecomputationsusing6or7digits.

(a)UsingMATLAB’s single commandontheauthor’slaptop(runningMATLAB R2019b),weget (x + ϵ)3 1=3 000002999797857 × 10 6 but x 3 +3x 2 ϵ +3xϵ 2 + ϵ 3 1=3 000003000019902 × 10 6 §

(b)Usingthesamesoftwareandhardware,weget

but

003141597588407

Whatisinterestingishowmodernhardwareandsoftwarehavedramatically improvedtheresultshere.Earliereditions,whichrelieduponresultsusing FORTRANorConalate1990sSunworkstation,showedmuchmoreofa difference.

6.Considerthesum

where m =2×105.Againusingonlysingleprecision,computethistwoways:First, bysummingintheorderindicatedintheformula;second,bysumming backwards, i.e.,startingwiththe k =200, 000 termandendingwiththe k =0 term.Compare yourresultsandcommentuponthem.

7.(a)Usingthecomputerofyourchoice,findthreevalues a, b,and c,suchthat (a + b)+ c = a +(b + c)

(b)Repeatforyourfavoritecalculatorapp.

(c)Dothisforsingleprecisioninyourpreferredcomputingenvironment.

Solution: (a)Thekeyissueistogetanapproximationtothemachineepsilon, thentake a =1, b = c =(2/3)u orsomethingsimilar.Thiswillguaranteethat (a + b)+ c = a but a +(b + c) >a.Thereisanadditionalissue,inthatMATLAB alwaysroundsunformattedoutput,sotoseethatyougotadifferentresultyouhave touse(ugh!) fprintf toprintoutenoughdigits.Onmylaptop,Iwasabletouse

a =1

b =1 101642356786233 × 10 16

c =1.101642356786233 × 10 16

andthen fprintf toldmethat

D =(a + b)+ c =1.00000000000000000, E = a +(b + c)=1.00000000000000022.

Itisaninterestingaspectofthehistoryofthisbook,thatwhenthisexercisewas firstwritten(“alongtimeago,inacomputationalenvironmentfar,far,away”), actualphysicalcalculatorswerestillcommonplace(asopposedtosmartphone/tablet apps).OnanelderlySharpcalculator,circa1997,theauthorfoundthat a =1, b =4 × 10 10,and c =4 × 10 10 worked.Usingascientificcalculatorapponhis phone,theauthorfoundthat a =1, b =4 × 10 16,and c =4 × 10 16 worked.

(However,hewasnotabletogetthistoworkontheWindows10calculatorapp.It wouldmakeaninterestingquasi-researchquestiontoexplainwhy.)

(b)UsingMATLAB’s single command(carefully),Iused a =1 b =3.9572964 × 10 8 c = b.

Then,

8.Assumeweareusing3-digitdecimalarithmetic.For ϵ =0.0001, a1 =5,compute

1 for a0 equaltoeachof 1, 2,and 3.Comment.

9.Let ϵ ≤ u.Explain,inyourownwords,whythecomputation

1 ispotentiallyrifewithroundingerror.(Assumethat a0 and a1 areofcomparable size.)Hint:Seepreviousproblem.

Solution: Thisisjustageneralizationofthepreviousproblem.If ϵ issmallenough, then a2 willbeindependentof a0

10.Usingthecomputerandlanguageofyourchoice,writeaprogramtoestimatethe machineepsilon.

Solution: Therearelotsofwaystodothis.Thebasicideaistoaddasmallnumber to1,andthenchecktoseeiftheresultisdifferentfromone,otherwisecontinueon. Onepossiblesolutionisthefollowing:

Algorithm1.1

Computationofthemachineepsilon. x=1.e-10; fork=1:6000 y=1+x; ify<=1 disp(‘macheps=’) disp(x) break end x=x*.99; end x

Thisproduces(ontheauthor’slaptop) u =1.101642356786233 × 10 16.Ifwe changetheinitial x to0.5,anddecrementbyafactorof2eachstep,weget u = 1.110223024625157 × 10 16,which,beinglarger,isabetterestimate.(Why?)

11.Wecancompute e x usingTaylorpolynomialsintwoways,eitherusing

orusing

Discuss,inyourownwords,whichapproachismoreaccurate.Inparticular,which oneismore(orless)susceptibletoroundingerror?

Solution: Becauseofthealternatingsignsinthefirstapproach,thereissomeconcern aboutsubtractivecancellationwhenitisused.

12.Whatisthemachineepsilonforacomputerthatusesbinaryarithmetic,24bitsfor thefraction,androunds?Whatifitchops?

Solution: Recallthatthemachineepsilonisthe largest number x suchthatthe computerreturns 1+ x = x.Wethereforeneedtofindthelargestnumber x thatcan berepresentedwith24binarydigitssuchthat 1+ x,whenroundedto24bits,isstill equalto 1.Thisisperhapsbestdonebyexplicitlywritingouttheadditioninbinary notation.Wehave

1+ x =1 000000000000000000000002

+0.00000000000000000000000 dddddddddddddddddddddddd2.

Ifthemachinechops,thenwecansetallofthe d valuesto 1 andthecomputerwill stillreturn 1+ x =1;ifthemachinerounds,thenweneedtomakethefirstdigita zero.Thus,thedesiredvaluesare

13.Whatisthemachineepsilonforacomputerthatuses octal (base8)arithmetic, assumingitretains8octoldigitsinthefraction?

1.5ABRIEFHISTORYOFSCIENTIFICCOMPUTING

(Noexercisesinthissection.)

CHAPTER2

ASURVEYOFSIMPLEMETHODSAND TOOLS

2.1HORNER’SRULEANDNESTEDMULTIPLICATION

Exercises:

1.Writeeachofthefollowingpolynomialsinnestedform.

(a) x3 +3x +2;

(b) x6 +2x4 +4x2 +1;

(c) 5x6 + x5 +3x4 +3x3 + x2 +1;

(d) x2 +5x +6.

Solution:

(a) x3 +3x +2=2+ x(3+ x2);

(b) x6 +2x4 +4x2 +1=1+ x2(4+ x2(2+ x2));

(c) 5x6 + x5 +3x4 +3x3 + x2 +1=1+ x2(1+ x(3+ x(3+ x(1+5x)))); (d) x2 +5x +6=6+ x(5+ x).

2.Writeeachofthefollowingpolynomialsinnestedform,butthistimetakeadvantage ofthefactthattheyinvolveonlyevenpowersof x tominimizethecomputations.

(a) 1+ x2 + 1 2 x4 + 1 6 x6;

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis JamesF.Epperson.

(b) 1 1 2 x2 + 1 24 x4 .

3.Writeeachofthefollowingpolynomialsinnestedform.

(a) 1 x + x2 x3; (b) 1 x2 + 1 2 x4 1 6 x6; (c) 1 x + 1 2 x2 1 3 x3 1 4 x5

Solution:

4.Writeacomputercodethattakesapolynomial,definedbyitscoefficients,and evaluatesthatpolynomialanditsfirstderivativeusingHorner’srule.Testthiscode byapplyingittoeachofthepolynomialsinProblem1.

Solution: ThefollowingisaMATLABscriptwhichdoestheassignedtask,using thelessefficientapproachtocomputingthederivative.

function[y,yp]=horner1(a,x) n=length(a); y=a(n); fork=(n-1):(-1):1 y=a(k)+y*x; end %

yp=(n-1)*a(n); fork=(n-1):(-1):2

yp=(k-1)*a(k)+yp*x; end

5.Repeattheabove,usingthepolynomialsinProblem2asthetestset.

Solution: Thesamescriptcanbeused,ofcourse.

6.Repeattheabove,usingthepolynomialsinProblem3asthetestset.

7.Considerthepolynomial

Thiscanbewrittenin“nested-like”formbyfactoringouteachbinomialtermasfar asitwillgo,thus:

Writeeachofthefollowingpolynomialsinthiskindofnestedform. (a) p(x)=1+ 1 3 x 1 60 x(x 3);

(b) p(x)= 1+ 6 7 (x 1/2) 5 21 (x 1/2)(x 4)+ 1 7 (x 1/2)(x 4)(x 2); (c) p(x)=3+ 1 5 (x 8) 1 60 (x 8)(x 3).

Solution:

(b)

8.Writeacomputercodethatcomputespolynomialvaluesusingthekindofnested formusedinthepreviousproblem,andtestitoneachofthepolynomialsinthat problem.

9.WriteacomputercodetodoHorner’sruleonapolynomialdefinedbyitscoefficients. Testitoutbyusingthepolynomialsinthepreviousproblems.Verifythatthesame valuesareobtainedwhenHorner’sruleisusedaswhenanaiveevaluationisdone.

10.WriteouttheTaylorpolynomialofdegree5forapproximatingtheexponential function,using x0 =0,usingtheHornerform.Repeatforthedegree5Taylor approximationtothesinefunction.(Besuretotakeadvantageofthefactthatthe Taylorexpansiontothesineusesonlyoddpowers.)

Solution: Fortheexponentialfunction,weget

p5(x)=1+ x(1+ x((1/2)+ x((1/6)+ x((1/24)+(1/120)x)))); forthesinefunctionweget

p5(x)= x(1+ x 2(( 1/6)+(1/120)x 2)).

11.ForeachfunctioninProblem11of 1.1,writethepolynomialapproximationin Hornerform,andusethisasthebasisforacomputerprogramthatapproximatesthe function.Comparetheaccuracyyouactuallyachieve(basedonthebuilt-inintrinsic functionsonyourcomputer)tothatwhichwastheoreticallyestablished.Besureto checkthattherequiredaccuracyisachievedovertheentireintervalinquestion.

12.Repeattheabove,exceptthistimecomparetheaccuracyofthe derivative approximationconstructedbytakingthederivativeoftheapproximatingpolynomial.Be suretousethederivativeformofHorner’sruletoevaluatethepolynomial.

2.2DIFFERENCEAPPROXIMATIONSTOTHEDERIVATIVE

Exercises:

1.Usethemethodsofthissectiontoshowthat f ′(x)= f(x) f(x h) h + O(h).

Solution: Wehave,forany a,that

Therefore,taking a = h,

2.Compute,byhand,approximationsto f ′(1) foreachofthefollowingfunctions, using h =1/16 andeachofthederivativeapproximationscontainedin(2.1)and (2.5).

(a) f(x)= √x +1;

(b) f(x)=arctan x;

(c) f(x)=sin πx;

(d) f(x)= e x;

(e) f(x)=ln x

3.Writeacomputerprogramwhichusesthesamederivativeapproximationsasinthe previousproblemtoapproximatethefirstderivativeat x =1 foreachofthefollowing functions,using h 1 =4, 8, 16, 32.Verifythatthepredictedtheoreticalaccuracyis obtained.

(a) f(x)= √x +1;

(b) f(x)=arctan x;

(c) f(x)=sin πx;

(d) f(x)= e x;

(e) f(x)=ln x

Solution: IwroteasimpleFORTRANprogramtodothisforthesinglecaseof(b). TheresultsIgot,usingdoubleprecision,areinTable2.1.Notethattheerrorgoes downbyafactorof2for D1(h),andafactorof4for D2(h),thusconfirmingthe theoreticalaccuracy.

4.Usetheapproximationsfromthissectiontofillinapproximationstothemissing valuesinTable2.2(Table2.4inthetext).

Table2.1 DerivativeApproximations.

Table2.2 TableforProblem4. x f(x) f ′

1.00 1.0000000000

1.10 0.9513507699

1.20 0.9181687424

1.30 0.8974706963

1.40 0.8872638175

1.50 0.8862269255

1.60 0.8935153493

1.70 0.9086387329

1.80 0.9313837710

1.90 0.9617658319

2.00 1.0000000000

5.Usetheerrorestimate(2.5)forthecentereddifferenceapproximationtothefirst derivativetoprovethatthisapproximationwillbe exact foranyquadraticpolynomial.

Solution: Wehavethat f ′(x) f(x + h) f(x h) 2h = Ch2f ′′′(ξ), forsome ξ between x h and x + h.If f isaquadratic,thenithasthegeneralform f(x)= ax 2 + bx + c,

forgivenconstants a, b,and c.Butthethirdderivativeofthiskindoffunctionwill alwaysbeidenticallyzero.

6.Findcoefficients A, B,and C sothat

(a) f ′(x)= Af(x)+ Bf(x + h)+ Cf(x +2h)+ O(h2); (b) f ′(x)= Af(x)+ Bf(x h)+ Cf(x 2h)+ O(h2).

Hint:UseTaylor’stheorem.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Instant ebooks textbook Solutions manual to accompany an introduction to numerical methods and analy by Education Libraries - Issuu