[Ebooks PDF] download Many-sorted algebras for deep learning and quantum technology 1st edition giar

Page 1


1st Edition Giardina Ph.D.

Visit to download the full and correct content document: https://ebookmass.com/product/many-sorted-algebras-for-deep-learning-and-quantu m-technology-1st-edition-giardina-ph-d/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Deep Learning for Medical Image Analysis 1st Edition S. Kevin Zhou

https://ebookmass.com/product/deep-learning-for-medical-imageanalysis-1st-edition-s-kevin-zhou/

Photonanotechnology for Therapeutics and Imaging 1st Edition Ph.D. Choi

https://ebookmass.com/product/photonanotechnology-fortherapeutics-and-imaging-1st-edition-ph-d-choi/

Deep Learning for Targeted Treatments : Transformation in Healthcare Rishabha Malviya

https://ebookmass.com/product/deep-learning-for-targetedtreatments-transformation-in-healthcare-rishabha-malviya/

Principles and Labs for Deep Learning 5th Edition ShihChia Huang

https://ebookmass.com/product/principles-and-labs-for-deeplearning-5th-edition-shih-chia-huang/

Artificial Intelligence and Deep Learning in Pathology 1st Edition Stanley Cohen Md (Editor)

https://ebookmass.com/product/artificial-intelligence-and-deeplearning-in-pathology-1st-edition-stanley-cohen-md-editor/

From Deep Learning to Rational Machines 1st Edition

Cameron J. Buckner

https://ebookmass.com/product/from-deep-learning-to-rationalmachines-1st-edition-cameron-j-buckner/

Synthetic Data for Deep Learning: Generate Synthetic Data for Decision Making and Applications with Python and R 1st Edition Necmi Gürsakal

https://ebookmass.com/product/synthetic-data-for-deep-learninggenerate-synthetic-data-for-decision-making-and-applicationswith-python-and-r-1st-edition-necmi-gursakal-2/

Synthetic Data for Deep Learning: Generate Synthetic Data for Decision Making and Applications with Python and R 1st Edition Necmi Gürsakal

https://ebookmass.com/product/synthetic-data-for-deep-learninggenerate-synthetic-data-for-decision-making-and-applicationswith-python-and-r-1st-edition-necmi-gursakal/

Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems 1st Edition Andre Ye

https://ebookmass.com/product/modern-deep-learning-for-tabulardata-novel-approaches-to-common-modeling-problems-1st-editionandre-ye/

MANY-SORTEDALGEBRASFORDEEP LEARNINGANDQUANTUM TECHNOLOGY

Thispageintentionallyleftblank

MANY-SORTED ALGEBRASFOR DEEPLEARNING ANDQUANTUM TECHNOLOGY

CHARLES R.GIARDINA

LucentTechnologies,Whippany,NJ,UnitedStates(Retired)

MorganKaufmannisanimprintofElsevier

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2024ElsevierInc.Allrightsarereserved,includingthosefortextanddatamining,AItraining,andsimilar technologies.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-443-13697-9

ForInformationonallMorganKaufmannpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: ChrisKatsaropoulos

EditorialProjectManager: JohnLeonard

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Dedication

Tomyeverything,Betty

Thispageintentionallyleftblank

Contents

Listoffiguresxi

Prefacexv

Acknowledgmentsxvii

1.Introductiontoquantummany-sorted algebras1

1.1Introductiontoquantummany-sortedalgebras1

1.1.1Algebraicstructures1

1.1.2Many-sortedalgebramethodology2

1.1.3Globalfieldstructure3

1.1.4Globalalgebraicstructuresinquantum andinmachinelearning5

1.1.5Specificmachinelearningfield structure6

1.1.6Specificquantumfieldstructure7

1.1.7Vectorspaceasmany-sortedalgebra8

1.1.8FundamentalillustrationofMSAin quantum12

1.1.9Time-limitedsignalsasaninner productspace13

1.1.10KernelmethodsinrealHilbert spaces15

1.1.11R-Modules17 References19

2.Basicsofdeeplearning21

2.1Machinelearninganddatamining21

2.2Deeplearning23

2.3Deeplearningandrelationshiptoquantum23

2.4Affinetransformationsfornodeswithin neuralnet24

2.5Globalstructureofneuralnet24

2.6Activationfunctionsandcostfunctionsfor neuralnet28

2.7Classificationwithasingle-nodeneuralnet30

2.8Backpropagationforneuralnetlearning31

2.9Many-sortedalgebradescriptionofaffine space35

2.10Overviewofconvolutionalneuralnetworks37

2.11Briefintroductiontorecurrentneural networks38

References40

3.Basicalgebrasunderlyingquantumand NNmechanisms41

3.1Fromavectorspacetoanalgebra41

3.2Analgebraoftime-limitedsignals44

3.3Thecommutantinanalgebra47

3.4Algebrahomomorphism47

3.5Hilbertspaceofwraparounddigitalsignals48

3.6Many-sortedalgebradescriptionofaBanach space49

3.7Banachalgebraasamany-sortedalgebra51

3.8Many-sortedalgebraforBanach*andC* algebra52

3.9Banach*algebraofwraparounddigital signals53

3.10Complex-valuedwraparounddigital signals54 References55

4.QuantumHilbertspacesandtheir creation57

4.1ExplicitHilbertspacesunderlyingquantum technology57

4.2Complexification58

4.3Dualspaceusedinquantum60

4.4DoubledualHilbertspace64

4.5Outerproduct66

4.6Multilinearforms,wedge,andinterior products68

4.7Many-sortedalgebrafortensorvectorspaces71

4.8Thedeterminant73

4.9Tensoralgebra74

4.10Many-sortedalgebrafortensorproductof Hilbertspaces76

4.11Hilbertspaceofrays78

4.12Projectivespace79 References81

5.Quantumandmachinelearning applicationsinvolvingmatrices83

5.1Matrixoperations83

5.2Qubitsandtheirmatrixrepresentations85

5.3ComplexrepresentationfortheBloch sphere91

5.4Interior,exterior,andLiederivatives92

5.5SpectraformatricesandFrobeniuscovariant matrices93

5.6Principalcomponentanalysis94

5.7Kernelprincipalcomponentanalysis97

5.8Singularvaluedecomposition98 References101

6.Quantumannealingandadiabatic quantumcomputing103

6.1Schrodinger’scharacterizationof quantum103

6.2Quantumbasicsofannealingandadiabatic quantumcomputing105

6.3Deltafunctionpotentialwelland tunneling107

6.4Quantummemoryandtheno-cloning theorem110

6.5Basicstructureofatomsandions111

6.6Overviewofqubitfabrication114

6.7Trappedions116

6.8Super-conductanceandtheJosephson junction117

6.9Quantumdots121

6.10D-waveadiabaticquantumcomputersand computing122

6.11Adiabatictheorem124 Reference128 Furtherreading129

7.OperatorsonHilbertspace131

7.1Linearoperators,aMSAview131

7.2ClosedoperatorsinHilbertspaces135

7.3Boundedoperators135

7.4Puretensorsversuspurestate operators138

7.5Traceclassoperators141

7.6Hilbert-Schmidtoperators142

7.7Compactoperators143 References144

8.Spacesandalgebrasforquantum operators145

8.1BanachandHilbertspacerank,boundedness, andSchauderbases145

8.2CommutativeandnoncommutativeBanach algebras147

8.3SubgroupinaBanachalgebra149

8.4BoundedoperatorsonaHilbertspace151

8.5Invertibleoperatoralgebracriteriaona Hilbertspace153

8.6SpectruminaBanachalgebra155

8.7IdealsinaBanachalgebra157

8.8Gelfand-Naimark-Segalconstruction158

8.9GeneratingaC*algebra162

8.10TheGelfandformula163

References164

9.VonNeumannalgebra165

9.1Operatortopologies165

9.2TwobasicvonNeumannalgebras166

9.3CommutantinavonNeumannalgebra167

9.4TheGelfandtransform168 References169

10.Fiberbundles171

10.1MSAforthealgebraicquotientspaces171

10.2Thetopologicalquotientspace173

10.3Basictopologicalandmanifold concepts176

10.4Fiberbundlesfrommanifolds178

10.5Sectionsinafiberbundle180

10.6Lineandvectorbundles181

10.7Analyticvectorbundles182

10.8EllipticcurvesoverC183

10.9Thequaternions184

10.10Hopffibrations186

10.11HopffibrationwithblochsphereS2,the one-qubitbase187

10.12HopffibrationwithsphereS4,thetwo-qubit base188

References188

11.LiealgebrasandLiegroups191

11.1Algebraicstructure191

11.2MSAviewofaLiealgebra191

11.3DimensionofaLiealgebra192

11.4IdealsinaLiealgebra194

11.5RepresentationsandMSAofaLiegroupofa Liealgebra197

11.6Briefingontopologicalmanifoldpropertiesof aLiegroup198

11.7FormaldescriptionofmatrixLiegroups202

11.8MappingsbetweenLiegroupsandLie algebras208

11.9ComplexificationofLiealgebras215 References216

12.Fundamentalanduniversalcovering groups217

12.1Homotopyagraphicalview217

12.2Initialpointequivalenceforloops219

12.3MSAdescriptionofthefundamental group220

12.4Illustratingthefundamentalgroup225

12.5Homotopicequivalencefortopological spaces226

12.6Theuniversalcoveringgroup227

12.7TheCornwellmapping229 References230

13.Spectraforoperators231

13.1Spectralclassificationforbounded operators231

13.2SpectraforoperatorsonaBanach space233

13.3Symmetric,self-adjoint,andunbounded operators236

13.4Boundedoperatorsandnumerical range239

13.5Self-adjointoperators241

13.6Normaloperatorsandnonbounded operators243

13.7Spectraldecomposition246

13.8Spectraforself-adjoint,normal,andcompact operators248

13.9Purestatesanddensityfunctions249

13.10Spectrumandresolventset250

13.11Spectrumfornonboundedoperators251

13.12Briefdescriptionsofspectralmeasuresand spectraltheorems252

References253

14.Canonicalcommutation

relations255

14.1Isometriesandunitaryoperations255

14.2Canonicalhypergroups—amultisorted algebraview257

14.3Partialisometries259

14.4Multisortedalgebraforpartial isometries260

14.5Stone’stheorem263

14.6Positionandmomentum264

14.7TheWeylformofthecanonical commutationrelationsandtheHeisenberg group265

14.8Stone-vonNeumannandquantum mechanicsequivalence266

14.9Symplecticvectorspace—amultisorted algebraapproach267

14.10TheWeylcanonicalcommutationrelations CT algebra269 References270

15.Fockspace271

15.1ParticleswithinFockspacesandFockspace structure271

15.2Thebosonicoccupationnumbersandthe ladderoperators272

15.3ThefermionicFockspaceandthefermionic ladderoperators276

15.4TheSlaterdeterminantandthecomplex Cliffordspace278

15.5Mayadiagrams278

15.6Mayadiagramrepresentationoffermionic Fockspace283

15.7Youngdiagramsrepresentingquantum particles285

15.8Bogoliubovtransform286

15.9Parafermionicandparabosonicspaces286

15.10Segal Bargmann Fockoperations287

15.11Many-bodysystemsandtheLandaumanybodyexpansion287

15.12Single-bodyoperations288

15.13Two-bodyoperations288 References288

16.Underlyingtheoryforquantum computing291

16.1Quantumcomputingandquantum circuits291

16.2Single-qubitquantumgates292

16.3Paulirotationaloperators295

16.4Multiple-qubitinputgates297

16.5Theswappingoperation299

16.6Universalquantumgateset299

16.7TheHaarmeasure300

16.8Solovay Kitaevtheorem301

16.9QuantumFouriertransformandphase estimation302

16.10Uniformsuperpositionandamplitude amplification303

16.11Reflections304

References305

17.Quantumcomputing applications307

17.1Deutschproblemdescription307

17.2OracleforDeutschproblemsolution308

17.3QuantumsolutiontoDeutschproblem309

17.4Deutsch-Jozsaproblemdescription310

17.5QuantumsolutionfortheDeutsch-Jozsa problem311

17.6Groversearchproblem312

17.7SolutiontotheGroversearchproblem313

17.8TheShor’scryptographyproblemfroman algebraicview315

17.9SolutiontotheShor’sproblem317

17.10Ellipticcurvecryptography318

17.11MSAofellipticcurveoverafinite field321

17.12Diffie HellmanEECkeyexchange324 References325 Furtherreading325

18.Machinelearninganddata mining327

18.1Quantummachinelearning applications327

18.2Learningtypesanddatastructures328

18.3Probablyapproximatelycorrectlearningand Vapnik-Chervonenkisdimension329

18.4Regression332

18.5K-nearestneighborclassification334

18.6K-nearestneighborregression335

18.7QuantumK-meansapplications336

18.8Supportvectorclassifiers336

18.9Kernelmethods339

18.10Radialbasisfunctionkernel341

18.11Boundmatrices341

18.12Convolutionalneuralnetworksandquantum convolutionalneuralnetworks346 References348

19.ReproducingkernelandotherHilbert spaces349

19.1Algebraicsolutiontoharmonic oscillator349

19.2ReproducingkernelHilbertspaceoverCand thediskalgebra350

19.3ReproducingkernelHilbertspaceover R354

19.4Mercer’stheorem355

19.5Spectraltheorems357

19.6TheRiesz-Markovtheorem361

19.7SomenonseparableHilbertspaces362

19.8SeparableHilbertspacesareisometrically isomorphictol2 363 References364

AppendixA:Hilbertspaceofwraparound digitalsignals365

AppendixB:Multisortedalgebraforthe descriptionofameasurableandmeasure spaces369

AppendixC:EllipticcurvesandAbelian groupstructure373

AppendixD:Youngdiagrams377

AppendixE:Youngdiagramsandthe symmetricgroup379

AppendixF:Fundamentaltheoremsin functionalanalysis383

AppendixG:Sturm Liouvilledifferential equationsandconsequences387

Index391

Listoffigures

Figure1.1Polyadicgraphforthefieldstructure.4

Figure1.2Vectorspacedescribedasmany-sortedalgebra.8

Figure1.3InnerproductorHilbertspace.13

Figure1.4(A)OriginaldatainR2 and(B)featuremappeddatainR3.15

Figure2.1MatrixstructureforNNsquarewavepulsecreation. NN,Neuralnet.26

Figure2.2SymbolicschemaforoperationswithinNNnodes. NN,Neuralnet.27

Figure2.3SymboliccalculationsforNNsquarewavepulsecreation. NN,Neuralnet.28

Figure2.4ClassificationusingNNwithnoncontinuousactivation. NN,Neuralnet.31

Figure2.5ClassificationusingNNwithsigmoidactivation. NN,Neuralnet.32

Figure2.6BiasandweightmodificationsforsinglenodeNN. NN,Neuralnet.33

Figure2.7Polyadicgraphofaffinespace.36

Figure2.8Typesofrecurrentneuralnetworks.(A)RNN,(B)LSTM,(C)GRU.39

Figure3.1Polyadicgraphofaunitalalgebra.42

Figure3.2Parallelconvolutionalgorithm.45

Figure3.3PolyadicgraphforaBanachspace.50

Figure3.4PolyadicgraphforoperatornamesinaBanachalgebra.51

Figure3.5PolyadicgraphofoperatorsinaBanach*orC*algebra.53

Figure4.1Polyadicgraphforcomplexification.59

Figure4.2Polyadicgraphforillustratingdualspacecreation.61

Figure4.3GraphrelatingketandbraHilbertspaces.65

Figure4.4Canonicalisomorphicmapfordoubledual.65

Figure4.5Polyadicgraphsillustratingouterproduct.67

Figure4.6Tensorvectorspace. 72

Figure4.7Operationsinvolvingtensors.75

Figure4.8TensorproductofHilbertspaces.76

Figure5.1Polyadicgraphinvolvingmatrixoperations.83

Figure5.2Illustrationofidenticaloperandsinpolyadicgraph.86

Figure5.3Blochsphere. 87

Figure6.1Boundstateandscatteringstatetunnelingeffect.(A)Boundstate,(B)Scatteringstate,(C) Normalizedboundstatesolution,(D)Tunnelingeffect. 108

Figure6.2Cooperpairtunneling.Basedon(Frolov,2014),(A)FrolovBarrie,(B)CooperPair Tunneling,(C)Voltage-CurrentDeadZone.

118

Figure6.3(A)ParallelCircuit,(B)Energylevelswithincosinetypeboundary.120

Figure6.4AdiabaticprocessfollowingZwiebach,(A)Hamiltonian,(B)EnergySeparation,(C)Path CrossingHamiltonian,(D)NonCrossingPaths. 126

Figure7.1SimpleelementsinH1 H2andpurestates.138

Figure8.1PolyadicgraphforsubgroupinBanachalgebra.150

Figure8.2Continuousspectrum. 156

Figure8.3Leftandrightideals. 157

Figure8.4GraphforhomomorphismsinvolvingC*algebra.158

Figure8.5GNSconstructionbetweenAC*algebraandaHilbertspace. GNS,Gelfand-Naimark-Segal.160

Figure10.1Generalandspecificalgebraicquotientspaces.(A)Mappingsinquotientspace,(B) quotientspace,lineinplane. 172

Figure10.2Homeomorphismofquotientspaceofreals.174

Figure10.3Homeomorphisminvolvingcircularinterval.175

Figure10.4Nonfirstcountablespace.176

Figure10.5Manifoldwithtwochartsandtransitionmapping.177

Figure10.6Mobiusstickfigure. 178

Figure10.7Mobiusstrip. 179

Figure10.8Sectionsinafiberbundle.181

Figure10.9Trivializationinalinebundle.182

Figure10.10Twotypesoflattices.(A)Squarepatternlattice,(B)moregenerallattice.183

Figure10.11HopffibrationS0 - S1 - S1.(A)Originalcircle;(B)Twistappliedtocircle;(C)Folding operation. 187

Figure11.1LiealgebraMSAgraph.192

Figure11.2LiegroupMSAgraph. 198

Figure11.3Pathconnectivity. 200

Figure11.4MappingsbetweenLiegroupsandaLiealgebra.208

Figure12.1Homotopysquare. 218

Figure12.2Exampleofhomotopywithloopstouchingonlyattheorigin.218

Figure12.3Equivalenceclassesforloops.219

Figure12.4Initialpointequivalence.220

Figure12.5Polyadicgraphforthefundamentalgroup.221

Figure12.6Equivalentclassesarewelldefined.222

Figure12.7Proofoftheassociatedlaw.222

Figure12.8Identitycondition. 223

Figure12.9Inversefunctionequationalidentity.224

Figure12.10Figureeight. 226

Figure12.11Universalcoveringgroup.228

Figure13.1SpectraforoperatorLinl1 anditsdualinlN.236

Figure14.1Canonicalhypergrouppolyadicgraph.257

Figure14.2Partialisometrymappings.259

Figure14.3Polyadicgraphforpartialisometry[U,U*]nonzero.261

Figure14.4Polyadicgraphforasymplecticvectorspace.267

Figure15.1LadderoperatorsforFockspaces.(A)BosonicFockspace,(B)Allowableoperationsin FermionicFockspace. 274

Figure15.2YoungdiagramobtainedfromtheMayadiagram(seeExample15.9).279

Figure15.3YoungdiagramtofindMayadiagram.282

Figure16.1Hilbertgroup.

Figure16.2CNOTgate.

Figure16.3TheSWAPGate.

Figure16.4Traceofamplitudeamplification.(A)Uniformsuperposition,(B)Reflectionofthestate| x*.,(C)Amplitudeamplification,(D)Oneandahalfreflectionpairsappliedagain,(E) Tworefectionpairsapplied/.

Figure16.5Reflectionoperation.:(A)Twovectorsandreflectionket,(B)Resultofreflectionoperation.305

Figure17.1Deutschoracle. 307

Figure17.2QuantumcircuitsrepresentingDeutschoracle.309

Figure17.3Deutschalgorithm. 309

Figure17.4Deutsch-Jozsaalgorithm.311

Figure17.5Groverreflectionoperations.(A)Startingposition,(B)ApplicationofOracle,(C)Reflection applied,(D)ApplicationofOracleagain,(E)Reflectionappliedagain,(F)Oracleapplied, (G)Reflectionapplied. 314

Figure17.6Typesofellipticcurves.322

Figure18.1Shatteringone,two,andthreepointsbyAffinemanifold:(A)shatteringasinglepoint;(B) shatteringtwopoints;(C)shatteringthreepoints. 331

Figure18.2Shatteringfourpointsbyarectangle.332

Figure18.3K-nearestneighborclassification.334

Figure18.4Convolutionalneuralnetwork.347

Figure19.1Thefirstfivewavefunctionsfortheharmonicoscillator.350

FigureB.1(A)Measurablespaceand(B)measurespace.369

FigureC.1Ellipticcurveaddition. 373

FigureC.2Additionofverticalpointsonanellipticcurve.374

FigureC.3Proofofassociativelaw.375

FigureD.1Youngdiagram. 378

FigureE.1Youngdiagramofpermutationgroup.380

Preface

Many-sortedalgebra(MSA)providesa rigorousplatformfordescribingandunifyingvariousalgebraicstructuresinseveral branchesofscience,engineering,andmathematics.However,themostnaturalapplicationfortheuseofthisplatformisinall areasofquantumtechnologies.These includequantumphysics,quantum mechanics,quantuminformationtheory amongthemostrecent,quantumcomputing,quantumneuralnets,andquantum deeplearning.Indeed,inallquantumdisciplines,thereexistsanabundanceofalgebraicunderpinningsandtechniques. Severalofthesetechniquesaredirectly applicabletomachinelearningandarepresentedherein.Inparticular,withthecurrentinterestinquantumconvolutional neuralnetworks,understandingofbasic quantumbecomesallthemoreimportant. Althoughanalytical,topological,probabilistic,aswellasgeometricalconceptsare employedinmanyofthesedisciplines, algebraexhibitstheprincipalthread.This threadisexposedusingtheMSA.

AfundamentalsettingofHilbertspace overacomplexfieldisessentialinallof quantum,whilemachinelearningdeals predominantlywiththerealfield.Botha globallevelandalocallevelofprecise specificationaredescribedintheMSA. Indeed,characterizationsatalocallevel duetodistinctcarriersetsmayappearvery different,butatagloballeveltheymaybe

identical.Banach*algebrasaswellas Hilbertspacesarebasictothesesystems. Fromalocalview,thesealgebrasmaydiffergreatly.Forinstance,theBanach algebra-typebilinearmultiplicationoperationintheneuralnetworkmightinvolve anaffinemaporitcouldbeconvolution. However,inquantumsystems,thebilinear operationoftentakesadditionalforms. Theseincludepoint-wisemultiplication, functioncomposition,LieorPoissonbrackets,orevenaconcatenationofequivalence classesofpathsinhomotopy.

Theoreticalaswellaspracticalresults areprovidedthroughoutthistext.Hilbert spaceraysactingasstates,aswellasanindepthdescriptionofqubits,areexplained andillustrated.Qubitsformacenterstage inquantumcomputingandquantum machinelearning.UnitaryoperatorsformingagroupareemployedinstatetransitionsandaredescribedintheMSAas HilbertandLiegroups.Parameterswithin unitaryoperatorsallowoptimizationin quantumcomputingapplications. Concurrently,C*algebrasdescribedinthe MSAembracethestructureofobservables. Inallcases,theMSAsaremostusefulin illustratingtheinterplaybetweentheseand thevariousotheralgebraicstructuresin quantumandmachinelearningdisciplines.

Thispageintentionallyleftblank

Acknowledgments

IamthankfultoEdCookeforreading thepreliminarychaptersandtothe reviewersfortheirconstructiveimprovements.ThanksarealsoduetotheElsevier editorialstafffortheirassistanceandhelpfulguidancethroughout.Finally,Iammost

appreciativeofknowingandlearningfrom thethreegreatmathematicians/engineers andallone-timeBellTelephone Laboratories’colleagues:DavidJagerman, CharlesSuffel,andFrankBoesch.

Thispageintentionallyleftblank

Introductiontoquantummany-sorted algebras

1.1Introductiontoquantummany-sortedalgebras

Thischapterbeginsbymentioningseveralalgebraicstructuresdescribedinthelater sectionsofthetextthatwillbeembeddedintoaversionofthemany-sortedalgebra.This isfollowedbyadescription,aswellasanillustrationofthemany-sortedalgebramethodology.AglobalviewinvolvingtheMSAisgivenusingpolyadicgraphsconsistingof nodeswithmanytaileddirectedarrows.Thegeneralfieldstructureisdescribedin Section1.1.4,intermsoftheMSA.Thisisfollowedbyfurtheralgebraicstructuresinquantumandmachinelearning.Specificquantumandmachinelearningfieldsarepresented alongwithgeneralHilbertspaceconditionsthatunderlyallquantummethodology.Timelimitedsignalsaredevelopedunderinnerproductspaceconditions.Thesesignalsare basicconstructsforconvolutionalneuralnetworks.Kernelmethods,usefulinbothquantumandmachinelearningdisciplines,arepresented.Inlaterchapters,kernelmethodsare showntobeafundamentalingredientinsupportvectormachines.Thischapterendswith adescriptionandapplicationofRmodules.ThesestructureshaveanMSAdescription almostidenticaltoavectorspacestructure.

1.1.1Algebraicstructures

Throughoutquantum,anextremelywidevarietyofalgebraicstructuresareemployed, beginningwiththemostfundamentalcanonicalcommutationrelations(CCR)tomethods forsolvingellipticcurvecryptographyandbuildingquantumconvolutionalneuralnetworks.Itisthepurposeofthistexttoprovideaunificationoftheunderlyingprinciples embeddedwithinthesealgebraicstructures.Themechanismforthisunificationisthe many-sortedalgebra(MSA)(GoguenandThetcler,1973).TheMSAcanbethoughttobe anextensionofuniversalalgebra,asin Gratzer(1969).Here,varietiesofalgebraicstructuresaredescribedinamostgeneralizedsensewithmorphismsshowingcorrespondence betweenobjects.Theunderlyingcharacterizationofthemany-sortedormanytypesof algebraicconceptsinquantumdisciplinesiscapturedsimultaneouslythroughrigorous

specificationaswellaspolyadicgraphswithintheMSA.Thepresentworkisinspiredby BirkhoffandLipson(1970) andtheirheterogeneousalgebras,aswellas(Goguenand Meseguer,1986)remarksontheMSA.

BothagloballevelandlocallevelofprecisespecificationarepresentedusingtheMSA. TheMSAisessentialforabetterunderstandingofquantumanditsrelationshipwith machinelearningandquantumneuralnetworktechniques.TheveryconceptofHilbert spacefromthebeginningaxiomsisdetailedinaprecisebuthigh-levelmanner(Halmos, 1958),whereasunderlyingfieldsforquantumandmachinelearningareveryspecific.In quantum,thisfieldisalmostalwayscomplex;sometimesrealnumbersorevenquaternion numbersareutilized.However,inmachinelearning,itisthefieldofmainlytherealsthat isemployed.Thisisparticularlytruewithsupportvectormachineapplications.

Ingeneral,thequantumHilbertspacecouldbefinitedimensional,itcouldconsistof ketsandbras,anditcouldbeatensorproductofsimilarHilbertspacesorinfinitedimensionalasisL2 orl2 (Halmos,1957).Allofthesestructureswillpreciselybeexploredata locallevel.ThisisagainevidentinspecifyingtheGelfand-Naimark-Segal(GNS)constructionrelatingaC*algebratoaHilbertspace(GelfandandNaimark,1943;Segal,1947). Fromapracticalviewpoint,Hilbertspacesofqubitsaredescribedforuseinaquantum computer(Feynman,1986).Otherapplicationsincludequbitsinquantumneuralnetworks andquantummachinelearning.

1.1.2Many-sortedalgebramethodology

TobegindescribingtheMSAmethodology,thesetconsistingofthesortsofobjects mustbespecified.Forinstance,thetermscalarmaybeanelementofthisset.Although thetermscalarisgeneric,itmightrefertoelementsfromafieldsuchastherealorcomplexnumbers.However,itmightalsorepresentaquaternionthatisanelementfroma skewornoncommutativefield.Importantly,foreachsort,therearecarriersets.Itisthese setsthatuniquelyidentifytheprecisetypeofelementsinquestion.Forinstance,verydifferentcarriersetsareusedfortherealfield,thecomplexfield,therationalfield,orafinite fieldthatisemployedincryptography.

Oncethesortsaredeclared,operationalsymbolsmustalsobegiven.Theyareorganizedaselementswithinspecificsignaturesets.Thesesetsareusedinidentifyingcommonattributesamongsymbolssuchastheirarity.Operationalsymbolsdenotetheinterandintrasortmappingslikesymmetrization,annihilation,creation,aswellaselementary operations:addition,multiplication,inversion,andsoon.

Theactualoperatorsutilizedinthesemappingsinvolvespecifiedcarriersetsthatcorrespondtothesorts.Thisisperformedatalowerview.Eachoperatoremployselements fromdesignatedcarriersetsasoperandsinthedomain.Thisistruefortheircodomainas well.Theoperatornameswithinsignaturesetsareenumeratedalongwiththealgebraic laws,rules,equationalidentities,orrelationswhichtheymustobey.Thelawsorequationalidentitiesincludecommutationrules,associativelaws,distributivelaws,nilpotent rules,andvariousothersideconditionsorrelationsnecessaryforrigorousspecification.

AusefulglobalviewinvolvingtheMSAisgivenusingpolyadicgraphsconsistingof nodeswithmanytaileddirectedarrows(GoguenandMeseguer,1986).Allentitiesofthe arrowarelabeled.Eachnodeisdenotedbyacircleinscribedwithaspecificsort.The arrowshaveoperatornamesattachedandareasdeclaredintheirsignatureset.Thenumberoftailsinthearrowcorrespondstothearityoftheoperatorinquestion.Operatorsof arityzerohavenotailsandarelabeledusingthenameofspecialelementsofthesort. Theseincludezero,one,andidentityelement,aswellastoporbottom.Thetailsofan arrowareemanatingfromthespecifieddomainsortscomingfromtheappropriatesignaturesets.Thesingleheadofthearrowpointstothesortofcodomainfortheoperator.In short,thepolyadicdiagramprovidesavisualdescriptionoftheclosureoperationsneeded indescribingthealgebraicstructure.

PartialoperatorsareincludedintheMSA.Thisissimilartowhatisdoneinpartialuniversalalgebra.However,specialnotationsareemployedforoperationsnotdefinedonthe entiredenoteddomainsort.Muchofthisnotationwillbegivenlater.Theinclusionof domain-dependentoperatorsisessentialinquantumsinceeventhepositionandmomentumoperatorsareunbounded.Infinite-dimensionalHilbertspacenecessitiesexplicit domaindeclarationaswellasclosureconditions.Amorebasicinstanceofanoperatornot fullydefinedwillbegivenrightnow.Here,themultiplicativeinverseinafieldisdefined forallvaluesexceptforzero,andthusitisapartialoperator.However,thisoperator existsintheMSA.Moreover,adashedarrowwithasingletailisutilizedinthepolyadic graphdescriptioninthiscase.

1.1.3Globalfieldstructure

Correspondingtothefieldstructure,onlythesinglesortSCALARisneeded.Several signaturesetsexist.Theyareorganizedbythearity.Arityreferstothenumberofoperandsorargumentsforoperatorswithinthegivensignatureset.Arityalsoreferstothe numberoftailsofapolyadicarrow.Forbinaryoperators,unlessspecifiedotherwise,they shouldutilizebothargumentsineitherorder.Thereisnorestrictiontowhichargument comesfirst.

Binaryoperation:ADD; MULT fg eachmapsSCALAR 3 SCALAR-SCALAR

Unaryoperation:MINUS; INV fg eachmapsSCALAR-SCALAR

Zero aryoperation:ZERO; ONE fg thesearespecialelementsofthesortSCALAR:

NotethateventhoughINVisapartialfunctionname,itiscontainedinthesamesignaturesetasMINUS;bothareunaryoperatornames. Fig.1.1 providesanillustrationofa high-levelinterpretationofanalgebraicfield.Thisgraphindicatestheclosureoperations. Forinstance,theADDimpliesthattwovaluesfromSCALARarecombinedtogive anothervalueofSCALAR,whereasMINUStakesasinglevalueofSCALARandyields anothersuchvalue.ThearrowpointingfromZEROtoSCALARindicatesthattherehasto beanelementinthefieldwhosenameisZERO.ThesameistrueforONE.Asinuniversal algebra,thenumberofoperationalnamesofaspecificarityisoftenlistedbyafinite

sequenceofnonnegativeintegers.Forageneralfieldstructure,thearitysequenceisgiven asfollows:(2,2,2).Indeed,thefirstentryspecifiesthenumberofzero-aryoperations; hereitis2,whilethenextentryisforthenumberofunaryoperations 5 2andthefinal entryisthenumberofbinaryoperations 5 2.Thelistingprocedureissimilartothe methodofrecordingthenumberoffermionorbosonoccupationalnumbersinFockspace. Thisspacewillbedescribedinlatersections.

Theequationalidentitiesorlawsforafieldaregivenbelow.Here,forconvenience,we denotethesortbyrepresentativesymbolsandalltheoperationalnamesbysuggestive symbols.

SCALARbya,borc. ADDby 1 MULTby MINUSbyINVby/ ZEROby0 ONEby1

Theequationalidentities,laws,orconstrainingequationsforafieldareasfollows:

1) Associativeforaddition:(a 1 (b 1 c)) 5 ((a 1 b) 1 c)

2) Zerolaw:0 1 a 5 a 1 0 5 a

3) Minuslaw:forany,athereis a,wherea a 52 a 1 a 5 0

4) Commutativelawforadditionofallelements:a 1 b 5 b 1 a

5) Associativelawformultiplication:(a (b c)) 5 ((a b) c)

6) Distributivelaws:a (b 1 c) 5 a b 1 a c;(a 1 b) c 5 a c 1 b c

7) Onelaw:1 a 5 a 1 5 a

8) Partialinverselaw,exclude0:foranya,thereis1/awhere:a 1/a 5 (1/a) a 5 1

9) Commutativelawformultiplication:a b 5 b a.

AnexampleofanabstractfieldF3 willbegiventoillustratetheclosureoperations, whichistheessenceof Fig.1.1.Alsoillustratedarethenine,equationalconstraintslisted earlier.Theexampleisimportantinthepreparationforthedevelopmentofellipticcurve cryptographyandShor’squantumalgorithmdescribedinalaterchapter.

FIGURE1.1 Polyadicgraphforthefieldstructure.

ConsiderthecarriersetforSCALARtobethesetX 5 {0,1,2}.Operationscorrespondingtothosenamedinthesignaturesetsaredefinedasmodularthree.Thefollowing tablesprovidethebinaryADD,MULT,andtheunaryoperationMINUS,aswellasthe partialunaryoperationINV;thesearelistedinorderasfollows:

Tousethefirsttwotablestofindtheelementstotheleftandaboveforwhichthe binaryoperationistobeperformed,theresultislocatedintherowandcolumntothe rightandbelow,respectively.Forthetwotablestotheright,usethefirstcolumn;then theunaryoperationcanbereadtotherightofthedesiredelement.

Theequationalidentitiesallhold.Toshow(1)allpossiblevaluesofa,b,andcmustbe utilized.Here,thereare27combinations,butonlyasingleinstanceisillustratednext.

1) Associativeforaddition:(2 1 (1 1 2)) 5 (2 1 0) 5 2;also((2 1 1) 1 2) 5 0 1 2 5 2

2) Zerolaw:Fromthe 1 table,0ontheleftorabovewhenaddedtoxgivesx

3) Minuslaw:Fromthe—table,forexample,1 1 2 5 2 1 1 5 0, 2 5 1

4) Commutativelawforaddition:The 1 tableissymmetricaboutthemaindiagonal

5) Associativelawformultiplication:(2 (1 2)) 5 (2 2) 5 1;also((2 1) 2) 5 1

Withthefirstfouridentitiesholding,thisshowsthattheadditivestructureisan abeliangroup.Additionally,itisaninstanceofacyclicgroupwiththreeelements. Theadditionwrapsaround2 1 1 5 0.Asintheassociativelaws,thedistributivelaws actuallyneedall27arrangementsforfullvalidation.However,asbefore,onlyonecase isillustratednext.

6) Distributivelaws:(2 (1 1 2)) 5 (2 0) 5 0;also(2 1) 1 (2 2) 5 2 1 1 5 0

7) Onelaw:Fromthe table,the1ontoportotheleftmultiplyingxgivesx

8) Partialinverselaw,exclude0,fromthelasttable1/1 5 1,and1/2 5 2

9) Commutativelawformultiplication:Thetable issymmetricaboutthemain diagonal.

Sincealltheequationalidentitiesholdalongwiththeclosureoperations,thisshows thatthestructureF3 isafield.ThefieldiscalledafinitefieldoraGaloisfield.#

1.1.4Globalalgebraicstructuresinquantumandinmachinelearning

Toconservespaceandtakeadvantageofthegeneralfieldstructureearlier,wemention importantsubstructuresofafield.Thelistingattemptstogofromthemostgeneralstructure,agroupoid,tothemostrestrictive,afield.AllstructuresutilizeastheirsortSCALAR andinvolveoperationalnamesfromsignaturesetsprovidedforthefield.Moreover,most ofthefollowingalgebraicstructuresrequiresomeoftheequationalidentities,(1)through (9).Thesearelistedearlier,providingtheglobaldescriptionofanalgebraicfield.Finally,

thepolyadicgraphforthesestructuresisthesameasthatforafield,butpossiblywith somearrowsremoved.Manyoftheforthcomingstructuresoftenappearinquantumdisciplinesandwillbeappliedinsubsequentsections.Thespecificsbelowshouldactasareferencetotheglobaldefinitionofthesestructures.

AgroupoidisastructurewithonlyasinglesignaturesetconsistingofADDwithno constraints.Agroupoidsatisfyingconstraint(1)isasemigroup.Whenthereisalsoa ZEROalongwithconstraint(2),thesemigroupiscalledamonoid.Ifinadditionthereisa MINUSand(3)holds,thenamonoidisagroup.ThegroupiscalledAbelianwhen(4) holds.WhenMULTalsoexistsand(5)and(6)hold,theAbeliangroupiscalledaring.If ONEalsoexistsalongwith(7),theringiscalledaringwithidentity.Aringinwhich(9) holdsissaidtobeacommutativering.WhenONEexistsand(7)and(9)hold,theringis acommutativeringwithidentityorwithunity.Acommutativeringwithunityissaidto beanintegraldomainwhentheredoesnotexistdivisorsofzero.Divisorsofzerooccur whentheproductoftwononzeroelementsequalsZERO.Askew-fieldariseswhenaring withidentityalsohasanINVobeying(8);thisstructureisalsocalledadivisionring. When(9)alsoholds,theskew-fieldissaidtobeafield.

Illustrationsofmanyofthesestructurearedescribedinthesubsequentchapters,forinstance, LiegroupsandLiealgebras;alsothequaternionsprovideaninstanceofadivisionring.Below isanimportantexampleofaunitalcommutativeringthatisnotafield.Itisastructurethatis easytounderstand,butthiscarriersetisofcriticalimportanceforuseinR-modules.Itwillbe seeninasubsequentsectionthatfieldsaretovectorspaces,asringsaretoR-modules.

Example1.2:

ConsiderthecarriersetofalltheintegersZ.Iftheusualaddition,negation,andZERO areemployed,thenthisstructurebecomesanabeliangroup.Iftheusualmultiplication andONEareintroduced,alongwithalltheequationalidentitiesspecifiedabovefora field,except(#8),thenthisstructureisaunitalcommutativering.Additionally,thepolyadicgraphin Fig.1.1,modifiedforaringstructure,mighthavethedottedpartialoperation INVarrowremoved.However,itmightnot,sinceintheintegersthenumbersoneand minusonedohaveinverses.#

Allgroupandgroup-likestructuresmentionedearlierareadditivegrouporgrouplike. Inquantumandinmachinelearning,manyofthesecorrespondingstructuresaresimilar algebras.Forinstance,theyareoftenmultiplicativegroupormultiplicativegrouplike.

Anyandeveryfieldcanbedescribedinthemannerspecifiedearlier.Thiswasthe high-levelorbigpicture.Again,thesortSCALARandthesesignaturesetsholdtruefor therationalfield,therealfield,thecomplexfield,oranyGaloisorfinitefield,asillustratedinthelastsection.Now,twoadditionalspecificfieldswillbeidentified.

1.1.5Specificmachinelearningfieldstructure

Toobtaintherealfield(R)underlyingmachinelearning,thecarriersetrelatingtothe sortSCALARaretherealnumbers.Itprovidestheactuallower,in-depthview.Inaddition,foreachoperatornamewithinasignatureset,anactualoperatororfunctionofthe

samearityisdefined.Alltheequationalconstraintsandlawsholdtrueusingtheseelements.Inparticular,ZEROinthiscaseis0,andforanyrealnumberr,r 1 0 5 0 1 r 5 r. AlsoONEisthenumber1,and1 r 5 r 1 5 r.Finally,theinverses,ofanyrealnumber r,otherthan0canbefound,s 5 1/r.

1.1.6Specificquantumfieldstructure

Toobtainthecomplexfield(C)underlyingtheHilbertspaceinmostquantumsituations,thesortSCALARreferstothecomplexnumbers.Inadditiontoeachoperatorname withinasignatureset,anactualoperatororfunctionofthesamearitymustbedefined. Thecarriersethereisthecomplexnumbersystem.Itprovidestheactuallower,in-depth view.TheactualcarriersetforSCALARis{x 1 i yalsowrittenasx 1 iyorx 1 yi,such thatxandyarenowrealnumbersandiisanonrealnumber;itisasymbolhavingthe propertythati2 52 1}.Moreover,theplussignisjustacharacterholdingthetwoentities together.Theclosureoperationsprovidedin Fig.1.1 mustberigorouslyspecified.For instance,fortwocomplexnumbers,v 5 a 1 i bandw 5 c 1 i d,ADD(v,w) 5 (a 1 c) 1 i (b 1 d).Therearetwodifferentplussignsintheadditionformula.Tomakethings worse,wewillwriteADD(v,w) 5 v 1 w 5 (a 1 c) 1 i (b 1 d).Now,therearethreeuses oftheplussign.However,nottogocrazywithnotation,wewillcontinuewiththispractice.Sometimesdifferentnotationssuchas 1 1, 1 2,and 1 3 areusedtomakethings clearer.Indeed,inlaterchapters,Hilbertspacesoflinearmappingsemployallthreeplus signs.Onelastabuseofnotationisforthezero-aryelementZEROuse0 1 i 0 5 0. Aquickerexplanationofthecomplexfieldnowfollows. Alltheequationalconstraintsandlawsholdtrueusingtheseelements.Inparticular, onlythefollowingtwolawsarementionedforz 5 (x 1 iy):

#3)Minuslaw:MINUS(x 1 iy) 5 ( x iy).

#8)Partialinversefornon(0 1 0i):INV(x 1 iy) 5 x/(x2 1 y2) iy/(x2 1 y2).

Lettingz 5 x 1 iy,thentherealpartofzisdenotedbyRe(z),anditisx.Likewise,the imaginarypartofzisIm(z)anditisy.Notethattheyarebothrealvalued.Averyimportantoperationinthecomplexfieldisconjugation.Itisanoperationthatcannotbederived intermsoftheotheroperationsthatarereferredtointhesignaturesets.Conjugationhas operatorsymbolCON.Whenappliedtoacomplexnumber,itnegatestheimaginarypart. Theactualoperationis*,andsotheabusingnotationisasfollows:CON(z) 5 CON(x 1 iy) 5 (x iy).Moreprecisely,z* 5 (x 1 iy)* 5 (x iy).Moreover,theoperationofconjugationisaninvolution;thereforetwoapplicationsofconjugationresultintheoriginalvalue. Twoapplicationsactliketheidentityoperation.Thus,itfollowsthat(z*)* 5 ((x 1 iy)*)* 5 (x 1 iy) 5 z.Theabsolutevalueofacomplexnumberzisthesquarerootofthenumber multipliedbyitsconjugate.Equivalently,|z|2 5 z*z 5 zz*.Alsonotethattherealpartof zisRe(z) 5 (z 1 z*)/2andtheimaginarypartofzisIm(z) 5 (z z*)/2i.Bothofthese quantitiesarerealvalued.Alltheaforementionedpropertiesareneededinsubsequent examplesinvolvinginnerproductsaswellasindescribingadjointoperations.Finally,the polarformforanycomplexvaluez 5 x 1 iycanbewrittenasz 5 re iθ,where r 5 (x2 1 y2)1/2 and θ 5 arctan(y/x).Mentionedpreviously,thesquarerootshouldalways beinterpretedasyieldinganonnegativeresult.

1.1.7Vectorspaceasmany-sortedalgebra

Avectorspaceconsistsoftwodistinctsortsofobjects.TheseareSCALAR,asinthefield structure,andthesecondsortVECTOR.Referto Fig.1.2;inthisdiagram,bothsortsare illustrated.However,onlythoseoperationnamesthatexclusivelyinvolvethesortSCALAR arenotdisplayed.Thatis,themany-sortedpolyadicgrapharrowsfrom Fig.1.1 arenot repeated.Correspondingtoavectorspacestructure,thesignaturesetsareorganizednot onlybythearityofoperationsbutalsobytheirtypes.Thisisbecauseseveraloperationsof thesamearityhavemixedtypesofinputsoroutputs.Forinstance,itcanbeseenlaterin thefigurethattheoperationalnamesofaritytwo,thatis,V-ADDandS-MULT,willhave twodistinctsignaturesets.Specifically,V-ADDtakestwoVECTORSandreturnsa VECTOR,whereasS-MULTtakesaSCALARandaVECTORandreturnsaVECTOR.

Thisresultsinanaritysequence:(1,1,2(1,1))foravectorspace.FortheMSA,thearity listingisasinuniversalalgebra.Itidentifiesinorderthenumberof(Zero-ary,Unary, Binary,Trinary, ... N-ary)operationalnames.However,differentsignaturesetsofthe samearityhavespecialrulesinMSA.Thetotalquantityofthatarityinthearitysequence isfollowedbythenumberofeachdistinctsignaturesetofthatarity.Sothetwoonesafter the2inthearitysequenceshowthattherearetwodistinctoperationsofaritytwo,all withdifferentdomainsorcodomains.Theactualsignaturesetsforavectorspacestarting withhigherarityanddecreasinginorderarethefollowing:

BinaryoperationV ADD fg; V ADDmapsVECTORxVECTOR-VECTOR S MULT fg; S MULTmapsSCALARxVECTOR-VECTOR

UnaryoperationV MINUS fg; V MINUSmapsVECTOR-VECTOR

Zero aryoperationV ZERO fg; V ZERO isaspecialelementofthesortVECTOR

Aspreviouslymentioned,thebinaryoperatorsutilizetheiroperandsineitherorder. Forinstance,forscalaraandvectorv,S-MULT(a;v) 5 a v 5 v a.

Notethatonlythreesignaturesetsmentionedearlierhaveoperationalnamesthat utilizesortVECTORexclusively.Thatis,t hesethreenamesassociateoperatorswith thedomainandcodomainofsortVECTOR.Theseareofarity0,1,and2.Thecorrespondingoperatorswithinthesesetsalonedescribetheadditiveabelianvectorgroup

FIGURE1.2 Vectorspacedescribedasmany-sorted algebra.

withinthevectorspace.Here,equationalconstraints(1) (4)mentionedmustalso hold.Thearitysequenceforthisadditivegroupis(1,1,1).

Theequationalidentitiesorlawsforavectorspacearegivenbelow.Thisisfollowed,in thenextsection,byadditionalequationalidentitiesneededforaninnerproductorHilbert space.Againforconvenience,wedenotethesortsbyrepresentativesymbolsandallthe operationalnamesbysuggestivesymbols.

SCALARbya,borc.

VECTORbyu,vorw

ONEby1

V-ADDby 1

V-MINUSby

V-ZEROby0

S-MULTby

1) Associativeforvectoraddition:(u 1 (v 1 w)) 5 ((u 1 v) 1 w)

2) Zerovectorlaw:0 1 v 5 v 1 0 5 v

3) Minusvectorlaw:v 1 ( v) 52 v 1 v 5 0

4) Commutativevectorlawforaddition:u 1 v 5 v 1 u

5) Onelaw:1 v 5 v 1 5 v

6) Distributivelaw:a (u 1 v) 5 a u 1 a v

7) Distributivelaw:(a 1 b) u 5 a u 1 b u

8) Associativelaw:(a b) v 5 a (b v)

Theseeightlawsdescribeanyvectorspaceingenerality. Aninterestingexampleofastructurethatfailstobeavectorspaceisgivennext.

Example1.3:

LetthecarriersetforSCALARbealltherealnumbersR,withtheusualrealfieldstructure.However,letthecarriersetforVECTORbethepositiverealnumbersV 5 R 15 {x,suchthat0 , x , N},withusualmultiplicationanddivision.Inthisapplication,in placeofvectoraddition,multiplicationofthevectorsisused.Thatis,multiplication ofpositiverealnumbersisemployed.Sincetheproductoftwopositiverealnumbersisa positiverealnumber,thisbinaryoperationisclosed.Themultiplicationoperationinthis caseisvalid.Fortheunaryminusoperation,theinversionoperationissubstituted.Again, thisoperationisalsoclosed,sinceforanypositiverealnumberdenotingavectorthe reciprocalisalsoapositiverealnumber.Inplaceofthezerovector,thenumberoneis usedinthisstructure.SoV-ZEROisthenumberone.

Finally,thescalarmultiplicationinvolvingvectorsmustbedescribed.Theimportant criterionagainisthatthisoperationisclosed;thatis,itmustsatisfytheclosureoperations inherentinthepolyadicgraphin Fig.1.2 forvectorspace.Theactualoperationinthiscase isperformedintwosteps.First,formtheproductofthescalarrealvaluewiththepositive realvaluevector.Thennext,usethisproductasanexponentofthepowerofe.Upon applyingthistwo-stepoperation,againtheresultisalwaysapositiverealnumber. Consequently,theoperationisclosed,andavectorisagainobtained.Theoperations describedearlieraregivenagain,butinamoreformalmanner.

First:

DenoteSCALARSbya,b,andc;theseareallrealnumbers.

DenoteVECTORSbyu,v,andw;theseareallpositiverealnumbers.

Replacetheoperationnamebytheactualcarriersetoperation:

V-ADD(v,w)byv w

V-MINUS(v)by1/v

V-ZEROby1

S-MULT(a;v) 5 e(aν),soaandvaremultipliedandbecomeanexponentofe.

IdentifyingtheoperationalnameswhosesignaturesetsonlyincludesortVECTOR resultsinanAbeliangroupstructure.Noticethatalltheequationalidentitiesholdusing thespecifiedcarrierset,wherethenameADDreferstomultiplication:

1) Associativeforvectoraddition:(u (v w)) 5 ((u v) w).

2) Zerovectorlaw:1 v 5 v 1 5 v.

3) Minusvectorlaw:v 1/v 5 (1/v) v 5 1.

4) Commutativevectorlawforaddition:u v 5 v u.

Thus,anAbeliangroupstructureisverified.However,thestructuredoesnotsatisfy alltheequationalidentitiesthatdefineavectorspace.Infact,itdoesnotsatisfyallthe followingsideconditions.So,eraisedtoarealpowerisalwaysapositiverealnumber andisitselfavectorinthisspace,andclosureexists.However,all(5) (8)equational identitiesmustalsoholdforavectorspacestructure.

5) Onelaw:e(1ν) 5 e(ν1) 5 e(ν),thisholds.

6) Distributivelaw:e(a(uν )),notequaltoe(au)e(aν ) 5 e a(u1ν ) anddoesn’tholdingeneral.

7) Distributivelaw:e((a1b)u) 5 e(au)e(bu) 5 e(au1bu),thisholds.

8) Associativelaw:e(ab(ν )),notequaltoexp(ae(bν ))anddoesn’tholdingeneral.#

Thenextexampleutilizescarriersetsexactlythesameasinthepreviousexample,but onlyachangeismadeinthedefinitionofscalarmultiplication.

Example1.4:

Forthesameconditionsasinthelastexample,butthistime,theonlychangeistolet thescalarmultiplicationberedefined.SothecarriersetforSCALARisagainR.Thecarrier setforVECTORisagainR1,allthepositiverealnumbers.

DenoteSCALARbya,b,andc,allrealnumbers.

DenoteVECTORbyu,v,andw,allpositiverealnumbers.

Replacetheoperationnamebytheactualcarriersetoperator:

V-ADD(v,w)byv w

V-MINUS(v)by1/v

V-ZEROby1

S-Mult(a;v) 5 v a .

Thelastoperationisthechangefromthepreviousexample.Inthepresentcase,thevectorisraisedtothescalarpower.Sinceapositiverealnumberwhenraisedtoanyreal

powerisitselfpositive,thisverifiestheclosurecondition.Thus,thevectorspacediagram, thatis, Fig.1.2,isvalid,butstillalltheequationalidentitiesmustalsoholdforthisstructuretobeclassifiedasavectorspace.

Sotoverifythatthisisavectorspace,notethatallthefollowingdohold:

1) Associativeforvectoraddition:(u (v w)) 5 ((u v) w).

2) Zerovectorlaw:1 v 5 v 1 5 v.

3) Minusvectorlaw:v 1/v 5 (1/v) v 5 1.

4) Commutativevectorlawforaddition:u v 5 v u.

5) Onelaw:v1 5 v.

6) Distributivelaw:(vw)a 5 v a w a .

7) Distributivelaw:v(a1b) 5 v a v b .

8) Associativelaw:v(ab) 5 (va)b.#

Intermsofvectorspaces,twodistinctcarriersetshavebeendefinedsofarforsort SCALAR:Theyarethereal(R)andthecomplex(C)numberfields.Forthesecases,avectorspaceissaidtoberealwheneverthescalarfieldisR.Itissaidtobecomplexwhenever thescalarfieldisC.Accordingly,theoperationwhosenameisS-MULTmusttakeavector andmultiplyitbyascalarandobtainavectorinthedesignatedcarriersetofsort VECTOR.Inasense,thecarriersetofsortSCALARgovernsthenatureofthevector space.

Example1.5:

AmostsimplerealvectorspaceiswhenthecarriersetsforVECTORandSCALARare bothequaltotherealsR.Here,vectorscanbethoughtofasarrowsonthexaxiswiththeir tailsattheorigin.Whilescalarmultiplicationisusedtostretchorcontractthesearrows,a negativescalarwillreversethearrowbyonehundredeightydegreesandscalarzero wouldyieldtheorigin.#

Example1.6:

AnotherrealvectorspaceiswhenthecarriersetsforVECTORarethecomplexnumbersC,andtheSCALARaretherealsR.Herevectorscanbethoughtofasarrowsonthe x yplanewiththeirtailsattheorigin.Again,scalarmultiplicationwillonlyelongateor shortenthem.Thearrowswillbecometheoriginwhenthescalarzeroisemployed.While usingnegativenumbers,forinstance,using 1,arotationof180degreesisappliedtoa vector.#

Example1.7:

AcomplexvectorspaceoccurswhenbothcarriersetsforVECTORandSCALARare bothequaltothecomplexnumbers.Asinthepreviousexample,vectorscanbethoughtto beinthex yplanewithtailsattheorigin.Whenscalarmultiplyusesacomplexnumber: z 5 x 1 iy 5 re iθ,thenonzerovectorwillelongateorshrinkbyr 5 |z|androtatebyan angleof θ.#

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.