USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data
Names: André, Robert (Mathematician), author.
Title: Point-set topology with topics : basic general topology for graduate studies / Robert André, University of Waterloo, Canada.
Description: New Jersey : World Scientific, [2024] | Includes bibliographical references and index.
Identifiers: LCCN 2023021913 | ISBN 9789811277337 (hardcover) | ISBN 9789811277344 (ebook for institutions) | ISBN 9789811277351 (ebook for individuals)
Subjects: LCSH: Topology--Textbooks. | Point set theory--Textbooks.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13439#t=suppl
Definition1.1 Let V beavectorspaceoverthereals.An inner product isanoperationwhichmapspairsofvectorsin V toareal number.Wedenoteaninnerproducton V by v, w .Areal-valued functionon V × V isreferredtoasan innerproduct ifandonlyifit satisfiesthefollowingfouraxioms:
IP1: Thenumber v, v isgreaterthanorequalto0forall v in V . Equalityholdsifandonlyif v =0.(Hence,if v isnot0, v, v is strictly largerthan0.)
IP2: Forall v, w ∈ V , u, v = v, u (Commutativity)
IP3: Forall u, v, w ∈ V , u + w, v = u, v + w, v
IP4: Forall u, v ∈ V ,and α ∈ R, αu, v = α u, v
Avectorspace V iscalledan innerproductspace ifitisequipped withsomespecifiedinnerproduct.
Definition1.2 Let V beaninnerproductspace.If v isavectorin V wedefine v = v, v
Theexpression v iscalledthe norm (orlength)ofthevector v inducedbytheinnerproduct u, v on V .
Example1. Itiseasilyverifiedthat,for x =(x1 ,x2 ,x3 ,...,xn )and y =(y1 ,y2 ,y3 ,...,yn )in Rn ,itswell-knowndot-product x, y = x y = x1 y1 + x2 y2 + + xn yn
x = (x1 ,x2 ,x3 ,...,xn ) = (x1 ,x2 ,x3 ,...,xn ) · (x1 ,x2 ,x3 ,...,xn ) = n i=1 x2 i
Thisparticularnormisreferredtoasthe Euclideannorm on Rn . Itisalsoreferredtoasthe L2 -normon Rn ,inwhichcase,itwill berepresentedas x 2 .Wewillusethisparticularnormtomeasure distancesbetweenvectorsin Rn .Thatis,thedistancebetween x = (x1 ,x2 ,x3 ,...,xn )and y =(y1 ,y2 ,y3 ,...,yn )isdefinedtobe x y = n i=1 (xi yi )2
Inthecasewhere n =2or3,thisrepresentstheusualdistance formulabetweenpointsin2-spaceand3-space,respectively.Inthe casewhere n =1,itrepresentstheabsolutevalueofthedifference oftwonumbers.
Example2. Considerthevectorspace, V = C [a,b],thesetofall continuousreal-valuedfunctionsontheclosedinterval[a,b]equipped withtheusualadditionandscalarmultiplicationoffunctions.We definethefollowinginnerproducton C [a,b]as:
= b a
(x)g (x) dx
ShowingthatthisoperationsatisfiestheinnerproductaxiomsIP1 toIP4isleftasanexercise.Inthiscase,thenormof f ,inducedby thisinnerproduct,isseentobe f = b a f (x)2 dx
Itisalsoreferredtoasthe L2 -normon C [a,b]andwerepresentitas f 2 .
Theorem1.3(Cauchy–Schwarzinequality). Let V beavector spaceequippedwithaninnerproductanditsinducednorm.Then, forvectors x and y in V, | x, y |≤ x y
Equalityholdstrueifandonlyif x and y arecollinear(i.e., x = αy or y = αx).
Proof. Thestatementclearlyholdstrueif y =0. Let x, y betwo(notnecessarilydistinct)vectorsin V where y =0. Foranyrealnumber t, 0 ≤ x ty, x ty = x 2 2t x, y + t2 y 2
Choosing t = x, y y 2 intheaboveequationweobtain 0 ≤ x 2 x, y 2 y 2
Theinequality, | x, y |≤ x y ,follows.
Wenowprovethesecondpartofthestatement.If x and y are collinear,say x = αy ,then | x, y | = | αy, y | = |α| y, y = |α| y y = αy y = x y
Conversely,suppose | x, y | = x y .If y iszerothen 0= ty and so x and y arecollinear.Suppose y = 0.Consider t = x, y 2 y 2 . x ty, x ty = x 2 x, y 2 y 2 (asdescribedabove) =0
So,byIP1, x ty, x ty =0implies x ty =0so x and y are collinear.Wehaveshownthatequalityholdsifandonlyif x and y arecollinear.
Wenowverifythatanorm, ,whichisinducedbyaninnerproduct , onthevectorspace V willalwayssatisfythefollowingthree fundamentalproperties:
(1)Forall x ∈ V , x ≥ 0,equalityholdsifandonlyif x =0.
(2)Forall x ∈ V andscalar α ∈ R, αx = |α| x .
(3)Forall x, y ∈ V , x + y ≤ x + y .
Thefirstpropertyfollowsfromthefactthatthenormisdefinedas beingthesquarerootofanumber.Thesecondpropertyfollowsfrom thestraightforwardargument: αx = αx,αx = √α2 x, x = |α| x
Corollary1.4 Thetriangleinequalityfornormsinducedbyinner products. Foranypairofvectors x and y inaninnerproductspace, x + y ≤ x + y .Ifequalityholdsthenthetwovectors x and y arecollinear.
Proof.
(Cauchy–Schwarz) =( x + y )2
Thus x + y ≤ x + y ,asrequired. Inthecasewherewehaveequality:Supposewehave x + y = x + y .Then x + y 2 =( x + y )2 .Fromthedevelopmentabove,theinequalitiesmustbeequalities,sowemusthave x, y = x y .Thismeans | x, y | = x ||y .BytheCauchy–Schwarztheorem, x and y arecollinear.
Example3. Usethethedotproductpropertiesandthelawof cosines, c2 = a2 + b2 2ab cos θ (where a,b,c representthelengths ofthesidesofatriangle ABC and θ istheanglebetweentothe sides AB and AC )toprovetheCauchy–Schwarzinequalityin R2 .
Solution: Considerthetwovectors a and b in R2 whereoneisnota scalarmultipleoftheother.Thentheextremitiesofthetwovectors formatrianglewithangle θ between a and b.Thenthenorms a , b and b a arenumberswhichcanrepresentthelengthofthesides ofthetriangle.Let θ representtheanglebetween a and b.
Weapplythecosinelawtoobtain b a 2 = a 2 + b 2 2 a b cos θ
If a, b representsthedot-product,weobtain,byapplyingthedotproductpropertiesandtheproperty a 2 = a, a
Example4. Suppose a and b =(1, 0)aretwovectorsin R2 where a =1withanglebetween a and b = θ .Showthat a, b =cos θ ,as isrepresentedinFigure1.1.