Download full Analysis and visualization of discrete data using neural networks koji koyamada ebook

Page 1


https://ebookmass.com/product/analysis-and-visualization-ofdiscrete-data-using-neural-networks-koji-koyamada/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Building Computer Vision Applications Using Artificial Neural Networks, 2nd Edition Shamshad Ansari

https://ebookmass.com/product/building-computer-vision-applicationsusing-artificial-neural-networks-2nd-edition-shamshad-ansari/ ebookmass.com

Hydrogeological Conceptual Site Models: Data Analysis and Visualization 1st Edition, (Ebook PDF)

https://ebookmass.com/product/hydrogeological-conceptual-site-modelsdata-analysis-and-visualization-1st-edition-ebook-pdf/

ebookmass.com

Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More Van Der Post

https://ebookmass.com/product/data-science-with-rust-a-comprehensiveguide-data-analysis-machine-learning-data-visualization-more-van-derpost/ ebookmass.com

Four Found Dead Natalie D. Richards

https://ebookmass.com/product/four-found-dead-natalie-d-richards-4/

ebookmass.com

Macroeconomia Rudiger Dornbusch

https://ebookmass.com/product/macroeconomia-rudiger-dornbusch/

ebookmass.com

Learning Radiology E Book: Recognizing the Basics 4th Edition, with Audio/Video (Ebook PDF)

https://ebookmass.com/product/learning-radiology-e-book-recognizingthe-basics-4th-edition-with-audio-video-ebook-pdf/

ebookmass.com

Breaking into Venture Allison Baum Gates

https://ebookmass.com/product/breaking-into-venture-allison-baumgates/

ebookmass.com

The Frozen Prince Maxym M. Martineau [Martineau

https://ebookmass.com/product/the-frozen-prince-maxym-m-martineaumartineau-2/

ebookmass.com

Medicina Interna 18th Edition P. Farreras Valenti

https://ebookmass.com/product/medicina-interna-18th-edition-pfarreras-valenti/

ebookmass.com

https://ebookmass.com/product/pirates-ruin-master-and-command-herbook-3-marie-hall/

ebookmass.com

Analysis and Visualization of Discrete Data Using Neural Networks

This page intentionally left blank

Analysis and Visualization of Discrete Data Using Neural Networks

Koji Koyamada

Kyoto University, Japan

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Names: Koyamada, Kōji, author.

Title: Analysis and visualization of discrete data using neural networks / Koji Koyamada.

Description: New Jersey : World Scientific, [2024] | Includes bibliographical references.

Identifiers: LCCN 2023038211 | ISBN 9789811283611 (hardcover) | ISBN 9789811283628 (ebook for institutions) | ISBN 9789811283635 (ebook for individuals)

Subjects: LCSH: Data mining. | Information visualization--Data processing. | Neural networks (Computer science)

Classification: LCC QA76.9.D343 K685 2024 | DDC 006.3/12--dc23/eng/20231222

LC record available at https://lccn.loc.gov/2023038211

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13603#t=suppl

Desk Editor: Quek ZhiQin, Vanessa

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore

Contents

1.Introduction1

1.1BasicoperationsofExcel....................2

1.1.1Tablecomponents....................3

1.1.2Nameboxandformulabar...............4

1.1.3Ribbon..........................5

1.1.4FiletabandBackstageview..............5

1.1.5Autofill..........................6

1.1.6Relativereference....................7

1.1.7Absolutereference....................8

1.1.8IntroductionofvisualizationwithExcel........10

1.1.9IntroductionofPDEderivationwithExcel......12

1.2BasicoperationsofGoogleColab(Colab)...........15

1.2.1Codecell.........................17

1.2.2Textcell.........................17

1.2.3IntroductiontovisualizationwithColab........18

1.2.4IntroductionofdeeplearningwithColab.......19

1.3Organizationofthisdocument.................24

2.Basic25

2.1Background...........................25

2.1.1DataanalysisusingNNs................25

2.1.2Formatofphysicaldata.................30

2.1.3Physicaldatavisualization...............30

2.2StatisticalAnalysisinExcel..................36

2.2.1Correlationanalysis...................37

2.2.2F-test...........................38

2.2.3t-Test...........................39

2.2.4Z-test...........................41

2.3Regressionanalysis.......................41

2.3.1Modelcharacteristics..................42

2.3.2Regressionanalysisassumptions............43

2.3.3Regressionanalysisusingthedataanalysistools inExcel..........................49

2.3.4Excelmacro.......................55

2.3.5Implementationofthevariablereductionmethod usingExcelVBA.....................59 2.4What-ifanalysis.........................63 2.5Solver...............................66

2.5.1Optimization.......................68

2.5.2Implementationofregressionanalysis.........69 2.6Colab...............................73

2.6.1Correlationanalysis...................74

2.6.2F-test...........................74

2.6.3t-Test...........................75

2.6.4Z-test...........................77

2.6.5Regressionanalysis...................77

2.6.6Optimizationproblem..................80

2.7NNs................................81

2.7.1Universalapproximationtheorem...........83

2.7.2RegressionanalysisusingNNs.............85

2.7.3NNimplementationusingExcelVBA.........87

2.7.4FunctionapproximationusingNNs...........95

2.7.5PointclouddataanalysisusingNNs:Application example..........................98

2.7.6LinegroupdataanalysisusingNNapplication examples.........................101

3.PracticalPart109

3.1AboutPINNs..........................109

3.2AutomaticdifferentiationinNN................113

3.3Usingautomaticdifferentiationinregressionequation....116

3.4AutomaticdifferentiationusingColab.............118

3.5Increasingtheaccuracyofvisualizationofmagneticline groupdatausingautomaticdifferentiation..........119

3.6GenerationofaCADmodelfrompointclouddatausing pointclouddataprocessingsoftware.............121

4.AdvancedApplicationSection129

4.1DerivationofPDEsdescribingphysicaldata.........129

4.1.1Relatedresearch.....................132

4.1.2PDEderivationusingregularizedregression analysis..........................134

4.1.3Definitionoferror....................136

4.1.4ExampleofPDEderivation...............137

4.2Useofvisualanalysistechniques................171

4.3MethodsforsolvingagivenPDE...............173

4.3.1HowtosolvePDEsusingtheFouriertransform...175

4.3.2PDEapproximatesolution...............177

4.3.3HowtofindsolutionstoPDEsusingPINNs.....183

4.3.4ExampleoffindingsolutionstoPDEsusing PINNs..........................185

4.3.5ImplementationofthePDEsolutionmethod.....195

5.PhysicallyBasedSurrogateModel203

5.1AbouttheCAEsurrogatemodel................203

5.1.1ExampleofSMconstruction..............203

5.1.2Expectationsforphysics-basedlearning........209

5.2Applicationtocarbonneutrality(CN)............209

6.ClosingRemarks213

This page intentionally left blank

Chapter1 Introduction

Inthischapter,youwilllearnpracticalmethodsforanalyzingphysicaldata spatiotemporallydefinedbydiscretepoints.Physicaldatarefertodata usedtodescribephysicalorother phenomena.Thephysicalphenomena refertovariousphenomenathatexistinnature.Theyinclude,forexample, weather,temperature,earthquakes,andfloods.Thephysicaldataareoften definedasspatiotemporaldiscretedata.Thespatiotemporaldiscretedata refertodatathatarenotspatiotemporallycontinuous.Whenwehandle spatiotemporaldiscretedata,weusuallydividethespatiotemporalaxisinto discretesegmentssothatwecanhandledataineachsegment.

Spatiotemporaldiscretedatacanbeusedinavarietyoffields.For example,inthesocialandnaturalsciences,spatiotemporaldiscretedata aresometimesusedtoanalyzevariousphenomenaandtheircontinuous changes.Inbiologyandgeology,spatiotemporaldiscretedataaresometimesusedtoanalyzephenomenathatoccurintime.

Physicaldatacanbemeasuredinavarietyofwaysasfollows:

• Usingmeasuringinstruments :Physicaldatacanbemeasureddirectly usingmeasuringinstruments.Forexample,athermometerorahygrometercanbeusedtomeasuretemperatureandaseismometercanbeused tomeasurethevibrationsofanearthquake.

• Observation :Physicaldatacanbeobtainedbyobservingphenomena. Forexample,aweatherforecastsiteorappcanbeusedtoobservethe weather.Toacquireweatherdata,youcanobservetemperature,humidity,windspeed,etc.,atmeteorologicalobservatories.

• Usingsimulations :Physicaldatacanbeobtainedbyrunningsimulationsonacomputer.Forexample,youcanunderstandfluidandheat conductionphenomenabysimulatingfluidbehaviorandheatconduction phenomena.

Today,discoveringaspatiotemporalmodelthatexplainsphysicaldata definedbyspatiotemporaldiscretepoints(hereaftersimplyreferredtoas “physicaldata”)isaninterestingtopicforresearchersandpractitioners. Akeytopicinthediscoveryofaspatiotemporalmodelisthediscrete-tocontinuoustransformationtoeffectivelyevaluatepartialdifferentialterms. Morespecifically,itisaboutfindingapartialdifferentiablefunctionthat adequatelyapproximatesphysicaldatadefineddiscretelyinthetimespace. Apartiallydifferentiablefunctionischaracterizedbyapartialderivative atagivenpoint.Partialdifferentiationreferstocalculatingaderivative withrespecttoaparticularvariableinamultivariablefunctionatthat point.Thepartialdifferentiablefunction,whichhasapartialderivativeata givenpoint,isusedtoanalyzeamultivariablefunction.Successfullyfinding suchpartialdifferentiablefunctionenableseffectivevisualizationandalso enablesapartialdifferentialequation(PDE)thatexplainsaphenomenon tobederivedusingtheresultsofanalysis.

ThisdocumentusesExceltounderstandthebasicsofhowtoanalyze physicaldata.Exceliswidelyusedasapieceofspreadsheetsoftwareto organizedataissuitedfordataanalysis.UsingExcelhasthefollowing benefits:

• Easytouse :Exceliscommonlypre-installedonmostcomputersand doesnotrequireadditionalinstallation.Moreover,Excelcanbeused withouttheneedforspecializedskills.

• Hasavarietyoffunctions :Excelhasavarietyoffunctionsthatallow youtoaggregatedataefficiently.

• Cancreategraphsorcharts :Excelcanbeusedtovisuallydisplaydata intheformofagraphorchart,whichfacilitatesunderstandingofdata.

• Datacanbeeasilyimported :Excelallowsyoutoimportdatafrom,for example,aCSVortextfile.

• Canworkjointly :Excelallowsmultiplepeopletoworkjointly,making itusefulfordataanalysisprojects.

Excel,whichprovidesanarrayofbenefits,isalsowidelyusedindata analysis.Next,thebasicsofExcelwillbeexplained.

1.1.BasicoperationsofExcel

ExcelisapieceofspreadsheetsoftwaredevelopedbyMicrosoft.The spreadsheetsoftwareisatoolthatallowsyoutoenterandeditdatain atabularformatforaggregation,analysis,andotherpurposes.Excelis

widelyusedbyindividualsandinbusinesses,andcanhandlelargeamounts ofdata,makingitsuitableforaggregationandanalysis.Excelcanbeused tonotonlycreateatablebuttoalsocreateagraphorchart.Additionally, Excelhasavarietyoffunctionstoorganizedata,allowingyoutoanalyze dataandcalculateformulas.Exceliscommonlypre-installedonWindows andMacOSandsoldaspartofMicrosoftOffice.Itisalsoavailableasa cloudservice,soyoucanuseitfromany Internet-connectedenvironment. ThedatatobeanalyzedareoftenprovidedinExcelformat.Thereare quiteafewtoolscapableofreadingandanalyzingExceldata,butExcel itselfalsocontainsfunctionstoperformanalyses.Excelprovidestoolsfor determiningcorrelationbetweendata,testingfordifferencesinthemean andvarianceofdata,andregressionanalysis.Italsoservesasanoptimizationtool.Thesetoolscanbeusedtoimplementdeeplearning.Excelcan beregardedasatoolforpreliminaryanalysispriortoutilizingdedicated analysistools,anditisadvisabletobecomefamiliarwithitsfunctionalities. ThissectiondescribesthebasicterminologyinExcelandexplainshowto performwhat-ifanalysisusingsampledata.

1.1.1. Tablecomponents

ThemaincomponentsofanExceltableareasfollows(Figure1.1):

• Worksheet :OneofthebasicbuildingblocksofanExceldocument.One documenthasmultipleworksheets.Oneworksheetisusuallycontained inanExcelfile,butmultipleworksheetsmaybeincluded.

• Cell :AbasicelementforenteringdatainExcelatwhicharowanda columnintersect.Youcanentertext,numbers,andothervaluesinacell.

• Row :AbasicelementthatdividesanExcelworksheethorizontally.A rowusuallycontainsasinglecell.InExcel,youcanrefertoarowby specifyingarownumber.

• Column :AbasicelementthatdividesanExcelworksheetvertically.A columnusuallycontainsasinglecell.InExcel,youcanrefertoacolumn byspecifyingthecolumnnumber.

• Rownumber :AnumberthatidentifiesarowinExcelandappearson theleft.Rownumberstypicallystartfrom“1”.

• Columnnumber :AnumberthatidentifiesacolumninExcelandappears atthetop.Columnnumbersusuallystartfrom“A”.

EachcomponentofatableinExcelplaysanimportantroleincreating andmanipulatingatable.Whencreatingatableorenteringdata,itis

Figure1.1.ComponentsofatableinExcel.

importanttounderstandthesecomponentsandmanipulatethemappropriately.

1.1.2. Nameboxandformulabar

Thenameboxandformulabar(Figure1.2)inExcelhavethefollowing roles:

• Namebox:InExcel,youcannameaspecifiedcellorrange.Thisis callednaming.Namingallowsyoutospecifyacellorarangeofcells.A namedcellorrangeiscalleda“name”inExcel.Youcanmanageyour datamoreefficientlybyspecifyinga namedcellorrange.Excelprovides afunctioncalled“namebox”thatallowsyoutospecifyanamedcellor rangebyenteringitsname.

• Formulabar:InExcel,youcancalculatedatabyenteringaformula. Youcanenteraformulainaplacecalled“formulabar”.Theformula barislocatedintheExcelstatusbarandusedtoenteraformulaintoa cell.Enteringaformulaallowsyoutocalculatedataefficiently.

1.1.3. Ribbon

TheExcelribbonreferstothetabbedmenusthatappearinthemainExcel window.Theribbonhasvariousfunctionsandcommandsgroupedtogether intoatabaccordingtothecategory.Therearevarioustabs,suchasHome andData.UserscanusecommandsintheribbontomanipulateExcelto createoreditatable.

Thetabsandtheareacontainingthebuttonswhichcanbeswitched byclickingatabarecollectivelycalledthe“ribbon”(Figure1.3).Youcan switchbetweenbuttonsbyclickingthetabplacedabovethem.

1.1.4. FiletabandBackstageview

TheExcelfiletabisaspecialtabthatappearsintheupper-leftcornerofthe mainExcelwindow.ClickingontheFiletabwillbringuptheBackstage view(Figure1.4).

TheBackstageviewisaspaceformanagingExcelfilesanddata.The Backstageviewcontainstemplatesfor creatinganewworkbook,aswellas

Figure1.2.Nameboxandformulabar.
Figure1.3.Ribbon.

Figure1.4.FiletabandBackstageview.

commandsforopening,saving,printing,andsharingexistingworkbooks, andforsettingExceloptions.IfyouwantanExceldataanalysistoolor solvertoappearasamenuontheribbon,youmustsetacorresponding optionhere.IntheBackstageview,youcanalsocheckyourExcelaccount orprivacysettings.

ClickingontheFiletabwillbringuptheBackstageview.Clicking Optionswilldisplayadialogbox.

1.1.5.

Autofill

TheAutofillfunctioninExcelhelpsyouenterdataefficiently.Itautomaticallysuggestsdatatobeenterednextbasedonthedatathathavealready beenentered(Figure1.5).

Forexample,supposethatcolumnscontainmonthanddaydata.The data“January”,“February”,and“March”areenteredinthe“Month” column,andthedata“1st”,“2nd”,and“3rd”areenteredinthe“Day” column.Ifyouenter“4”intheAprilcellofthe“Month”column,“4”will alsobeautomaticallyenteredinthe4thcellofthe“Day”column.

TheAutofillfunctionallowsyoutoenterdatamoreefficiently,soyou canperformExcelworkmoreefficiently.TheAutofillfunctionalsoreduces inputerrors,therebyincreasingdatareliability.

Youcaneasilyentercontinuousdatasuchas“January,February, March ”bydraggingthem:

1.Selectacellfilledwithanumber.

2.Movethemousepointertothesmallsquareatthebottomrightofthe thickframe.

3.Whentheshapeofthemousepointerchangesintoacross,dragit.

4.Clickon“AutofillOptions”thathasappearedinthelowerrightarea.

1.1.6. Relativereference

InExcel,therelativereferencefunction allowsthereferencedestinationin areferencedcelltobeautomatically changedwhenthereferencedcellis moved(Figure1.6).

Forexample,foracellcontainingtheformula“=A1”,ifyouwereto movethiscelltotherightbyonecell,theformulawillbeautomatically rewrittento“=B1”.Thefunctioncapableofchangingthereferencedestinationinacellautomaticallywhenthecellismovedisknownas“relative reference”.

The“relativereference”function,whichautomaticallychangesthereferencedestinationinacellwhenthecellismoved,isusefulforwritingformulas.Whendatathatuse“relativereference”areduplicated,areference

Figure1.5.Autofill.

Figure1.6.Relativereference. destinationintheduplicatedcellisalsochanged,allowingyoutomanage dataefficiently.

Autofillisusedtocopyaformula.

1.IfyouselecttheD2addressthatcontainsaformula,asmallsquarewill appearatthebottomrightofthatcell.

2.Dragitdownwardtoautomaticallyfillothercells.

3.SelecttheB2address.Thecontentsofthatcellwillbedisplayedinthe formulabar.

1.1.7. Absolutereference

InExcel,whenacellcontaining“absolutereference”isreferenced,the referencedestinationinthecellisfixedevenafterthecellmoves.

Forinstance,consideracellthatcontainstheformula=“ $A$1”.If youshiftthiscelltotherightbyonecell,thereferencedestinationinthe movedcellwillremainunchangedas“= $A$1”.Thefunctioncapableof fixingareferencedestinationinacellevenafterthecellismovedisknown as“absolutereference”.

Theabsolutereferencefunction,whichpreventsthereferencedestinationinacellfrombeingchangedafterthecellhasmoved,isusefulfor writingformulas.Whendatathatuse“absolutereference”areduplicated, thereferencedestinationintheduplicatedcellisnotchanged,allowingyou tomanagedataefficiently(Figure1.7).

Itisrecommendedtousetheabsolutereferencefunctioninorderto retainthecelladdressinaformulawhentheformulaiscopied.

1.SelecttheB4address.Thiswillcausethecelltobesurroundedbya thickframewithasmallsquareappearingatthebottomright.

2.Draggingthesmallsquaredownwardwillnottriggertheautofilltowork.

3.Instead,clicktoselectB1,which isthe“commissionrate”,andpress F4.

4.Makesurethecolumnandrownumbersareprefixedwith“$”toindicate theyareabsolutereferences.There arethreeprefixingpatterns:absolutereferenceforbothcolumnandrow,forrowonly,andforcolumn only.ThispatterncanbechangedbypressingtheF4button.

Tolearnhowtouserelativeandabsolutereferences,displaythecalculationresultsofnumbersincolumnA × numbersinrow1.

1.Enter1to9downward,startingfromrow2ofcolumnA.

2.Enter1to9rightward,startingfromrow1ofcolumnB.

3.Calculateproductsforall9 × 9cellsusingrelativeandabsolutereferencesappropriately(Figure1.8).Morespecifically,enteraformula “= $A2*B$1”inrow2ofcolumnB.Copythiscelluptorow10,and thencopyalltherows2to10ofcolumnBtogetherupto10columns.

Figure1.7.Absolutereference.

× 9multiplicationtable.

1.1.8. IntroductionofvisualizationwithExcel

Exceliswidelyusedasapieceofspreadsheetsoftwarebutitisalsosuitable forvisualizingdata.

ThereareseveralwaystovisualizedatainExcel:

1.Visualizationwithcharts:Excelprovidesavarietyofcharttypestohelp youvisualizeyourdatawithbar,line,piecharts,etc.

2.Visualizationusingapivottable:Youcanvisualizedatabyusingan Excelpivottabletoaggregatedataandconvertthemtoachart.

3.Visualizationusingaspreadsheet:YoucanuseanExcelspreadsheetto organizedataandvisualizethemusingcolorcodingorformulas.

4.Visualizationusingmacro:ExcelhasamacrolanguagecalledVBA.You canuseittocreateacustomchartorautomatedvisualizationtool.

BeforevisualizingdatainExcel,youmayhavetoorganizeandprocess them.Excelalsohasavisualizationadd-inthatallowsyoutodomore detailedvisualizations.

DisplayingachartusingExcel:

1.Creatingachart:Excelhasavarietyofcharttypesthatallowyouto enterdataandcreateachart.

• Selectdata,selectChartfromtheInserttab,andselectacharttype.

• Afterachartiscreated,thedataappearinthechartarea.

Figure1.8.Creationofa9

2.Editingachart:Youcaneditachartyouhavecreated.

• SelectachartandselectChartOptionsfromtheDesigntab.

• Youcanchangedetailedchartsettingsbyusingtabs,suchasAxis, DataSeries,andLayout.

3.Chartdesign:Youcanchangetheappearanceofachart.

• Youcanchangetheappearanceofachartbyselectingapreferred chartandchoosingShape,Frame,etc.,fromtheFormattab.

Aconcreteexampleisusedtoexplainthis.Thefollowingisatwodimensionalfunction: f (x,y )=sin(x) · cos(2y ).Calculate f (x,y )usinga variablevalue(y )incolumnAandvariablevalue(x)inrow1(Figure1.9).

• Autofillisusedtofillvariablevaluesdownwardfromthecellofrow2of columnA.

• Autofillisusedtofillvariablevaluesrightwardfromthecellofrow1of columnB.

Figure1.9.Presentationoftwo-dimensionalfunctionasacontourchart.

• Calculatefunctionvaluesusingrelativeandabsolutereferencesasappropriate.

• Setthecharttypeto“Contour”anddisplayachart.

1.1.9. IntroductionofPDEderivationwithExcel

Thissectionintroduceshowtousedataanalysis(regressionanalysis)in ExceltoderiveaPDEfromthegivendata;detailedoperationswillbe describedinsubsequentsections.Regressionanalysisisamethodofanalyzingthedegreeofimpact(weight)oftwoormoreexplanatoryvariables onanobjectivevariable.Asaconcreteexample,consideramodelthat describestheannualsalesofarestaurant.Eachrestaurantcorrespondsto arowinExcel.Ineachrow,enterannualsales(unit:10,000yen),thenumberofseats(number),walkingtimefromtheneareststation(minutes),and presence/absenceofbreakfast(0, 1).Theregressionanalysistoolallowsyou toeasilycreateaformulathatexplainsannualsalesbyaddingaweightto eachofthefollowingexplanatoryvariables,andanintercept:Numberof seats(number),walkingtimefromtheneareststation(minutes),andpresence/absenceofbreakfast(0, 1)(Figure1.10).

Thisisanintroductoryexerciseforgeneralregressionanalysistechniques,butitprovidesatipfordevelopingadata-drivenmethodforderivingaPDE(Figure1.11).Forexample,enterthepartialderivatives,

Figure1.10.Explanationofsalesusingregressionanalysis.

Figure1.11.DerivationofaPDEusingregressionanalysis.

forthephysicaldata(u)ateachofthemultiplecoordinatepointsineach Excelrow.Theregressionanalysistoolallowsyoutoanalyzethedegreeof impactofeachpartialderivativeon u [1].Asaresult,aPDE

isderivedthatdescribesthephysicaldata.

Asaconcreteexample,consideranequationofmotion(Figure1.12). Anequationofmotionisanordinarydifferentialequationrepresenting thelawsofmotionofanobjectinphysics.Aschematicdiagramisshown herewherethemassofanobjectis m kg,aspringconstantis k ,andthe proportionalcoefficientofairresistanceis c.

Thisordinarydifferentialequationissolvedtocalculatetheposition coordinateoftheobjectwhilechangingthetimedata.Thisequation becomesasecond-orderordinarydifferentialequationattheobject’spositioncoordinatex,whichcanbesolvedbygivinganinitialcondition.Enter thecoordinatedata(x)andthedifferentialvalue xt ,xtt ,uy uxx ,uyy ateach ofthemultipletimesineachExcelrow. xtt ,xt ,x regressionanalysistools allowyoutoanalyzethedegreeofimpactofpositionandspeedon xtt .As aresult,aPDE

isderivedthatdescribesthephysicaldata.

TheadvectionequationisaPDEthatdescribesthephenomenainwhich physicalquantities,suchasasubstanceandmomentum,arecarriedalong

Figure1.12.Derivationofequationofmotion.

withaflow.Asanotherexample,consideracase(translationalequation) whereasubstanceistransportedinaflowataconstantvelocity a0 andthe concentrationofthesubstanceis C : u(x,t).Figure1.13showsaschematic diagramforaone-dimensionalequation.

Theadvectionequationgivenby ut + a0 ux =0(1.2) hasanexactsolutioninwhichthegeometrygivenbyinitialconditions movesalongthe x axisatavelocityof a0

Theconcentration u canbecalculatedbysettingthetime t andtheposition x andusingthisexactsolution.Furthermore,thisexactsolutionitself canbedifferentiatedtocalculatetimederivativeof uut orspacederivation of uux .Regressionanalysisisthenusedtoobtainaregressionequationthat describestimederivativeasspatialderivative.Thisregressionequationis aderivedPDE(Figure1.13).

Asdescribedearlier,ifthephysicaldataareobtainedandapartial derivativecanbeobtainedforeachpieceofdata,aPDEcanbederived inadata-drivenmannerusinganExcelanalysistool.Theaboveexample dealswithaPDEconsistingoflineartermswhereaconstantcoefficient

Figure1.13.Derivationofadvectionequation. isassumedforpartialdifferentialterms.Evenfornonlineartermswherea coefficientisafunctionofphysicaldata,theycanbereducedtoaregression analysisproblembyintegratingthenonlinearpartswithpartialdifferential terms.

Forthepartialdifferentialterms,ifanexactsolutionisgiven,anexact differentialvaluecanbeobtained.Ifnot,thecalculationofadifferential valuebecomesanissue.Onepossiblestrategyistoobtainanddifferentiateanapproximatefunctionthatdistributesphysicaldatacontinuouslyin somemanner.Onesuchapproximatefunctionthatattractsattentionisan approximatefunctionbasedonneuralnetwork(NN).Thiswillbediscussed inChapter2.

1.2.BasicoperationsofGoogleColab(Colab)

Approximately1000rowsofdatacanbeprocessedwithExcel;however, inordertounderstanddataanalysistechniqueshandlingalargeamount ofdata,GoogleColabisused.GoogleColab(Colab)isGoogle’scloud environmentfordataanalysis[2].Colaballowsyoutostartanalyzingdata

immediatelyonyourbrowserwithoutrequiringhardwareorsoftware.Data analysisinColabhasthefollowingadvantages:

• Eliminatestheneedtosetuphardwareorsoftware:Colaballowsyouto startanalyzingrightawayandpro ceedwithanalysiswithouthavingto worryaboutpreparationonaPCorserverorinstallationofnecessary tools.

• Availableinabrowsersoyoucanaccessitfromanydevice:Colabruns inabrowsersoyoucanaccessitfromanydevice,includingyourPC, smartphone,andtablet.

• Workswithalargeamountofdata:Colab,whichworksinGoogle’scloud infrastructure,canhandlelargeamountsofdata.

• Keepsahistoryofyourworkasyou canproceedwithworkinanotebook format:Colaballowsyoutoproceedwithdataanalysisinanotebook format,soyoucankeepahistoryofyourwork.Thisenhancesrepeatabilityofyourworkandfacilitatescollaboration.

GoogleColaboratory(Colabforshort)isafreecloudserviceprovided byGoogle,whereyoucanusetheJupyternotebookandPythontoanalyze dataandbuildamodelformachinelearning.Thefollowingaresomebasic Colaboperations:

1.Creatinganotebook.

2.Openinganotebook.

3.Savinganotebook.

4.Sharinganotebook.

5.Connectinganotebook.

6.Runninganotebook.

7.Downloadinganotebook.

AColabnotebookhasa“cell”inwhichtowritetextandcode.Anotebook iscomposedofmultiplecellsthatcanbeediteddirectlyinawebbrowser. TheColabnotebookhastwotypesofcell:

• Codecell:AcellforwritingPythoncode.

• Textcell:AcellfordescribingtextthatcanuseMarkdownnotationto decorateyourtext(Figure1.14).

Tocreateanewcell,click“+Code”or“+Text”inthemenubar. Alternatively,youcanalsocopyandpasteexistingcells.Toruneachcell, clicktoselectitandthenpress“Shift+Enter”orclickthe“ ”Runbutton inthecell.

1.2.1. Codecell

YoucanenterandexecuteaPythoncodeinacodecell.

• Tocreateacodecell,click“+Cell”atthetopofaColabpage.

• Toenterandruncode,selectacellandclicktheRunbutton.

ColabhasPythonlibrariespre-installed,allowingyoutoprogramwith popularlibrarieslikeTensorFlow[3],Keras[4],andNumpy[5].Colabcan alsoperformhigh-speedcomputationusingGPUandcanperformdeep learningtaskssuchasmachinelearningandimagerecognition.Colabalso hasotherfunctions,suchasimportingexternaldata,savingtheminGoogle Drive,andpublishingthemtoGitHub.

1.2.2. Textcell

Thetextcellallowsyoutowriteprogramdescriptions,formulas,links, images,andmore.

• Tocreateatextcell,click“+Cell”atthetopofaColabpageandselect “Text”.

• Toentertext,selectacellandenterasentenceinit.

YoucanusetheMarkdownnotationtoformatheadings,lists,andmore. Colabtextcellsareveryusefulforwritingdescriptionsanddocuments. Inparticular,theycanbeusedtodescribeprogramsandinterpretresults.

Figure1.14.GoogleColab.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.