What She Found in the Woods Josephine Angelini
https://ebookmass.com/product/what-she-found-in-the-woods-josephineangelini/
ebookmass.com
Financial Accounting: As per CBCS Syllabus 2014-15 as Revised in March 2017 for B.Com Semester-I (Bangalore University) Ruqsana Anjum
https://ebookmass.com/product/financial-accounting-as-per-cbcssyllabus-2014-15-as-revised-in-march-2017-for-b-com-semester-ibangalore-university-ruqsana-anjum/ ebookmass.com
Intelligence économique Alice Guilhon
https://ebookmass.com/product/intelligence-economique-alice-guilhon/
ebookmass.com
The Curious Incident at The Pig and Pepper: A Paranormal Cozy Witch Mystery (Wonderland Detective Agency Book 4) Jeannie Wycherley
https://ebookmass.com/product/the-curious-incident-at-the-pig-andpepper-a-paranormal-cozy-witch-mystery-wonderland-detective-agencybook-4-jeannie-wycherley/ ebookmass.com
ERP Adoption in Organizations: The Factors in Technology Acceptance Among Employees Hamidur Rahaman Shibly
https://ebookmass.com/product/erp-adoption-in-organizations-thefactors-in-technology-acceptance-among-employees-hamidur-rahamanshibly/ ebookmass.com
https://ebookmass.com/product/china-and-the-indo-pacific-maneuversand-manifestations-swaran-singh/
ebookmass.com
Other World Scientific Titles by the Author
Principles and Techniques in Combinatorics
ISBN: 978-981-02-1114-1
ISBN: 978-981-02-1139-4 (pbk)
Chromatic Polynomials and Chromaticity of Graphs
ISBN: 978-981-256-317-0
ISBN: 978-981-256-383-5 (pbk)
Counting
ISBN: 978-981-238-063-0
ISBN: 978-981-238-064-7 (pbk)
Counting: Supplementary Notes and Solutions Manual
ISBN: 978-981-256-915-8 (pbk)
Counting
Second Edition
ISBN: 978-981-4401-90-6
ISBN: 978-981-4401-91-3 (pbk)
Counting: Solutions Manual
Second Edition
ISBN: 978-981-4401-94-4 (pbk)
Introduction to Graph Theory: H3 Mathematics
ISBN: 978-981-270-525-9
ISBN: 978-981-270-386-6 (pbk)
Introduction to Graph Theory: Solutions Manual
ISBN: 978-981-277-175-9 (pbk)
Graph Theory: Undergraduate Mathematics
ISBN: 978-981-4641-58-6
ISBN: 978-981-4641-59-3 (pbk)
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Control Number: 2023053687
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
INTRODUCTION TO GRAPH THEORY With Solutions
to Selected Problems
Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
ISBN 978-981-12-8481-6 (hardcover)
ISBN 978-981-12-8501-1 (paperback)
ISBN 978-981-12-8482-3 (ebook for institutions)
ISBN 978-981-12-8483-0 (ebook for individuals)
For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13637#t=suppl
Desk Editor: Tan Rok Ting
Printed in Singapore
Preface
DiscreteMathematicsisabranchofmathematicsdealingwithfinite orcountableprocessesandelements.GraphtheoryisanareaofDiscrete Mathematicswhichstudiesconfigurations(calledgraphs)consistingofa setofnodes(calledvertices)interconnectingbylines(callededges).From humblebeginningsandalmostrecreationaltypeproblems,GraphTheory hasfounditscallinginthemodernworldofcomplexsystemsandespecially ofthecomputer.GraphTheoryanditsapplicationscanbefoundnot onlyinotherbranchesofmathematics,butalsoinscientificdisciplines suchasengineering,computerscience,operationalresearch,management sciencesandthelifesciences.Sincecomputersrequirediscreteformulation ofproblems,GraphTheoryhasbecomeanessentialandpowerfultoolfor engineersandappliedscientists,inparticular,intheareaofdesigningand analyzingalgorithmsforvariousproblemswhichrangefromdesigningthe itinerariesforashippingcompanytosequencingthehumangenomeinthe lifesciences.
GraphTheoryshowsitsversatilityinthemostsurprisingareas.Recently,theconnectivityoftheWorldWideWebandthenumberoflinks neededtomovefromonewebpagetoanotherhasbeenremarkablymodeledwithgraphs,thusopeningtherealworldinternetconnectivitytomore rigorousstudies.Thesestudiesformpartofresearchintothephenomena ofthepropertyofa‘smallworld’eveninhugesystemssuchastheaforementionedinternetandglobalhumanrelationships(intheso-called‘Six DegreesofSeparation’).
ThisbookisintendedasageneralintroductiontoGraphTheory.The firsteditionwaswrittenasaresourcebookforjuniorcollegestudentsand teachersreadingandteachingthesubjectattheCambridgeH3Advanced LevelintheSingaporeMathematicscurriculumforJuniorCollege.The
topiccoveragehoweverisalsosuitableforabeginningcourseinundergraduatemathematics.Thesecondeditionnowincludesselectedsolutionsand hintsforthebookexercises,thusmakingitasuitablycompletefirstundergraduateGraphTheorytextbookandreference.Inaddition,thevarietyof problemsandapplicationsinthebookarenotonlyusefulforbuildingup anaptitudeinGraphTheorybutarearichsourceforhoningbasicskills andtechniquesingeneralproblemsolvingandlogicalthinking.
Certainfeaturesofthisbookareworthmentioning.Thebookiswritten withgreatcarethatconceptsareexplainedclearlyanddevelopedproperly; itstrivestobestudentfriendly,andatthesametimebemathematically rigorous.Atsuitablejunctures,questionsareinsertedfordiscussion.This istoensurethatthereaderunderstandstheprecedingsectionfullybefore proceedingontonewideasandconcepts.Therearemanyquestionsin theExercisecomponentfollowingmostsections.Someareexercisesintendedforreinforcingwhatislearntearlierwhileotherstestthefullrange ofunderstandingandproblemsolvingintheconceptsacquired.Proofsof mostimportanttheoremsaregivenintheirfullmathematicalrigour.Each chapterconcludeswithapplicationsoftheconceptsinreal-life,whichare addedforgeneralinterestandassubstantiationoftheusefulnessofGraph Theoryconcepts.Referencesarecitedinfullattheendofthebookin theReferencessectionandtheyareindexedwiththefirstletterofthefirst author’snamewithinsquareparentheses.Forexample,[E]isforapaper byEuler.Thesymbol ✷ isusedtoindicatetheendofaprooforaresult statedwithoutproof.Challengingproblemsareindicatedwiththesymbol (+).
Chapter1coversthefundamentalconceptsandbasicresultsinGraph TheorytracingitshistoryfromEuler’ssolutionoftheproblemoftheSeven BridgesofK¨onigsberg.Fundamentalconceptsincludethoseofgraphs, multigraphs,vertexdegrees,paths,cyclesandconnectedness.
Whenaretwographsthe‘same’?FollowingthestyleofChapter1, Chapter2furtherexposesthestudenttotherigourofmathematicsin constructingatheorythroughdefinitionsandtheorems.Sincetwographs maylookdifferentandyet‘function’similarly,theempiricalperspective thatmathematicsstudentsaresoaccustomedtoneedstobereconsidered. Thus,congruenceisdefinedintermsofisomorphismratherthanavague notionofshapethusenablinga‘handle’tocomparegraphs.Thisrigourand mathematicalmethodofdefinitionsandtheoremscontinuesthroughoutthe wholebook.
InChapter3,weintroducetwoimportantfamiliesofgraphs,namely treesandbipartitegraphs.Atree,insomesense,formsthe‘skeleton’of aconnectedgraphandingeneral,aforestoftreesformsthe‘skeleton’of anygraph.Thus,thestructureandpropertiesoftreesareveryimportant. Bipartitegraphsareanotherfamilyofgraphsthathavefoundapplications inmanyreal-lifesituationssuchasmatchingagroupofjobseekerswitha setofpotentialjobsundercertainconditions.
Arefourcolourssufficienttocolouranymap?Thisquestionhadfrustratedmanygreatmathematiciansforoveracentury.Chapter4introduces theconceptofvertexcolouringwhichrephrasesthequestionmoresimply. Thenotionofchromaticnumber(minimumnumberofcoloursused)ispresentedandanalgorithmandsometechniquestoestimateorenumerate itarediscussed.Interestingapplicationsofvertex-colouringtoscheduling problemsaregiveninsomedetail.
Chapter5expandsontheconceptofmatchingsinbipartitegraphs introducedinChapter3.HerewehaveabeautifulclassicalresultinGraph Theory—Hall’sTheorem.Thenecessityoftheconditionistrivialbut theinsightleadingtotheconditionandtheproofofitssufficiencyexhibits thecreativityofgoodmathematics.Hall’sTheoremisusedtodetermine theexistenceofacompletematchingandthisisusedtogoodeffectinthe MarriageProblemandtofindasystemofdistinctrepresentatives(SDR).
Chapter6returnsthereadertoEuler’sseminalworkontheBridgesof K¨onigsberg.Eulerismemorializedforhiscontributionbyhavinggraphs withthepropertythatonecanhaveawalkthattraversesalledgesexactly onceandthatreturnstothestartingvertexnamedafterhim-Eulerian multigraphs.ThischaptergivesafullertreatmentofEulerianmultigraphs. Italsodiscussesanapparentlysimilarconcept,thatofgraphswiththe propertythatonecanhaveawalkthatvisitsallverticesexactlyonceand thatreturnstothestartingvertex.ThiskindofgraphsiscalledHamiltonian,namedafteranothermathematicalgiant,WilliamRowanHamilton.
Thelastchapterisanecessaryadditioninanintroductorybookon GraphTheory.Chapter7studiesgraphswith‘directions’indicatedonthe edges.Sucharecalleddirectedgraphsordigraphs.ThisadditiontoGraph Theorysuitablymodelsmanysituationswhererelationshipsbetweenitems (vertices)aredirectional.Thechaptercoverssomebasicconceptsand providessomedetailonthemostbasicofdigraphswhicharetournaments.
WewouldliketothankDr.KhoTekHong,Dr.K.L.Teo,MsGoh CheeYingandMrSohChinAnnforreadingthroughthedraftofthefirst editionandcheckingthroughtheproblems.
viii IntroductiontoGraphTheory
Forthosewhofindthisintroductorybookinterestingandwouldlike toknowmoreaboutthesubject,arecommendedlistofpublicationsfor furtherreadingisprovidedattheendofthisbook.
KohKheeMeng
DongFengming
TayEngGuan
July2023
Notation
N = {1, 2, 3, ···}
|S| = thenumberofelementsinthefiniteset S n r = thenumberof r-elementsubsetsofan n-elementset= n! r!(n r)!
B \ A = {x ∈ B|x/ ∈ A},where A and B aresets
i∈I
Si = {x|x ∈ Si forsome i ∈ I},where Si isasetforeach i ∈ I
Inwhatfollows, G and H aremultigraphs,and D isa digraph.
V (G): thevertexsetof G
E(G): theedgesetof G
v(G): thenumberofverticesin G ortheorderof G
e(G): thenumberofedgesin G orthesizeof G
V (D): thevertexsetof D
E(D): thearcsetof D
v(D): thenumberofverticesin D ortheorderof D
e(D): thenumberofarcsin D
x → y : x isadjacentto y,where x,y areverticesin D
x ̸→ y : x isnotadjacentto y,where x,y areverticesin D
G ∼ = H : G isisomorphicto H
A(G): theadjacencymatrixof G
G : thecomplementof G
[A]: thesubgraphof G inducedby A,where A ⊆ V (G)
e(A,B): thenumberofedgesin G havinganendin A andthe otherin B,where A,B ⊆ V (G)
G v : thesubgraphof G obtainedbyremoving v andalledges incidentwith v from G,where v ∈ V (G)
x IntroductiontoGraphTheory
G e : thesubgraphof G obtainedbyremoving e from G,where e ∈ E(G)
G F : thesubgraphof G obtainedbyremovingalledgesin F from G,where F ⊆ E(G)
G A : thesubgraphof G obtainedbyremovingeachvertexin A togetherwiththeedgesincidentwithverticesin A from G,where A ⊆ V (G)
G + xy : thegraphobtainedbyaddinganewedge xy to G,where x,y ∈ V (G)and xy/ ∈ E(G)
N (u)= NG(u): thesetofvertices v suchthat uv ∈ E(G)
N (S)= u∈S N (u),where S ⊆ V (G)
d(v)= dG(v): thedegreeof v in G,where v ∈ V (G)
id(v): theindegreeof v in D,where v ∈ V (D)
od(v): theoutdegreeof v in D,where v ∈ V (D)
d(u,v): thedistancebetween u and v in G,where u,v ∈ V (G)
c(G): thenumberofcomponentsin G
δ(G): theminimumdegreeof G
∆(G): themaximumdegreeof G
χ(G): thechromaticnumberof G
α(G): theindependencenumberof G
G + H : thejoinof G and H
G ∪ H : thedisjointunionof G and H
kG : thedisjointunionof k copiesof G
G(D): theunderlyinggraphof D
nG(H): thenumberofsubgraphsin G whichareisomorphicto H
Cn : thecycleoforder n
Kn : thecompletegraphoforder n
Nn : thenullgraphoremptygraphoforder n
Pn : thepathoforder n
Wn : thewheeloforder n, Wn = Cn 1 + K1
K(p,q): thecompletebipartitegraphwithabipartition(X,Y ) suchthat |X| = p and |Y | = q
3.BipartiteGraphsandTrees71
4.Vertex-colouringsofGraphs97
7.DigraphsandTournaments193
8.Solutionsofselectedquestions225
FundamentalConceptsandBasic Results
1.1TheK¨onigsbergbridgeproblem
InanoldcityofEasternPrussia,named K¨onigsberg,therewasariver, calledRiverPregel,flowingthroughitscentre.Inthe18th century,there weresevenbridgesovertheriverconnectingthetwoislands(B and D)and twooppositebanks(A and C)asshowninFigure1.1. A
Itwassaidthatthepeopleinthecityhadalwaysamusedthemselves withthefollowingproblem:
Startingwithanyoneofthefourplaces A,B,C or D asshowninFigure 1.1,isitpossibletohaveawalkwhichpassesthrougheachoftheseven bridgesonceandonlyonce,andreturntowhereyoustarted?
Noonecouldfindsuchawalk;andafteranumberoftries,peoplebelieved thatitwassimplynotpossible,butnoonecouldproveiteither.
LeonhardEuler,thegreatestmathematicianthatSwitzerlandhasever
Figure1.1
IntroductiontoGraphTheory
produced,wastoldoftheproblem.Henoticedthattheproblemwasvery muchdifferentinnaturefromtheproblemsintraditionalgeometry,and insteadofconsideringtheoriginalproblem,hestudieditsmuchmoregeneralversionwhichencompassedanynumberofislandsorbanks,andany numberofbridgesconnectingthem.Hisfindingwascontainedinthearticle[E](theEnglishtranslationofitstitleis: Thesolutionofaproblem tothegeometryofposition)publishedin1736.Asadirectconsequence ofhisfinding,hededucedtheimpossibilityofhavingsuchawalkinthe K¨onigsbergbridgeproblem.Thiswashistoricallythefirsttimeaproofwas givenfromthemathematicalpointofview.
HowdidEulergeneralizetheK¨onigsbergbridgeproblem?Howdidhe solvehismoregeneralproblem?Whatwashisfinding?
1.2Multigraphsandgraphs
EulerobservedthattheK¨onigsbergbridgeproblemhadnothingtodo withtraditionalgeometrywherethemeasurementsoflengthsandangles, andrelativelocationsofverticescount.Howlargetheislandsandbanks are,howlongthebridgesare,andwhetheranislandisatthesouthornorth ofabankareimmaterial.Thekeyingredientsarewhethertheislandsor banksareconnectedbyabridge,andbyhowmanybridges.
Euler’sideawasessentiallyasfollows:representtheislandsorbanks by‘dots’,oneforeachislandorbank,andtwodotsarejoinedby k ‘lines’ (notnecessarilystraight),where k ≥ 0,whenandonlywhentherespectiveislandsorbanksrepresentedbythedotsareconnectedby k bridges. ThusthesituationfortheK¨onigsbergbridgeproblemisrepresentedbythe diagraminFigure1.2.
Figure1.2
ThediagraminFigure1.2isnowknownasa multigraph. Intuitively, a multigraph isadiagramconsistingof‘dots’and‘lines’,whereeachline joinssomepairofdots,andtwodotsmaybejoinedbynolinesorany numberoflines.Moreformally,wecalla‘dot’a vertex (plural,vertices) andcalla‘line’an edge.
Forinstance,inthemultigraphofFigure1.2,therearefourverticesand sevenedges,whereeachedgejoinssomepairofvertices;vertices A and C arenotjoinedbyanyedges, A and D arejoinedbyoneedge,and B and C arejoinedbytwoedges,etc.
Notethatthesizesandtherelativelocationsofdots(vertices),and thelengthsofthelines(edges)areimmaterial.Onlythe‘linkingrelations’ amongtheverticesandthenumberofedgesthatjointwoverticescount. Thus,thesituationfortheK¨onigsbergbridgeproblemcanequallywellbe representedbythemultigraphofFigure1.3.
B D
Letusgivemoreexamplesofmultigraphwhichrepresentcertainsituationsindifferentnature.
Example1.2.1. Thereweresixpeople: A,B,C,D,E and F inaparty andseveralhandshakesamongthemtookplace.Supposethat
A shookhandswith B,C,D,E and F , B,inaddition,shookhandswith C and F , C,inaddition,shookhandswith D and E, D,inaddition,shookhandwith E, E,inaddition,shookhandwith F .
ThissituationcanbeclearlyshownbythemultigraphinFigure1.4,where peoplearerepresentedbyverticesandtwoverticesarejoinedbyanedge wheneverthecorrespondingpersonsshookhands.
Figure1.3
Example1.2.2. ThediagraminFigure1.5isamultigraphwhichshows theavailabilityofflightsoperatedbyanairlinecompanybetweenanumber ofcities.Theverticesrepresentthecities,andtwoverticesarejoinedby anedgeifthereisaflightavailablebetweenthetwocorrespondingcities.
Example1.2.3. ThediagraminFigure1.6isamultigraphwhichmodels ajob-applicationsituation.Theverticesaredividedintotwoparts: X and Y ,wheretheverticesin X representtheapplicants,whilethosein Y representthejobsavailable.Avertexin X isjoinedtoavertexin Y byan edgeifthecorrespondingapplicantappliesforthecorrespondingjob.
Figure1.4
Figure1.5
Question1.2.1. Givethreeexamplesfromoureverydaylifewherethe situationscanbemodeledbymultigraphs.
ItisnotedthatinthethreemultigraphsshowninFigures1.4to1.6, everytwoverticesarejoinedbyatmostoneedge(thatis,eithernoedges orexactlyoneedge).Thesesituationsaredifferentfromthemultigraph inFigure1.2(orFigure1.3)wherethereareverticesjoinedbymorethan oneedge.Todistinguishthem,wecallthediagramsinFigures1.4to1.6 simplegraphs,orsimply, graphs.ThusthediagraminFigure1.2(or Figure1.3)isamultigraph,butnota(simple)graph.
Letusconsideranotherexample.
Example1.2.4. InthediagramshowninFigure1.7,thereare
• fourvertices: u,v,w and z,and
• eightedges: f1 and f2 joining u and v; e1,e2 and e3 joining w and z; h1 joining v and w; h2 joining u and w; h3 joining v toitself.
Figure1.6
Figure1.7
IntroductiontoGraphTheory
Twoormoreedgesjoiningthesamepairofverticesarecalled parallel edges.Thus,inFigure1.7, f1 and f2 areparalleledges; e1,e2 and e3 are paralleledges.
Anyedgejoiningavertextoitselfiscalleda loop.Thus,inFigure1.7, h3 isaloop.
Remarks.(1)Inthisbook,weshallnotconsider‘loops’inanydiagramof verticesandedgesunlessotherwisestated.Adiagramwiththeexistenceof paralleledgesis not a (simple)graph.Anotherexampleofamultigraph whichis not a(simple)graphisshowninFigure1.8.
(2)Bearinmindthata‘graph’ora‘multigraph’inGraphTheoryis notageometricalfigure.Thuswedonotconsider
• thesizeofa‘dot’,
• thelocationofavertex,and
• theshapeofanedge.
(3)Whenthereisonlyoneedgejoiningapairofvertices,say a and b,we maydenotethisedgeby ab.Forexample,theedge h1 inFigure1.7can alsobedenotedby vw
Wenowgiveformaldefinitionsof‘graph’and‘multigraph’.
Figure1.8
A multigraph G consistsofanon-emptyfiniteset V (G)ofvertices togetherwithafiniteset E(G)(possiblyempty)ofedgessuchthat
(1) eachedgejoinstwodistinctverticesin V (G)and (2) anytwodistinctverticesin V (G)arejoinedbyafinitenumber (includingzero)ofedges.
Thesets V (G)and E(G)arecalledthe vertexset andthe edgeset of G respectively.
Thenumberofverticesin G,denotedby v(G),iscalledthe order of G (thus v(G)= |V (G)|).Thenumberofedgesin G,denotedby e(G),is calledthe size of G (thus e(G)= |E(G)|).
Amultigraph G iscalleda(simple) graph ifanytwoverticesin V (G) arejoinedbyatmostoneedge(thatis,eithertheyarenotjoinedby anedgeorjoinedbyexactlyoneedge).
(a)Itfollowsfromtheabovedefinitionsthat (i) everygraphisamultigraphbutnotviceversaand (ii) noloopsareallowedinanymultigraph.
Whenaconceptisdefinedorastatementismadeformultigraphs,theyarealsovalid,inparticular,forgraphs.
(b)If e istheonlyedgejoiningtwovertices u and v,thenwemaywrite e = uv or e = vu.Theorderingof u and v intheexpressionisimmaterial.
Example1.2.5. Let G bethemultigraphshowninFigure1.8.Then
V (G)= {x,y,z,p,q},
E(G)= {xy,xz,yz,yp,e1,e2,f1,f2,pq},
v(G)=5 and e(G)=9
Let H bethegraphshowninFigure1.4.Then
V (H)= {A,B,C,D,E,F },
E(H)= {AB,AC,AD,AE,AF,BC,BF,CD,CE,DE,EF },
v(H)=6 and e(H)=11
Question1.2.2. Let G bethemultigraphshownbelow.Find V (G),E(G),v(G) and e(G).
Question1.2.3. Let H bethegraphwith V (H)= {a,b,c,x,y,z} and E(H)= {ab,ay,bx,by,cx,cz,xz,yz}.Find v(H) and e(H),anddrawa diagramof H
Matricesandmultigraphs
Asdiscussedearlier,amultigraph G canberepresentedbyadiagram consistingof‘dots’and‘lines’,andcanbedefinedintermsofitsvertexset V (G)andedgeset E(G).Multigraphscanalsoberepresentedbymatrices invariousways.Inwhatfollows,weintroduceoneofthem.
Example1.2.6. Let G bethemultigraphshownbelow,whereitsfour verticesarenamedas v1,v2,v3 and v4. v1 v v v2 3 4
Consideralsothefollowing 4 × 4 matrix A: A =
0201 2010 0103 1030
Canyoufindanyrelationbetween G and A?
Whatisthevalueofthe (1, 2)-entryin A?Itis‘2’.Howmanyedges in G join v1 and v2?Thereare‘2’also.
Howmanyedgesin G join v3 and v4?Thereare‘3’.Whatisthevalue ofthe (3, 4)-entryin A?Itis‘3’also.
Indeed,itisobservedthatthevalueofthe(i,j)-entryin A isthenumber ofedgesin G joining vi and vj ,where i,j ∈{1, 2, 3, 4}.Notethatthevalue ofeach(i,i)-entry(thatis,adiagonalentry)in A is‘0’asthereisnoedge in G joining vi toitself.Wecall A the adjacencymatrix of G.Two verticesareadjacentiftheyarejoinedbyanedge.Evidently,thematrix isdependentonthelabellingofthevertices.
Let G beamultigraphoforder n with V (G)= {v1,v2, ,vn}.The adjacencymatrix of G isthe n × n matrix
A(G)=(ai,j )n×n,
where ai,j ,the(i,j)-entryin A(G),isthenumberofedgesjoining vi and vj forall i,j ∈{1, 2, ··· ,n}.
Question1.2.4. Let G bethemultigraphshownbelow. v1
(i) Find A(G)
(ii) Is A(G) symmetric(i.e., (i,j)-entry= (j,i)-entry)?
(iii) Whatisthesumofthevaluesoftheentriesineachrow(respectively, column)?
(iv) Whatisyourinterpretationofthe‘sum’obtainedin(iii)?
Question1.2.5. Theadjacencymatrixofamultigraph G isgivenbelow:
02101 20100 11032 00300 10200
Drawadiagramof G. Remark.Therearemanywaysofstoringmultigraphsincomputers.The useoftheadjacencymatricesis,perhaps,oneofthemostcommonand convenientways.
Exercise1.2
(1) Let G bethemultigraphrepresentingthefollowingdiagram.Determine V (G), E(G), v(G)and e(G).Is G asimplegraph?
(2) Drawthegraph G modelingtheflightconnectivitybetweentwelvecapitalcitieswiththefollowingvertexset V (G)andedgeset E(G).
V (G)= {Asuncion,Beijing,Canberra,Dili,Havana,KualaLumpur, London,Nairobi,PhnomPenh,Singapore,Wellington, Zagreb}
E(G)= {Asuncion-London,Asuncion-Havana,Beijing-Canberra, Beijing-KualaLumpur,Beijing-London,Beijing-Singapore, Beijing-PhnomPenh,Dili-KualaLumpur,Dili-Singapore, Dili-Canberra,Havana-London,London-Wellington, KualaLumpur-London,KualaLumpur-PhnomPenh, KualaLumpur-Singapore,KualaLumpur-Wellington, London-Nairobi,PhnomPenh-Singapore,London-Singapore, London-Zagreb,Singapore-Wellington,Havana-Nairobi} (NotethatyoumayuseAtorepresentAsuncion,BtorepresentBeijing, CtorepresentCanberra,etc.)
(3) Defineagraph G suchthat V (G)= {2, 3, 4, 5, 11, 12, 13, 14} andtwo vertices s and t areadjacentifandonlyif gcd{s,t} =1.Drawa diagramof G andfinditssize e(G).
(4) Thediagraminpage12isamapoftheroadsysteminatown.Draw amultigraphtomodeltheroadsystem,usingavertextorepresenta junctionandanedgetorepresentaroadjoiningtwojunctions.