Instant download Introduction to graph theory: with solutions to selected problems 2nd edition khee

Page 1


2nd Edition Khee Meng Koh

Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-graph-theory-with-solutions-to-selecte d-problems-2nd-edition-khee-meng-koh/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fuzzy Graph Theory: Applications to Global Problems

John N. Mordeson

https://ebookmass.com/product/fuzzy-graph-theory-applications-toglobal-problems-john-n-mordeson/

Introduction to Graph Theory 2, 2002 reprint Edition

Douglas B. West

https://ebookmass.com/product/introduction-to-graphtheory-2-2002-reprint-edition-douglas-b-west/

Data-driven Solutions to Transportation Problems Yinhai

Wang https://ebookmass.com/product/data-driven-solutions-totransportation-problems-yinhai-wang/

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-fieldtheory-with-applications-to-quantum-gravity-1st-edition-iosif-lbuchbinder/

Trigonometry Booster with Problems and Solutions 3e Edition Rejaul

https://ebookmass.com/product/trigonometry-booster-with-problemsand-solutions-3e-edition-rejaul-makshud/

International Economics: An Introduction to Theory and Policy 2nd Edition Rajat Acharyya

https://ebookmass.com/product/international-economics-anintroduction-to-theory-and-policy-2nd-edition-rajat-acharyya/

Solutions Manual to Introduction to Robotics Mechanics and Control Third Edition John J. Craig

https://ebookmass.com/product/solutions-manual-to-introductionto-robotics-mechanics-and-control-third-edition-john-j-craig/

Curriculum:

From Theory to Practice 2nd Edition

https://ebookmass.com/product/curriculum-from-theory-topractice-2nd-edition/

Ethical Choices: An Introduction to Moral Philosophy with Cases 2nd Edition Richard Burnor

https://ebookmass.com/product/ethical-choices-an-introduction-tomoral-philosophy-with-cases-2nd-edition-richard-burnor/

Other World Scientific Titles by the Author

Principles and Techniques in Combinatorics

ISBN: 978-981-02-1114-1

ISBN: 978-981-02-1139-4 (pbk)

Chromatic Polynomials and Chromaticity of Graphs

ISBN: 978-981-256-317-0

ISBN: 978-981-256-383-5 (pbk)

Counting

ISBN: 978-981-238-063-0

ISBN: 978-981-238-064-7 (pbk)

Counting: Supplementary Notes and Solutions Manual

ISBN: 978-981-256-915-8 (pbk)

Counting

Second Edition

ISBN: 978-981-4401-90-6

ISBN: 978-981-4401-91-3 (pbk)

Counting: Solutions Manual

Second Edition

ISBN: 978-981-4401-94-4 (pbk)

Introduction to Graph Theory: H3 Mathematics

ISBN: 978-981-270-525-9

ISBN: 978-981-270-386-6 (pbk)

Introduction to Graph Theory: Solutions Manual

ISBN: 978-981-277-175-9 (pbk)

Graph Theory: Undergraduate Mathematics

ISBN: 978-981-4641-58-6

ISBN: 978-981-4641-59-3 (pbk)

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Control Number: 2023053687

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

INTRODUCTION TO GRAPH THEORY With Solutions

to Selected Problems

Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-12-8481-6 (hardcover)

ISBN 978-981-12-8501-1 (paperback)

ISBN 978-981-12-8482-3 (ebook for institutions)

ISBN 978-981-12-8483-0 (ebook for individuals)

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13637#t=suppl

Desk Editor: Tan Rok Ting

Printed in Singapore

Preface

DiscreteMathematicsisabranchofmathematicsdealingwithfinite orcountableprocessesandelements.GraphtheoryisanareaofDiscrete Mathematicswhichstudiesconfigurations(calledgraphs)consistingofa setofnodes(calledvertices)interconnectingbylines(callededges).From humblebeginningsandalmostrecreationaltypeproblems,GraphTheory hasfounditscallinginthemodernworldofcomplexsystemsandespecially ofthecomputer.GraphTheoryanditsapplicationscanbefoundnot onlyinotherbranchesofmathematics,butalsoinscientificdisciplines suchasengineering,computerscience,operationalresearch,management sciencesandthelifesciences.Sincecomputersrequirediscreteformulation ofproblems,GraphTheoryhasbecomeanessentialandpowerfultoolfor engineersandappliedscientists,inparticular,intheareaofdesigningand analyzingalgorithmsforvariousproblemswhichrangefromdesigningthe itinerariesforashippingcompanytosequencingthehumangenomeinthe lifesciences.

GraphTheoryshowsitsversatilityinthemostsurprisingareas.Recently,theconnectivityoftheWorldWideWebandthenumberoflinks neededtomovefromonewebpagetoanotherhasbeenremarkablymodeledwithgraphs,thusopeningtherealworldinternetconnectivitytomore rigorousstudies.Thesestudiesformpartofresearchintothephenomena ofthepropertyofa‘smallworld’eveninhugesystemssuchastheaforementionedinternetandglobalhumanrelationships(intheso-called‘Six DegreesofSeparation’).

ThisbookisintendedasageneralintroductiontoGraphTheory.The firsteditionwaswrittenasaresourcebookforjuniorcollegestudentsand teachersreadingandteachingthesubjectattheCambridgeH3Advanced LevelintheSingaporeMathematicscurriculumforJuniorCollege.The

topiccoveragehoweverisalsosuitableforabeginningcourseinundergraduatemathematics.Thesecondeditionnowincludesselectedsolutionsand hintsforthebookexercises,thusmakingitasuitablycompletefirstundergraduateGraphTheorytextbookandreference.Inaddition,thevarietyof problemsandapplicationsinthebookarenotonlyusefulforbuildingup anaptitudeinGraphTheorybutarearichsourceforhoningbasicskills andtechniquesingeneralproblemsolvingandlogicalthinking.

Certainfeaturesofthisbookareworthmentioning.Thebookiswritten withgreatcarethatconceptsareexplainedclearlyanddevelopedproperly; itstrivestobestudentfriendly,andatthesametimebemathematically rigorous.Atsuitablejunctures,questionsareinsertedfordiscussion.This istoensurethatthereaderunderstandstheprecedingsectionfullybefore proceedingontonewideasandconcepts.Therearemanyquestionsin theExercisecomponentfollowingmostsections.Someareexercisesintendedforreinforcingwhatislearntearlierwhileotherstestthefullrange ofunderstandingandproblemsolvingintheconceptsacquired.Proofsof mostimportanttheoremsaregivenintheirfullmathematicalrigour.Each chapterconcludeswithapplicationsoftheconceptsinreal-life,whichare addedforgeneralinterestandassubstantiationoftheusefulnessofGraph Theoryconcepts.Referencesarecitedinfullattheendofthebookin theReferencessectionandtheyareindexedwiththefirstletterofthefirst author’snamewithinsquareparentheses.Forexample,[E]isforapaper byEuler.Thesymbol ✷ isusedtoindicatetheendofaprooforaresult statedwithoutproof.Challengingproblemsareindicatedwiththesymbol (+).

Chapter1coversthefundamentalconceptsandbasicresultsinGraph TheorytracingitshistoryfromEuler’ssolutionoftheproblemoftheSeven BridgesofK¨onigsberg.Fundamentalconceptsincludethoseofgraphs, multigraphs,vertexdegrees,paths,cyclesandconnectedness.

Whenaretwographsthe‘same’?FollowingthestyleofChapter1, Chapter2furtherexposesthestudenttotherigourofmathematicsin constructingatheorythroughdefinitionsandtheorems.Sincetwographs maylookdifferentandyet‘function’similarly,theempiricalperspective thatmathematicsstudentsaresoaccustomedtoneedstobereconsidered. Thus,congruenceisdefinedintermsofisomorphismratherthanavague notionofshapethusenablinga‘handle’tocomparegraphs.Thisrigourand mathematicalmethodofdefinitionsandtheoremscontinuesthroughoutthe wholebook.

InChapter3,weintroducetwoimportantfamiliesofgraphs,namely treesandbipartitegraphs.Atree,insomesense,formsthe‘skeleton’of aconnectedgraphandingeneral,aforestoftreesformsthe‘skeleton’of anygraph.Thus,thestructureandpropertiesoftreesareveryimportant. Bipartitegraphsareanotherfamilyofgraphsthathavefoundapplications inmanyreal-lifesituationssuchasmatchingagroupofjobseekerswitha setofpotentialjobsundercertainconditions.

Arefourcolourssufficienttocolouranymap?Thisquestionhadfrustratedmanygreatmathematiciansforoveracentury.Chapter4introduces theconceptofvertexcolouringwhichrephrasesthequestionmoresimply. Thenotionofchromaticnumber(minimumnumberofcoloursused)ispresentedandanalgorithmandsometechniquestoestimateorenumerate itarediscussed.Interestingapplicationsofvertex-colouringtoscheduling problemsaregiveninsomedetail.

Chapter5expandsontheconceptofmatchingsinbipartitegraphs introducedinChapter3.HerewehaveabeautifulclassicalresultinGraph Theory—Hall’sTheorem.Thenecessityoftheconditionistrivialbut theinsightleadingtotheconditionandtheproofofitssufficiencyexhibits thecreativityofgoodmathematics.Hall’sTheoremisusedtodetermine theexistenceofacompletematchingandthisisusedtogoodeffectinthe MarriageProblemandtofindasystemofdistinctrepresentatives(SDR).

Chapter6returnsthereadertoEuler’sseminalworkontheBridgesof K¨onigsberg.Eulerismemorializedforhiscontributionbyhavinggraphs withthepropertythatonecanhaveawalkthattraversesalledgesexactly onceandthatreturnstothestartingvertexnamedafterhim-Eulerian multigraphs.ThischaptergivesafullertreatmentofEulerianmultigraphs. Italsodiscussesanapparentlysimilarconcept,thatofgraphswiththe propertythatonecanhaveawalkthatvisitsallverticesexactlyonceand thatreturnstothestartingvertex.ThiskindofgraphsiscalledHamiltonian,namedafteranothermathematicalgiant,WilliamRowanHamilton.

Thelastchapterisanecessaryadditioninanintroductorybookon GraphTheory.Chapter7studiesgraphswith‘directions’indicatedonthe edges.Sucharecalleddirectedgraphsordigraphs.ThisadditiontoGraph Theorysuitablymodelsmanysituationswhererelationshipsbetweenitems (vertices)aredirectional.Thechaptercoverssomebasicconceptsand providessomedetailonthemostbasicofdigraphswhicharetournaments.

WewouldliketothankDr.KhoTekHong,Dr.K.L.Teo,MsGoh CheeYingandMrSohChinAnnforreadingthroughthedraftofthefirst editionandcheckingthroughtheproblems.

viii IntroductiontoGraphTheory

Forthosewhofindthisintroductorybookinterestingandwouldlike toknowmoreaboutthesubject,arecommendedlistofpublicationsfor furtherreadingisprovidedattheendofthisbook.

KohKheeMeng

DongFengming

TayEngGuan

July2023

Notation

N = {1, 2, 3, ···}

|S| = thenumberofelementsinthefiniteset S n r = thenumberof r-elementsubsetsofan n-elementset= n! r!(n r)!

B \ A = {x ∈ B|x/ ∈ A},where A and B aresets

i∈I

Si = {x|x ∈ Si forsome i ∈ I},where Si isasetforeach i ∈ I

Inwhatfollows, G and H aremultigraphs,and D isa digraph.

V (G): thevertexsetof G

E(G): theedgesetof G

v(G): thenumberofverticesin G ortheorderof G

e(G): thenumberofedgesin G orthesizeof G

V (D): thevertexsetof D

E(D): thearcsetof D

v(D): thenumberofverticesin D ortheorderof D

e(D): thenumberofarcsin D

x → y : x isadjacentto y,where x,y areverticesin D

x ̸→ y : x isnotadjacentto y,where x,y areverticesin D

G ∼ = H : G isisomorphicto H

A(G): theadjacencymatrixof G

G : thecomplementof G

[A]: thesubgraphof G inducedby A,where A ⊆ V (G)

e(A,B): thenumberofedgesin G havinganendin A andthe otherin B,where A,B ⊆ V (G)

G v : thesubgraphof G obtainedbyremoving v andalledges incidentwith v from G,where v ∈ V (G)

x IntroductiontoGraphTheory

G e : thesubgraphof G obtainedbyremoving e from G,where e ∈ E(G)

G F : thesubgraphof G obtainedbyremovingalledgesin F from G,where F ⊆ E(G)

G A : thesubgraphof G obtainedbyremovingeachvertexin A togetherwiththeedgesincidentwithverticesin A from G,where A ⊆ V (G)

G + xy : thegraphobtainedbyaddinganewedge xy to G,where x,y ∈ V (G)and xy/ ∈ E(G)

N (u)= NG(u): thesetofvertices v suchthat uv ∈ E(G)

N (S)= u∈S N (u),where S ⊆ V (G)

d(v)= dG(v): thedegreeof v in G,where v ∈ V (G)

id(v): theindegreeof v in D,where v ∈ V (D)

od(v): theoutdegreeof v in D,where v ∈ V (D)

d(u,v): thedistancebetween u and v in G,where u,v ∈ V (G)

c(G): thenumberofcomponentsin G

δ(G): theminimumdegreeof G

∆(G): themaximumdegreeof G

χ(G): thechromaticnumberof G

α(G): theindependencenumberof G

G + H : thejoinof G and H

G ∪ H : thedisjointunionof G and H

kG : thedisjointunionof k copiesof G

G(D): theunderlyinggraphof D

nG(H): thenumberofsubgraphsin G whichareisomorphicto H

Cn : thecycleoforder n

Kn : thecompletegraphoforder n

Nn : thenullgraphoremptygraphoforder n

Pn : thepathoforder n

Wn : thewheeloforder n, Wn = Cn 1 + K1

K(p,q): thecompletebipartitegraphwithabipartition(X,Y ) suchthat |X| = p and |Y | = q

3.BipartiteGraphsandTrees71

4.Vertex-colouringsofGraphs97

7.DigraphsandTournaments193

8.Solutionsofselectedquestions225

Chapter1

FundamentalConceptsandBasic Results

1.1TheK¨onigsbergbridgeproblem

InanoldcityofEasternPrussia,named K¨onigsberg,therewasariver, calledRiverPregel,flowingthroughitscentre.Inthe18th century,there weresevenbridgesovertheriverconnectingthetwoislands(B and D)and twooppositebanks(A and C)asshowninFigure1.1. A

Itwassaidthatthepeopleinthecityhadalwaysamusedthemselves withthefollowingproblem:

Startingwithanyoneofthefourplaces A,B,C or D asshowninFigure 1.1,isitpossibletohaveawalkwhichpassesthrougheachoftheseven bridgesonceandonlyonce,andreturntowhereyoustarted?

Noonecouldfindsuchawalk;andafteranumberoftries,peoplebelieved thatitwassimplynotpossible,butnoonecouldproveiteither.

LeonhardEuler,thegreatestmathematicianthatSwitzerlandhasever

Figure1.1

IntroductiontoGraphTheory

produced,wastoldoftheproblem.Henoticedthattheproblemwasvery muchdifferentinnaturefromtheproblemsintraditionalgeometry,and insteadofconsideringtheoriginalproblem,hestudieditsmuchmoregeneralversionwhichencompassedanynumberofislandsorbanks,andany numberofbridgesconnectingthem.Hisfindingwascontainedinthearticle[E](theEnglishtranslationofitstitleis: Thesolutionofaproblem tothegeometryofposition)publishedin1736.Asadirectconsequence ofhisfinding,hededucedtheimpossibilityofhavingsuchawalkinthe K¨onigsbergbridgeproblem.Thiswashistoricallythefirsttimeaproofwas givenfromthemathematicalpointofview.

HowdidEulergeneralizetheK¨onigsbergbridgeproblem?Howdidhe solvehismoregeneralproblem?Whatwashisfinding?

1.2Multigraphsandgraphs

EulerobservedthattheK¨onigsbergbridgeproblemhadnothingtodo withtraditionalgeometrywherethemeasurementsoflengthsandangles, andrelativelocationsofverticescount.Howlargetheislandsandbanks are,howlongthebridgesare,andwhetheranislandisatthesouthornorth ofabankareimmaterial.Thekeyingredientsarewhethertheislandsor banksareconnectedbyabridge,andbyhowmanybridges.

Euler’sideawasessentiallyasfollows:representtheislandsorbanks by‘dots’,oneforeachislandorbank,andtwodotsarejoinedby k ‘lines’ (notnecessarilystraight),where k ≥ 0,whenandonlywhentherespectiveislandsorbanksrepresentedbythedotsareconnectedby k bridges. ThusthesituationfortheK¨onigsbergbridgeproblemisrepresentedbythe diagraminFigure1.2.

Figure1.2

ThediagraminFigure1.2isnowknownasa multigraph. Intuitively, a multigraph isadiagramconsistingof‘dots’and‘lines’,whereeachline joinssomepairofdots,andtwodotsmaybejoinedbynolinesorany numberoflines.Moreformally,wecalla‘dot’a vertex (plural,vertices) andcalla‘line’an edge.

Forinstance,inthemultigraphofFigure1.2,therearefourverticesand sevenedges,whereeachedgejoinssomepairofvertices;vertices A and C arenotjoinedbyanyedges, A and D arejoinedbyoneedge,and B and C arejoinedbytwoedges,etc.

Notethatthesizesandtherelativelocationsofdots(vertices),and thelengthsofthelines(edges)areimmaterial.Onlythe‘linkingrelations’ amongtheverticesandthenumberofedgesthatjointwoverticescount. Thus,thesituationfortheK¨onigsbergbridgeproblemcanequallywellbe representedbythemultigraphofFigure1.3.

B D

Letusgivemoreexamplesofmultigraphwhichrepresentcertainsituationsindifferentnature.

Example1.2.1. Thereweresixpeople: A,B,C,D,E and F inaparty andseveralhandshakesamongthemtookplace.Supposethat

A shookhandswith B,C,D,E and F , B,inaddition,shookhandswith C and F , C,inaddition,shookhandswith D and E, D,inaddition,shookhandwith E, E,inaddition,shookhandwith F .

ThissituationcanbeclearlyshownbythemultigraphinFigure1.4,where peoplearerepresentedbyverticesandtwoverticesarejoinedbyanedge wheneverthecorrespondingpersonsshookhands.

Figure1.3

Example1.2.2. ThediagraminFigure1.5isamultigraphwhichshows theavailabilityofflightsoperatedbyanairlinecompanybetweenanumber ofcities.Theverticesrepresentthecities,andtwoverticesarejoinedby anedgeifthereisaflightavailablebetweenthetwocorrespondingcities.

Example1.2.3. ThediagraminFigure1.6isamultigraphwhichmodels ajob-applicationsituation.Theverticesaredividedintotwoparts: X and Y ,wheretheverticesin X representtheapplicants,whilethosein Y representthejobsavailable.Avertexin X isjoinedtoavertexin Y byan edgeifthecorrespondingapplicantappliesforthecorrespondingjob.

Figure1.4
Figure1.5

Question1.2.1. Givethreeexamplesfromoureverydaylifewherethe situationscanbemodeledbymultigraphs.

ItisnotedthatinthethreemultigraphsshowninFigures1.4to1.6, everytwoverticesarejoinedbyatmostoneedge(thatis,eithernoedges orexactlyoneedge).Thesesituationsaredifferentfromthemultigraph inFigure1.2(orFigure1.3)wherethereareverticesjoinedbymorethan oneedge.Todistinguishthem,wecallthediagramsinFigures1.4to1.6 simplegraphs,orsimply, graphs.ThusthediagraminFigure1.2(or Figure1.3)isamultigraph,butnota(simple)graph.

Letusconsideranotherexample.

Example1.2.4. InthediagramshowninFigure1.7,thereare

• fourvertices: u,v,w and z,and

• eightedges: f1 and f2 joining u and v; e1,e2 and e3 joining w and z; h1 joining v and w; h2 joining u and w; h3 joining v toitself.

Figure1.6
Figure1.7

IntroductiontoGraphTheory

Twoormoreedgesjoiningthesamepairofverticesarecalled parallel edges.Thus,inFigure1.7, f1 and f2 areparalleledges; e1,e2 and e3 are paralleledges.

Anyedgejoiningavertextoitselfiscalleda loop.Thus,inFigure1.7, h3 isaloop.

Remarks.(1)Inthisbook,weshallnotconsider‘loops’inanydiagramof verticesandedgesunlessotherwisestated.Adiagramwiththeexistenceof paralleledgesis not a (simple)graph.Anotherexampleofamultigraph whichis not a(simple)graphisshowninFigure1.8.

(2)Bearinmindthata‘graph’ora‘multigraph’inGraphTheoryis notageometricalfigure.Thuswedonotconsider

• thesizeofa‘dot’,

• thelocationofavertex,and

• theshapeofanedge.

(3)Whenthereisonlyoneedgejoiningapairofvertices,say a and b,we maydenotethisedgeby ab.Forexample,theedge h1 inFigure1.7can alsobedenotedby vw

Wenowgiveformaldefinitionsof‘graph’and‘multigraph’.

Figure1.8

A multigraph G consistsofanon-emptyfiniteset V (G)ofvertices togetherwithafiniteset E(G)(possiblyempty)ofedgessuchthat

(1) eachedgejoinstwodistinctverticesin V (G)and (2) anytwodistinctverticesin V (G)arejoinedbyafinitenumber (includingzero)ofedges.

Thesets V (G)and E(G)arecalledthe vertexset andthe edgeset of G respectively.

Thenumberofverticesin G,denotedby v(G),iscalledthe order of G (thus v(G)= |V (G)|).Thenumberofedgesin G,denotedby e(G),is calledthe size of G (thus e(G)= |E(G)|).

Amultigraph G iscalleda(simple) graph ifanytwoverticesin V (G) arejoinedbyatmostoneedge(thatis,eithertheyarenotjoinedby anedgeorjoinedbyexactlyoneedge).

(a)Itfollowsfromtheabovedefinitionsthat (i) everygraphisamultigraphbutnotviceversaand (ii) noloopsareallowedinanymultigraph.

Whenaconceptisdefinedorastatementismadeformultigraphs,theyarealsovalid,inparticular,forgraphs.

(b)If e istheonlyedgejoiningtwovertices u and v,thenwemaywrite e = uv or e = vu.Theorderingof u and v intheexpressionisimmaterial.

Example1.2.5. Let G bethemultigraphshowninFigure1.8.Then

V (G)= {x,y,z,p,q},

E(G)= {xy,xz,yz,yp,e1,e2,f1,f2,pq},

v(G)=5 and e(G)=9

Let H bethegraphshowninFigure1.4.Then

V (H)= {A,B,C,D,E,F },

E(H)= {AB,AC,AD,AE,AF,BC,BF,CD,CE,DE,EF },

v(H)=6 and e(H)=11

Question1.2.2. Let G bethemultigraphshownbelow.Find V (G),E(G),v(G) and e(G).

Question1.2.3. Let H bethegraphwith V (H)= {a,b,c,x,y,z} and E(H)= {ab,ay,bx,by,cx,cz,xz,yz}.Find v(H) and e(H),anddrawa diagramof H

Matricesandmultigraphs

Asdiscussedearlier,amultigraph G canberepresentedbyadiagram consistingof‘dots’and‘lines’,andcanbedefinedintermsofitsvertexset V (G)andedgeset E(G).Multigraphscanalsoberepresentedbymatrices invariousways.Inwhatfollows,weintroduceoneofthem.

Example1.2.6. Let G bethemultigraphshownbelow,whereitsfour verticesarenamedas v1,v2,v3 and v4. v1 v v v2 3 4

Consideralsothefollowing 4 × 4 matrix A: A =

0201 2010 0103 1030

Canyoufindanyrelationbetween G and A?

Whatisthevalueofthe (1, 2)-entryin A?Itis‘2’.Howmanyedges in G join v1 and v2?Thereare‘2’also.

Howmanyedgesin G join v3 and v4?Thereare‘3’.Whatisthevalue ofthe (3, 4)-entryin A?Itis‘3’also.

Indeed,itisobservedthatthevalueofthe(i,j)-entryin A isthenumber ofedgesin G joining vi and vj ,where i,j ∈{1, 2, 3, 4}.Notethatthevalue ofeach(i,i)-entry(thatis,adiagonalentry)in A is‘0’asthereisnoedge in G joining vi toitself.Wecall A the adjacencymatrix of G.Two verticesareadjacentiftheyarejoinedbyanedge.Evidently,thematrix isdependentonthelabellingofthevertices.

Let G beamultigraphoforder n with V (G)= {v1,v2, ,vn}.The adjacencymatrix of G isthe n × n matrix

A(G)=(ai,j )n×n,

where ai,j ,the(i,j)-entryin A(G),isthenumberofedgesjoining vi and vj forall i,j ∈{1, 2, ··· ,n}.

Question1.2.4. Let G bethemultigraphshownbelow. v1

(i) Find A(G)

(ii) Is A(G) symmetric(i.e., (i,j)-entry= (j,i)-entry)?

(iii) Whatisthesumofthevaluesoftheentriesineachrow(respectively, column)?

(iv) Whatisyourinterpretationofthe‘sum’obtainedin(iii)?

Question1.2.5. Theadjacencymatrixofamultigraph G isgivenbelow:

02101 20100 11032 00300 10200

Drawadiagramof G. Remark.Therearemanywaysofstoringmultigraphsincomputers.The useoftheadjacencymatricesis,perhaps,oneofthemostcommonand convenientways.

Exercise1.2

(1) Let G bethemultigraphrepresentingthefollowingdiagram.Determine V (G), E(G), v(G)and e(G).Is G asimplegraph?

(2) Drawthegraph G modelingtheflightconnectivitybetweentwelvecapitalcitieswiththefollowingvertexset V (G)andedgeset E(G).

V (G)= {Asuncion,Beijing,Canberra,Dili,Havana,KualaLumpur, London,Nairobi,PhnomPenh,Singapore,Wellington, Zagreb}

E(G)= {Asuncion-London,Asuncion-Havana,Beijing-Canberra, Beijing-KualaLumpur,Beijing-London,Beijing-Singapore, Beijing-PhnomPenh,Dili-KualaLumpur,Dili-Singapore, Dili-Canberra,Havana-London,London-Wellington, KualaLumpur-London,KualaLumpur-PhnomPenh, KualaLumpur-Singapore,KualaLumpur-Wellington, London-Nairobi,PhnomPenh-Singapore,London-Singapore, London-Zagreb,Singapore-Wellington,Havana-Nairobi} (NotethatyoumayuseAtorepresentAsuncion,BtorepresentBeijing, CtorepresentCanberra,etc.)

(3) Defineagraph G suchthat V (G)= {2, 3, 4, 5, 11, 12, 13, 14} andtwo vertices s and t areadjacentifandonlyif gcd{s,t} =1.Drawa diagramof G andfinditssize e(G).

(4) Thediagraminpage12isamapoftheroadsysteminatown.Draw amultigraphtomodeltheroadsystem,usingavertextorepresenta junctionandanedgetorepresentaroadjoiningtwojunctions.

DiagramforProblem4

(5) Let G beagraphwith V (G)= {1, 2, , 10},suchthattwonumbers i and j in V (G)areadjacentifandonlyif |i j|≤ 3.Drawthegraph G anddetermine e(G).

(6) Let G beagraphwith V (G)= {1, 2, ··· , 10},suchthattwonumbers i and j in V (G)areadjacentifandonlyif i + j isamultipleof4.Draw thegraph G anddetermine e(G).

(7) Let G beagraphwith V (G)= {1, 2, ··· , 10},suchthattwonumbers i and j in V (G)areadjacentifandonlyif i × j isamultipleof10.Draw thegraph G anddetermine e(G).

(8) Findtheadjacencymatrixofthefollowinggraph G

(9) Theadjacencymatrixofamultigraph G isshownbelow:

Drawadiagramof G.

(10) Fourteamsofthreespecialistsoldierseach(ascout,asignalerand asniper)aretobesentintoenemyterritory.However,someofthe soldierscannotworkwellwithsomeothers.Thefollowingtableshows thesoldiers,theirspecializationsandwhotheycannotworkwith.

Soldier Specialization Cannotcooperatewith

(i) Drawamultigraphtomodelthesituationsothatwemayseehow toform3-manteamssuchthateachspecializationisrepresented andeverymemberoftheteamcanworkwitheveryother.State clearlywhattheverticesrepresentandunderwhatcondition(s)two verticesarejoinedbyanedge.

(ii) Canyouformfour3-manteamssuchthateachspecializationis representedandallmembersoftheteamcanworkwithoneanother?

1.3Vertexdegrees

Let G beamultigraph.

Twovertices u and v in G aresaidtobe adjacent iftheyarejoined byanedge,say, e in G.Inthecasewhen e istheonlyedgejoining u and v,wealsowrite e = uv,andwesaythat (1) u isa neighbour of v andviceversa, (2)theedge e is incidentwith thevertex u (and v)and (3) u and v arethetwo ends of e.

Thesetofallneighboursof v in G isdenotedby N (v);thatis, N (v)= {x|x isaneighbourof v}.

Example1.3.1. Let G bethemultigraphshowninFigure1.9. a b c w u v

Then

(1)thevertices a and b areadjacent,soare b and v,butnot a and c; (2)thevertices a and u arethetwoendsoftheedge au; (3)theedge av isincidentwiththevertices a and v; (4)thevertex a hasthreeneighbours,namely, b, u and v;and (5) N (a)= {b,u,v}, N (b)= {a,v,c}, N (w)= {c},etc.

Let G beamultigraph.Wenowintroduceaveryusefulandimportant numberassociatedwitheachvertexin G

Figure1.9

Givenavertex v in G,the degree of v in G,denotedby dG(v),is definedasthenumberofedgesincidentwith v.

Forsimplicity,weshallreplace dG(v)simplyby d(v)ifthereisnodanger ofconfusion.

Question1.3.1.

(i) Findthedegreeofeachvertexin G ofFigure1.9.

(ii) Find N (x) foreachvertex x in G ofFigure1.9.

(iii) Bydefinition,isittruethat d(v)= |N (v)|?

Example1.3.2. Let G bethemultigraphofFigure1.10.

Observethattherearesevenedgesincidentwiththevertex x.Thus, d(x)=7.Therearenoedgesincidentwiththevertex j.Thus, d(j)=0. Thedegreesoftheverticesin G areshowninTable1.11.

Vertex abcjpwxyz Degree 123004743

Table1.11

Figure1.10

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.