Television Production in Transition: Independence, Scale, Sustainability and the Digital Challenge (Palgrave Global Media Policy and Business) 1st ed. 2021 Edition Gillian
Wu-Yi Hsiang University of California, Berkeley, USA/ Hong Kong University of Science and Technology, Hong Kong
Tzuong-Tsieng Moh Purdue University, USA
Ming-Chang Kang National Taiwan University, Taiwan (ROC)
S S Ding Peking University, China
M Miyanishi University of Osaka, Japan
Published
Vol. 11 Affine Algebraic Geometry: Geometry of Polynomial Rings by M Miyanishi
Vol. 10 Linear Algebra and Its Applications by T-T Moh
Vol. 9 Lectures on Lie Groups (Second Edition) by W-Y Hsiang
Vol. 8 Analytical Geometry by Izu Vaisman
Vol. 7 Number Theory with Applications by W C Winnie Li
Vol. 6 A Concise Introduction to Calculus by W-Y Hsiang
Vol. 5 Algebra by T-T Moh
Vol. 2 Lectures on Lie Groups by W-Y Hsiang
Vol. 1 Lectures on Differential Geometry by S S Chern, W H Chen and K S Lam
Series on University Mathematics – Vol. 11
Affine Algebraic Geometry
Geometry of Polynomial Rings
Masayoshi Miyanishi
Osaka University, Japan & Kwansei Gakuin University, Japan
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data
Names: Miyanishi, Masayoshi, 1940– author.
Title: Affine algebraic geometry : geometry of polynomial rings / Masayoshi Miyanishi, Osaka University, Japan & Kwansei Gakuin University, Japan.
Description: New Jersey : World Scientific, [2024] | Series: Series on university mathematics, 1793-1193 ; vol. 11 | Includes bibliographical references and index.
Identifiers: LCCN 2023031983 | ISBN 9789811280085 (hardcover) | ISBN 9789811280092 (ebook for institutions) | ISBN 9789811280108 (ebook for individuals)
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13510#t=suppl
Printed in Singapore
TothelateProfessorMasayoshiNagata
This page intentionally left blank
Preface
OneoftheinnovationsbroughtintoalgebraicgeometrybyA.Grothendieck throughhispublicationsincluding ´ El´ementsdeG´eom´etrieAlg´ebrique is theestablishmentofabijectivecorrespondencebetweenaffineschemesand commutativerings,bywhichonecanintroducealgebro-geometricmethodstocommutativealgebraandcreateviceversaanewfieldinalgebraic geometrywhereonestudiesgeometryofaffinedomainsoverafield.
Anaffinedomain A overafield k isthequotientringofapolynomialring k[x1,...,xn]byanideal I.Ageometricapproachtostudyanaffinevariety X =Spec A withcoordinatering A isconsideredtostudygeometricallya big ringlike A whichisnotafiniteunionoflocalrings.1
AroundthesameperiodtherewasalsoaworldwiderevivalofinteresttowardtheEnriques-Kodairaclassificationofalgebraicsurfaces.In themid-1970s,S.Iitakaintroducedthe logarithmicKodairadimension of noncompletealgebraicvarietiesandproposedaprojectofclassifyingnoncompletesurfaceswithexpectationsthatlogarithmicKodairadimension shouldworkasKodairadimensiondidintheclassificationofsmoothprojectivesurfaces.Iitaka’sstudentsincludingS.TsunodaandY.Kawamata, andthepeopleincludingT.FujitaandtheauthorshowedthatIitaka’sexpectationdidworktoacertaindegreeandbringsomeresultsbeyondthe expectation.3 Theirapproachisnowdevelopedinto logarithmicgeometry, whichisastudyofpairs(V,D)ofacompletevariety V andaneffective divisor D.Inmostcases,byHironaka’sresolutionofsingularities, V is madetobesmoothand D adivisorwithsimplenormalcrossings.The studysofarshowsthatgeometrychangesaccordingtowhatkindofsingularitiesisadmittedon V and D.Foranaffinevariety X,wefindeasilysuch apair(V,D)byembedding X intoaprojectivespaceviatheembedding X → An → Pn andtakingtheclosure X as V and D = V \ X.Bythis approach,oneisabletoobservethegeometricbehaviorof X atinfinity, i.e.,on D ornear D 4
∂(x1,...,xn) then C[x1,...,xn]= C[f1,...,fn].Underthisassumption,themapping
φ : An → An , (x1,...,xn) → (f1,...,fn) inducesalocalanalyticisomorphismbetweeneverypointoftheorigin An anditsimageofthetarget An.So,theconjectureasksiftheselocalanalytic isomorphismsareinducedbyapolynomialisomorphism.Unfortunately,
Aring R is noetherian ifeveryascendingchainofideals
I0 ⊆ I1 ⊆···⊆ In ⊆ In+1 ⊆···
ceasestoincrease.Namely,thereexistsaninteger N suchthat In = In+1 forevery n ≥ N .Thisconditioniscalledthe ascendingchainconditionfor ideals (ACC,forshort).TheACCisequivalenttotheconditionthatevery idealisfinitelygenerated.
An R-module M issaidtobe finitelygenerated over R,orsimplya finite R-moduleif M = Rm1 + ··· + Rmn forafinitesetofgenerators {m1,...,mn}.Thequotientmodule M/N ofafinite R-module M byan R-submodule N isafinite R-module,andasubmodule N isalsofiniteif R isnoetherian(seeLemma 1.1.11).Conversely,ifan R-submodule N of M andthequotientmodule M/N arefinite,thensoisthe R-module M . Asubset S ofaring R isa multiplicativeset (ora multiplicativelyclosed set)if
(i) 0 ̸∈ S, 1 ∈ S,and (ii) s,t ∈ S implies st ∈ S
If p isaprimeidealof R,thenthecomplement S := R \p isamultiplicative set.Infact,thedefinitionofprimeidealimplies,bycontrapositive, ab ̸∈ p if a ̸∈ p and b ̸∈ p.If S isamultiplicativesetof R,the ringofquotients
(or ringoffractions) S 1R isdefinedastheset
S 1R = a s | a ∈ R,s ∈ S , where a/s denotestheequivalenceclassintheproduct R × S underthe equivalencerelation
(a,s) ∼ (b,t)ifandonlyif u(at bs)=0forsome u ∈ S.
Hence a/s isconsideredasausualfractionwhosenumeratorisanarbitrary element a ∈ R andwhosedenominatorisanelement s ∈ S.But a/s = b/t if(a,s) ∼ (b,t).If R isanintegraldomain,theaboveequivalencerelation holdsifandonlyif at = bs.Theset S 1R hasaringstructureforwhich additionandmultiplicationaredefinedrespectivelyby
Thereisanaturalringhomomorphism i : R → S 1R definedby i(a)= a/1.
Thekernelof i isanideal
I0 = {a ∈ R | as =0forsome s ∈ S}.
Withthisringhomomorphism i,thereisabijectivecorrespondencebetween theideals I of R suchthat I ⊇ I0 and I ∩ S = ∅ andthesetofidealsof S 1R.Hereweconsideronly proper ideals,where I isa proper idealof R if I ⫋ R.Thebijectivecorrespondenceisgivenby
I → I(S 1R)= a s | a ∈ I,s ∈ S ,J → i 1(J).
Thiscorrespondencerestrictstoabijectionbetween
{p | aprimeidealof R suchthat p ∩ S = ∅} and
{P | aprimeidealof S 1R}.
Wedenotetheideal i 1(J)by J ∩ R byabuseofnotation.Thisobservation impliesthat S 1R isnoetherianifsois R
Forexample,let S = R \ p foraprimeideal p of R.Wedenote(S 1R) by Rp and p(S 1R)by pRp.Then pRp isthebiggestprimeidealwith respecttoinclusion.Hence pRp isaunique maximal ideal1 of Rp.Aring R iscalleda localring ifitcontainsauniquemaximalideal m inthesense thatanyproperideal I of R iscontainedin m.Bythenotation(R, m)we
1Anideal m of R isa maximal idealif I isaproperidealof R suchthat I ⊇ m then I = m
meanthat R isalocalringwithmaximalideal m.Amaximalideal m is aprimeideal.Infact,supposethat ab ∈ m.Let I = m + aR,whichisan idealsuchthat I ⊇ m.Henceeither I = R or I = m.If I = m then a ∈ m. Supposethat I = R.Then1= ax + z with z ∈ m.Then b = abx + bz ∈ m. So, a ∈ m or b ∈ m.
Let R beanintegraldomain.Then S := R \{0} isamultiplicative set.Theringofquotients S 1R isnowafield,whichwecallthe fieldof quotients orthe fieldoffractions anddenoteby Q(R).
Let I beanidealof R.Anidealofthequotientring(ortheresidue ring) R = R/I iswritteninaform J/I,where J isanidealof R suchthat J ⊇ I.If R isnoetherian,soisthering R.
1.1.2 SpectrumofaringandZariskitopology
Let R bearing.Thesetofprimeidealsof R iscalledthe spectrum (spec, forshort)of R anddenotedby
Spec R = {p | aprimeidealof R}
Givenaring R,thespectrumSpec R isalsocalledan affinescheme with the coordinatering R.Wecandefineatopology,calledthe Zariskitopology, inSpec R byassigningclosedsetssatisfyingaxiomsoftopology.Aclosed setis V (I)foranideal I of R,where
V (I)= {p ∈ Spec R | p ⊇ I}.
Axiomsoftopologyforclosedsetsrequire
(i) Spec R and ∅ areclosedsets.
(ii) λ∈Λ V (Iλ)isaclosedset,where {Iλ | λ ∈ Λ} ispossiblyaninfinite set.
(iii) Afiniteunion j∈J V (Ij )isaclosedset.
For(i),wehaveSpec R = V ((0))and ∅ = V (R),where(0)isthezero ideal.For(ii),wehave λ∈Λ V (Iλ)= V ( λ∈Λ Iλ).For(iii),itsufficesto showthat
V (I1) ∪ V (I2)= V (I1I2)= V (I1 ∩ I2), where I1I2 istheidealof R generatedby {a1a2 | a1 ∈ I1,a2 ∈ I2}.Since I1 ∩ I2 ⊇ I1I2 andsince p ⊇ I1I2 implieseither p ⊇ I1 or p ⊇ I2,wehave V (I1) ∪ V (I2) ⊇ V (I1I2) ⊇ V (I1 ∩ I2) ⊇ V (I1) ∪ V (I2), whichprovestheassertion.TheZariskitopologyis T0,butnotnecessarily T1.Namely,iftwodistinctprimeideals p, q aregiven,thereisaclosedset
V (I)whichcontainseitheroneof p or q butnottheother.Onecannot choose p or q.Infact, p ⊂ q ifandonlyif p ∈ V (I)alwaysimply q ∈ V (I) foraclosedset V (I).
Foranideal I,definethe radical of I,denotedby √I,by √I = {a ∈ R | an ∈ I forsome n> 0}
Anideal I isa radicalideal if √I = I.Thenwehavethefollowingtheorem.
Theorem1.1.1. Foranideal I of R wehave
√I = p∈V (I) p.
Proof. If p ∈ V (I)then p ⊃ √I,whence p∈V (I) p ⊇ √I.Weshowthe oppositeinclusion.Ifthereexistsanelement s ∈ ( p∈V (I) p) \ √I,then S = {sn | n ≥ 0} isamultiplicativesetof R suchthat S ∩ I = ∅.Hence I(S 1R)isaproperidealof S 1R.ByZorn’slemma(seeCorollary 1.1.4 below)thereexistsamaximalideal M of S 1R suchthat I(S 1R) ⊂ M.
Let m = R ∩ M(= i 1(M)).Then m isaprimeidealof R suchthat m ⊃ I and m ∩ S = ∅.Namely m ∈ V (I)and m ⊃ p∈V (I) p,whence s ∈ m.This contradicts m ∩ S = ∅.
Corollary1.1.2. Forideals I,J of R, V (I)= V (J) ifandonlyif √I = √J.
Proof. ByTheorem 1.1.1, √I = √J followsif V (I)= V (J).Theconverse isclearbecause V (I)= V (√I)and V (J)= V (√J).
Let S beapartiallyorderedset.Itiscalledan inductiveset ifevery totallyorderedsubsethasanupperbound.Thefollowingresultiscalled Zorn’slemma
Lemma1.1.3. Let S beaninductiveset.Then S hasamaximalelement. Thisresultyieldsanimportantresult.
Corollary1.1.4. Let I beaproperidealofaring R.Thenthereexists amaximalideal m suchthat m ⊇ I.Further,amaximalidealisaprime ideal.
Proof. Let S bethesetofproperidealsof R containing I anddefinea partialorderin S bysetting
J1 ≥ J2 ifandonlyif J1 ⊇ J2
Let J1 ≤ J2 ≤···≤ Jn ≤ Jn+1 ≤··· beatotallyorderedsubsetof S.Set J = n≥1 Jn.Then J isaproperidealof R containing I,and J isclearly anupperboundofthetotallyorderedsubset.Hence S isaninductiveset, and S hasamaximalelement m,whichisamaximalidealof R suchthat m ⊇ I.
Let m beamaximalideal.Supposethat ab ∈ m with a,b ∈ R.Then aR + m isanidealcontaining m.Hence aR + m = m or aR + m = R.If aR + m = m then a ∈ m.If aR + m = R then ax + m =1for x ∈ R and m ∈ m.Then b = b(ax + m)= abx + bm ∈ m.So,either a ∈ m or b ∈ m. Thisimpliesthat m isaprimeideal.
1.1.3 Irreducibledecompositionofatopologicalspace
Atopologicalspace X is noetherian ifadescendingchainofclosedsets F1 ⊇ F2 ⊇···⊇ Fn ⊇ Fn+1 ⊇··· stopsalwaystodecrease,i.e.,thereexists N> 0suchthat Fn = Fn+1 for every n ≥ N .If R isanoetherianringthen X =Spec R isanoetherian space.Infact,write Fi = V (Ii)with Ii = √Ii = p∈Fi p.Thenthe descendingchainofthe Fi correspondstoanascendingchainofradical idealsof R
I1 ⊆ I2 ⊆···⊆ In ⊆ In+1 ⊆··· andtheterminationoftheidealchainimpliestheterminationofthechain ofclosedsets.
Atopologicalspace X is quasi-compact ifanyopencovering U = {Uλ}λ∈Λ of X hasafiniteopensub-covering X = U1 ∪ U2 ∪···∪ Un, where Ui = Uλi with λi ∈ Λ.
Proof. Let U = {Uλ}λ∈Λ beanopencoveringof X.Wemayassume thatforany µ ∈ Λ, λ∈Λ\{µ} Uλ = X.Considerawell-orderingonΛand supposethat
λ1 <λ2 < <λn <λn+1 < andidentify λi with i ∈ Z.Let
Fn = X \ (U1 ∪ U2 ∪···∪ Un), whichisaclosedsetof X satisfying
F1 ⊃ F2 ⊃···⊃ Fn ⊃ Fn+1 ⊃···
Since X isnoetherian,thedescendingchainofclosedsetsceases,i.e.,there exists N> 0suchthat Fn = Fn+1 forall n ≥ N .Then FN = ∅.Hence X = U1 ∪ U2 ∪···∪ Un.
Atopologicalspace X is reducible ifthereisadecomposition X = F1∪F2 fortwoclosedsets F1,F2 with Fi ⫋ X.Otherwise, X iscalled irreducible. If F isaclosedsubsetof X,wecansaythat F isreducible(orirreducible) withrespecttotheinducedtopologyon F .
Lemma1.1.6. Let F beaclosedsubsetofanoetheriantopologicalspace X.Thenthereexistsafinitesetofirreducibleclosedsubsets F1,...,Fn suchthat F = F1 ∪ F2
Fn,F
Fj forall i = j. Theseclosedsubsets Fi aredeterminedbythesubset F uniquelyuptopermutations.
Theset Fi iscalledthe irreduciblecomponent of F andthedecomposition F = F1 ∪ F2 ∪···∪ Fn iscalledthe irreducibledecomposition
Proof. Weprovefirsttheexistenceofadecomposition.Let S betheset ofclosedsubsets F of X suchthat F isnotafiniteunionofirreducible closedsubsets.Then S isaninductivesetwithrespecttoanorderdefined byreverseinclusionofsubsets.Namely, F ≤ F ′ for F,F ′ ∈ S if F ′ ⊆ F . Givenan(ascending)totallyorderedsubsetof S,thereexistsanupper boundbythenoetherianconditionof X whichceasesdescendingchains ofclosedsubsetsof X.Hence S hasamaximalelement,say F0.Then F0 isreducible.Write F0 = F1 ∪ F2 forproperclosedsubsets F1,F2 of F0.Then F1 >F0 and F2 >F0.Since F0 isamaximalelementof S, F1 and F2 arewrittenasfiniteunionsofirreducibleclosedsubsets.Writethe decompositionsas
F1 = F11 ∪ F12 ∪···∪ F1r F2 = F21 ∪ F22 ∪···∪ F2s, where Fij isirreduciblefor i =1, 2.Thenwehave
F0 = F1 ∪ F2 =(F11 ∪···∪ F1r) ∪ (F21 ∪···∪ F2s), whichisafiniteunionofirreducibleclosedsubsets.Thiscontradictsthe assumptionthat F0 ∈ S Weprovenextthatadecompositionisuniqueuptopermutations.Let F = G1 ∪ G2 ∪···∪ Gm
Since G1 isirreducible, G1 = G1 ∩ Fi forsome1 ≤ i ≤ n.Afterapermutationofindices,wemayassumethat i =1.Then G1 ⊆ F1.Similarly,we have F1 =(F1 ∩ G1) ∪···∪ (F1 ∩ Gm).
Hence F1 = F1 ∩ Gj andhence F1 ⊆ Gj .Thisimpliesthat G1 ⊆ Gj , whence j =1.Namely F1 = G1.Wecanargueasabovebyreplacing F1 by Fj ,andshowthat n = m and Fi = Gi afterasuitablepermutationof indices.
1.1.4 Primeidealdecompositionofradicalideals
Lemma1.1.7. Let R beanoetherianringandlet X =Spec R.Let I be aradicalidealof R andlet F = V (I).If F isirreduciblethen I isaprime ideal.Conversely,if I isaprimeidealthen V (I) isirreducible.
Proof. Supposethat ab ∈ I.Then,forany p ∈ F , ab ∈ I ⊆ p.Hence a ∈ p or b ∈ p.Thisimpliesthat F ⊂ V (a) ∪ V (b),where V (a)= V (aR) and V (b)= V (bR),and F =(F ∩ V (a)) ∪ (F ∩ V (b)), where F ∩ V (a)= V (I + aR)and F ∩ V (b)= V (I + bR).Since F is irreducible, F = F ∩ V (a)or F = F ∩ V (b),i.e., F ⊆ V (a)or F ⊆ V (b). Thisimpliesthat aR ⊆ p∈F p = √I = I, or bR ⊆ I.
Hence a ∈ I or b ∈ I.So, I isaprimeideal. Weprovetheconverse.Supposethat V (I)isreducible,andwrite V (I)= V (I1) ∪ V (I2)with V (I1) ⫋ V (I)and V (I2) ⫋ V (I).Since V (I1) ∪ V (I2)= V (I1I2),itfollowsthat I1I2 ⊆ I.Since I isaprime ideal,either I1 ⊆ I or I2 ⊆ I.Theneither V (I) ⊆ V (I1)of V (I) ⊆ V (I2). Thisisacontradiction.
Corollary1.1.8. Let R beanoetherianringandlet F = V (I) fora radicalideal I.Thenthereexistsauniquelydeterminedsetofprimeideals {p1,..., pn} suchthat
(i) I = p1 ∩ p2 ∩···∩ pn,and (ii) pi ̸⊂ pj foranypair (i,j) with i = j.
Theclosedsubsets V (p1),...,V (pn) correspondbijectivelywithirreducible components F1,...,Fn of F = V (I).
Proof. Thereisanirreducibledecompositionof F whichisuniquelydetermineduptopermutationsofcomponents F = F1 ∪···∪ Fn,
where Fi = V (pi)foraprimeideal pi.Thenwehave V (I)= V (p1) ∪···∪ V (pn)= V (p1 ∩···∩ pn),
where p1 ∩···∩ pn isaradicalideal.ThenitfollowsbyCorollary 1.1.2 that I = p1 ∩···∩ pn.
Thedecomposition
I = p1 ∩ p2 ∩···∩ pn
inCorollary 1.1.8 iscalledthe primedecomposition2 oftheradicalideal I. Forafixed1 ≤ i ≤ n,write j=i
and j=i
where ∨ pi showsthattheideal pi isomitted.Then j=i pj ⊆ j=i pj ,and hence j=i pj ̸⊂ pi because pi ̸⊂ pj foranypair(i,j).Let ai beanelement of( j=i pj ) \ pi.Foranelement a ∈ R,thesubset
(I : a)= {x ∈ R | ax ∈ I}
iscalledan idealquotient oftheideal I.Itisanidealof R containing I Fortheidealquotient(I : ai)itholdsthat(I : ai)= pi.Infact,if x ∈ pi then aix ∈ ( j=i pj )bythechoiceof ai and aix ∈ pi because x ∈ pi.Hence aix ∈ I and pi ⊆ (I : ai).Conversely,if x ∈ (I : ai)then aix ∈ I and
2Laterweneedafinerdecompositionofideals,calledthe primarydecomposition of ideals.Wedevelopthetheoryintheappendix.
ai ̸∈ pi.Hence x ∈ pi.Thisshowsthat pi =(I : ai).Furthermore,ifan idealquotient(I : a)isaprimeideal p,then p ⊇ I ⊇ n i=1 pi.
Hence p containssome pi.Wesaythattheidealquotient(I : a)isa prime divisor of I if(I : a)isaprimeideal.Thesetofallprimedivisorsof I is denotedbyAss(R/I).Theneach pi isa minimal amongprimedivisorsof I withrespecttotheinclusionorder.Anon-minimalprimedivisorof I is called embedded.
Theradical n = √0ofthezeroideal(0)of R iscalledthe nilradical. Let n = √0= p1 ∩ p2 ∩···∩ pn betheprimedecomposition.Sinceanyprimeideal p of R contains n,the aboveargumentshowsthat p ⊇ pi forsome1 ≤ i ≤ n.Thisimpliesthat X =Spec R = V (p1) ∪ V (p2) ∪···∪ V (pn) andeach V (pi)isanirreduciblecomponentof X
1.1.5 Genericpoint,closedpointandKrulldimension
Let R beannoetherianringandlet X =Spec R.Wehaveaprimeideal px identifiedwitheachpoint x ∈ X.Forasubset S of X,wedenoteby S theclosureof S withrespecttotheZariskitopology.Apoint x of X isa closedpoint if {x} = {x}.Apoint x isa genericpoint if X = {x}. Lemma1.1.9. Thefollowingassertionshold.
(1) S = V (I(S)),where I(S)= x∈S px.
(2) If S consistsofasinglepoint x thentheclosure {x} isirreducible.We have {x} = {y} ifandonlyif x = y
(3) x isthegenericpointofanirreduciblecomponentof V (I) ifandonly if px isaminimalprimedivisorof √I (4) X isirreducibleifandonlyifthenilradical √0 of R isaprimeideal. (5) x isaclosedpointifandonlyif px isamaximalideal.
Proof. (1)Ifaclosedset V (I)contains S then px ⊇ I forevery x ∈ S.This impliesthat I ⊆ I(S),where I(S)isa radicalideal,i.e., I(S)= I(S). Thisimpliesthat I(S)definesthesmallestclosedsubsetof X whichcontains S,i.e.,theclosureof S