Complete Download Introduction to chaos, fractals and dynamical systems phil laplante PDF All Chapte

Page 1


https://ebookmass.com/product/introduction-to-chaos-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

A

Modern Introduction to Dynamical Systems Richard Brown

https://ebookmass.com/product/a-modern-introduction-to-dynamicalsystems-richard-brown/

ebookmass.com

Qualitative Theory of ODEs: An Introduction to Dynamical Systems Theory 1st Edition Henryk Zoladek

https://ebookmass.com/product/qualitative-theory-of-odes-anintroduction-to-dynamical-systems-theory-1st-edition-henryk-zoladek/

ebookmass.com

The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity 1st Edition Massimo Materassi (Editor)

https://ebookmass.com/product/the-dynamical-ionosphere-a-systemsapproach-to-ionospheric-irregularity-1st-edition-massimo-materassieditor/ ebookmass.com

What Are You Doing Here? Floella Benjamin

https://ebookmass.com/product/what-are-you-doing-here-floellabenjamin/

ebookmass.com

Materials 1st Edition Bert Sels

https://ebookmass.com/product/zeolites-and-zeolite-like-materials-1stedition-bert-sels/

ebookmass.com

Floriculture: Designing & Merchandising 4th Edition Dr. Charles P. Griner

https://ebookmass.com/product/floriculture-designingmerchandising-4th-edition-dr-charles-p-griner/

ebookmass.com

Understanding Pathophysiology u2013 E-Book

https://ebookmass.com/product/understanding-pathophysiology-e-book/

ebookmass.com

Marx’s Theory of Value in Chapter 1 of Capital. A Critique of Heinrich’s Value-Form Interpretation Fred Moseley

https://ebookmass.com/product/marxs-theory-of-value-in-chapter-1-ofcapital-a-critique-of-heinrichs-value-form-interpretation-fredmoseley/

ebookmass.com

eTextbook Anderson’s Business Law and the Legal Environment, Comprehensive Volume 23rd Edition

https://ebookmass.com/product/etextbook-andersons-business-law-andthe-legal-environment-comprehensive-volume-23rd-edition/

ebookmass.com

Theory and Design for Mechanical Measurements 7th Edition

https://ebookmass.com/product/theory-and-design-for-mechanicalmeasurements-7th-edition-richard-s-figliola/

ebookmass.com

Problem Solving in Mathematics and Beyond

Print ISSN: 2591-7234

Online ISSN: 2591-7242

Series Editor: Dr. Alfred S. Posamentier

Distinguished Lecturer

New York City College of Technology - City University of New York

There are countless applications that would be considered problem solving in mathematics and beyond. One could even argue that most of mathematics in one way or another involves solving problems. However, this series is intended to be of interest to the general audience with the sole purpose of demonstrating the power and beauty of mathematics through clever problem-solving experiences.

Each of the books will be aimed at the general audience, which implies that the writing level will be such that it will not engulfed in technical language — rather the language will be simple everyday language so that the focus can remain on the content and not be distracted by unnecessarily sophiscated language. Again, the primary purpose of this series is to approach the topic of mathematics problemsolving in a most appealing and attractive way in order to win more of the general public to appreciate his most important subject rather than to fear it. At the same time we expect that professionals in the scientific community will also find these books attractive, as they will provide many entertaining surprises for the unsuspecting reader.

Published

Vol. 29 Introduction to Chaos, Fractals and Dynamical Systems by Phil Laplante and Chris Laplante

Vol. 28 Seduced by Mathematics: The Enduring Fascination of Mathematics by James D Stein

Vol. 27 Mathematics: Its Historical Aspects, Wonders and Beyond by Alfred S Posamentier and Arthur D Kramer

Vol. 26 Creative Secondary School Mathematics: 125 Enrichment Units for Grades 7 to 12 by Alfred S Posamentier

For the complete list of volumes in this series, please visit www.worldscientific.com/series/psmb

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Names: Laplante, Phillip A., author. | Laplante, Chris, author.

Title: Introduction to chaos, fractals and dynamical systems / Phil Laplante (Penn State University, USA), Chris Laplante (Agilent Technologies, USA).

Description: New Jersey : World Scientific, [2024] | Series: Problem solving in mathematics and beyond, 2591-7234 ; vol. 29 | Includes bibliographical references and index.

Identifiers: LCCN 2023015059 | ISBN 9789811273247 (hardcover) | ISBN 9789811273902 (paperback) | ISBN 9789811273254 (ebook for institutions) | ISBN 9789811273261 (ebook for individuals)

Subjects: LCSH: Fractals. | Dynamics. | Chaotic behavior in systems.

Classification: LCC QA614.86 .L368 2024 | DDC 006.601/514742--dc23/eng20230711

LC record available at https://lccn.loc.gov/2023015059

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13331#t=suppl

Desk Editors: Sanjay Varadharajan/Ana Ovey

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore

ForKaitlin

This page intentionally left blank

AbouttheAuthors

PhillipA.Laplante startedplayingwithcomputersinthe1970s.Byhissenioryearincollege, hewaswritingsoftwarefortheSpaceShuttleand otheravionicsapplications.Later,heworkedon computer-aideddesignsoftwareformicrowaveand electronicssystemsandthenonadvancedtesting tools.Whileworkingontheseprojects,hecompletedhisMaster’sdegreeinelectricalengineering andhisPhDincomputerscience.Heiscurrently ProfessorofSoftwareandSystemsatPennStatewherehisteachingand researchinterestshaveincludedimageprocessing,real-timesystems,softwaretesting,artificialintelligence,criticalinfrastructureandtheInternet ofThings.Youcanfindoutmoreabouthisotherbooksandpublicationsat https://phil.laplante.io.

ChristopherP.Laplante wasintroducedtothe BASICprogramminglanguageataveryyoungage byhisfather,Phil.Hequicklybecamefascinated byprogrammingandcomputersingeneral.Heis currentlyasoftwareengineeratAgilentTechnologieswhereheworksonembeddedLinuxsystems forgaschromatographsandautomatedliquidsamplers.Youcanlearnmoreabouthissideprojectsat https://blog.laplante.io.

This page intentionally left blank

Acknowledgments

Wewouldliketothankthefollowingindividuals:

• ouracquisitioneditor,RochelleKronzek,forcommissioningthisproject andsupportandencouragementalongtheway;

• Dr.AlfredS.Posamentierforincludingourbookinhiswonderful ProblemSolvinginMathematicsandBeyond bookseries.

We’dalsoliketoacknowledgethefollowingfriendsforreviewingportions ofthetextatvariousstagesofdraft:

• Dr.JoannaDeFranco,PennState

• Dr.MohamadKassab,PennState

• LenTaddei,AgilentTechnologies

• SteveKirk,AgilentTechnologies

Ofcourse,anyremainingerrorsorinconsistenciesareourown.

Wehopeyouenjoythisexplorationofchaos,fractalsanddynamical systems.Ifyouthinkyouhavefoundanerrorinthebookandwouldliketo reportit,pleasecontactusviaemailat:

PhillipA.Laplante, plaplante@psu.edu

ChristopherP.Laplante, chris@laplante.io

This page intentionally left blank

1.11BriefHistoryofChaos,Fractalsand DynamicalSystems.....................34 1.12ExercisesandThingstoDo................35

2.FoundationsofChaosandFractalTheory39 2.1ComplexNumbersandFunctions.............39

2.1.1PlottingComplexNumbers.

2.1.2ArithmeticwithComplexNumbers...

2.2FunctionsofComplexVariables..............44

2.3.4TheMandelbrotSet.................61

2.3.5ANoteontheImages................64

2.3.6TheInverseIterationandBoundary ScanningMethods.

3.5.1Trees,LeavesandFlowers.

3.5.2Clouds.

3.5.3RocksandBoulders.................92

3.5.6Coastlines

3.6FractalsintheHumanBody................99

3.6.1BronchialGrowth..................100

3.6.2NeuronGrowth...................100

3.6.3PhysiologicalProcesses... ............102

3.6.4ChaosoftheMind?.................103

3.7ExercisesandThingstoDo................103

4.ChaosandFractalsinHuman-MadePhenomena107

4.1TurbulentFlow.......................107

4.2Structures..........................108

4.3ComputerSceneAnalysis.................111

4.4ImageCompression .....................111

4.4.1ProblemswithFractalCompression.. ......113 4.5EconomicSystems .....................115

4.6CellularAutomata.....................118

4.6.1One-DimensionalCellularAutomata........119

4.6.2Two-DimensionalCellularAutomata........124

4.7ExercisesandThingstoDo................127

5.DynamicalSystemsandSystemsTheory129

5.1BasicSystemTheory....................130

5.1.1ModelingThingsasSystems............131

5.1.2LinearGrowth....................133

5.1.3ResponseTime.. .................136

5.1.4ControlSystems...................136

5.1.5DeterministicSystems...............139

5.1.6Time-VariantandTime-InvariantSystems.....140

5.1.7LinearSystems...................140

5.1.8NonlinearSystems.................143

5.1.9SummaryofSystemTypes.............144

5.2SystemsThinking......................144

5.2.1EmergentBehavior.................145

5.2.2Second-OrderEffects ................147

xiv IntroductiontoChaos,FractalsandDynamicalSystems

5.3Uncertainty.........................148

5.3.1StateUncertainty..................148

5.3.2HeisenbergUncertainty...............149

5.3.3UncertaintyandChaos...............150

5.3.4DealingwithUncertainty..............150

5.4SwarmBehavior......................155

5.4.1SimulatingaSwarm.................157

5.4.2ApplicationsofSimulatedSwarms.........158

5.4.3SwarmComputing.................159

5.5BriefHistoryofDynamicalSystemsand SystemsTheory.......................160

5.5.1DynamicalSystems.................160

5.5.2SystemsEngineering................161

5.5.3OriginsofSystemsThinking............161

5.6ExercisesandThingstoDo................161

ListofFigures

1.1Twosectionsoftheinfiniterollercoaster.(a)Stableequilibrium; (b)Unstableequilibrium.... .................2

1.2Increasinglynearerviewsofasectionofcoastline. ......4

1.3TheMandelbrotset........................4

1.4Bifurcationdiagramfor f ( x ) = x 2 + c with x = 0and c swept from 2.0to1.0.........................10

1.5RuleforcreationofaSierpinskitriangle. ............13

1.6ASierpinskitriangle. ......................14

1.7Sierpinskitriangle-mappingprocedure. ............15

1.8VerticesforSierpinskitriangle-mappingprocedure. ......16

1.9Startertriangle... .......................18

1.10Theoriginaltriangle(dashed)scaledto50%scale. ......19

1.11Translationsofscaledtriangle. .................19

1.12FirstiterationofSierpinskitriangle... ............20

1.13Sierpinskicarpet.........................24

1.14Affinetransformationsforconstructingfirstiterationof Sierpinskicarpet.Originalsquare(dashed)isscaledto 33%scale.Thenitisclonedandtranslatedineight differentdirections........................25

1.15ConstructionoftheCantorset..................28

2.1Thecomplexplaneandsomepointsonit............41

2.2TheplottingwindowforJuliaandMandelbrotprograms....49

2.3Juliasetfor f ( z ) = cos ( z )....................50

2.4Douady’srabbit.........................51

2.5Infernocolorscheme.......................52

2.6Douady’srabbitcreatedusing10iterations...........53

2.7Infernocolorschemeutilization(dashedbox)forDouady’srabbitwith10iterations.Notehowthedarkercolorsontheleftare notusedbecausetheescapeiterationcountstartsat3. .....53

2.8Douady’srabbitcreatedusing50iterations...........54

2.9Infernocolorschemeutilization(dashedbox)forDouady’srabbitwith50iterations.......................54

2.10Douady’srabbitcreatedusing200iterations..........55

2.11Douady’srabbitcreatedusing800iterations..........56

2.12Douady’srabbitcreatedusing800iterationswithhistogramcoloring...............................57

2.13ASiegeldisk...........................58

2.14Adragon.

2.18TheMandelbrotsetusingthehistogramcoloring algorithm. ............................65

2.19BasinofattractionusedinBSM.................66 2.20Mexicanhatfunctionmotherwavelet..............69

2.21SomedaughterwaveletsoftheMexicanhatfunction. .....70

2.22SimulatedelectrocardiogramimageproducedbyMexicanhat wavelets.............................70

3.1Populationdynamicsofcaribou–wolfsystemwith K = 0.000006... .......................76

3.2Populationdynamicsofcaribou–wolfsystemwith K = 0.000010... .......................76

3.3Populationdynamicsofcaribou–wolfsystemwith K = 0.000014... .......................77

3.4Seals...............................78

3.5Anamoeba-likeimagegeneratedfromthefilledJuliasetof f ( z ) = Z 2 + 0 3 4i ......................80

3.6Afernleaf............................81

3.7AfernleafgeneratedviaIFS...................82

3.8IFSrepresentationofatree... .................84

3.9Aforestofrandomlygeneratedfractaltrees. ..........85

3.10Aredwoodforest.........................88

3.11Greenseaweed..........................89

3.12Four-petaledflowerfromtheJuliasetof f ( z ) = z 2 + 0.384. .......................90

3.13Anotherfour-petaledflowerfromtheJuliasetof f ( z ) = z 2 + 0.2541. ......................91

3.14Afractalstormcloud. ......................91

3.15“Three-dimensional”fractalclouds... ............93

3.16FractalrocksusingsameIFScodesastheclouds.. ......94

3.17Snowflakesgeneratedbymandel_julia.rs............95

3.18Asnowfallgeneratedbyfall.rs.................97

3.19Crossfractalusedtogeneratesnowflakes............98

3.20Arandomlygeneratedviewofspace.. ............99

3.21Thebronchialtreestructureinourlungsresembles afractal..............................100

3.22Dendritestructuregeneratedby f ( z ) = z 2 + i .........101

3.23AnEKGoutputsimulatedusingaJuliaset...........102

4.3“Winterreflections”bywaferboardismarkedwith CCBY2.0.Toviewtheterms,visithttps://creativecommons. org/licenses/by/2.0/?ref=openverse.Originallyincolor.....113

4.4Computer-generatedequivalentofswampypondshownin “winterreflections.”.......................114

4.5Self-similarityofcottonpricesovercenturies,years, andmonths............................116

4.6Bifurcationdiagramformodeleconomicsystem.. ......117

4.7Sierpinskitriangleoutputofprogram1d_life.rs... ......121

4.8Sampleoutputfrom1d_life.rsusing Rule2..........123

4.9GameofLife...........................125

xviii IntroductiontoChaos,FractalsandDynamicalSystems

4.10GameofLifeaftermanyiterationsconsistingofjuststableand bi-stableformationsofcells...................126

5.1Ageneralsystemwithinputsandoutputs. ...........130

5.2Asystemwithoneinputandoneoutput. ............131

5.3Controlsystemblockdiagram..................137

5.4Arealsysteminteractswiththeenvironmentinobvious andsubtleways..........................145

5.5HoneybeeswarmnearWilmington,Delaware,courtesyof SmallWonderHoney,https:// www.face book.com/smallwonde rhoney..............................156

5.6ScreencaptureofanartificialswarmusingWolfram’sBoids Simulatorathttps://demonstrations.wolfram.com/BoidsSimul atedFlockingBehavior.©WolframResearch.... ......158

ListofTables

1.1IFStransformationruleforSierpinskitriangle... ......20

1.2IFStransformationruleforSierpinskicarpet..........23

3.1IFStransformationruleforseals. ................79

3.2IFStransformationruleforfern.................83

3.3IFStransformationrulefortree.................83

3.4IFStransformationruleforseaweed...............90

3.5IFScodesforthree-dimensionalfractalclouds... ......93

3.6IFScodesforcrossfractal....................98

4.1IFScodesforcastle.......................109

4.2IFScodesformaze. .......................111

4.3IFScodesforoneclumpinaswamp...............115

5.1Principalandinterestfortwoyearsinasavingsaccount....134

5.2Simplifiedinterestgrowthmodel................134

This page intentionally left blank

Introduction

1.BackgroundandObjectives

Thankyouforchoosingthisbook.Ourgoalistoprovideafunandenriching introductiontochaostheory,fractalsanddynamicalsystems.Anemphasis ismadeonnaturalandhuman-madephenomenonthatcanbemodeledas fractalsandontheapplicationsoffractalstocomputer-generatedgraphics andimagecompression.

Tokeepthemathematicsrelativelysimple,werelyonintuitivedescriptions,computer-generatedgraphicsandphotographsofnaturalscenesto makeourpoints.Buttherearesufficientmathematicaldefinitions,representations,discussionsandexercisessothatthisbookcanbeusedasprimaryor secondarysourceinhomeschoolingenvironments.Wealsopresentabrief historyoftheevolutionofchaostheory,fractalsanddynamicalsystems. Again,justenoughinformationisgiventointriguethereaderandgetthem startedonotherscientificjourneys.

Toindulgecuriousminds(bothoursandthereaders’),we’veincluded numerousfactoids,biographiesandshortdiscussionsinfootnotes.Wedon’t intendtheseasdistractions,butrathertoencouragefurtherinquiry.Insome cases,thesefootnoteitemsreappearattheendofthechapterasexercises andthingstodo.Wealsotriedtokeepthecitationstoamanageablelevel. Wedidn’tintendthistobereferencedasascholarlypaper.Rather,wegive justenoughcitationsforthoseinterestedinconductingfurtherresearch.

2.MathematicalBackground

Thebookisaccessibletothosewithabasicknowledgeofalgebraand geometry.Inparticular,thereadershouldbefamiliarwithsimplefunctions ofrealnumbersanditwouldalsobehelpfulifthereaderwerefamiliar withalittletrigonometry,suchassinesandcosines.However,muchof theneededmathematicalbackgroundisdevelopedalongtheway.Inafew places,weexpandsomewhatintohighermathematics,includingtheuseof alittlecalculus.Inthesecases,however,themathematicscanbeignoredor usedasthestaringpointforfurtherexploration.

Themathematicsisintroducedinaveryinformal(thatis,notrigorous) way.Werealizethatinsomecases(e.g.thedefinitionofarealnumber,linear system,fractal)wehavetakenliberties.Buttodootherwisewouldrequire ahigherlevelofsophisticationonthepartofthereaderandmightdeter themfromfurtherstudy.We’drathergivethemoreinformaldefinitions, lettingthereader(orteacherorprofessor)introducefurtherrigortothe leveldesired.

3.RustandOpenGL

Whilethebookcanbeenjoyedwithoutacomputer,wehopethatthereader willexperimentwiththecodesamplesprovided—theseareavailableat https://code.laplante.iofordownload.Wechosetoimplementthevarious fractalsandotherprogramsintheRustprogramminglanguage.Ourreasons fordoingsoaredetailedinthefollowingsection.Pleasekeepinmindthat thisbookisnotintendedtobeanintroductionortutorialonRust,nor programmingingeneral.Thatbeingsaid,wehavetriedourbesttoexplain thecodethatappearsinthisbook.

3.1 TheRustProgramLanguage

RustisaprogramminglanguagewithsyntaxsimilartoC/C++butincorporatingfeaturesmorecommonlyfoundintheML-familyoflanguages,

suchasalgebraicdatatypesandpatternmatching.Forprofessionalsoftwaredevelopers,Rust’smostimportantfeatureiscompile-timesafety.The Rustcompile-timecheckerlooksfornullpointers,danglingreferences,data racesandotherkindsofundefinedandunsafebehaviorusingavarietyof techniquesincludinga“borrowchecker,”whichanalyzesthelifetimesof objectsandreferenceslookingforanomalies.Sincetheborrowcheckerruns atcompiletime,thegeneratedassemblycodeperformssimilartothecode writteninCandC++(Langlands etal.,2021).

WeprimarilychoseRustforthisbookbecauseitprovidesanexcellent developerexperience.Itissimpletoinstallwithrustup(https://rustup.rs/) andrunsonWindows,LinuxandmacOS.Thebuilt-inpackagemanager andbuildsystem,cargo,makesiteasytobuildsoftware.It’salsovery reliable,asmentionedpreviously.Rusthasgreatdocumentationandavery user-friendlycompiler—theerrormessagesarenotcrypticunlikemany otherprogramminglanguageimplementations.Formoreinformationon Rust,checkouthttps://www.rust-lang.org.Thereisanexcellentonline freeRustbookhere:https://doc.rust-lang.org/book.

A1993predecessortothisbookcontainedcodewritteninPascal,which wasapopularteachinglanguageatthetime.Codeforalloftheprogramsin thebookwasalsomadeavailableinC.Thelegacyversionsofthecodein Ccanbedownloadedfromhttps://github.com/introtochaosbook/c-fractalcode.Thesewillneedtobemodifiedtoruninyourparticularprogramming computingenvironmentifyouwishtorunthecode.

3.2 OpenGLandHardware-AcceleratedGraphics

Forthemostpart,theRustcodeismerelyawrapperaroundoneormore OpenGLprograms.TheOpenGLprogramsareresponsiblefordeterminingwhatwillbedrawntothescreen.OpenGL(“OpenGraphicsLibrary”) isastandardizedAPIformanipulatinggraphicshardware.OpenGLprogramsarecalled shaders andarewritteninaC-likelanguage calledGLSL.1

1 OpenGLShadingLanguage.

xxiv IntroductiontoChaos,FractalsandDynamicalSystems

ShadersarecompiledintoinstructionsthatrundirectlyonGPUsandother graphicshardware(Kessenich etal.,2017).

ItmayseemlikeoverkilltousebothRustandOpenGL,butwehave goodreasonsfordoingso.Whilewecertainlycouldhavewrittenprograms entirelyinRustthatdrawfractalsonthescreen,theresultingcodewould beextremelyslowandinefficient.2 Thisisbecausesuchprogramswould needtoiterateovereverypixel3 onthescreenandperformacalculation— adauntingtaskfortoday’sdensest4Kor8Kmonitors.ByusingOpenGL, weoffloadprocessingfromtheCPU(whichisnotparticularlyoptimized foranyonetask)totheGPU(whichwaspurpose-builtfordrawingtothe screen).

AnotherbenefitofusingOpenGListhatsincethe“meat”ofthecode iswritteninGLSL,you caneasilyportthefractalstootherprogramming languagesbysimplyrewritingtheRustwrappercode.OpenGLbindingsare availableformostpopularprogramminglanguagesandplatforms.Tutorials andprojecttemplatesarealsoreadilysearchableonline.

ForreadersthatarenotfamiliarwithOpenGL,werecommendthefree website,https://learnopengl.com.ThecodesamplesareinC++,butthe conceptsarethesame.Thefollowingsectionscoverthebareminimum OpenGLknowledgerequiredtounderstandtheexampleprograms.

3.3 OpenGLCoordinateSystem

TheOpenGLcoordinatesystemisrathersimple.Regardlessofscreenwidth andheight, x -and y -coordinatesrangefrom 1.0to1.0.Seethefollowing figureforanillustrationoftheOpenGLcoordinatesystem:

2 Forthesakeofsimplicity,this is theapproachwetookforsomefractals,specificallythe iteratedfunctionsystem(IFS)classoffractals.

3 Thispixel-by-pixelapproachishowthefractalsintheaforementioned1993predecessor tothisbookwereimplemented.Forsomehistoricalcontext,OpenGLwasfirstreleasedin 1994,butthefirstcommerciallyavailableGPU(theNVIDIAGeForce256)wasn’twidely availableuntil1999.

( 1.0, 0)

(0, 1.0)

(1.0, 0) x y

(0, 1.0)

3.4 Vertices,ShadersandtheOpenGLRenderPipeline

OpenGLspecifiesahandfulofdifferentshadertypes.Wewillbeusing three:vertex,geometry,andfragmentshaders.4 Theshadersarecomposed togethertoformarenderpipelinewhichcontrolshowOpenGLrendersa scene.TheOpenGLrenderpipelineisdepictedinthefollowingfigure: 4 Forthefulllist,seehttps://www.khronos.org/opengl/wiki/Shader.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.