ΣΥΣΤΗΜΑΤΑ ΜΕ ΤΕΧΝΑΣΜΑΤΑ ΠΑΝΩ ΣΕ ΤΑΥΤΟΤΗΤΕΣ

Page 1

ΣΥΣΤΗΜΑΤΑ ΜΕ ΤΕΧΝΑΣΜΑΤΑ ΠΑΝΩ ΣΕ ΤΑΥΤΟΤΗΤΕΣ Πρώτα θα θυμηθούμε κάποιες βασικές ταυτότητες με συνθήκες 1)Αν α3+β3+γ3=3αβγ τότε α+β+γ=0 ή α=β=γ 1

1

α

β

2)Αν (α + β + γ )( +

1 + ) = 9 τότε α=β=γ

γ

3)Αν α +β +γ =αβ+βγ+γα τότε α=β=γ 4)Γενικά όταν εμφανίζετε άθροισμα τετραγώνων ίσο με το 0 τότε όλοι οι όροι είναι ίσοι με το μηδέν 2

2

2

ΑΣΚΗΣΕΙΣ 1)Να λυθεί το σύστημα χ +ψ +ω2=χψ+χω+ψω (1) χ+ψ+ω=3 (2) 2

2

ΣΚΕΨΗ:Μας έρχεται στο μυαλό η σχέση <<Αν α2+β2+γ2=αβ+βγ+γα τότε α=β=γ>> ΛΥΣΗ Από την (1) έχουμε ότι χ=ψ=ω λόγο της βασικής ταυτότητας 3) άρα η (2) γίνετε χ+χ+χ=3 ⇔ 3χ=3 ⇔ χ=1 άρα χ=ψ=ω=1 2)Να λυθεί το σύστημα χ+ψ+ω= 10 − 19 (1) 1

+

χ

1

ψ

+

1

ω

= 10 + 19 (2)

ΣΚΕΨΗ:Παρατηρόντας και τις δύο σχέσεις μας έρχεται στο μυαλό η σχέση 1

1

α

β

<<Αν (α + β + γ )( +

1 + ) = 9 τότε α=β=γ>> άρα για να την

γ

εμφανίσουμε θα πρέπει να πολλαπλασιάσουμε τις (1) και (2) ΛΥΣΗ Πολλαπλασιάζω την (1) με την (2) και έχω ( χ + ψ + ω )(

1

χ

+

1

ψ

+

1

ω

) = 10 − 19 10 − 19 = 100 − 19 =

81 = 9 άρα ( χ + ψ + ω )(

1

χ

+

1

ψ

+

1

ω

(1) έχουμε 3χ= 10 − 19 άρα χ=

10 − 19 10 − 19 ⇔ χ=ψ=ω= 3 3

) = 9 ⇔ χ=ψ=ω με αντικατάσταση στην


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.