3.3 LA DISTRIBUCIÓN BINOMIAL DE PROBABILIDAD
127
REGLA PRÁCTICA
Si el tamaño muestral es grande respecto al tamaño poblacional, en particular si n/N entonces el experimento resultante no es binomial.
.05,
Si lanzamos al aire dos monedas “honestas” y construimos la distribución de probabilidad para x, el número de caras, un experimento binomial con n 2 y p .5. La distribución binomial general de probabilidad se construye en la misma forma, pero el procedimiento se complica cuando n se hace grande. Afortunadamente, las probabilidades p(x) siguen un modelo general. Esto nos permite usar una sola fórmula para hallar p(x) para cualquier valor dado de x.
LA DISTRIBUCIÓN BINOMIAL DE PROBABILIDAD
Un experimento binomial consta de n intentos idénticos con probabilidad p de éxito en cada intento. La probabilidad de k éxitos en n intentos es n! P(x k) C nk p kq n k p kq n k k!(n k)! para valores de k
0, 1, 2, . . . , n. El símbolo C nk es igual a,
n! k!(n donde n!
k)! n(n
1)(n
2)
(2)(1) y 0!
1.
Las fórmulas generales para m, s 2 y s se usan para obtener las siguientes fórmulas más sencillas para la media y la desviación estándar binomiales.
MEDIA Y DESVIACIÓN ESTÁNDAR PARA LA VARIABLE ALEATORIA BINOMIAL
La variable aleatoria x, el número de éxitos en n intentos, tiene una distribución de probabilidad con este centro y dispersión: Media: Varianza: Desviación estándar:
EJEMPLO
3.7
m s2 s
np npq npq
Encuentre P(x 2) para una variable aleatoria binomial con n 10 y p .1. Solución P(x 2) es la probabilidad de observar 2 éxitos y 8 fracasos en una secuencia de 10 intentos. Se podrían observar 2 éxitos primero, seguidos de 8 fracasos consecutivos:
E, E, F, F, F, F, F, F, F, F MI CONSEJO
n! n(n 1)(n 2) . . . (2)(1) Por ejemplo, 5! 5(4)(3)(2)(1) 120 y 0! 1
Como p es la probabilidad de éxito y q es la probabilidad de fracaso, esta secuencia particular tiene probabilidad ppqqqqqqqq p2q8 Sin embargo, puede también resultar muchas otras secuencias en x 2 éxitos. La fórmula binomial utiliza C 10 2 para contar el número de secuencias y da la probabilidad exacta cuando se usa la fórmula binomial con k 2: