Sec. 3.2 / Descripción del movimiento de fluidos
mada por un gran número de moléculas, que ocupa un pequeño volumen )V que se mueve con el flujo. Si el fluido es incompresible, el volumen no cambia en magnitud pero puede deformarse. Si el fluido es compresible, como el volumen se deforma, también cambia su magnitud. En ambos casos se considera que las partículas se mueven por un campo de flujo como una entidad. En el estudio de la mecánica de partículas, donde la atención se centra en partículas individuales, el movimiento se observa como una función del tiempo. La posición, la velocidad y la aceleración de cada partícula se expresan como s(x0, y0, z0, t), V(x0, y0, z0, t) y a(x0, y0, z0, t), y se pueden calcular las cantidades de interés. El punto (x0, y0, z0) localiza el punto inicial, es decir el nombre, de cada partícula. Ésta es la descripción lagrangiana, llamada así en honor de Joseph L. Lagrange (1736-1813), del movimiento que se usa en un curso de dinámica. En la descripción lagrangiana, puede darse seguimiento a numerosas partículas y observar su influencia entre ellas. No obstante, lo anterior se hace una tarea difícil cuando el número de partículas es extremadamente grande incluso en el flujo de fluido más simple. Una alternativa a seguir por separado cada partícula de fluido es identificar puntos en el espacio y, a continuación, observar la velocidad de las partículas que pasan por cada punto; podemos observar la razón de cambio de la velocidad conforme pasan las partículas por cada punto, es decir, V/ x, V/ y, y V/ z, y podemos observar si la velocidad está cambiando con el tiempo en cada punto en particular, esto es, V/ t. En esta descripción euleriana del movimiento, que recibe ese nombre en honor a Leonhard Euler (1707-1783), las propiedades del flujo, por ejemplo la velocidad, son funciones del espacio y del tiempo. En coordenadas cartesianas la velocidad se expresa como V V(x, y, z, t). La región del flujo considerada se denomina campo de flujo. Un ejemplo puede aclarar estas dos formas de describir el movimiento. Una compañía de ingeniería es contratada para hacer recomendaciones que mejoren el flujo de tránsito en una gran ciudad. La compañía de ingeniería tiene dos alternativas: contratar estudiantes universitarios para que viajen en automóviles por toda la ciudad registrando las observaciones apropiadas (el método lagrangiano), o contratar estudiantes universitarios para estar de pie en los cruceros y registrar la información requerida (el método euleriano). Una interpretación correcta de cada uno de los conjuntos de datos llevaría al mismo conjunto de recomendaciones, es decir, a la misma solución. En este ejemplo puede no ser obvio cuál método se preferiría; en un curso introductorio de fluidos, no obstante, la descripción euleriana se usa exclusivamente porque las leyes físicas empleando la descripción euleriana son más fáciles de aplicar a situaciones reales. Sin embargo, hay ejemplos donde se hace necesaria la descripción lagrangiana, por ejemplo las boyas a la deriva que se usan para estudiar las corrientes oceánicas. Si las cantidades de interés no dependen del tiempo, es decir, V V(x, y, z), se dice que el flujo es un flujo permanente. La mayoría de los flujos de interés en este texto introductorio son flujos permanentes. Para un flujo permanente, todas las cantidades del flujo en un punto particular son independientes del tiempo, es decir, V t
0
p t
0
r t
0
(3.2.1)
para citar algunas. Se implica que x, y y z se mantienen fijas en las expresiones anteriores. Observe que las propiedades de una partícula de fluido, en general, varían con el tiempo; la velocidad y la presión varían con el tiempo a medida que una partícula en especial de fluido avanza a lo largo de su trayectoria en un flujo, incluso en un flujo permanente. En un flujo permanente, sin embargo, las propiedades no varían con el tiempo en un punto fijo.
89
Lagrangiana: Descripción del movimiento donde se observan partículas como una función del tiempo.
Euleriana: Descripción del movimiento donde las propiedades del flujo son funciones del espacio y del tiempo. Campo de flujo: Región de interés en un flujo.
Euleriana contra lagrangiana, 31-33
Flujo permanente: Donde las cantidades del flujo no dependen del tiempo.