Fundamentos de Física 9a. Ed. Impreso. Raymond A. Serway & Chris Vuille

Page 32

CAPÍTULO 15 | Fuerzas eléctricas y campos eléctricos

522

COMENTAR IOS Los métodos utilizados aquí son como los empleados con la ley de gravedad de Newton en dos dimensiones. PREGUNTA 1 5. 3 Sin calcular realmente la fuerza eléctrica sobre q 2, determine el cuadrante hacia donde apunta el vector

de fuerza eléctrica. E JERCICIO 1 5. 3 Con el mismo triángulo, encuentre las componentes vectoriales de la fuerza eléctrica sobre q 1, así como la magnitud y dirección del vector. RESPUESTAS Fx 5 28.64 3 1029 N, F y 5 5.52 3 1029 N, F 5 1.03 3 1028 N, u 5 147°

15.4 El campo eléctrico

Q

q0 S E Carga de prueba

Carga fuente

Figura 15.9 Un pequeño objeto con una carga positiva q 0, colocado cerca de un objeto con una carga positiva mayor Q, experimenta un S campo eléctrico E dirigido como se muestra. La magnitud del campo eléctrico en la posición de q 0 se define como la fuerza eléctrica sobre q 0 dividida entre la carga q 0.

Figura 15.10 a) El campo eléctrico en A debido a la esfera con carga negativa es hacia abajo, hacia la carga negativa. b) El campo eléctrico en P debido a la esfera conductora con carga positiva es hacia arriba, alejándose de la carga positiva. c) Una carga de prueba q 0 colocada en P causará un reordenamiento de carga sobre la esfera, a menos que q 0 sea muy pequeña en comparación con la carga sobre la esfera.

La fuerza gravitacional y la fuerza electrostática son capaces de actuar a lo largo del espacio, lo que produce un efecto incluso cuando no hay algún contacto físico entre los objetos involucrados. Las fuerzas de campo se pueden estudiar en varias formas, pero un enfoque desarrollado por Michael Faraday (1791–1867) es el más práctico. En este enfoque, se dice que existe un campo eléctrico en la región de espacio alrededor de un objeto cargado. El campo eléctrico ejerce una fuerza eléctrica sobre cualquier otro objeto cargado dentro del campo. Esto difiere del concepto de la ley de Coulomb de una fuerza ejercida a una distancia en que la fuerza ahora se ejerce por algo, el campo, que está en la misma posición que el objeto cargado. La figura 15.9 muestra un objeto con una pequeña carga positiva q 0 colocada cerca de un segundo objeto con una carga positiva mucho más grande Q. S

El campo eléctrico E producido por una carga Q en la Sposición de una pequeña carga “de prueba” q 0 se define como la fuerza eléctrica F ejercida por Q sobre q 0, dividida entre la carga de prueba q 0: S

S

E;

F q0

[15.3]

Unidad SI: newton por coulomb (N/C) Conceptual y experimentalmente, se requiere que la carga de prueba q 0 sea muy pequeña (arbitrariamente pequeña, de hecho), de modo que no cause reordenamiento significatiS vo de la carga que crea el campo eléctrico E. Sin embargo, matemáticamente, el tamaño de la carga de prueba no hace diferencia: el cálculo resulta el mismo, sin importar lo anterior. En vista de esto, el uso de q 0 5 1 C en la ecuación 15.3 puede ser conveniente, si no riguroso. Cuando se usa una carga de prueba positiva, el campo eléctrico siempre tiene la misma dirección que la fuerza eléctrica sobre la carga de prueba, lo que se sigue a partir de la ecuación 15.3. Por lo tanto, en la figura 15.9, la dirección del campo eléctrico es horizontal y hacia la derecha. El campo eléctrico en el punto A de la figura 15.10a es vertical y hacia abajo, porque en dicho punto una carga de prueba positiva se atraería hacia la esfera con carga negativa.

S

E

A

q0 P

P

S

E

a

b

c


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Fundamentos de Física 9a. Ed. Impreso. Raymond A. Serway & Chris Vuille by Cengage - Issuu