703
23.4 Análisis de modelo: partícula en un campo (eléctrico)
▸ 23.6 c o n t i n u a c i ó n Escriba las componentes del vector de campo eléctrico neto:
(1)
E x 5 E 1x 1 E 2x 5 k e
(2)
E y 5 E 1y 1 E 2y 5 k e
0 q1 0 a
1y
2
2
0 q1 0 a2 1 y2
0 q2 0
cos f 1 k e
b
2
0 q2 0
sen f 2 k e
cos u
1 y2
b2 1 y2
sen u
y
(B) Evalúe el campo eléctrico en el punto P en el caso especial de que |q 1| 5 |q 2| y a 5 b.
S
E1
SOLUCIÓN
Conceptualizar La figura 23.13 muestra la situación
P (Ejemplo 23.6) Cuando las cargas en la figura 23.12 son de igual magnitud y equidistantes del origen, la situación se vuelve simétrica, como se muestra en este caso.
cial del caso general que se muestra en la figura 23.12, este ejemplo se clasifica como uno en el que se puede tomar el resultado del inciso (A) y sustituir los valores apropiados de las variables.
De la geometría en la figura 23.13, evalúe cos u:
Sustituya la ecuación (4) en la ecuación (3):
E
Figura 23.13
Categorizar Ya que la figura 23.13 es un caso espe-
23.13, evalúe las ecuaciones 1 y 2 del inciso (A) con a 5 b, |q 1| 5 |q 2| 5 q, y f 5 u:
S
u
en este caso especial. Observe la simetría en la situación y que la distribución de carga ahora es un dipolo eléctrico.
Analizar En función de la simetría de la figura
u
S
E2
r
u a q
(3) E x 5 k e
E y 5 ke
(4) cos u 5
q a2 1 y2 q a2 1 y2
cos u 1 k e sen u 2 k e
q a2 1 y2 q a2 1 y2
cos u 5 2ke
u a
q a 2 1 y2
–q
x
cos u
sen u 5 0
a a 5 r 1 a 2 1 y 2 2 1/2
E x 5 2k e
q a2 1 y2
c
2aq a d 5 ke 2 1 a 2 1 y 2 2 1/2 1 a 1 y 2 2 3/2
(C) Encuentre el campo eléctrico debido al dipolo eléctrico cuando el punto P está a una distancia y .. a desde el origen.
SOLUCIÓN
En la solución al inciso (B), ya que y .. a, ignore a 2 en comparación con y 2 y escriba la expresión para E en este caso:
(5) E < ke
2aq y3
Finalizar De la ecuación (5) se ve que, en los puntos alejados de un dipolo, pero a lo largo de la bisectriz perpendicular de la línea que une las dos cargas, la magnitud del campo eléctrico producido por el dipolo varía como 1/r 3, mientras que el campo que varía más lentamente de una carga puntual lo hace como 1/r 2 (ecuación 23.9). Esto es porque en puntos distantes, los campos de las dos cargas de igual magnitud y signo opuesto casi se cancelan mutuamente. La variación 1/r 3 en E para el dipolo también se obtiene para un punto distante a lo largo del eje x y para cualquier punto distante en general.