canford.co.uk
INTO THE
3RD DIMENSION Background Currently there is a large amount of research into new audio reproduction formats in order to achieve a 3D listening experience. Yet there has been interest in 3D surround systems for many years now, one of the first 3D systems was proposed as early as the 1970’s by Michael Gerzon using a spatial audio rendering technology called Ambisonics. This was a complete system allowing the recording, transmission and reproduction of 3D audio. However Ambisonics was introduced during the era when quadraphonic systems were being developed and subsequently failed to catch on, this was because of the extra expense incurred at having to buy extra equipment to play quadraphonic recordings. Dolby who began in the early 70’s marketing noise reduction systems and also developing methods of encoding and decoding three screen channels and a mono surround channel prevailed and developed their surround systems which ultimately led to their 5.1 discrete system used today. Dolby are now marketing their 3D ‘Atmos’ system which including the normal surround channels also include height channels which can be found in select cinemas worldwide utilising up to 64 channels in total in larger cinemas. There are also numerous home surround receivers which are now Dolby Atmos enabled, utilising for example a 9.1 system which encompasses the 5.1 system but also includes four height channels.
main mechanisms in order to locate sound sources in the horizontal plane, one is the time difference of arrival between the ears, which works for frequencies up to 800Hz and the other is the level difference between the ears and works for frequencies above 1200Hz, for frequencies between 800-1200Hz it is thought a combination of both is used. However when sound sources are located in the vertical plane the listener relies more on the spectral filtering of the sound source caused by the listener’s pinna, head and shoulders combination, known as a head related transfer function or HRTF for short. This works with high frequency sounds because the wavelength is smaller therefore the head, pinna and torso are an appreciable barrier and cause the sound to be filtered. Our ability to locate a sound source in the vertical plane is not as accurate as the horizontal plane and sound sources placed symmetrically with respect to the head at an elevation directly in front of a listener the time and level differences will be the same, therefore the listener will be relying solely of the influence of the head, pinna and shoulder combination to locate the sound source, however psychoacoustic research has shown that sounds with certain frequency content will be perceived as coming from a certain elevated position because of the filtering effect of the head, pinna and shoulder combination, this being down to what has been termed directional bands
Psychoacoustics In order to understand the influence of 3D surround systems on our perception it is necessary to look into how our perception and hearing works. Humans use two
Production Of course with a new reproduction format then comes the challenges of how it can be utilised effectively taking
UK sales tel: +44 (0)191 4181122 email: sales@canford.co.uk | Int sales tel: +44 (0)191 4181133 email: international@canford.co.uk