ToC_9781009654807

Page 1


Bill Pender

David Sadler, Derek Ward

Brian Dorofaeff, William McArthur SECOND

ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467

UNCORRECTEDSAMPLEPAGES

CambridgeUniversityPress&AssessmentisadepartmentoftheUniversityofCambridge. WesharetheUniversity’smissiontocontributetosocietythroughthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org

© BillPender,DavidSadler,DerekWard,BrianDorofaeff andJuliaShea2019

© BillPender,DavidSadler,DerekWard,BrianDorofaeff andWilliamMcArthur2025

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress&Assessment.

Firstpublished2019

SecondEdition2025 2019181716151413121110987654321

CoverdesignedbySardineDesign

TextdesignedbydiacriTech

TypesetbydiacriTech

PrintedinChinabyC&COffsetPrintingCo.Ltd.

AcataloguerecordforthisbookisavailablefromtheNationalLibraryofAustraliaat www.nla.gov.au

ISBN978-1-009-65480-7

Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO

ReproductionandCommunicationforeducationalpurposes

TheAustralian CopyrightAct1968 (theAct)allowsamaximumofonechapteror10%ofthepagesofthis publication,whicheveristhegreater,tobereproducedand/orcommunicatedbyanyeducationalinstitution foritseducationalpurposesprovidedthattheeducationalinstitution(orthebodythatadministersit)hasgiven aremunerationnoticetoCopyrightAgencyLimited(CAL)undertheAct. FordetailsoftheCALlicenceforeducationalinstitutionscontact:

CopyrightAgencyLimited Level12,66GoulburnStreet

SydneyNSW2000

Telephone:(02)93947600

Facsimile:(02)93947601

Email:memberservices@copyright.com.au

ReproductionandCommunicationforotherpurposes

ExceptaspermittedundertheAct(forexampleafairdealingforthepurposesofstudy,research,criticism orreview)nopartofthispublicationmaybereproduced,storedinaretrievalsystem,communicatedor transmittedinanyformorbyanymeanswithoutpriorwrittenpermission.Allinquiriesshouldbemadeto thepublisherattheaddressabove.

CambridgeUniversityPress&AssessmenthasnoresponsibilityforthepersistenceoraccuracyofURLsfor externalorthird-partyinternetwebsitesreferredtointhispublicationanddoesnotguaranteethatanycontenton suchwebsitesis,orwillremain,accurateorappropriate.Informationregardingprices,traveltimetablesandother factualinformationgiveninthisworkiscorrectatthetimeoffirstprintingbutCambridgeUniversityPress& Assessmentdoesnotguaranteetheaccuracyofsuchinformationthereafter.

CambridgeUniversityPress & AssessmentacknowledgestheAboriginalandTorresStraitIslanderpeoplesofthis nation.Weacknowledgethetraditionalcustodiansofthelandsonwhichourcompanyislocatedandwherewe conductourbusiness.WepayourrespectstoancestorsandElders,pastandpresent.CambridgeUniversityPress & AssessmentiscommittedtohonouringAboriginalandTorresStraitIslanderpeoples’uniqueculturaland spiritualrelationshipstotheland,watersandseasandtheirrichcontributiontosociety.

Introductionandoverview vii

Acknowledgements ix

Abouttheauthors x

1 Algebrareview

1A Expandingbrackets ...............................

1B Factoring

1C Algebraicfractions ...............................

1D Solvingquadraticequations ..........................

1E Solvingsimultaneousequations

ReviewofChapter1 ...............................

2 Numbersandsurds

2A Realnumbersandintervals

2B Surdsandtheirarithmetic ...........................

2C Furthersimplificationofsurds

2D Rationalisingthedenominator

ReviewofChapter2 ...............................

3 Functionsandgraphs

3A Functionsandfunctionnotation ........................

3B Functions,relations,andgraphs ........................

3C Reviewoflineargraphs

3D Quadraticfunctions—factoringandthegraph ................

3E Completingthesquareandthegraph

3F Thequadraticformulaeandthegraph

3G Powers,cubics,andcircles ...........................

3H Twographsthathaveasymptotes

3I Directandinversevariation ..........................

4 Equationsandinequations

4A Linearequationsandinequations

4B Quadraticequationsandinequations

UNCORRECTEDSAMPLEPAGES

4C Thediscriminant ................................

4D Quadraticidentities

ReviewofChapter4 ...............................

5 Transformationsandsymmetry

5A Translationsofknowngraphs

5B Reflectioninthe y-axisand x-axis .......................

5C Evenandoddsymmetry

5D Horizontalandverticaldilations

5E Theabsolutevaluefunction ..........................

5F Compositefunctions

5G Combiningtransformations ..........................

5H Continuityandpiecewise-definedfunctions ..................

ReviewofChapter5

6 FurthergraphsEXTENSION

6A Solvingtwoparticularinequations

6B Thesignofafunction

6C Sketchingreciprocalfunctions .........................

6D Sketchingsumsanddifferences

6E Modifyingafunctionusingabsolutevalue ...................

6F Inverserelationsandfunctions ........................

6G Inversefunctionnotation

6H Definingfunctionsandrelationsparametrically ...............

ReviewofChapter7

7 Trigonometry

7A Trigonometrywithright-angledtriangles

7B Problemsinvolvingright-angledtriangles ...................

7C Trigonometricfunctionsofageneralangle ..................

7D Quadrant,sign,andrelatedacuteangle

7E Givenonetrigonometricfunction,findanother ................

7F Trigonometricidentities

7G Trigonometricequations

7H Thesineruleandtheareaformula ......................

7I Thecosinerule

7J Problemsinvolvinggeneraltriangles .....................

ReviewofChapter7 ...............................

UNCORRECTEDSAMPLEPAGES

8

Linesinthecoordinateplane

8A Lengthsandmidpointsoflinesegments ....................

8B Gradientsoflinesegmentsandlines

8C Equationsoflines

8D Furtherequationsoflines ...........................

8E Usingpronumeralsinplaceofnumbers

ReviewofChapter8 ...............................

9 Exponentialandlogarithmicfunctions

9A Indices

9B Fractionalindices ................................

9C Logarithms

9D Thelawsforlogarithms

9E Equationsinvolvinglogarithmsandindices ..................

9F Exponentialandlogarithmicgraphs

9G Applicationsofthesefunctions .........................

ReviewofChapter9 ...............................

10 Differentiation

10A Tangentsandthederivative

10B Thederivativeasalimit

UNCORRECTEDSAMPLEPAGES

10C Arulefordifferentiatingpowersof x .....................

10D Thenotation dy/dx forthederivative

10E Thechainrule ..................................

10F Differentiatingpowerswithnegativeindices .................

10G Differentiatingpowerswithfractionalindices

10H Theproductrule ................................

10I Thequotientrule

10J Ratesofchange

10K Averagevelocityandaveragespeed ......................

10L Instantaneousvelocityandspeed

ReviewofChapter10 ..............................

11 PolynomialsEXTENSION

11A Thelanguageofpolynomials

11B Graphsofpolynomialfunctions ........................

11C Divisionofpolynomials

11D Theremainderandfactortheorems

11E Consequencesofthefactortheorem .....................

11F Sumsandproductsofzeroes

11G Geometryusingpolynomialtechniques ....................

ReviewofChapter11 ..............................

12 Euler’snumber

12A Theexponentialfunctionbase e ........................

12B Transformationsofexponentialfunctions

12C Thelogarithmicfunctionbase e

ReviewofChapter12 ..............................

13 Radianmeasureofangles

13A Radianmeasureofanglesize

13B Solvingtrigonometricequations

13C Arcsandsectorsofcircles ...........................

13D Trigonometricgraphsinradians

ReviewofChapter13 ..............................

14 Probability

14A SetsandVenndiagrams

14B Probabilityandsamplespaces .........................

14C Samplespacegraphsandtreediagrams

14D Venndiagramsandtheadditiontheorem

14E Multi-stageexperimentsandtheproductrule ................

14F Probabilitytreediagrams

14G Conditionalprobability .............................

ReviewofChapter14 ..............................

15 Dataandprobability

15A Randomvariablesandfrequencytables ....................

15B Cumulativefrequency

15C Groupeddata

ReviewofChapter15 ..............................

16 FurthertrigonometryEXTENSION

16A Three-dimensionaltrigonometry

16B Trigonometricfunctionsofcompoundangles .................

16C Thedouble-angleformulae

16D TrigonometricEquations ............................

16E Thesumofsineandcosinefunctions

ReviewofChapter16

17 CombinatoricsEXTENSION

17A Factorialnotation

17B Orderedselectionswithandwithoutrepetition

17C Orderedselections—threemoreprinciples .................

17D Orderedselectionswithidenticalelements

17E Countingunorderedselections ........................

17F Usingcountinginprobability ..........................

17G Arrangementsinacircle

ReviewofChapter17 ..............................

18 ThebinomialtheoremEXTENSION

18A BinomialexpansionsandPascal’striangle

18B Binomialexpansionswithseveralvariables ..................

18C Thebinomialtheorem

18D Usingthegeneralterm .............................

18E IdentitiesinPascal’striangle ..........................

18F FurtheridentitiesinPascal’striangle

ReviewofChapter18 ..............................

Answers

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
ToC_9781009654807 by cambridge_aused - Issuu