[combined] CambridgeMATHSNSW Stage 6 Ext1 Y11 2ed – uncorrected sample pages

Page 1


Bill Pender

David Sadler, Derek Ward

Brian Dorofaeff, William McArthur SECOND

ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467

UNCORRECTEDSAMPLEPAGES

CambridgeUniversityPress&AssessmentisadepartmentoftheUniversityofCambridge. WesharetheUniversity’smissiontocontributetosocietythroughthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org

© BillPender,DavidSadler,DerekWard,BrianDorofaeff andJuliaShea2019

© BillPender,DavidSadler,DerekWard,BrianDorofaeff andWilliamMcArthur2025

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress&Assessment.

Firstpublished2019

SecondEdition2025 2019181716151413121110987654321

CoverdesignedbySardineDesign

TextdesignedbydiacriTech

TypesetbydiacriTech

PrintedinChinabyC&COffsetPrintingCo.Ltd.

AcataloguerecordforthisbookisavailablefromtheNationalLibraryofAustraliaat www.nla.gov.au

ISBN978-1-009-65480-7

Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO

ReproductionandCommunicationforeducationalpurposes

TheAustralian CopyrightAct1968 (theAct)allowsamaximumofonechapteror10%ofthepagesofthis publication,whicheveristhegreater,tobereproducedand/orcommunicatedbyanyeducationalinstitution foritseducationalpurposesprovidedthattheeducationalinstitution(orthebodythatadministersit)hasgiven aremunerationnoticetoCopyrightAgencyLimited(CAL)undertheAct. FordetailsoftheCALlicenceforeducationalinstitutionscontact:

CopyrightAgencyLimited Level12,66GoulburnStreet

SydneyNSW2000

Telephone:(02)93947600

Facsimile:(02)93947601

Email:memberservices@copyright.com.au

ReproductionandCommunicationforotherpurposes

ExceptaspermittedundertheAct(forexampleafairdealingforthepurposesofstudy,research,criticism orreview)nopartofthispublicationmaybereproduced,storedinaretrievalsystem,communicatedor transmittedinanyformorbyanymeanswithoutpriorwrittenpermission.Allinquiriesshouldbemadeto thepublisherattheaddressabove.

CambridgeUniversityPress&AssessmenthasnoresponsibilityforthepersistenceoraccuracyofURLsfor externalorthird-partyinternetwebsitesreferredtointhispublicationanddoesnotguaranteethatanycontenton suchwebsitesis,orwillremain,accurateorappropriate.Informationregardingprices,traveltimetablesandother factualinformationgiveninthisworkiscorrectatthetimeoffirstprintingbutCambridgeUniversityPress& Assessmentdoesnotguaranteetheaccuracyofsuchinformationthereafter.

CambridgeUniversityPress & AssessmentacknowledgestheAboriginalandTorresStraitIslanderpeoplesofthis nation.Weacknowledgethetraditionalcustodiansofthelandsonwhichourcompanyislocatedandwherewe conductourbusiness.WepayourrespectstoancestorsandElders,pastandpresent.CambridgeUniversityPress & AssessmentiscommittedtohonouringAboriginalandTorresStraitIslanderpeoples’uniqueculturaland spiritualrelationshipstotheland,watersandseasandtheirrichcontributiontosociety.

Introductionandoverview vii

Acknowledgements ix

Abouttheauthors x

1 Algebrareview

1A Expandingbrackets ...............................

1B Factoring

1C Algebraicfractions ...............................

1D Solvingquadraticequations ..........................

1E Solvingsimultaneousequations

ReviewofChapter1 ...............................

2 Numbersandsurds

2A Realnumbersandintervals

2B Surdsandtheirarithmetic ...........................

2C Furthersimplificationofsurds

2D Rationalisingthedenominator

ReviewofChapter2 ...............................

3 Functionsandgraphs

3A Functionsandfunctionnotation ........................

3B Functions,relations,andgraphs ........................

3C Reviewoflineargraphs

3D Quadraticfunctions—factoringandthegraph ................

3E Completingthesquareandthegraph

3F Thequadraticformulaeandthegraph

3G Powers,cubics,andcircles ...........................

3H Twographsthathaveasymptotes

3I Directandinversevariation ..........................

4 Equationsandinequations

4A Linearequationsandinequations

4B Quadraticequationsandinequations

UNCORRECTEDSAMPLEPAGES

4C Thediscriminant ................................

4D Quadraticidentities

ReviewofChapter4 ...............................

5 Transformationsandsymmetry

5A Translationsofknowngraphs

5B Reflectioninthe y-axisand x-axis .......................

5C Evenandoddsymmetry

5D Horizontalandverticaldilations

5E Theabsolutevaluefunction ..........................

5F Compositefunctions

5G Combiningtransformations ..........................

5H Continuityandpiecewise-definedfunctions ..................

ReviewofChapter5

6 FurthergraphsEXTENSION

6A Solvingtwoparticularinequations

6B Thesignofafunction

6C Sketchingreciprocalfunctions .........................

6D Sketchingsumsanddifferences

6E Modifyingafunctionusingabsolutevalue ...................

6F Inverserelationsandfunctions ........................

6G Inversefunctionnotation

6H Definingfunctionsandrelationsparametrically ...............

ReviewofChapter7

7 Trigonometry

7A Trigonometrywithright-angledtriangles

7B Problemsinvolvingright-angledtriangles ...................

7C Trigonometricfunctionsofageneralangle ..................

7D Quadrant,sign,andrelatedacuteangle

7E Givenonetrigonometricfunction,findanother ................

7F Trigonometricidentities

7G Trigonometricequations

7H Thesineruleandtheareaformula ......................

7I Thecosinerule

7J Problemsinvolvinggeneraltriangles .....................

ReviewofChapter7 ...............................

UNCORRECTEDSAMPLEPAGES

8

Linesinthecoordinateplane

8A Lengthsandmidpointsoflinesegments ....................

8B Gradientsoflinesegmentsandlines

8C Equationsoflines

8D Furtherequationsoflines ...........................

8E Usingpronumeralsinplaceofnumbers

ReviewofChapter8 ...............................

9 Exponentialandlogarithmicfunctions

9A Indices

9B Fractionalindices ................................

9C Logarithms

9D Thelawsforlogarithms

9E Equationsinvolvinglogarithmsandindices ..................

9F Exponentialandlogarithmicgraphs

9G Applicationsofthesefunctions .........................

ReviewofChapter9 ...............................

10 Differentiation

10A Tangentsandthederivative

10B Thederivativeasalimit

UNCORRECTEDSAMPLEPAGES

10C Arulefordifferentiatingpowersof x .....................

10D Thenotation dy/dx forthederivative

10E Thechainrule ..................................

10F Differentiatingpowerswithnegativeindices .................

10G Differentiatingpowerswithfractionalindices

10H Theproductrule ................................

10I Thequotientrule

10J Ratesofchange

10K Averagevelocityandaveragespeed ......................

10L Instantaneousvelocityandspeed

ReviewofChapter10 ..............................

11 PolynomialsEXTENSION

11A Thelanguageofpolynomials

11B Graphsofpolynomialfunctions ........................

11C Divisionofpolynomials

11D Theremainderandfactortheorems

11E Consequencesofthefactortheorem .....................

11F Sumsandproductsofzeroes

11G Geometryusingpolynomialtechniques ....................

ReviewofChapter11 ..............................

12 Euler’snumber

12A Theexponentialfunctionbase e ........................

12B Transformationsofexponentialfunctions

12C Thelogarithmicfunctionbase e

ReviewofChapter12 ..............................

13 Radianmeasureofangles

13A Radianmeasureofanglesize

13B Solvingtrigonometricequations

13C Arcsandsectorsofcircles ...........................

13D Trigonometricgraphsinradians

ReviewofChapter13 ..............................

14 Probability

14A SetsandVenndiagrams

14B Probabilityandsamplespaces .........................

14C Samplespacegraphsandtreediagrams

14D Venndiagramsandtheadditiontheorem

14E Multi-stageexperimentsandtheproductrule ................

14F Probabilitytreediagrams

14G Conditionalprobability .............................

ReviewofChapter14 ..............................

15 Dataandprobability

15A Randomvariablesandfrequencytables ....................

15B Cumulativefrequency

15C Groupeddata

ReviewofChapter15 ..............................

16 FurthertrigonometryEXTENSION

16A Three-dimensionaltrigonometry

16B Trigonometricfunctionsofcompoundangles .................

16C Thedouble-angleformulae

16D TrigonometricEquations ............................

16E Thesumofsineandcosinefunctions

ReviewofChapter16

17 CombinatoricsEXTENSION

17A Factorialnotation

17B Orderedselectionswithandwithoutrepetition

17C Orderedselections—threemoreprinciples .................

17D Orderedselectionswithidenticalelements

17E Countingunorderedselections ........................

17F Usingcountinginprobability ..........................

17G Arrangementsinacircle

ReviewofChapter17 ..............................

18 ThebinomialtheoremEXTENSION

18A BinomialexpansionsandPascal’striangle

18B Binomialexpansionswithseveralvariables ..................

18C Thebinomialtheorem

18D Usingthegeneralterm .............................

18E IdentitiesinPascal’striangle ..........................

18F FurtheridentitiesinPascal’striangle

ReviewofChapter18 ..............................

Answers

6

Furthergraphs

Chapterintroduction

Thischaptercontainsvariouslooselyrelateddiscussionsaboutfunctionsandtheirgraphs.

▶ Sections6A–6Bdealwithsometrickiertypesofinequations,usingalgebraicandgraphical–geometric methods.

▶ Sections6C–6Eintroducefurthertransformationsofthegraphsoffunctions.Thegraphofthereciprocalof agraphedfunctionisdrawn—aprocedurethatrequiresalittlemorediscussionofasymptotes.Thesumand differenceoftwographedfunctionsisdrawn.Andthecompositionsofafunctionwiththeabsolutevalue functionaredrawnusingreflectionsinthe x-axisand y-axis.

▶ Section6F–6Gintroduceinverserelationsandfunctionsgraphically,withtheircorrespondingreflectionsin thediagonalline y = x.Thisisyetanothertypeoftransformationofaknowngraph.Section6Gdevelops theformalnotationforinversefunctions.

▶ ThelastSection6Hintroducesparameterssothatequationsoffunctions,andrelationsingeneral,canbe expressedandgraphedintermsoffunctions x and y ofasingleparameter.

Asalways,computersketchingofcurvesisveryusefulindemonstratinghowthefeaturesofagraphare relatedtothealgebraicpropertiesofitsequation,andingainingfamiliaritywiththevarietyofgraphsandtheir transformations.

SomequestionsinSections6Cand6HusethetrigonometryofthegeneralangleandPythagoreanidentities, andthesequestionscouldbedelayeduntilaftertrigonometryisreviewedandextendedinChapter7.

Thechapterisconceptuallydemanding,particularlySection6D.ReadersmayprefertoleaveSection6Duntil laterintheyear—anappropriateplacecouldbebeforeChapter16:Furthertrigonometry,whenthesum a sin x + b cos x oftwotrigonometricgraphsneedstobesketched.

UNCORRECTEDSAMPLEPAGES

6A

Solvingtwoparticularinequations

Learningintentions

• Solveabsolutevalueinequationsoftheform |ax + b| < k inthreeways.

• Solveinequationswith x inthedenominatorbymultiplyingthroughbyitssquare.

Thissectionisdevotedtotwoparticulartypesofinequations:

• Absolutevalueinequationsoftheform |ax + b| < k

• Inequationswhere x isinthedenominator,suchas 5 x 4 ≥ 1.

ThenextSection6Bwillsolveinequationsusingatableoftestpoints.

Areviewofinequationssolvedsofar

Sofarwehavesolvedlinearandquadraticinequations:

• Wesolvedlinearinequationslikelinearequations,exceptthatwhenmultiplyingordividingbyanonzero number,theinequalityisreversed.

• Wesolvedquadraticinequationsusingthegraph,andalsousingtestpointsafterfindingthezeroes.

Rememberthatwe solveinequations suchas x + 2 < 3,andwe proveinequalities suchas(x 2)2 ≥ 0,but thattheword‘inequality’isoftenusedforbothmeanings.Donotbesurprisedifyouareaskedto‘solvean inequality’.

Method1forsolvinganabsolutevalueinequation—Sketchthegraph

Ourtaskistosolveinequations |ax + b| < k,where a 0, b,and k areconstants (andtheinequalitysignis < ,or ≤ ,or > ,or ≥ ).

Drawingagraphisprobablytheclearestmethodofsolution.Takingasastandardexampletheinequation |2x + 1| > 3:

1Solvinganabsolutevalueinequationsuchas |2 x + 1| > 3 graphically

• Solvethe equation |2x + 1| = 3usingthemethodsofSection5E,Box19.

• Hencedrawthegraphsof y = |2x + 1| and y = 3ontheonesetofaxes.

• Readthesolutionoff thegraph.

Example1 Solvinganabsolutevalueinequationgraphically

Solve |2x + 1| > 3graphically.

Solution

Firstsolvetheequation |2x + 1| = 3 2x + 1 = 3or2x + 1 = 3 x = 1or 2.

Thegraphof y = |2x + 1| isVupwards,with x-intercept x = 1 2

Fromthesketchof |2x + 1| and y = 3together,thesolutionoftheinequalityis x < 2or x > 1. 2 x y

Method2forsolvinganabsolutevalueinequation—Usedistanceonthe numberline

Wecanusedistanceonthenumberlinetosolvetheinequality.Butwemustbecarefulindealingwiththe coefficientof x,particularlywhenitisnegative.

First,wereviewformulaeforabsolutevalueusingdistanceonthenumberline:

2Absolutevalueanddistance

• |x| = distancefrom x tozeroonthenumberline • |x a| = distancefrom x to a onthenumberline

Theeasycase,wherethecoefficientof x is1

Whenthecoefficientof x is1,wecanimmediatelyusethesecondformulaabove.

Example2 Thecoefficientof x is1

Solvetheseinequationsonthenumberline.

Thegeneralcase,wherethecoefficientof x isnot1

Therearetwoinitialstepstogetitintotheformwherethecoefficientof x is1.

3Solving | ax + b| < k,foranynon-zerovalueof a

Step1: Force a tobepositivebywritingsay |− 2x + 3| as |2x 3|

Step2: Dividethroughbythenowpositivenumber a

Step3: Solveusingdistance,asintheeasycaseabove.

SAMPLEPAGES

Example3 Thecoefficientof x isnot1

Solvetheseinequationsusingdistanceonthenumberline.

Method3forsolvinganabsolutevalueinequation—Algebraicapproach

WesawinSection5Ehowanabsolutevalueequationoftheform |

| = k canbesolvedalgebraicallyby rewritingtheequation.

Rewriteanequation |

Asimilarapproachcanbetakentosolvinganinequationsuchas |

4Solvinganabsolutevalueequationorinequationalgebraically

• Rewriteanequation | f (x)| = k as f (x) = k or f (x) = k

• Rewriteaninequation | f (x)| < k as k < f (x) < k

• Rewriteaninequation | f (x)| > k as f (

) < k or f (x) > k

Example4 Solvinganabsolutevalueinequationalgebraically

Solution

a AsinSection5E,thefirststepinsolvingtheequation |9 2x| = 5is 9 2x = 5or9 2x = 5, givingtwosolutions, x = 2or x = 7.

Usingtheseconddotpoint, |9 2x| < 5

< 9 2x < 5 9 14 < 2x < 4 ÷ ( 2) 7 > x > 2 thatis,2 < x < 7. b

Usingthethirddotpoint,

2x ≤−14or 2x ≥−4 ÷ ( 2) x ≥ 7or x ≤ 2 thatis, x ≤ 2or x ≥ 7. c

Inequationsthathavenosolutions,orareinequalities

Theabsolutevalue | f (x)| cannotbenegative.Thusif k isnegative:

• | f (x)| = k and | f (x)| < k havenosolutions,and

• | f (x)|≥ k istrueforallvaluesof x inthedomainof f (x).

Example5 Inequationsthathavenosolutions,orareinequalities

Solvetheseabsolutevalueinequationsalgebraically: |x 7| < 5 a |6 x|≥−1 b

Solution

Theabsolutevalueisnevernegative,sothereare nosolutions. a Absolutevalueisalwaysatleastzero,soevery realnumberisasolution.Thustheinequationisan inequality.

Solvinginequationswith x inthedenominator—multiplythroughbyits square

Whenwetrytosolvethisinequation,weimmediatelyrunintoaproblem: 5 x 4 ≥ 1.

Thedenominator x 4issometimespositiveandsometimesnegative.Thusifweweretomultiplybothsidesby thedenominator x 4,theinequalitysymbolwouldreversesometimesandnotothertimes.

Toavoidusingcases,themoststraightforwardapproachistomultiplythroughinsteadbythe squareofthe denominator,whichisalwayspositiveorzero.

5Solvinganinequationwiththevariableinthedenominator

• Multiplythroughbythesquareofthedenominator

▷ Becarefultoexcludethezeroesofthedenominatorfromthesolutions.

▷ Oncethefractionshavebeencleared,therewillusuallybecommonfactorsonbothsides.These should not bemultipliedout,becausethefactoringwillbeeasieriftheyareleftunexpanded.

Analternativeapproachusingatableofsignsispresentedinthenextsection.

Example6 Solvinganinequationbymultiplyingthroughbythesquare

Solve 5 x 4 ≥ 1.

Solution

First, x 4,becausetheLHSisundefinedwhen x = 4.

Thekeystepistomultiplybothsidesby (x 4)2

× (x 4)2 5(x 4) ≥ (x 4)2,and x 4, Don’texpandthebracketshere!Youwillonlyhavetore-factor.

(x 4)2 5(x 4) ≤ 0,and x 4, (x 4)(x 4 5) ≤ 0,and x 4, (x 4)(x 9) ≤ 0,and x 4.

Fromthediagram,4 < x ≤ 9. x y 49

Noticethat x = 4isnotasolutionoftheoriginalinequationbecausesubstituting x = 4intotheLHSofthe originalinequationgives 5 4 4 ,whichisundefined.

Exercise6A

1 Solvefor x usingdistanceonthenumberline.

3 Solve:

3 Multiplybothsidesby x2 andhencesolve:

4 Collectliketermswherenecessarythenmultiplyby x2 tosolve:

FOUNDATION

5a Usingdistanceonthenumberline,solve:

b Next,solvetheinequationsinparts(a)graphically.

c Finally,solvetheinequationsinpart(a)algebraically.

6 Multiplybothsidesofeachinequationbythesquareofthedenominatorandhencesolveit.Donotmultiply outanycommonfactor.

7 Ineachcase,firstsimplifytheinequation,thenusemultiplicationbythesquareofthedenominatortosolve for x.

8a Solvebyanysuitablemethod,andgraphthesolutiononanumberline.

b Solvetheinequationsinparts(ii),(iv),and(vi)bytheothertwoofthethreemethodsthatyoudid not useinpart(a).

9 Firstsimplifyeachinequation,thensolvefor x.

x + 1| + 2 < 3 a |x 2|− 1 > 3 b |x 3|− 1 ≥ 4 c

10 Solvefor x: x 1 x + 2 > 2

11a Showthatthedoubleinequation2 ≤|x|≤ 6hassolution2 ≤ x ≤ 6or 6 ≤ x ≤−2.

b Similarlysolve:

12 Saywhethereachstatementistrueorfalse.Ifitisfalse,giveacounterexample.

13 Solvetheseequationsandinequations.

14 Considertheinequation x + 1 x < 2x

Explainwhy x mustbepositive. a Hencesolvetheinequation. b

15 Solvetheinequation1 + 2x x2 ≥ 2 x

16 Considertheinequation |x a| + |x b| < c,where a < b.

a If a ≤ x ≤ b,show,usingdistancesonanumberline,thattherecanonlybeasolutionif b a < c

b If b < x,show,usingdistancesonanumberline,that x < a

c If x < a,show,usingdistancesonanumberline,that x > a + b c 2

d Henceshowthateither x a + b 2 < c 2 orthereisnosolutiontotheoriginalproblem.

e Hencefindthesolutionof |x + 2| + |x 6| < 10.

6B Thesignofafunction

Learningintentions

• Constructatableoftestpointsdodgingaroundzeroesanddiscontinuities.

• Usethetableoftestpointstosolvevarioustypesofinequation.

• Usethetableoftestpointsasafirststepincurve-sketching.

Thissectioncompletesthestoryofaverygeneralmethodofusingtestpointstoanalysethesignofanyfunction, providedonlythatwecanfinditszeroesanddiscontinuities.Thepatternofsignsproducedbythesetestpoints canbeusedtosolveinequations,whicharetheimmediatepointofthissection.

Butthepatternalsoprovidesthebasisforsketchingcurvesofeverykind,andwillbecentralparticularlytocurve sketchingusingcalculusinYear12.

Wherecanafunctionchangesign?

SketchingfactoredcubicsinSection3G,andsolvingquadraticinequationsinSection4B,usedatableoftest valuesdodgingaroundthezeroestoseewherethefunctionchangedsigns.Thefunctionsinthischapter,however, mayalsohavebreaksor discontinuities,andweneedtododgearoundthemaswell,asthediagrambelow demonstrates:

6Wherecanafunctionchangesign?

Theonlyplaceswhereafunctionmaypossiblychangesignarezeroesanddiscontinuities.

UNCORRECTEDSAMPLEPAGES

• Thegraphabovehasdiscontinuitiesat x = c, x = d, x = e,and x = f ,andhaszeroesat x = a and x = b

• Thefunctionchangessignatthezero x = a andatthediscontinuities x = c and x = e,andnowhereelse.

• Noticethatitdoesnotchangesignatthezero x = b oratthediscontinuities x = d and x = f .

ThestatementinBox6goestotheheartofwhattherealnumbersareandwhatcontinuitymeans.Inthiscourse, thesketchaboveissufficientjustification.

Atableofsigns

Asaconsequence,wecanexaminethesignofafunctionusingatableoftestvaluesdodgingaroundanyzeroes anddiscontinuities.Weaddathirdrowforthesign,sothatthetablebecomesa tableofsigns

7Examiningthesignofafunction

Toexaminethesignofafunction,drawupaa tableofsigns usingtestvaluesthatdodgearoundallthe zeroesanddiscontinuities.

Findingthezeroesofafunctionhasbeenaconstantconcerneversincequadraticswereintroducedinearlier years.Tofinddiscontinuities,wewillbeusingourstandardassumptionthat allthefunctionsinthecourseare continuouseverywhereintheirdomains,exceptwherethereisanobviousproblem.

Solvingpolynomialinequationsusingatableofsigns

AsimplerformofthistableofsignswasintroducedinSection3Gtosketchcubics.Cubics,andmoregenerally polynomials,donothaveanydiscontinuities,sothetestvaluesonlyneedtododgearoundtheirzeroes—ifwe canfindthem.

Section3G’sconcernwastosketchthefunction,whereasheretheconcernistosolveinequations.Thegraphsare notnecessaryhere,andoursketcheswillbeincomplete,butthesketchesallowustoseethewholesituation.

Example7

Sketchingafactoredpolynomialandsolvinganinequality

a Drawupatableofsignsofthefunction y = (x 1)(x 3)(x 5).

b Statewherethefunctionispositiveandwhereitisnegative.

c Solvetheinequation(x 1)(x 3)(x 5) ≤ 0.

d Confirmtheanswersbysketchingwhatisnowknownaboutthegraph.

Solution

a Therearezeroesat1,3and5,andnodiscontinuities.

x 0123456

y 15030 3015

sign 0 + 0 0 +

b Hence y ispositivefor1 < x < 3or x > 5,and negativefor x < 1or3 < x < 5.

c x ≤ 1or3 ≤ x ≤ 5.

Example8 Factoringapolynomial,solvinganinequality,andsketching thecurve

Solve x3 + 1 ≤ x2 + x usingatableofsigns.Thenconfirmwithasketch.

Solution

Movealltermstotheleft,thenfactorbygrouping,

x 3 x 2 x + 1 ≤ 0

x 2(x 1) (x 1) ≤ 0 (x 2 1)(x 1) ≤ 0 (x + 1)(x 1)2 ≤ 0.

TheLHShaszeroesat1and 1,andnodiscontinuities.

x 2 1012

y 90103

sign 0 + 0 +

Hence x ≤−1or x = 1.

Solvinginequationsinvolvingdiscontinuities

Whenthefunctionhasdiscontinuities,themethodisthesame,exceptthatthetestvaluesnowneedtododge arounddiscontinuitiesaswellasthezeroes.

Again,asketchisusefulforunderstanding.BecausehorizontalasymptotesareinYear12,however,aclueis neededbeforethegraphreallytellsthestory.

Example9 Examiningthesigninafunctionwithdiscontinuities

a Findthezeroesanddiscontinuitiesof y = x 1 x 4 ,andexamineitssign.

bi Write x 1 = (x 4) + 3,hencefindthehorizontalasymptote.

ii Identifytheverticaldiscontinuitiesofthefunction,andsketchit.

Solution

a Thereisazeroat x = 1,andadiscontinuityat x = 4. x 01245

y 1 4 0 1 2 ∗ 4 sign + 0 −∗ +

Hence y ispositivefor x < 1or x > 4,andnegativefor1 < x < 4. x y 4 1 1

bi y = (x 4) + 3 x 4 = 1 + 3 x 4

Hence y → 1as x →∞ andas x →−∞,so y = 1isahorizontalasymptoteinbothdirections.

ii As x → 4 , y →−∞,andas x → 4+ , y →∞,so x = 4isaverticalasymptote.

Example10

Examiningthesigninasituationthatistrivial

Findthezeroesanddiscontinuitiesof y = 1 1 + x2 ,andexamineitssign.

Solution

Thedenominator1 + x2 isalwaysatleast1.Hencethefunctionisdefinedforallreal x,andis alwayspositive.

Atableofsignsisnowunnecessary,butwecandrawoneup.Therearenodiscontinuitiesand nozeroes,soonetestvalue f (0) = 1confirmsthatthefunctionisalwayspositive. x 0 y 1 sign +

ComparingthemethodsofSections6Aand6B

Wenowhavetwowaystosolveaninequationwith x inthedenominator.Forcomparison,hereisaninequality with x inthedenominatorsolvedbothways.Firstitissolvedbymultiplyingbothsidesbythesquareofthe denominator.Thenitissolvedusingatableofsigns.Comparethetwoquitedifferentapproaches.

Example11

Constructingatableoftestpoints

Solve 3 x + 2 ≤ x usingatableofsigns.

Solution

Collectingeverythingontheleft, 3 x + 2 x ≤ 0, usingacommondenominator, 3 x2 2x x + 2 ≤ 0, andfactoring, (3 + x)(1 x) x + 2 ≤ 0.

TheLHShaszeroesat x = 3and x = 1,andadiscontinuityat x = 2.

Sothesolutionis x ≥ 1or 3 ≤ x < 2.

(Nosketchhere—relyjustonthetableofsigns.)

Example12 Multiplyingthroughbythesquareofthedenominator

Solve 3 x + 2 ≤ x byfirstmultiplyingthoughbythesquareofthedenominator.

Solution

Noticethatthecommonfactor(x + 2)isnevermultipliedout.Thatwouldcauseaseriousproblem,becauseof theeffortrequiredtore-factortheexpandedcubic.

x + 2

× (x + 2)2 3(x + 2) ≤ x(x + 2)2,and x 2, x(x + 2)2 3(x + 2) ≥ 0,and x 2, (x + 2)(x 2 + 2x 3) ≥ 0,and x 2, (x + 2)(x + 3)(x 1) ≥ 0,and x 2.

TheLHScannowbesketchedusingatableofsigns.

Fromthegraph,

Exercise6B FOUNDATION

Thepurposeofthisexerciseistosolveinequationsusingatableofsigns.Inthecaseofpolynomials,thistable alsoallowsthesketchtobedrawn,asinSection3G.Asketchmakesthesituationclearer,butthesketchisnot necessaryforobtainingthesolution.

1 UsethegivengraphoftheLHStohelpsolveeachinequation. x y

(x 1)(x 2) ≤ 0 a

2a Explainwhythezeroesof y =

Thencopyandcompletethetableofsigns.

b Usethetableofsignstosolve(x + 1)2(1 x) ≥ 0.

c Sketchthegraphtoconfirmthesolutioninpart(b).

3 Usethethreestepsofthepreviousquestiontosolveeachinequation.

4 Firstfactoreachpolynomialcompletely,thenusethemethodsofQuestions2and3tosketchitsgraph. (Hint:takeoutanycommonfactorsfirst.)

5 Fromthegraphsinthepreviousquestion,orfromthetablesofsignsusedtoconstructthem,solvethe followinginequations.Beginbygettingalltermsontotheoneside.

6 Here isQuestion10fromExercise6A.Thistime,collectalltermsontheLHSasasimplifiedsingle fraction.Findthezeroesanddiscontinuitiestouseinatableofsigns,andhencesolveeachinequation.

7a Findthezeroesanddiscontinuitiesof y = x2 x 3 and constructatableofsigns.

b Hencesolve x2 x 3 < 0.

8 Ifnecessary,collectalltermsontheLHSandfactor.Findanyzeroesanddiscontinuities,thendrawupa tableofsignswithinterlacingvaluesinordertosolvetheinequation.

9a Factoreachequationcompletely,andhencefindthe x-interceptsofthegraph.Factorparts(ii)and(iii)by groupinginpairs.

b Foreachfunctioninthepreviousquestion,examinethesignofthefunctionaroundeachzero,andhence drawagraphofthefunction.

10 Findallzeroesofthesefunctions,andanyvaluesof x wherethefunctionisdiscontinuous.Thenanalysethe signofthefunctionbytakingtestpointsaroundthesezeroesanddiscontinuities.

11 Multiplythroughbythesquareofthedenominator,collectalltermsononesideandthenfactortoobtain afactoredcubic.Sketchthiscubicbyexaminingtheinterceptsandthesign.Hencesolvetheoriginal inequation.

12 Solvetheinequationsinthepreviousquestionbythealternativemethodofcollectingeverythingonthe LHS,findingacommondenominator,identifyingzeroesanddiscontinuities,anddrawingupatableof signs.

CHALLENGE

13a Provethat f (x) = 1 + x + x2 ispositiveforall x.

b Provethat f (x) = 1 + x + x2 + x3 + x4 ispositiveforall x.Considerseparatelythethreecases x ≥ 0, 1 < x < 0and x ≤−1.Groupthefivetermsintopairsindifferentwayswiththesecondandthirdcases. c Usesimilarmethodstoprovethatforallintegers n ≥ 0, f (x) = 1 + x + x 2 + ··· + x 2n 1 + x 2n ispositiveforall x.

d Provethat x = 1istheonlyzeroof f (x) = 1 + x + x2 + + x2n 1,forallpositiveintegers n

14 Let f (x) = a 2 1 x + a 1 x a with a > 1.

Forwhatvaluesof k does f (x) = k haveasolution? a Solve f (x) < 2usinganyappropriatemethod. b

Nowchooseasuitablevaluefor a anduseshiftingtosolve 1 x 1 1 x 7 < 4 3 . c

SAMPLEPAGES

6C Sketchingreciprocalfunctions

Learningintentions

• Sketchthereciprocalofafunctiongiventhegraphofthefunction.

• Determineitsverticalandhorizontalasymptotes,anditsdomainandrange.

Section6C–6Epresentfurtherwaystotransformorcombinegraphs.Ineachcase,theemphasiswillbemoreon therelationshipbetweenthegraphsthanontheequationsofthevariousfunctions.

Thissectionsketchesthereciprocalfunction g(x) = 1 f (x) ofagraphedfunction f (x).Readingfromthegraphof y = f (x),wedeveloppropertiesofthisreciprocalfunction y = g(x),andusethesepropertiestosketch y = g(x). Thereciprocaltrigfunctions—cosec,sec,andcot—aredevelopedinChapter7.

Thesignandhorizontalasymptotes

Therearemanysmalldetailsinvolvedinsketchingreciprocals,soitisbettertogiveseveralexamples,then followthemwithsomegeneralstatements.

Example13 Analysingsignandhorizontalasymptotes

Thesketchshows y = 2x.Let g(x) = 1/ f (x)bethereciprocalfunctionof f (x).

Reasoningfromthesketch:

a Whatsigndothevaluesof y = g(x)have?

b Whatisthe y-interceptof y = g(x)?

c Whathappensto y = g(x)as x →∞?

d Whathappensto y = g(x)as x →−∞?

e Hencesketch y = g(x).

f Whatarethedomainandrangeof f (x)and g(x)?

Solution

a f (x)isalwayspositive,soitsreciprocalisalwayspositive.

b f (0) = 1,andthereciprocalof1is1,so g(0) = 1.

c As x → +∞, f (x) →∞,so g(x) → 0+ ,sothe x-axisisahorizontalasymptote ontheright.

d As x →−∞, f (x) → 0+ ,so g(x) → +∞

f Theybothhavedomainallreal x,andrange y > 0.

Note: g(x) = 2 x is,ofcourse,thereflectionof y = f (x)inthe y-axis.Butthe intentionhereistoargueusingreciprocals. e y

8Graphingthereciprocal—signandhorizontalasymptotes

Let f (x)beagraphedfunction,andlet g(x) = 1/ f (x)beitsreciprocalfunction.

• When f (x)issmallandpositive, g(x)islargeandpositive.

▷ When f (x)islargeandpositive, g(x)issmallandpositive.

• When f (x) = 1, g(x) = 1,andviceversa.

• If f (x) → +∞ as x →∞,then g(x) → 0+ as x →∞,

▷ andthe x-axisisahorizontalasymptoteontheright.

• If f (x) → 0+ as x →∞,then g(x) → +∞ as x →∞.

Thelasttwodotpointshaveequivalentbehaviourontheleft. Allfourdotpointshaveequivalentbehaviourwhen f (x)isnegative.

Zeroesandverticalasymptotes

Again,aninitialexampleshouldmakesthingsclear.

Example14

Analysingzeroesandverticalasymptotes.

Sketch f (x) = x 2,thenwith g(x) = 1/ f (x),andreasoningfromthesketch:

a Whereis g(x)undefined?

b Does y = g(x)haveanyzeroes?

c Whereis y = g(x)aboveandbelowthe x-axis?

d Identifyanyverticalasymptotes.

e Identifyanyhorizontalasymptotes.

f Whatisthe y-interceptof y = g(x)?

g Wheredoes y = g(x)intersectwith y = f (x)?

h Hencesketch y = g(x)onthesamesetofaxes.

i Whatarethedomainandrangeof f (x)and g(x)?

Solution

a Zerohasnoreciprocal,so g(x)isundefinedatthezero x = 2of f (x).

b Thenumberzeroisnotthereciprocalofanynumber,so g(x)isneverzero.

c g(x)ispositivewhen f (x)ispositive,andnegativewhen f (x)isnegative.

d As x → 2+ , f (x) → 0+ ,so g(x) → +∞ As x → 2 , f (x) → 0 ,so g(x) →−∞. Hence x = 2isaverticalasymptote.

e As x → +∞, f (x) →∞,so g(x) → 0+ . As x →−∞, f (x) →−∞ ,so g(x) → 0 Hencethe x-axisisahorizontalasymptoteleftandright.

f When x = 0, f (0) = 2,so g( 2) = 1 2

g Theonlynumbersthataretheirownreciprocalare1and 1. Hence y = f (x)and y = g(x)intersectat(1, 1)and(3,1).

i Domain:For f (x),allreal x.For g(x), x 2.

Range:For f (x),allreal y.For g(x), y 0.

y

9Graphingthereciprocal—zeroesandverticalasymptotes

Let f (x)beagraphedfunction,andlet g(x) = 1/ f (x)beitsreciprocalfunction.

• Zeroistheonlynumberthathasnoreciprocal.

▷ Hence g(x)isundefinedateveryzeroof f (x).

UNCORRECTEDSAMPLEPAGES

• Zeroistheonlynumberthatisnotareciprocalofanynumber.

▷ Hence g(x)isneverzero.

• When f (x)hasazero, y = g(x)normallyhasaverticalasymptote(butcheck,becausetherearesome ratherbizarreexceptions).

Domainandrange

Thesedeserveparticularattention.

10Graphingthereciprocal—domainandrange

Let f (x)beagraphedfunction,andlet g(x) = 1/ f (x)beitsreciprocalfunction.

• Thedomainof g(x)isthedomainof f (x)withallthezeroesof f (x)removed.

• g(x)isneverzero,sotherangeof g(x)doesnotcontainzero.

Twowarningsaboutzero,infinity,andreciprocals

• Infinityisnotanumber: Don’teverbetemptedtosaythatif f (x)hasanasymptoteat x = a,thenthe function g(x) = 1/ f (x)iszeroat x = a.

Thesymbols ∞ and −∞ arepartofmathematics,buttheyarenotnumbers,andtheycertainlydonothave reciprocals.

• Thereciprocalofthereciprocalmaynotbetheoriginalfunction: Referringtoourpreviousexample,startinsteadwithreciprocalfunction,thatis, let f (x) = 1 x 2 .Then f (x)isundefinedat x = 2,soitsreciprocal g(x) = 1/ f (x) isalsoundefinedat x = 2. Thatis, g(x) = x 2,where x 2.

Thisisnottheoriginalline y = x 2oftheexample,becauseitszero x = 2hasnow beenremoved.

Sketchingthereciprocalfromthegraph,withnoequation

Inthepreviousexamples,theequationofthefunctionwasthereforreference.Butinthetwoexamplesbelow, onlythesketchisgiven.

Example15 Sketchingthereciprocalfromagraph

Giveneachsketchof y = f (x)below,sketch g(x) = 1/ f (x),thenstatethedomainandrangeof g(x).

a x y b x y

Solution

a Thepoint( 3,2)iscalleda localmaximum becauseforasmall regionaround x = 3, f (x)isgreatestat x = 3.Similarly,(3, 2)is calleda localminimum

Corresponding, g(x)hasalocalminimumat( 3, 1 2 )andalocal maximumat(3, 1 2 ).

Thedomainof g(x)is x 4,0or4(removethezeroes),andthe rangeof g(x)is y 0.

b As x →∞, f (x) → 2,so g(x) → 1 2 ,so y = 1 2 isahorizontalasymptoteonthe right.

Similarly,as x →−∞,

isahorizontal asymptoteontheleft.

Domainof g(x): x 0.Range: y <

Localmaximaandminima,andhorizontalasymptotes

Part(a)introducedtheideaof localmaximaandminima,andtheirrelationshipwiththereciprocalfunction.

Part(b)showedhowtodealwithhorizontalasymptotesotherthanthe x-axis.

Exercise6C

FOUNDATION

Note: Question9and13concernthegraphsofthethreetrigonometricfunctionssin θ,cos θ,andtan θ.The graphsaredrawninthequestions,butreadersunfamiliarwiththemmayliketodelayattemptingthese questionsuntilafterstudyingChapter7.

1a Sketch y = 1 x 1 aftercarryingoutthefollowingsteps.

i Statethenaturaldomain,andfindthe y-intercept.

ii Findanypointswhere y = 1or y = 1.

iii Explainwhy y = 0isahorizontalasymptote.

iv Drawupatableofvaluesandexaminethesign.

v Identifyanyverticalasymptotes,andusethetableofsignstowritedownitsbehaviournearany verticalasymptotes.

b Repeatfor y = 2 3 x c Repeatfor y = 2 x + 2 d Repeatfor y = 5

2 Followsteps(i)–(v)ofQuestion1(a)toinvestigatethefunction y = 2 (x 1)2 andhencesketchitsgraph.

Showanypointswhere y = 1.

3 Investigatethedomain,zeroes,signandasymptotesofthefunction y = 1 (x 2)2 andhencesketchits graph.Showanypointswhere y = 1.

4a Let f (x) = x + 1.

Graph y = f (x)showingtheinterceptswiththeaxes. i Alsoshowthepointswhere f (x) = 1and f (x) = 1. ii

Henceonthesamenumberplanesketch y = 1 f (x) iii

b Followsimilarstepsforthefunction g(x) = 2 x.

5 Let y = f (x)where f (x) = 1 3 (x + 1)(x 3).

a Showthat y = 1at x = 1 √7and x = 1 + √7.Plotthesepoints.

DEVELOPMENT

b Completethegraphof y = f (x)showingthevertex,theinterceptswiththeaxesandthepointswhere f (x) = 1.

c Whatistherangeof y = f (x)?

d Hencesketch y = 1 f (x) onthesamenumberplane.

e Whatistherangeof y = 1 f (x) ?

6a Followsimilarstepstoquestion5tosketch y = 1 4 (4 x2)and y = 4 4 x2

b Whatistherangeof y = 1 4 (4 x2)?

c Whatistherangeof y = 4 4 x2 ?

7a Sketch y = 1 2 (x2 + 1)showingthepointswhere y = 1.

b Whatistheminimumvalueof 1 2 (x2 + 1)?

c Sketch y = 2 x2 + 1 onthesamenumberplane.

d Explainwhythe x-axisisanasymptoteto y = 2 x2 + 1 .

e Whatisthemaximumvalueof 2 x2 + 1 ?

8 Let f (x) = x2 + 2x 3.

Whatisthemaximumof f (x)? a

Sketch y = f (x)and y = 1 f (x) onthesamenumberplane. b

Explainwhythe x-axisisanasymptotefor y = 1 f (x)

c Whatistheminimumof 1 f (x) ? d

9 Thediagramsshowfirst y = cos θ then y = sin θ for0◦ ≤ θ ≤ 360◦ . y 180° 360° y

ai Copythesketchof y = cos θ,andaddtoitthesketchof y = 1 cos θ

ii Whatarethedomainandrangeof y = 1 cos θ inthisinterval?

bi Copythesketchof y = sin θ,andaddtoitthesketchof y = 1 sin θ .

ii Whatarethedomainandrangeof y = 1 sin θ inthisinterval?

10 Provethatthesymmetryofafunctionispreservedwhentakingreciprocals.Thatis,provethatthe reciprocalofanevenfunctionisanevenfunction,andprovethatthereciprocalofanoddfunctionisanodd function.

11a Graph y = 2 + x x byfirstnotingthat y = 1 + 2 x

b Hencegraph y = x 2 + x

12 Sketchthereciprocalofeachfunctionshown,showingallsignificantfeatures.

13 Thesketchshows y = tan θ for0◦ ≤ θ ≤ 360◦ .

a Whatisthedomainof y = tan θ inthisinterval?

b Whereistan θ = 0inthisinterval?

c Hencestatethedomainof y = 1 tan θ inthisinterval.

d Whatislim θ→90◦ 1 tan θ ?

e Copythegraphof y = tan θ,andaddtoitthegraphof y = 1 tan θ

f Whatistherangeofthereciprocalfunction? y

14 Ineachcasethegraphof y = f (x)isgiven.Sketchthegraphof y = 1 f (x) ,payingcarefulattentiontothe domain,anyasymptotes,andanyrelevantlimits.

y x a y x b

CHALLENGE

15 TheargumentsinthesolutiontoExample15(a)seemstorelyonthefollowingassertionaboutthegraphsof afunction y = f (x)anditsreciprocalfunction y = ( f (x)) 1: ‘Whenonecurvehasalocalmaximum,theotherhasalocalminimum.’ Thisstatementisnotstrictlytrue.Statethequalificationthatneedstobemadeinthisstatement,andgivean examplewherethequalificationisnecessary.

16 Let y = 1 x 2 .Writedownpreciselytheequationofthereciprocalfunction.

6D Sketchingsumsanddifferences

Learningintentions

• Sketchthesumanddifferenceoftwographedfunctions.

Theproblemaddressedinthissectionistotakethesketchesoftwofunctions f (x)and g(x),andworkingjust fromthosesketches,sketchtheirsumanddifference:

s(x) = f (x) + g(x)and d(x) = f (x) g(x).

Thepronumerals s(x)and d(x)usedherearenotanymathematicalconvention,theyarejustconvenientnotation inthissection.

Theword‘ordinate’

The ordinate ofapointisthe y-coordinate,ormoregenerally,thecoordinateontheverticalaxis.Theoperations inthissectionandthenextroutinelyactonthe y-coordinatesofpoints,sothisshorterwordisuseful.The coordinateonthehorizontalaxisissometimesreferredtoasthe‘abcissa’,plural‘abcissae’,butthatwordisnot necessaryinthecourse.

Sketchingthesumoftwosketchedfunctions

Thegraphsoftwofunctions f (x)and g(x)aresketchedtotheright,andwewantto sketchthesum s(x) = f (x) + g(x).Theequationsofthefunctionswillusuallynotbe given,butitisconvenienttostatethemherewhiledevelopingthemethod.Theyare:

f (x) = x 2 36and g(x) = 5x , andhereisatablesofvalues:

Eachordinateof s(x)isthesumoftheordinatesof f (x)and g(x).Thisisthekey ideathatleadstoeverythingelse.Thesecondsketchadds y = s(x)totheothertwo graphs.

Nowletusconsiderhowwecouldhavesketched s(x)ifwehadnothadthe equations. x y ygx() ysx() yfx()

0 Addtheordinateswherepossible—thekeyidea.Thishasbeendoneinthetopdiagram.

1 Ifonecurve,say f (x),hasazeroat x = a,then

s(a) = 0 + g(a) = g(a), so s(x)hasthesameordinateas g(x)at x = a,andthecurvesmeetthere. Thishappensatboththezeroes x = 6and x = 6of f (x) = x2 36,where s(x)meets g(x).Italsohappensat thezero x = 0of g(x) = 5x,where s(x)meets f (x).

2 Iftheordinatesareoppositesat x = a,then

s(a) = f (a) + g(a) = 0,

so s(x)hasazeroat x = a.Thishappensat x = 9andat x = 4.

3 Ifthetwocurvesmeetat x = a,sothattheirordinatesareequal,then

s(a) = f (a) + g(a) = 2 f (a)(or2g(a)) andtheordinateof s(x)istwicetheordinateof f (x)(orof g(x)).Thishappensat x = 4andat x = 9.

Wecannotfindfromthegraphsalonetheprecisepositionoftheminimum,sointheabsenceoftheequations, thisisnotrequiredinthesketch.Butonceweknowtheequations,theminimumisthevertexoftheparabola

s(x) = (x 2 36) + 5x = x 2 + 5x 36 = (x + 9)(x 4), wheretheaverageofthezeroesis x = 1 2 (4 9) = 2 1 2 ,and s( 2 1 2 ) = 42 1 4 .

Anexampleofaddinggraphswithasymptotes

Hereisanexampleinwhichonecurvehasahorizontalandavertical asymptote.Asuccessionofstepsallowustosketchthesum s(x) = f (x) + g(x).

1 Thecurvesintersectat(2,2)andat( 1, 1),so

s(2) = f (2) + g(2) = 2 + 2 = 4,

s( 1) = f ( 1) + g( 1) = 1 + ( 1) = 2.

2 Thecurve y = f (x)hasazeroat x = 2,so

s( 2) = f ( 2) + g( 2) = 0 + ( 2) = 2.

3 Addtheordinatesat x = 1,so

s(1) = f (1) + g(1) = 3 + 1 = 4.

4 Therearenovaluesof x whereordinatesareopposites,so s(x)hasno zeroes.

5 Becausetherearenozeroesfor s(x),itcanonlychangesignatthe asymptote x = 0(nextstep).Hence s(x)isnegativefor x < 0,andpositive for x > 0.

Dealingwiththehorizontalandverticalasymptotesof f (x):

6 Vertically,onbothsidesofthe y-axis:

As x → 0+ , f (x) → +∞ and g(x) → 0,so s(x) → +∞.

As x → 0 , f (x) →−∞ and g(x) → 0,so s(x) →−∞. Thusthe y-axisisaverticalasymptoteto y = s(x).

7 Horizontally,ontherightandtheleft:

As x →∞, f (x) → 1and g(x) → +∞,so s(x) → +∞. As x →−∞, f (x) → 1and g(x) →−∞,so s(x) →−∞.

Note: Thereisafinaldetailthatseemsbeyondthecourse,buthasbeenaddedtothediagramforcompleteness. Youwillseethatathirdasymptote,anobliqueasymptote,hasbeendrawn.Hereistheargumentforit. Forlargevaluesof x,positiveornegative, f (x)isalmost1,so y = s(x)isalmostthesamegraphas y = 1 + g(x).

Hence y = s(x)eventuallylookslikealineparallelto y = g(x).

Havingnowarguedfromthegraphsalone,wewillnowrevealtheequationsofthetwofunctions—theyare f (x) = 2 x + 1and(obviously) g(x) = x.Theirsumis

s(x) = x + 1 + 2 x = x2 + x + 2 x . Thishasnozeroesbecausethediscriminant ∆= 1 8 = 7isnegative,andclearlythegraphhasavertical asymptoteat x = 0.

UNCORRECTEDSAMPLEPAGES

Summaryofsketchingthesumoftwosketchedfunctions

11Sketchingthesumoftwosketchedfunctions

• Tosketchthesum s(x) = f (x) + g(x)oftwosketchedfunctions:

0 Addtheordinateswhereverpossible.Thisisthekeyidea.

• Somesystematicapproaches:

1 Ifonecurvehasazero,then s(x)meetstheothercurveatthatvalueof x.

2 Ifthecurvesmeet,thentheordinateof s(x)isdoubletheordinateof f (x).

3 Iftheordinatesof f (x)and g(x)areopposites,then s(x)hasazero.

4 Thesignof s(x)everywherewillusuallybeclearnow.

• Toclarifyanyverticalorhorizontalasymptoticbehaviour:

5 If f (x) →∞ or g(x) →∞,thensoalsodoes s(x).

If f (x) →−∞ or g(x) →−∞,thensoalsodoes s(x).

If,however, f (x)and g(x)goinoppositedirections,wemaynotbeabledeterminewhathappens withthesum.

AsdiscussedinSection5A,atranslationof y = f (x)up5is y = f (x) + 5.Thisis f (x) + g(x)where g(x) = 5isa constantfunction,sotranslationsupanddownarespecialcasesoftheconstructioninthissection.

Sketchingthedifferenceoftwosketchedfunctions

Nowletussketchthedifference d(x) = f (x) g(x)ofthesametwofunctions f (x) = x 2 36and g(x) = 5x , butthistimewewillworkfromthesketchesaloneandthenconfirmthesketchusing atableofvalues.Thedifferenceisthesumof f (x)and g(x),soitcouldbedoneby reflecting g(x)inthe x-axisandthenaddingthegraphs,butitiseasiertosketchitin onestep. x y ygx() yfx()

0 Subtracttheordinateswherepossible—thekeyidea.

1 If f (x)hasazeroat x = a,then d(a) = 0 g(a) = g(a),sotheordinateof d(x)is theoppositeoftheordinateof f (x).Thishappensat x = 6andat x = 6. If g(x)hasazeroat x = a,then d(a) = f (a) 0 = f (a),sotheordinateof d(x)isthe sameastheordinateof f (x),andthecurve d(x)meetsthecurve f (x).Thishappens at x = 0.

2 Iftheordinatesof f (x)and g(x)areopposites,thentheordinateof d(x)isdoublethe ordinateof f (x).Thishappensat x = 9andat x = 4.

3 Ifthetwocurvesmeetat x = a,thentheyhaveequalordinatesthere,so d(x)hasa zeroat x = a.Thishappensat x = 4andat x = 9. x y ygx() yfx() ydx()

Hereisatableofvaluestoconfirmthesearguments: x 9 6 4

f (x) 450 20 35 36 35 20045

g(x) 45 30 20 505203045

d(x) 90300 30 36 40 40 300

Again,wecannotfindfromthegraphsalonethepreciselocationoftheminimum,soitisnotneededinthe sketch.Itisthevertexoftheparabola y = d(x).Readersshouldcompletethesquarefor d(x)andshowthatthe vertexis(2 1 2 , 42 1 4 ).

Subtractinggraphswithasymptotes

Theprocedureshereareverysimilartothepreviousexampleofaddinggraphswithasymptotes,sothereisno needforanotherexample—andkeepinmindthatsubtractinggraphsmeansaddingtheoppositeofthesecond graph.

ThestructuredQuestion10inExercise4Dbelowpresentsthestepsinsubtractinggraphs,andtheEnrichment Question15dealswiththeobliqueasymptotes.

12Sketchingthedifferenceoftwosketchedfunctions

• Tosketchthedifference d(x) = f (x) g(x)oftwosketchedfunctions.

0 Subtracttheordinateswhereverpossible.Thisisthekeyidea.

• Somesystematicapproaches:

1 If f (x)hasazeroat x = a,then d(a) = g(a).

If g(x)hasazeroat x = a,then d(a) = f (a).

2 Ifthecurvesmeetat x = a,then d(a)hasazerothere.

3 Iftheordinatesareoppositesat x = a,then d(a) = 2 f (a) = 2g(a).

4 Thesignof d(x)everywherewillusuallybeclearnow.

• Toclarifyanyverticalorhorizontalasymptoticbehaviour:

5 If f (x) →∞ or g(x) →−∞,then d(x) →∞

If f (x) →−∞ or g(x) →∞,then d(x) →−∞

If,however, f (x)and g(x)gointhesamedirection,wemaynotbeabledeterminewhathappens withthedifference.

Domainandrangeofthesumanddifference

Theseneedattention,butthereisnorealdifficultyinvolved.

13Domainandrangeofthesumanddifference

Let s(x)and d(x)bethesumanddifferenceoftwofunctions f (x)and g(x).

• s(x)and d(x)havedomaintheintersectionofthedomainsof f (x)and g(x).

• Sortouttherangesof s(x)and g(x)fromthegraphs,ortheequations.

Exercise6D

FOUNDATION

1 Eachdiagrambelowshowsthegraphoftwofunctions, y = f (x)and y = g(x).Copyeachdiagramtoyour bookanddrawthegraphof y = f (x) + g(x),byaddingordinates.Trytodistinguishtheoriginalgraphsfrom thegraphofthesum—usedifferentcolours,ordottheoriginalgraphs.

2 CopyeachdiagraminQuestion1toafreshnumberplane.Subtractordinatestosketchthegraphsof y = f (x) g(x).

3 Thediagramtotherightshowsthegraphsof y = f (x),where f (x) = x4,andof y = g(x),where g(x) = x2

a Copythediagramtoyourbook.

b Onthesamesetofaxesandinadifferentcolour,sketch y = f (x) g(x)by subtractingordinates.Paycarefulattentiontopointswherethegraphscross, andtothezeroesof f (x)and g(x). x y

4 Thediagramtotherightshowsthegraphsof y = f (x),where f (x) = x2,andof y = g(x),where g(x) = x.

a Copythediagramtoyourbook.

b Onthesamesetofaxesandinadifferentcolour,sketch y = f (x) + g(x) byaddingordinates.Paycarefulattentiontopointswhere g(x) = f (x), becauseatthosepoints f (x) + g(x) = 0.Noticealsothezeroesof f (x) because f (x) + g(x) = f (x)atthosepoints,andthezeroesof g(x),because f (x) + g(x) = g(x)atthosepoints.

5a Plot y = x3 and y = x onthesamenumberplane,notinganypointsofintersection.

b Hencesketchthegraphofthedifference, y = x3 x.

6 Sketch y = x4 and y = x(2 x),thensketchthedifference y = x4 x(2 x).

7 Whensketchingthesumsofabsolutevaluegraphsinthisquestion,itishelpfultorememberthatthesum oftwolinearfunctionsisitselfalinearfunction.Thusthefollowinggraphswillbemadeupofstraight-line sections.

a Graph f (x) = |x + 1| and g(x) = |x 1|,thengraph: y = f (x) + g(x) i y = f (x) g(x) ii

b Graph f (x) = |2x| and g(x) = |x 1|,thengraph:

y = f (x) + g(x) i y = f (x) g(x) ii

8 Graphsthefunctions y = x2 and y = |x| onthesamesetofaxes.

ai Explainwhythegraphof y = x2 + |x| mustlieabovebothoriginalgraphs.

ii Hencesketchthesum y = x2 + |x|.Takecarewiththeshapeat x = 0.

bi Explainwhythegraphof y = x2 −|x| isonorbelowthe x-axisfor 1 ≤ x ≤ 1.

ii Hencesketchthedifference y = x2 −|x|.Takecarewiththeshapeat x = 0.

9a Sketch y = √x and y = x,payingcarefulattentiontothedomainandtothepointswherethesegraphs intersect.

b Hencesketch y = x √x.

10 Thegraphontherightisarepeatoftheoneusedinthetheorytoinvestigate thesumoffunctionsthatinvolvesanasymptote.Inthisquestionyouwill investigatetheirdifference

d(x) = f (x) g(x).

a Thegivencurvesintersectat x = 1and x = 2.Whatfeatureofthegraph of y = d(x)occursatthesevalues?

b Writedownthezeroof f (x)andhenceevaluate d(x)there.

c Evaluate d(1)byusingtheordinatesof f (x)and g(x).

d Copyandcompleteeachstatementrelatingtotheverticalasymptoteof y = f (x).

ii

As x → 0+ , f (x) → ... and g(x) → ... so d(x) → ... i As x → 0 , f (x) → ... and g(x) → ... so d(x)

e Copyandcompleteeachstatementrelatingtothehorizontalasymptoteof y = f (x).

As x → +∞, f (x) → and g(x) → so d(x) → i

As x →−∞, f (x) → and g(x) → so d(x) → ii

f Brieflyexplainwhy d(x)approaches y = 1 x forlargevaluesof x.

g Sketch y = d(x)showingallthesefeatures.

11 Foreachpairoffunctions,firstgraph y = f (x)and y = g(x)onthesamenumberplane.Theninadifferent colourgraphthesum y = f (x) + g(x).

f (x) = 1 x and g(x) = x a f (x) = 1 x and g(x) = 1 x + 2 b f (x) = 2x and g(x) = x 1 c f (x) = 2x and g(x) = 2 x d

12 Foreachpairoffunctionsinthepreviousquestion,sketchthedifference y = f (x) g(x).

13 Itmaybethatif y = f (x)and y = g(x)exhibitevenoroddsymmetrythenweknowthesymmetryof s(x) = f (x) + g(x)andof d(x) = f (x) g(x).

a Trytocompletethefollowingtable,predictingthesymmetryoftheresultingfunctions,andtestyour claimsontheexamplesinthisexercise.

f (x)even, g(x)even f (x)odd, g(x)odd f (x)even, g(x)odd s(x)

d(x)

b Proveformallythatif f (x)and g(x)arebothoddthen s(x)isalsoodd.Thatis,provethat s( x) = s(x) forall x initsdomain.

CHALLENGE

14 Considerthetwofunctions f (x) = 1 2 x 3and g(x) = 1 + 1 x 1 .Thepurposeofthisquestionistosketch thegraph y = f (x) + g(x).

a Findthe x-coordinatesofthepointswhere f (x) = g(x).

b Plottheline y = f (x)andthehyperbola y = g(x)onthesamenumberplane,andmarkthepointsfoundin part(a).

c Showthat f (x) + g(x) ( 1 2 x 2) → 0as x → +∞ andas x →−∞.Addtheline y = 1 2 x 3toyourgraph. Thisisan obliqueasymptote tothecurve y = f (x) + g(x).

d Completeyoursketchofthesum y = f (x) + g(x).

15 Inthetext,thesum s(x) = f (x) + g(x)wasdrawnforthefunctions f (x) = 2 x + 1and g(x) = x,andthe difference d(x) = f (x) g(x)wasdrawninQuestion10.Theobliqueasymptotesof s(x)and d(x)werealso drawn.Thisquestionnowfindstheequationsoftheobliqueasymptotestothetwocurvesbythemethod usedinthepreviousquestion.

a Simplify s(x) = f (x) + g(x),andshowthat s(x) (x + 1) = 2 x .Henceexplainwhy y = x + 1isanoblique asymptotetothecurve y = s(x).

b Similarlysimplify d(x) = f (x) g(x),andsofinditsobliqueasymptote.

6E

Modifyingafunctionusingabsolutevalue

Learningintentions

• Sketch y = | f (x)| and y = f (|x|),giventhegraphof y = f (x).

• Recognisethesefunctionsascompositesof f (x)withtheabsolutevaluefunction.

• Associatetheresultinggraphswithreflectionsintheaxes.

Theprobleminthissectionistotakesomegraph y = f (x),andfromitsketch y = | f (x)| and y = f (|x|).

Theseoperationscanbedoneverysimplyusingreflectionsinthe x-axisand y-axis.

Identifyingthecomposites

Let g(x) = |x| betheabsolutevaluefunction.Then

| f (x)| = g f (x) isthecompositeformedby f (x)followedby g(x),and

f (|x|) = f g(x) isthecompositeformedby g(x)followedby f (x).

Thusthesetwomodifiedfunctions y = | f (x)| and y = f (|x|)arecompositesof f (x)andtheabsolutevaluefunction inthetwopossibleorders.

Areviewoftheabsolutevaluefunction

Ourgraphswillrelyonthealgebraicdefinitionof |x| usingcases:

x,for x ≥ 0(forexample, |5| = 5and |0| = 0) x,for x < 0(forexample, |− 5| = 5).

Expressedinwords:

• Theabsolutevalueofapositivenumberorzeroisunchanged.

• Theabsolutevalueofanegativenumberistheopposite,soispositive. Thusanabsolutevaluecanneverbenegative.

Sketching y = | f ( x)| fromthesketchof y = f ( x)

Eachabsolutevaluetransformationwillbeillustratedinturnusingthegraphtothe right,whichistheparabola

f (x) = (x + 1)(x 3).

Graphing y = | f (x)| requirestwoarguments:

• Whenthegraphisaboveoronthe x-axis, f (x)ispositiveorzero.Hence | f (x)| = f (x),sothegraphisunchanged. y x

• Whenthegraphisbelowthe x-axis, f (x)isnegative.Hence | f (x)| = f (x)isthe oppositeof f (x).

■ Thusreplaceeverypartofthegraphbelowthe x-axisbyitsreflectionbackabove the x-axis.

Atableofvalueshelpstounderstandthesituation:

)

14Tosketch y = | f ( x)| fromthesketchof y = f ( x)

• Everythingaboveandonthe x-axisstaysthesame.

• Replaceeverythingbelowthe x-axisbyitsreflectionbackabovethe x-axis.

Sketching y = f (| x|) fromthesketchof y = f ( x)

Theproceduretograph y = f (|x|)againhastwoarguments:

• Totherightoforonthe y-axis, x ispositiveorzero. Hence |x| = x,sothegraphisunchanged.

• Totheleftof x-axis, x isisnegative,so |x| = x,and f (|x|) = f ( x).

■ Thusreplaceeverypartofthegraphleftofthe y-axisbyitsreflectionbackacross the y-axis.

Thetableofvaluesillustratingthishasapreliminaryrowfor |x|: x 4 3 2 101234

15Tosketch y = f (| x|) fromthesketchof y = f ( x)

• Everythingtotherightofthe y-axisstaysthesame.

• Replaceeverythingleftofthe y-axisbyitsreflectionbackacrossthe y-axis.

Theresultingfunctioniseven,thatis,ithaslinesymmetryinthe y-axis.Toillustratethis,thetableofvaluesis clearlysymmetricabout x = 0.

Combiningthesetransformationstosketch y = f (| x|)

Thesetwoabsolutevaluetransformationcanbecombined,asinthetwoexamplesbelow.

Example16 Combiningthetwotransformations

Earlierinthissection,wesketched f (x) = (x + 1)(x 3)anditstransformations y = | f (x)| and y = f (|x|).Use thesegraphstosketch y = f (|x|) :

Solution

Startwiththeearliersketchofeither | f (x)| or f (|x|). y x

Example17 Comparingallthreemethods

Usingthegraphof y = f (x)sketchedtotheright,sketch:

y = | f (x)|

Solution

y

y = f (|x|)

y = f (|x|) y x

Exercise6E

1 Thegraphof y = f (x)issketchedtotheright.Todraweachtransformation,copy thegraphanddrawthetransformedgraphinadifferentcolouronthesameaxes. Replaceanypartofthegraphbelowthe x-axisbyitsreflectionabovethe x-axis.Thiswillgiveyouthegraphof y = | f (x)|.

a

FOUNDATION

b x y

Graphonlythepartsof y = f (x)thataretotherightofthe y-axis.Thenaddthe reflectionofthesepartsinthe y-axis.Thiswillgiveyouthegraphof y = f (|x|).

Noticethesymmetryinthe y-axis.

c

Usingthegraphof y = f (|x|),replaceanypartofthegraphbelowthe x-axisbyitsrefectionabovethe x-axis.Thisgivesthegraphof y = f (|x|)

d

Usingthegraphof y = | f (x)|,graphonlythepartsthataretotherightofthe y-axis.Thenaddthe reflectionofthesepartsinthe y-axis.Whatdoyounoticeabouttheresultofthisandtheanswertopart (c)?

2 Ineachcase,followthestepsofQuestion1andusethegivengraphof y = f (x)tosketch:

3 Sketcheachgivenfunctionanduseittothensketch:

4a Explainwhythegraphsof y = 2x and y = |2x| arethesame.

b Write y = 2|x| usingcases,thensketchitsgraph. DEVELOPMENT

5a Sketch y = f (x)where f (x) = (x + 1)(x 2),showingall x-interceptsandthevertex.

b Hencesketch:

6 Repeatthestepsofthepreviousquestionforthefunction f (x) = x 1 1.

7a Graph y = f (x),where f (x) = 1 x 1 + 1.Becarefultoidentifyanyinterceptswiththeaxesandany asymptotes.

b Hencesketch:

8a Let f (x) = x(x 2).

Sketch y = f (x). i

Userepeatedtransformationstosketch y = | f (|x|)| ii

b Repeatpart(a)forthefunction f (x) = (x + 1)(3 x).

9a Showthat y = |2 x| isneitherevennoroddandgraphit.

b Showthat y = 2 −|x| isevenandusepart(a)tographthisnewfunction.

c Hencegraph y = 1 2 −|x|

d Finallygraph y = 1 2 −|x| .

10a Let f (x)beanyfunction.Explainwhy g(x) = f (|x|)iseven.

b Let f (x)beanoddfunction.Showthat h(x) = | f (x)| iseven.

11a Whenwillthegraphsof y = f (x)and y = | f (x)| bethesame?

b Whenwillthegraphsof y = f (x)and y = | f (x)| besymmetricinthe x-axis?

CHALLENGE

12a ReadcarefullytheinstructioninQuestion1(b)forgraphing y = f (|x|).Writeasimilarinstructionfor graphing |y| = f (x).

b Testyourinstructionbygraphing |y| = f (x)foreachofthefunctionsinQuestion2.

13 Sketch |y| = |x|

14a Describethegraphof y = f (−|x|)intermsofthegraphof y = f (x).

b Whattypeofsymmetrymust y = f (−|x|)possess?

15 Let f (x)beanyfunction,andlet g(x) = f (|x|)and h(x) = 1 2 ( f (x) + f ( x)).

Provethatboth g(x)and h(x)areevenfunctions. a Are g(x)and h(x)alwaysthesamefunction?Ifsothenproveit,otherwisegiveacounter-example. b

16a Investigatethegraphsofthesequenceoffunctions

b Showthatthe2nd,4th,8th,...functionsinthissequencecanbesimplifiedto

6F

Inverserelationsandfunctions

Learningintentions

• Constructtheformulaoftheinverseofarelationorfunction.

• Usethehorizontallinetesttoseewhethertheinverserelationisafunction.

Mathematicsisfullofinverseprocesses:

• Theinverseofmultiplyingby7isdividingby7—andtheinverseofdividingby7ismultiplyingby7.

• Theinverseofshiftingup3isshiftingdown3—andtheinverseofshiftingdown3isshiftingup3.

• Theinverseofreflectinginthe y-axisisreflectinginthe y-axis—thisprocessisitsowninverse.

Thissectionusesgeometricandgraphicalmethodstoobtaintheinverseofarelation,andtofindasimple geometricconditionfortheinversetobeafunction.

Inverserelations

Cubethenumber5andget125.Theinverseprocessistakingthecuberoot,whichsends125backto5.We candothiswithanynumber,positive,negativeorzero,sothecubingfunction y = x3 hasawell-defined inverse function y = 3 √x thatsendsanyoutputbacktoitsoriginalinput.Whenthesetwofunctionmachinesareput togetherinachain,ineitherorder,the composition ofthetwofunctionsis theidentityfunction thatmapsevery numbertoitself:

UNCORRECTEDSAMPLEPAGES

Theexchangingofinputandoutputcanalsobeseeninthetwotablesofvalues,wherethetworowsare interchanged:

Thisexchangingofinputandoutputmeansthatthecoordinatesofeachorderedpairareexchanged.Rememberingthatarelationwasdefinedsimplyasasetoforderedpairs,weareledtoadefinitionofinversethatcanbe appliedtoanyrelation,whetheritisafunctionornot:

16Inverserelations

• The inverserelation ofanyrelationisobtainedbyreversingeachorderedpair.

• Theinverserelationoftheinverserelationistheoriginalrelation.

Thesecondstatementfollowsfromthefirstbecauseeachorderedpairreturnstoitsoriginalstatewhenreverseda secondtime.Forexample,thepair(2,8)intheoriginalbecomesthepair(8,2)intheinverse,andreversedgoes backto(2,8).

Graphingtheinverserelation

Reversinganorderedpairmeansthattheoriginalfirstcoordinateisreadoff thevertical axis,andtheoriginalsecondcoordinateisreadoff thehorizontalaxis.

Geometrically,thisexchangingofthetwocoordinatescanbedonebyreflectingthe pointinthediagonalline y = x.Thiscanbeseenbycomparingthegraphsof y = x3 and y = 3 √x,whicharedrawnhereonthesamepairofaxes.

17Thegraphoftheinverserelation

Thegraphoftheinverserelationisobtainedbyreflectingtheoriginalgraphinthediagonalline y = x

Domainandrangeoftheinverserelation

Exchanging x-and y-coordinatesmeansthedomainandrangeareexchanged:

18Domainandrangeoftheinverserelation

• Thedomainoftheinverseistherangeoftherelation.

• Therangeoftheinverseisthedomainoftherelation.

Findingtheequationandrestrictionsoftheinverserelation

Whenthecoordinatesareexchanged,the x-variablebecomesthe y-variableandthe y-variablebecomesthe x-variable.Hencethemethodforfindingtheequationandrestrictionsoftheinverseis:

19Theequationoftheinverserelation

• Tofindtheequationandrestrictionsoftheinverserelation,write x for y and y for x everytimeeach variableoccurs.

• Thisprocesscanbeappliedtoanyrelationwhoseequationandrestrictionsareknown,whetherornotit isafunction.

Forexample,theinverseofthefunction y = x3 is x = y3.Thisparticularequationcanthenbesolvedfor y togive y = 3 √x,confirmingthatinthisparticularcase,theinverserelationisagainafunction.

Example18 Graphingfunctionandinversetogether

a Writedowntheinverserelationofthefunction y = x2 .

b Graphbothrelationsonthesamenumberplane,showingthereflectionline.

c Writedownthedomainandrangeofbothrelations.

d Istheinverserelationafunction?

Solution

a Writing x for y and y for x,theinverseis x = y 2 .

c Fortheoriginal,domain:allreal x,range: y ≥ 0. Fortheinverse,domain: x ≥ 0,range:allreal y. Noticehowthedomainandtherangehavebeen swapped.

d Theinverseisnotafunction—itfailsthevertical linetest. b x y

Example19 Graphingfunctionandinversetogether

Repeatthepreviousquestionsforthefunction y = x3 + 2.

Solution

a Writing x for y and y for x,theinverseis x = y 3 + 2, whichis y = 3 √x 2.

c Forboth,domainandrangeareallrealnumbers.

d Theinverseisagainafunction,bytheverticalline test.

Formingtheinversewhentherearerestrictions

Whenthereareanyrestrictions,then x and y mustbeswappedintheseaswell,asinthenextexample.

Example20 Formingtheequationoftheinversewithrestrictions

Considerthefunction y = 2x 3,where x > 1.

a Writedowntheequationandrestrictionoftheinverserelation.

b Rewritetheinverseasafunctionwith y asthesubject,changingtherestrictiontoarestrictionon x

Solution

a Thefunctionis y = 2x 3,where x > 1, sotheinverserelationis x = 2y 3,where y > 1.

b Solvingfor y, y = 1 2 (x + 3),where y > 1. Therestriction y > 1is 1 2 (x + 3) > 1 x

Testinggraphicallywhethertheinverserelationisafunction

Ingeneral,theinverseofarelationisnotafunction.Forexample,thesketchesbelowshowthegraphsofanother function,witharestriction,anditsinverse:

UNCORRECTEDSAMPLEPAGES

Thefirstgraphisafunction,passingthe verticallinetest.Butwhenwereaditbackwards,thevalue y = 3gives twoanswers, x = 1and x = 1.Accordingly,whenwesketchtheinverserelation,weseethatitfailsthevertical linetest,with x = 3crossingthegraphtwice.

Butreflectionin y = x exchangesverticalandhorizontallines!Nowwecanseeimmediatelyfromthefirstgraph thatitsinverseisnotafunction,becauseitfailsthe horizontallinetest —theline y = 3crossesitmorethanonce. Wedidn’tneedtodrawthesecondgraphtoknowthattheinverseisnotafunction.Allweneedtoknowisthat thefirstgraphfailsthehorizontallinetest.

20Horizontallinetestforwhethertheinverseisafunction

• Geometrically,theinverserelationofagivenrelationisafunctionifandonlyifnohorizontalline crossestheoriginalgraphmorethanonce.

Wecouldalsohavedoneittheslowway—solvetheequation x = 4 y2 oftheinverserelationtogive y = √4 x or y = √4 x ,showingagainthatformanyvaluesof x,thereismorethanonevalueof y,sothe inverseisnotafunction.

Exercise6F

1 Drawtheinverserelationofeachrelationbyreflectingintheline y = x

FOUNDATION

2 Usetheverticalandhorizontallineteststodeterminewhichrelationsandwhichinverserelationsdrawnin Question1arealsofunctions.

3 Determineeachinversealgebraicallybyswapping x and y andthenmaking y thesubject. y = 3x 2 a

4 Foreachfunctioninthepreviousquestion,drawagraphofthefunctionanditsinverseonthesamenumber planetoverifythereflectionproperty.Drawaseparatenumberplaneforeachpart.

5a Findeachinversealgebraicallybyswapping x and y andthenmaking y thesubject. y = 1 x + 1 i y = 1 x + 1 ii y = x + 2 x 2 iii y = 3x x + 2 iv

b Forparts(i)and(iv)above,findthedomainandrangeofthefunction,andthedomainandrangeofthe inversefunction.

6 Swap x and y andsolvefor y tofindtheinverseofeachfunction.Whatdoyounotice,andwhatisthe geometricsignificanceofthis?

DEVELOPMENT

7a Grapheachrelationanditsinverserelation,thenfindtheequationoftheinverserelation.Whichofthe fouroriginalrelationsarefunctions,andwhichinverserelationsarefunctions?

= x2 4 iii

b Forparts(i)and(iv)above,findthedomainandrangeoftherelation,andthedomainandrangeofthe inverserelation.

8 Writedowntheinverseofeachfunction,solvingfor y ifitisafunction.Sketchthefunctionandtheinverse onthesamegraphandobservethesymmetryintheline y = x.

9 Eachfunctionbelowhasarestriction.Writedownitsinverserelation.Thenattempttosolveitfor y.Ifthe inverseisafunction,rewritetherestrictionasarestrictionon x.Iftheinverseisnotafunction,giveavalue of x thatcorrespondstotwoormorevaluesof y. y = 3x 10,where x < 2

= x3 + 2,where x < 3

10a Factorise f (x) = x2 2x 3inordertoshowthatthegraphof y = f (x)failsthehorizontallinetest.

b Let g(x) = x2 2x 3for x ≥ 1.Explainwhythisfunctionhasaninverseandfinditsequation.

11a Showthattheinversefunctionof y = ax + b x + c is y = b cx x a .

b Henceshowthat y = ax + b x + c isitsowninverseifandonlyif a + c = 0.

12a Showthattheinverseof y = 2x + 2 x 2 isnotafunction.

b Showthattheinverseof y = 2x 2 x 2 isafunction.

CHALLENGE

13a Showthatifthedomainofanevenfunctioncontainsanon-zeronumber,thenitsinverseisnota function.

b Istheinverseofanoddfunctionalwaysafunction?Ifnot,giveacounter-example.

14a ThepolynomialinQuestion10(a)hastwolinearfactorsandfailsthehorizontallinetest,soitsinverseis notafunction.Explainwhyallpolynomialswithatleasttwolinearfactorsmustautomaticallyfailthe horizontallinetest.

b Doanypolynomialshaveaninversewhichisafunction?

6G Inversefunctionnotation

Learningintentions

• Usethealternativedefinitionofinversefunctionintermsofcomposition.

• Usethestandardnotationfortheinversefunction.

• Restrictafunctionorrelationappropriatelysothatitsinverseisafunction.

Thissectionignoresrelations,anddealsonlywithfunctionsandinversefunctions.

One-to-onefunctions

Afunction f (x)mustbydefinitionpassthe verticallinetest,meaningthateveryvalueof x inthedomain correspondstoexactlyone y-value.Fortheinverseof f (x)tobeafunctionalso, f (x)mustpassthe horizontal linetest,meaningthateveryvalueof y intherangecorrespondstoexactlyone x-value.

Thustheconditionfortheinverseof f (x)tobeafunctionisthat f (x)isa one-to-onecorrespondence betweenthe elementsofthedomainandtheelementsoftherange.Suchafunctioniscalledsimply one-to-one.

21One-to-onefunctions,andtheinverseofafunction

• Afunction f (x)iscalled one-to-one,ora one-to-onecorrespondence,ifforeveryvalueof y inthe range,thereisexactlyoneelement x inthedomainsothat f (x) = y

• Theinverserelationofafunction f (x)isalsoafunction:

▷ ifandonlyif f (x)passesthehorizontallinetest,and

▷ ifandonlyif f (x)isone-to-one,and

▷ ifandonlyiftheequationoftheinversecanbesolveduniquelyfor y.

Thecompositeofafunctionanditsinversefunctionistheidentity

Supposethat f (x)isaone-to-onefunctionwithinversefunction g(x).Then g(x)isalsoaone-to-onecorrespondence,withthesamepairingofthedomainandrangeasprovidedby f (x),butwiththecorrespondingpairs reversed.Whenweapply f (x)then g(x),itisasifnothinghashappened,thatis,

g f (x) = x,forall x inthedomainof f (x).

Andbecause g(x)sendseachnumberbackwhereitcamefrom,itsinverseis f (x),andtheothercomposite f g(x) isalsoanidentityfunction,

f g(x) = x,forall x inthedomainof g(x).

Whenwerestrictdiscussiontofunctions,thesetwoconditionscanbetakenasanalternativedefinitionofan inversefunction:

22Alternativedefinitionofinversefunctionusingcomposition

• Thefunction g(x)istheinversefunctionofafunction f (x)ifandonlyif: g f (x) = x,forall x inthedomainof f (x),and f g(x) = x,forall x inthedomainof g(x).

Thatis,ifandonlyif g f (x) and f g(x) arebothidentityfunctions.

• An identityfunction isafunction I(x)suchthat:

I(x) = x,forall x inthedomainof I(x).

Inversefunctionnotation

Supposethat f (x)isaone-to-onefunction,thatis,itsinverseisalsoafunction.Thenthatinversefunctionis writtenas f 1(x).Theindex 1usedheremeans‘inversefunction’andmustnotbeconfusedwithitsmore commonuseforthereciprocalofanumber.Toreturntotheoriginalexampleinthelastsection, If f (x) = x 3,then f 1(x) = 3 √x

Becareful: f (x) 1 = 1 f (x)

Aswehaveseen,theinversefunction f 1(x)isalsoone-to-one,withinverse f (x),andifthefunctionandthe inversefunctionareappliedsuccessivelyineitherorder,theresultistheoriginalnumber.Usingtheexample above,

23Inversefunctionnotation

• Ifafunction f (x)isone-to-one,thenitsinverserelationisalsoaone-to-onefunction,andiswrittenas f 1(x).

• Thecompositeofthefunctionanditsinverse,ineitherorder,sendseverynumberforwhichitis definedbacktoitself:

f 1 f (x) = x,forall x inthedomainof f (x) f f 1(x) = x,forall x inthedomainof f 1(x).

• Tofindtheformulafor f 1(x)fromtheformulafor f (x):

▷ Convertto y = notationtogeneratetheinverserelation.

▷ Write y for x and x for y inalltheequationsandrestrictions.

▷ Solvefor y,andconverttothenotation f 1(x) =

Examples21–22demonstratethemethoddescribedinthefinaldotpoint.

Example21 Verifyingtheformaldefinitionofaninversefunction

Findtheequationof f 1(x)foreachfunction,thenverifythat f 1 f (x) = x and f f 1(x) = x f (x) = x3 + 2 a f (x) = 6 2x,where x > 0 b

Solution

a Let y = x 3 + 2.

Thentheinversehasequation x = y 3 + 2(thekeystep) andsolvingfor y, y = 3 √x 2.

Hence f 1(x) = 3 √x 2.

Verifying, f 1 f (x) = 3 (x3 + 2) 2 = 3 √x3 = x and f f 1(x) = 3 √x 2 3 + 2 = (x 2) + 2 = x

b Let y = 6 2x,where x > 0.

Thentheinversehasequation x = 6 2y,where y > 0(thekeystep) y = 3 1 2 x,where y > 0.

Therestriction y > 0means3 1 2 x > 0 x < 6,

so f 1(x) = 3 1 2 x,where x < 6.

Verifying, f 1 f (x) = f 1(6 2x) = 3 1 2 (6 2x) = 3 3 + x = x and f f 1(x) = f (3 1 2 x) = 6 2(3 1 2 x) = 6 6 + x = x

Example22

Testingwhetherafunctionhasaninversefunction

Findtheinverserelationofeachfunction.Iftheinverseisafunction,findanexpressionfor f 1(x),andverify that f 1 f (x) = x and f f 1(x) = x f (x) = 1 x 1 + x a f (x) = x2 9 b

Whatissurprisingabouttheresultofpart(a)?

Solution

a Let y = 1 x 1 + x .

Thentheinversehasequation x = 1 y 1 + y (thekeystep) × (1 + y) x + xy

(now y occursonlyonce)

Noticethatthisfunction f (x)anditsinverse f 1(x)areidentical,sothatifthefunction f (x)isapplied twice,eachnumberissentbacktoitself.

Thus f f (2) = f 1 3 = 1 1 3 ÷ 2 3 = 2 andingeneral, f f (x) = 1 1 x 1+x 1 + 1 x 1

= (1 + x) (1 x) (1 + x) + (1 x) = x

b Thefunction f (x) = x2 9failsthehorizontallinetest.Forexample, f (3) = f ( 3) = 0,whichmeansthat the x-axismeetsthegraphtwice.Hencetheinverserelationof f (x)isnotafunction. Alternatively,theinverserelationis x = y2 9,whichonsolvingfor y gives y = √x + 9or √x + 9, whichisnotunique,sotheinverserelationisnotafunction.

Restrictingthedomainsotheinverseisafunction

Whenafunctionisnotone–to-one,thatis,itsinverseisnotafunction,itisoftenconvenienttorestrictthe domainofthefunctionsothatthisnewrestrictedfunctionhasaninversefunction.

Theclearestexampleisthesquaringfunction f (x) = x2,whoseinverserelationisnotafunctionbecause,for example,49hastwosquareroots,7and 7.

If,however,werestrictthedomainof f (x) = x2 to x ≥ 0anddefineanew restrictedfunction

g(x) = x 2,where x ≥ 0,

thenthenewrestrictedfunction g(x)isone-to-one,andthushasaninverse function.Thisinversefunctionhasequation g 1(x) = √x,whereasexplained earlier,thesymbol √ means‘takethepositivesquareroot(orzero)’.

Totherightarethegraphsoftherestrictedfunctionanditsinversefunction,with theunrestrictedfunctionanditsinverserelationshowndotted.

TheseideaswillbedevelopedagreatdealfurtherinYear12,wheninverseofthetirgonometricfunctionsare developed.

Exercise6G

1 Let f (x) = 2x 8and g(x) = 1 2 x + 4.

a Verifybysubstitutionthat: g f (5) = 5 i f

b Whatdoyouconcludeaboutthefunctions f (x)and g(x)?

FOUNDATION

2 Eachpairoffunctions f (x)and g(x)areknowntobemutualinverses.Showineachcasethat f g(2) = 2 and g f (2) = 2,andthat f g(x) = x and g f (x) = x.

f (x) = x + 13and g(x) = x 13 a

(x) = 7x and g(x) = 1 7 x b f (x) = 2x + 6and g(x) = 1 2 (x 6) c f (x) = x3 6and g(x) = 3 √x + 6 d

3a Findtheinversefunction f 1(x)of f (x) = 2x + 5.Begin‘Let y = 2x + 5’,thenswap x and y tofindthe inverse,thensolvefor y,thenwritedowntheequationof f 1(x).

b Checkyouranswerbycalculating f 1 f (x) and f f 1(x)

c Similarlyfindtheinversefunctionsofeachfunction,andcheckeachanswer.

f (x) = 4 3x i f (x) = x3 2 ii

4 Explainwhethertheinverserelationisafunctionbytestingwhetheritisone-to-one.Ifitisafunction,find f 1(x),specifyingitsdomain.Thenverifythetwoidentities f 1 f (x) = x and f f 1(x) = x

f (x) = x2 a f (x) = √x b f (x) = x4 c f (x) = x3 + 1

(x) = x + 1 x 1 l

5 Let f (x)betherestrictedfunction f (x) = 3x 2,where1 ≤ x ≤ 4.

a Findtheinversefunction f 1(x),beingcarefultoadditsrestriction.

b Showthat f 1 f (x) and f f 1(x) arebothidentityfunctions,andfindtheirrespectivedomains.A sketchmaymakethesituationclearer.

6a Whatisthegradientoftheline y = ax + b?

b Writedowntheinverserelationof y = ax + b

c Whataretheconditionsforthisinverserelationtobeafunction?

d Whentheinverseisafunction,solveitfor y,finditsgradient,andexplainwhythegradientsofthe functionanditsinversebothhavethesamesign.

e Giveanargumentusingreflectionintheline y = x foryouranswersinpart(c).

7 Sketchonseparategraphs:

y = x2 a y = x2,for x ≥ 0 b

Drawtheinverseofeachonthesamegraph,thencommentonthesimilaritiesanddifferencesbetweenparts (a)and(b).

8 Theparabola y = f (x),where f (x) = (x 3)2 + 1,hasitsvertexat(3,1).Theinverseof f (x)isnota function.

ai Janinesaysthatwhensheappliestherestriction x ≥ a to f (x)theinverseisafunction.Whatisthe leastvalueof a?

ii Findtheequationoftheinverseinthiscase.

bi Jacobsaysthatwhenheappliestherestriction x ≤ b to f (x)theinverseisafunction.Whatisthe greatestvalueof b?

ii Findtheequationoftheinverseinthiscase.

9a Let f (x) = x2 2x 3withtherestriction x ≥ a.Itisknownthattheinverseof f (x)isafunction.Using thepreviousquestionasaguide,findtheleastvalueof a andfind f 1(x)inthatcase.

b Dothesameforthefunction f (x) = 5 4x x2 withtherestriction x ≤ a

10a Let f (x)and g(x)beone-to-onefunctions.Thatis,bothpassthehorizontallinetest.Let h(x) =

Showthattheinversefunctionof

bi Findtheinversefunctionof h(x) = 1 x 3 .

ii Express h(x)asthecompositionofthereciprocalfunctionandalinearfunction,andhenceuse part(a)tofinditsinversefunction.

11 Suggestrestrictionsonthedomainsofeachfunctiontoproduceanewfunctionwhoseinverseisalsoa function(theremaybemorethanoneanswer).Drawtherestrictedfunctionanditsinverse.

y = √4 x2 a y = 1 x2 b y = x3 x c y = √x2 d

)

CHALLENGE

12a Let f (x) = ax + b and g(x) = αx + β.Find g f (x) ,andhenceprovethattheconditionfor f (x)and g(x) tobemutuallyinversefunctionsis

α = a 1 and β = a 1b .

b Findthreelinearfunctions f (x), g(x)and h(x),noneofwhosegraphspassthroughtheorigin,withno twographsparallel,suchthat h g f (x) istheidentityfunction.

13 Doestheemptyfunctionhaveaninversefunction?Ifsothenwhatisit?

6H

Definingfunctionsandrelationsparametrically

Learningintentions

• Dealwithafunctionorrelationdefinedparametrically.

• EliminatetheparametertoobtaintheCartesianequationofthecurve.

Thereisaningeniouswayofhandlingcurvesbymakingeachcoordinateafunctionofasinglevariable,calleda parameter.Eachpointonthecurveisthenspecifiedbyasinglenumber,ratherthanbyapairofcoordinates.

ThesectionusessometrigonometrythatisonlyreviewedinChapter7.Anglesofanymagnitudeandthe Pythagoreanidentitiesareneeded.Readersmayprefertodelaystudyingtheseexamplesandquestionsuntil Chapter7iscompleted.

Anexampleofparameters

SDBhitsasixattheSydneyCricketGround.

• Acameramaninadistantstand,exactlybehindthepathoftheball,seestheballriseandfall,withitsheight y inmetresgivenby y = 5t2 + 25t,where t istimeinsecondsafterthestrike.

• AdronefilmingtheshotfromhighabovetheCricketGroundseestheballmoveacrosstheground,with distance x fromthebatsmangivenby x = 16t

Thecameramanandthedronetogetherhaveacompleterecordoftheball’sflight.(Ignoreparallaxhere,and regardbothobserversas‘distant’).Fromtheirresults,wecandrawupatableofvaluesofthe(x, y)positionof theballateachtime t:

t 0122 1 2 345

x 0163240486480

y 0203031 1 4 30200

Theresulting(x, y)-graphshowsthepathoftheball,andeachpointonthe graphcanbelabelledwiththecorrespondingvalueoftime t

Thisvariable t iscalleda parameter,andtheequations

x = 16t, y = 5t2 + 25t arecalled parametricequationsofthecurve

Itispossibleto eliminatetheparameter t fromthesetwoequations. Solvingthefirstequationfor t, t = x 16 , thensubstitutingintothesecond, y = 5 256 x 2 + 25 16 x , y = 5x2 + 400x 256

andfactoringdisplaysthezeroes, y = 5x(80 x) 256

SAMPLEPAGES

24Parameters

• Acurveinthe(x, y)-planemaybe parametricallydefined,meaningthat x and y aregivenasfunctions ofathirdvariable t calleda parameter.

▷ Thesetwoequationsfor x and y intermsof t arecalled parametricequations ofthecurve.

• Inmanysituations,theparameter t maybe eliminated togiveasingleequationin x and y forthecurve.

▷ Thesingleequationin x and y iscalledthe Cartesianequation ofthecurve.

Theletter t isoftenusedfortheparameterbecauseitstandsfor‘time’.Otherlettersareoftenused,however, particularly θ and φ foranangle,and p and q

Examplesofparametrisation—aparabola

Wecanreversetheprocessofeliminatingtheparameter,and parametrise familiarcurves.Somestraightforward parametrisationsaregivenbelowofaparabola,acircle,andarectangularhyperbola.

Theparabola x2 = 4y canbeparametrisedbythepairofequations

x = 2t and y = t2

becauseeliminationof t gives x2 = 4y.Thevariablepoint(2t, t2)nowrunsalong thewholecurveastheparameter t takesalltherealnumbersasitsvalues:

Thesketchshowsthecurvewiththesevenplottedpointslabelledbytheirparameter.Thecurvecanberegarded asa‘bentandstretchednumberline.’

Aparametrisationofthecircle

Thecircle x2 + y2 = r2 canbeparametrisedusingtrigonometricfunctionsby

x = r cos θ and y = r sin θ

ThisparametrisationusesthePythagoreanidentity,becausesquaringthetwo equationsandaddingthem:

,becausecos

Noticefromthetableofvaluesbelowthatwiththeseequations,eachparameter correspondstojustonepoint,buteachpointcorrespondstoinfinitelymany differentvaluesoftheparameter,alldifferingbymultiplesof360◦:

Inourpreviousexamples,themapfromparameterstopointswasalwaysone-to-one,butinthisparametrisation ofthecircle,themapismany-to-one.

Thecircleisarelation,butnotafunction.Thegreatadvantageofparametrisingthecircleisthatitisnow describedbyapairof functions,whichinmanysituationsareeasiertohandlethantheoriginalrelation.

Aparametrisationoftherectangularhyperbola

Therectangularhyperbola xy = 1canbeparametrisedalgebraicallyby

x = t and y = 1

Thereisaone-to-onecorrespondencebetweenthepointsonthecurveandthe realnumbers,withtheoneexceptionthat t = 0doesnotcorrespondtoanypoint:

Example23 UsingtrigidentitiestofindtheCartesianequaton

FindtheCartesianequationsofthecurvesdefinedbytheparametricequations:

Describepart(a)geometrically.

Solution

Fromthefirst, p = 1 4 x,andsubstitutingintothe second, y = 1 16 x 2 + 1, whichisaparabolawithvertex(0,1)andconcave up. a Squaring, x 2 = sec2 θ, and y 2 = sin2 θ = 1 cos2 θ

Exercise6H

Note: SomequestionsinthisexerciseusetrigonometryreviewedinChapter7,inparticular,anglesofany magnitudeandthePythagoreanidentities:

1 Considertheparametricequations x = t 2and y = 2t 1.

a Completethetabletotheright.

b Explainfromthetablewhythegraphisaline.

c Fromthetable,findthe y-interceptandthegradient.

d Eliminate t tofindtheCartesianequation,andcheckitfrompart(c). t 2 1012 x y

2a Theparametricequations x = 2t 3and y = t + 1representaline. Findthepoints A and B withparameters t = 0and t = 1,andhencefindthegradientoftheline. i Findthevalueof t thatmakes x = 0,andhencefindthe y-intercept. ii Checkyouranswersbyeliminating t toformaCartesianequation. iii

SAMPLEPAGES

b Repeatthestepsinpart(a)fortheselines: x = 2t 3and y = 6t 5 i x = 2t 3and y = 3t 2 ii

3a Completethetablebelowforthecurve x = 4t, y = 2t2 andsketchitsgraph. t 6 4 2 101246 x y

b EliminatetheparametertofindtheCartesianequationofthecurve.

c Thecurveisaparabola.Whatvalueof t givesthecoordinatesofthevertex?

4 Repeatthepreviousquestionforthecurve

5a Showthatthepoint cp, c p liesonthehyperbola xy = c2,where c isaconstant.

b Completethetableofvaluesbelowfor x = 2 p, y = 2 p andsketchthegraph. p 3 2 1 1 2 1 4 0 1 4 1 2 123 x y

c Explainwhathappensas p →∞, p →−∞, p → 0+ and p → 0 .

6a Showthatthepoint(a cos θ, b sin θ)liesontheellipse

bi Completeatableofvaluesforthecurve x = 4cos θ, y = 3sin θ,takingthevalues θ = 0◦,30◦,60

, 90◦,120◦ , ... ,360◦ . ii SketchthecurveandstateitsCartesianequation. DEVELOPMENT

7 EliminatetheparameterandhencefindtheCartesianequationofthecurve. x = 3 p, y = 2

+ 1 p , y = p2 + 1 p2 c

8a Showthat x = a + r cos θ and y = b + r sin θ defineacirclewithcentre(a, b)andradius r. b Hencesketchagraphofthecurve x = 1 + 2cos θ, y = 3 + 2sin θ.

9 Showbyeliminationthat x = t2 1 t2 + 1 and y = 2t t2 + 1 almostrepresenttheunitcircle x2 + y2 = 1.Whatpoint ismissing?

10 [ParametersandCurveOrientation]Let A = (1,2)and B = (2,1).

ai Showthat x = 1 + t, y = 2 t,0 ≤ t ≤ 1parameterisesthelinesegment AB. ii Describehowthepoint P(1 + t,2 t)movesas t increasesfrom0to1.

bi Showthat x = 2 u, y = 1 + u,0 ≤ u ≤ 1alsoparameterisesthelinesegment AB. ii Describehowthepoint P(2 u,1 + u)movesas u increasesfrom0to1.

c Thepoints A and B alsolieonthecirclewithcentre(1,1)andradius1.Considerthepoints P(1 + cos t,1 + sin t)and Q(1 + sin t,1 + cos t),where0◦ ≤ t ≤ 90◦ inbothcases.Explainthedifference betweenthecurvestracedoutbythepoints P and Q

11

DifferentparametricrepresentationsmayresultinthesameCartesianequation.Thegraphicalrepresentation,however,maydifferduetorestrictionsinthedomainorrange.

a

b

FindtheCartesianequationofthecurve x = 2 t, y = t 1andsketchitsgraph.

FindtheCartesianequationofthecurve(sin2 t,cos2 t).Explainwhy0 ≤ x ≤ 1and0 ≤ y ≤ 1andsketch agraphofthecurve.

c

FindtheCartesianequationofthecurve x = 4 t2 , y = t2 3.Explainwhy x ≤ 4and y ≥−3andsketch agraphofthecurve.

12 Acertaingraphhasparametricequations x = at + b and y = ct + d,wheretheconstants a, b, c and d arereal numbers.

a

Eliminate t fromtheseequationsandhenceshowthattheyrepresentastraightline.Expressyouranswer ingradient-interceptform.

b

c

Arethereanyrestrictionsthatneedtobeplacedontheanswertopart(a)?

Howcouldtheanswertopart(a)bewritteninordertoavoidtheserestrictions?Explainyouranswer.

13a Showthattheparametricequations x = c(sec θ tan θ)and y = c(sec θ + tan θ)with 90◦ < θ < 90◦ representstheportionofthehyperbola xy = c2 inthefirstquadrant.

b Whatrestrictionon θ isneededtogettheportioninthethirdquadrant?

14 FindtheCartesianequationofthecurve x = 3 + r cos θ, y = 2 + r sin θ,anddescribeitgeometricallyif: r isconstantand θ isvariable, a θ isconstantand r isvariable. b

15 [ParametersandTransformations]

a Thecirclewithcentretheoriginandradius2hasparametricequations x = 2cos θ and y = 2sin θ with 180◦ < θ ≤ 180◦ .

Byconsideringtranslations,writedowntheparametricequationswhenthiscircleisshiftedright1 andup3. i

Byconsideringdilations,writedowntheparametricequationswhentheoriginalcircleisstretched horizontallyby2andverticallyby 1 2 . ii

b Acertaincurvehasparametricequations x = f (t)and y = g(t).Ignoringanypossiblerestrictionson t, answerthefollowing.

Describethecurvegeneratedby x = f (t) + h and y = g(t) + k. i

Describethecurvegeneratedby x = af (t)and y = bg(t). ii

16 Showbyeliminationthat x = 2

Whatpointismissing?

17a Explainwhytheparametricequations x = cos t, y = sin t, z = t describeaspiral.

18a Showthatthepoint(a sec θ, b tan θ)liesonthecurve x2 a2 y2 b2 = 1.

CHALLENGE

b Completeatableofvaluesforthecurve x = 4sec θ, y = 3tan θ,where0◦ ≤ θ ≤ 360◦.Whathappens when θ = 90◦ and θ = 270◦?

c Sketchthecurve(ithastwoasymptotes)andstateitsCartesianequation.

19 AfterfindingtheCartesianequation,sketchthecurvewhoseparametricequationsare x = 1 2 (2t + 2 t )and y = 1 2 (2t 2 t ).

20 Arelationisdefinedparametricallyby x = f (t)and y = g(t).

a Whattransformationoftherelationoccurswhen t isreplacedby t if:

f (t)and g(t)arebotheven, i

f (t)isevenand g(t)isodd, iii

f (t)and g(t)arebothodd, ii

f (t)isoddand g(t)iseven. iv

b Whatistherelationshipbetweenthisrelationandtherelationdefinedby x = g(t)and y = f (t)?

c Whereisthegraphoftherelation x = | f (t)| and y = |g(t)| located?

d Whereisthegraphoftherelation x = f (t)and y = f (t)located?

Chapter6Review

Reviewactivity

• Createyourownsummaryofthischapteronpaperorinadigitaldocument.

Chapter6Multiple-choicequiz

• Thisautomatically-markedquizisaccessedintheInteractiveTextbook.AprintablePDFWorksheetversionis alsoavailablethere.

SkillsChecklist

• Checklist AvailableintheInteractiveTextbook,usethechecklisttotrackyourunderstandingofthelearningintentions. PrintablePDFandworddocumentversionsarealsoavailablethere.

ChapterReviewExercise

Note: Graphingsoftwarecouldbeveryhelpfulinthisexercise.

1 Solveeachinequation.

2 Solveeachinequationbymultiplyingbothsidesbythesquareofthedenominator.

3 Considerthefunction f (x) = x(x + 2)(x 3).

Writedownthezeroesofthefunction,anddrawupatableofsigns. a Copyandcomplete:‘ f (x)ispositivefor...,andnegativefor...’ b Writedownthesolutionoftheinequation x(x + 2)(x 3) ≤ 0. c Sketchthegraphofthefunctiontoconfirmtheseresults. d

4 Considerthefunction y = (1 x)(x 3)2

Writedownthezeroesofthefunctionanddrawupatableofsigns. a Hencesolvetheinequation(1 x)(x 3)2 ≥ 0. b Confirmthesolutionbysketchingagraphofthefunction. c

5 Solveeachinequationinquestion4usingthetable-of-signsmethod.Firstmoveeverythingtotheleft-hand side,thenmaketheLHSintoasinglefraction,thenidentifyitszeroesanddiscontinuities,thendrawupa tableofsigns,thenreadthesolutionfromthetable.

6 Considerthelinearfunction f (x) = x 2.

Sketch y = f (x),clearlyindicatingthe x-and y-intercepts. a Alsoshowonyoursketchthepointswhere y = 1and y = 1. b Hencesketchthegraphof y = 1 f (x) onthesamenumberplane. c

Writedowntheequationoftheverticalasymptoteof y = 1 f (x) ,thencopyandcompletethesentence,‘As x → 2 , y → ,andas x → 2+ , y → ’ d

7 Considerthequadraticfunction f (x) = 3 x2 .

Sketch y = f (x),clearlyindicatingthe x-and y-intercepts. a

b

c

Alsoshowonyoursketchthepointswhere y = 1and y = 1.

Hencesketchthegraphof y = 1 f (x) onthesamenumberplane.

8

Sketchthereciprocalofeachfunctiongraphedbelow,showingalltheimportantfeatures.

9a

Findtheequationsoftheverticalasymptotesofeachfunction. y = 2 x + 1 i y = 2x + 1 x 2 ii y = 4x x2 25 iii

b Inpart(iii)above,identifythezeroesanddiscontinuitiesanddrawupatableofsigns.Thendescribethe behaviourofthecurveneareachverticalasymptotebycopyingandcompleting,‘As x → 5 , y → ... , andas x → 5+ , y → ... ’(andsimilarlyfor 5).

10 Considerthefunction y = 2x x2 1 .

a

Showthatitisanoddfunction.

b Identifyanyverticalandhorizontalasymptotes. c Hencesketchthegraph. d

Findthezeroesanddiscontinuities,anddrawupatableofsigns.

11 Thegraphsof y = f (x)and y = g(x)aresketchedtotheright.Onseparatenumber planes,sketch:

a y = f (x) + g(x)

b y = f (x) g(x)

12 Thegraphsof y = f (x)and y = g(x)aresketchedtotheright.

a Onseparatenumberplanes,sketch:

i y = f (x) + g(x)

ii y = f (x) g(x)

b Whatsymmetryshouldbeevidentinyoursketches?

13 Thegraphof y = f (x)issketchedtotheright.Onthreeseparatenumberplanes, sketch:

a y = | f (x)|

b y = f (|x|)

c y = | f (|x|)| x y

14 Copyeachdiagrambelow,thensketchtheinverserelationofthefunction.Alsostatewhetherornotthe inverserelationisafunction.

15 Findtheequationoftheinversefunctionforeachfunction.

16 Findtheinversefunction f 1(x)ofeachfunction,andthenconfirmalgebraicallythat

f 1(x) = x and f 1 f (x) = x .

(x) = 1 2 x + 4 a

17 Alineisdefinedparametricallybytheequations x = t + 2and y = 2t + 6.

Copyandcompletethetablebelow. t 5 4 3 2 101 x y a

Usethetabletosketchtheline,markingeachpointwithits t-value. b Eliminatetheparameter t tofindtheCartesianequationoftheline. c

18 Aparabolaisdefinedparametricallybytheequations x = 1 2 t and y = 1 4 t2 .

Copyandcompletethetablebelow.

t 6 4 2 101246 x y a

Usethetabletosketchtheparabola,markingeachpointwithits t-value. b Eliminatetheparameter t tofindtheCartesianequationoftheparabola. c

19 Acurveisdefinedparametricallybytheequations x = cos θ 1and y = sin θ + 1.

Usetheidentitycos2 θ + sin2 θ = 1tofindtheCartesianequationofthecurve. a Describethecurve,andthensketchit. b

20 Acurveisrepresentedparametricallybytheequations x = 2t and y = 1 t + 1 . FindtheCartesianequationofthecurveandhencesketchit.

11

Polynomials

UNCORRECTEDSAMPLEPAGES

Chapterintroduction

Oncethevariable x hasbeenintroducedintoarithmetic,polynomialexpressionssuchas4x3 7x + 5arise naturally.Indeedeveryexpressionthatcanbeformedusingjustthethreeoperationsofaddition,subtractionand multiplicationcanbewrittenasapolynomial—simplyexpandbrackets,andcollectliketerms.

Thecoursehasalreadydiscussedlinearandquadraticfunctionsindetail,andthischapterbeginsthesystematic studyofpolynomialsofhigherdegree.

PolynomialswerementionedbrieflyinSection3G,andsomereaderswillalreadyhavefamiliaritywiththeir graphs,withlongdivisionofpolynomials,andwiththeremainderandfactortheorems.Thelatersectionsinthis chapterdeveloptherelationshipsbetweenthecoefficientsandthezeroes.

Theproblemoffactoringagivenpolynomialisaconstanttheme,andthefinalSection11Gappliesthemethods ofthechaptertogeometricproblemsaboutpolynomialcurves,circles,andrectangularhyperbolas.

Thelanguageofpolynomials

Learningintentions

• Definepolynomial,leadingtermandcoefficient,degree,monic,constant.

• Classifyzero,linear,quadratic,cubicandquarticpolynomials.

• Add,subtract,andmultiplypolynomials,andobservetheresultingdegrees.

• Defineidenticallyequalpolynomials,andusetherelationshiptothecoefficients.

Polynomialsareexpressionssuchasthequadratic x2 5x + 6orthequartic3x4 2 3 x3 + 4x + 7.Theyhave occurredalreadyinthecourse,butnowourlanguageandnotationneedstobemoreprecise.

Polynomialsandpolynomialfunctions

1Polynomials

• A polynomial isanexpressionoftheform

P(x) = an

n 1 xn 1 + ···

+ a0, where a0, a1,..., an arerealnumbers,and n isawholenumber.

• A polynomialfunction isafunctionthatcanbewrittenasapolynomial.

Theterm a0 iscalledthe constantterm.Thisisthevalueofthepolynomialat x = 0,so a0 isthe y-interceptofits graph.

Leadingtermanddegree

Thetermofhighestindexwithnon-zerocoefficientiscalledthe leadingterm ofthepolynomial.Itscoefficientis calledthe leadingcoefficient,anditsindexiscalledthe degree.Forexample,thepolynomial

P(x) = 5x 6 3x 4 + 2x 3 + x 2 x + 9 hasleadingterm 5x6 andleadingcoefficient 5,andhasdegree6,writtenas deg P(x) = 6.

Forconvenience,theconstantterm a0 isregardedinthiscontextasbeingatermofindex0.Thisisbecause a0 canbewrittenas a0 x0 providedthat x 0.Butneveractuallywritetheterm a0 as a0 x0,because00 isundefined.

A monicpolynomial isapolynomialwhoseleadingcoefficientis1.Forexample, P(x) = x3 2x2 3x + 4is monic.Everynon-zeropolynomialisauniquemultipleofamonicpolynomialbecause an 0,so

Somenamesofpolynomials

Thezeropolynomial,andpolynomialsoflowdegree,havestandardnames.

• The zeropolynomial Z(x) = 0isaspecialcase.Ithasaconstantterm0.Butithasnotermwithanon-zero coefficient.Henceithasnoleadingterm,noleadingcoefficient,andmostimportantly,nodegree.Itsgraphis the x-axis—meaningthateveryrealnumberisazeroofthezeropolynomial.

• A constantpolynomial isapolynomialwhoseonlytermistheconstantterm: P(x) = 4, Q(x) = 3 5 , R(x) = π, Z(x) = 0.

Apartfromthezeropolynomial,allconstantpolynomialshavedegree0,havenozeroes,andareequaltotheir leadingtermandtotheirleadingcoefficient.

• A linearpolynomial isapolynomialofdegree1:

P(x) = x 3, Q(x) = 4x + 7, R(x) = 1 2 x

Warning: Aconstantfunctionisalinearfunction.ButaconstantpolynomialisNOTalinearpolynomial, becauseitdoesnothavedegree1—ithasdegree0oristhezeropolynomial.

• Apolynomialofdegree2iscalleda quadraticpolynomial:

P(x) = 3x 2 + 4x 1, Q(x) = 1 2 x x 2 , R(x) = 9 x 2

Noticethatthecoefficientof x2 mustbenon-zeroforthedegreetobe2.

• Polynomialsofhigherdegreearecalled: cubics (degree3), quartics (degree4), quintics (degree5),....

2Thedegreeofapolynomial P(x))

• The leadingterm of P(x)isthetermofhighestindexwithnon-zerocoefficient.

▷ The degree of P(x)istheindexoftheleadingterm.

▷ The leadingcoefficient of P(x)isthecoefficientoftheleadingterm.

▷ A monicpolynomial isapolynomialwhoseleadingcoefficientis1.

• The zeropolynomial Z(x) = 0hasnoleadingterm,andsohasnodegree.

• A constantpolynomial P(x) = a0 isapolynomialwithonlyaconstantterm.

▷ If a0 0,ithasdegree0.Butif a0 = 0,itisthezeropolynomial Z(x) = 0.

• A linearpolynomial P(x) = a1 x + a0 isapolynomialofdegree1,so a1 0.

• Polynomialsofhigherdegreearecalled quadratic,cubic,quartic,quintic,...

Additionandsubtraction

Whentwopolynomialsareaddedorsubtracted,theresultsareagainpolynomials:

(5x 3 4x + 3) + (3x 2 3x 2) =

Thezeropolynomial Z(x) = 0isthe zeroforaddition,intheusualsensethat P(x) + Z(x) = P(x),forall polynomials P(x).The oppositepolynomial P(x)ofanypolynomial P(x)isobtainedbytakingtheoppositeof everycoefficient.Thenthesumof P(x)and P(x)isthezeropolynomial.Forexample, (4x 4 2x 2 + 3x 7) + (

Thedegreeofthesumordifferenceisusuallythemaximumofthedegreesofthetwopolynomials,asinthetwo examplesabove,wherethepolynomialshavedegrees2and3andtheirsumhasdegree3.If,however,thetwo polynomialshavethesamedegree,theleadingtermsmaycanceloutanddisappear,forexample, (x 2 3x + 2) + (9 + 4x x 2) = x + 11,whichhasdegree1, orthetwopolynomialsmaybeopposites,inwhichcaseeverythingcancelsoutsothattheirsumiszeroandthus hasnodegree.

3Degreeofthesumanddifference

Let P(x)and Q(x)benon-zeropolynomialsofdegree n and m respectively.

• If n m,thendeg P(x) + Q(x) = maximumof m and n.

• If n = m,thendeg P(x) + Q(x) ≤ n or P(x) + Q(x) = 0.

Multiplication

Anytwopolynomialscanbemultiplied,givinganotherpolynomial:

Theconstantpolynomial I(x) = 1istheidentityformultiplication,inthesensethat P(x) × I(x) = P(x),forall polynomials P(x).Multiplicationbythezeropolynomial,ontheotherhand,alwaysgivesthezeropolynomial.

Iftwopolynomialsarenon-zero,thenthedegreeoftheirproductisthesumoftheirdegrees,becausetheleading termoftheproductisalwaystheproductofthetwoleadingterms.

4Degreeoftheproduct

If P(x)and Q(x)arenon-zeropolynomials,then deg P(x) × Q(x) = deg P(x) + deg Q(x).

Identicallyequalpolynomials

Weneedtobeclearwhatismeantbysayingthattwopolynomialsarethesame.

5Identicallyequalpolynomials

• Twopolynomials P(x)and Q(x)arecalled identicallyequal iftheyareequalforallvaluesof x: P(x) = Q(x),forall x,oftenwrittenas P(x) ≡ Q(x).

• Iftwopolynomialsareidenticallyequal,thenthecorrespondingcoefficientsofthetwopolynomialsare equal.

Theseconddotpointneedsproof.ThisisdevelopedintheEnrichmentsectionofExercise11B.Inthemeantime, hereisanexamplethatusestheresult.

Example1 Findingcoefficientsinidenticallyequalpolynomials

Find a, b, c, d,and e if ax4 +

. Solution

Expanding,(x2 3)2 = x4 6x2 + 9.

Nowcomparingcoe

Factoringpolynomials

Themostsignificantproblemofthischapteristhefactoringofagivenpolynomial.Forexample,

isaroutineexpansionofafactoredpolynomial,butitisnotatallclearhowtomoveintheotherdirectionfrom theexpandedformbacktothefactoredform.

Polynomialequations

If P(x)isapolynomial,thentheequationformedbyputting P(x) = 0isa polynomialequation.Forexample, usingthepolynomialinthepreviousparagraph,wecanformthepolynomialequation

x

+

= 0.

Solvingpolynomialequationsandfactoringpolynomialfunctionsarecloselyrelated.Usingthefactoringofthe previousparagraph,

x(x + 2)2(x 2)2(x 2 + x + 1) = 0,

sothesolutionsare x = 0, x = 2(doubleroot)and x = 2(doubleroot),wherethequadraticfactor x2 + x + 1has nozeroes,because ∆= 3.Thusfactoringapolynomialintolinearandirreduciblequadraticfactorssolvesthe correspondingpolynomialequation.

Thesolutionsofapolynomialequationarecalled roots,whereasthe zeroes ofapolynomialfunctionarethe valuesof x wherethevalueofthepolynomialiszero.Thedistinctionbetweenthetwowordsisnotalways strictlyobserved.

Exercise11A

1 Statewhetherornoteachexpressionisapolynomial.

UNCORRECTEDSAMPLEPAGES

FOUNDATION

2 Foreachpolynomial,state:

thedegree, i theleadingcoefficient, ii theleadingterm, iii theconstantterm, iv whetherornotthepolynomialismonic. v Expandthepolynomialfirstwherenecessary.

+

3 If P(x) = 5x + 2and Q(x) = x2 3x + 1,find:

(x) P(x) d

4 If P(x) = 5x + 2, Q(x) = x2 3x + 1and R(x) = 2x2 3,show,bysimplifyingtheLHSandRHSseparately, that:

(P(x) + Q(x)) + R(x) = P(x) + (Q(x) + R(x)) a P(x) (Q(x) + R(x)) = P(x)Q(x) + P(x)R(x) b

(P(x)Q(x)) R(x) = P(x) (Q(x)R(x)) c

DEVELOPMENT

5 Factoreachpolynomialcompletely,andwritedownallitszeroes.

x3 8x2 20x a 2x4 x3 x2 b x4 81 c x4 5x2 36 d

6 Foreachpolynomial,determine:

thedegree, i theleadingcoefficient, ii theconstantterm. iii

(2x3 3)3 a (2x2 + 1)(3x3 2)(4x4 + 3)(5x5 4) b

7a Thepolynomials P(x)and Q(x)havedegrees p and q respectively,and p q.Whatisthedegreeof:

P(x)Q(x), i

P(x) + Q(x)? ii

b Whatdifferenceswoulditmakeif P(x)and Q(x)bothhadthesamedegree p?

c Giveanexampleoftwopolynomials,bothofdegree2,whichhaveasumofdegree0.

8 Writedownthemonicpolynomialwhosedegree,leadingcoefficient,andconstanttermareallequal.

9 Find a, b and c,giventhatthefollowingpairsofpolynomialsareidenticallyequal.

ax2 + bx + c = 3x2 4x + 1,forall x a

(a b)x2 + (2a + b)x = 7x x2,forall x b

a(x 1)2 + b(x 1) + c = x2,forall x c

a(x + 2)2 + b(x + 3)2 + c(x + 4)2 = 2x2 + 8x + 6,forall x. d

10a Supposethat P(x) = ax4 + bx3 + cx2 + dx + e iseven,sothat P( x) = P(x).

Showthat b = d = 0.

b Supposethat Q(x) = ax5 + bx4 + cx3 + dx2 + ex + f isodd,sothat Q( x) = Q(x).

Showthat b = d = f = 0.

c Giveageneralstatementofthesituationinparts(a)and(b).

11 Supposethat P(x), Q(x), R(x)and S (x)arepolynomials.Indicatewhetherthefollowingstatementsaretrue orfalse.Provideacounter-exampleforanyfalsestatements.

If P(x)iseven,then P′(x)isodd. a If Q′(x)iseven,then Q(x)isodd. b

If R(x)isodd,then R′(x)iseven.

c If S ′(x)isodd,then S (x)iseven. d

CHALLENGE

12a Find a and b sothat x4 + 1 = (x2 + ax + 1)(x2 + bx + 1).

b Find a and b sothat x4 + x2 + 1 = (x2 + ax + 1)(x2 + bx + 1).

c Find a and b sothat x4 x2 + 1 = (x2 + ax + 1)(x2 + bx + 1).

d Showthatallthequadraticfactorsinparts(a),(b)and(c)areirreducible.

13a Whatisthecoefficientof x inthepolynomial B(x) = (1 + x)n ?

b Whatisthecoefficientof xn inthepolynomial G(x) = (1 + x + x2 + ··· + xn)2 ?

11B Graphsofpolynomialfunctions

Learningintentions

• Sketchpolynomials,usingbehaviouras x →∞ andas x →−∞

• Definemultiple(orrepeated)zeroes,andsimple(sometimescalledsingle)zeroes.

• Takeaccountofsimpleandmultiplezeroesinsketches.

Wehaveassumedthatthegraphofapolynomialfunctioniscontinuousforallvaluesof x.Weassumealsothatit is smooth,withoutsharpcornersanywhere.

Thissectionwillconcentrateontwomainconcerns.

• Howdoesthegraphbehaveforlargepositiveandnegativevaluesof x?

• Giventhefullfactoringofthepolynomial,howdoesthegraphbehavenearitsvarious x-intercepts?

InYear12,wewillpursuefurtherquestionsaboutstationarypointsandinflectionsthatarenotalsozeroesofthe polynomial.

Thegraphsofpolynomialfunctions

Itshouldbeintuitivelyobviousthatforlargepositiveandnegativevaluesof x,thebehaviourofthecurveis governedentirelybythesignofitsleadingterm.

Forexample,thecubicgraphsketchedontherightbelowis

P(x) = x 3 4x = x(x 2)(x + 2).

Forlargepositivevaluesof x,theleadingterm x3 completelyswampstheother term 4x.Hence P(x) →∞ as x →∞.

Similarly,forlargenegativevaluesof x,theterm 4x isnegligiblecomparedwiththe farbiggernegativevaluesoftheleadingterm x3.Hence P(x) →−∞ as x →−∞. x y −22

Everypolynomialofodddegreehasagraphthatsimilarlydisappearsoff diagonallyoppositecorners.Thecurve iscontinuous,soitmustbezerosomewhereatleastonce.Hereisthegeneralsituation.

6Behaviourofpolynomialsforlarge x

Supposethat P(x)isapolynomialofdegreeatleast1withleadingterm an xn .

• As x →∞, P(x) →∞ if an ispositive,and P(x) →−∞ if an isnegative.

• As x →−∞, P(x)behavesthesameaswhen x →∞ ifthedegreeiseven,and P(x)behavesinthe oppositewayifthedegreeisodd.

▷ Itfollowsthateverypolynomialofodddegreehasatleastonezero.

SeetheEnrichmentsectionforaformalproof.

Zeroesandsign

Ifthepolynomialcanbecompletelyfactored,thenitszeroescanbequicklyreadoff, andwecanconstructatableoftestvaluestodecideitssign.Here,forexample,isthe tableoftestvaluesandthesketchof

P(x) = (x + 2)3 x 2(x 2).

x 3 2 10123

y 450 30 2701125 x y −22

Thefunctionchangessignaround x = 2and x = 2,wheretheassociatedfactors(x + 2)3 and(x 2)haveodd degrees,butnotaround x = 0,wherethefactor x2 hasevendegree.

Becausethecurveissmooth—withoutsharpcorners—at x = 0,weknowthatthecurvewillbeincreasing ontheleftof x = 0,decreasingontherightof x = 0,andstationaryat x = 0.Thisproducesa turningpoint at theorigin—the x-axisisatangentthere,andthecurve turnsover smoothlyfromincreasingtostationaryto decreasingwithoutcrossingthe x-axis.

At x = 2,ourtableofvaluestellsusthatthecurvecrossesthe x-axis.WeshallseeinYear12thatthecurveis momentarilyflatthere,witha horizontalinflection onthe x-axisat x = 2—the x-axisisatangenttothecurve thatactuallycrossesthecurvethere.Thiscorrespondstothefactor(x + 2)3 havingodddegreegreaterthan1. Provingallthisrequirescalculus,buttheresultisobviousbycomparisonwiththeknowngraphofthevery simplepolynomialfunction y = x3 thatwefirstdrewinSection3G.

Multiplezeroes(orrepeatedzeroes)

Somelanguageisneededhere.Takethepolynomial P(x) = (x + 2)3 x2(x 2).

• Thezero x = 2iscalleda triplezero.

• Thezero x = 0iscalleda doublezero (aswithquadraticsinChapter3).

• Thezero x = 2iscalleda simplezero.

Thetriplezero x = 2andthedoublezero x = 0arecalled multiple or repeatedzeroes.

7Zeroesandtheirmultipliicity

• Supposethat x α isafactorofapolynomial P(x),and P(x) = (x α)m Q(x),where Q(x)isnotdivisibleby x α

Then x = α iscalleda zeroofmultiplicity m

• Azeroofmultiplicity1iscalleda simplezero.

• Azeroofmultiplicity2orgreateriscalleda multiplezero ora repeatedzero.

• Forloworders,weusetheterms doublezero, triplezero,and quadruplezero,....

Note: Theterm singlezero issometimesusedinplaceof simplezero,butthattermisbestavoidedbecauseof theconstantverbalconfusionthatitcauses.

Behaviouratsimpleandmultiplezeroes

SAMPLEPAGES

Hereisthestatementofhowapolynomialgraphbehaveswhenitcrossesthe x-axisatazero,asjustifiedaboveas farasispossibleinYear11.

8Multiplerootsandtheshapeofthecurve

Supposethat x = α isazeroofapolynomial P(x).

• If x = α isasimplezero(sometimescalledasinglezero),thenthecurvecrossesthe x-axisat x = α at anangle,andisnottangenttothe x-axisthere.

• If x = α hasevenmultiplicity,thenthecurveistangenttothe x-axisat x = α,anddoesnotcrossthe x-axisthere.Thepoint(α,0)isa turningpoint

• If x = α hasoddmultiplicityatleast3,thenthecurveistangenttothe x-axisat x = α,butcrossesthe x-axis.Thepoint(α,0)isa horizontalinflection

Note: WhenweweredealingonlywithquadraticsinChapter3,weoftenusedtheterms‘equalroots’and ‘distinctroots’.Neverusethosetermsinthecontextofpolynomials,becauseoftheverbalambiguities thatinevitablyarise.

Example2 Sketchingfactoredpolynomialsnearsimpleandmultiplezeroes

Ineachpart,namethezeroesandtheirmultiplicity,andthensketch,showingthebehaviournearany x-intercepts:

a P(x) = (x 1)2(x 2)

b Q(x) = x3(x + 2)4(x2 + x + 1)

c R(x) = 2(x 2)2(x + 1)5(x 1)

Solution

Inpart(b), x2 + x + 1hasnozeroes,because ∆= 1 4 < 0.

1isadoublezero, 2isasimplezero.

Example3

2isadoublezero, 0isatriplezero. b x y 8 −112

1isaquintuplezero, 1isasimplezero, 2isadoublezero.

Simpleandmultiplezeroes

Giveanexampleofapolynomialfactoredintolinearfactorsthat:

a hastwomultiple(orrepeated)zeroes,andthreesimplezeroes(sometimescalled‘singlezeroes’). b hasdegree9,andhastwotriplezeroesandonedoublezero,andisnon-monic.

Solution (x + 5)2(x 1)(x 2)(x 3)x7 a 12(x + 8)3(x + 7)3(x + 5)2(x + 3) b

Exercise11B FOUNDATION

1 Writedownthezeroesofeachpolynomial,andclassifyeachzeroasasimplezerooramultiplezero.

Note: Readersshouldbeawarethattheterm‘repeatedzero’isoftenusedfor‘multiplezero’,andthatthe term‘singlezero’issometimesusedfor‘simplezero’.

2 Writedownthezeroesofeachpolynomial,andstatethemultiplicityofeachzero.

3 Writedowntherootsofeachpolynomialequation,andidentifyeachrootasasimple,double,tripleor quadrupleroot.

4 Sketchthegraphsoftheselinearpolynomials,clearlyindicatingallinterceptswiththeaxes.

5 Sketchthegraphsofthesequadraticpolynomials,clearlyindicatingallinterceptswiththeaxes.

6 Sketchthegraphsofthesecubicpolynomials,clearlyindicatingallinterceptswiththeaxes. y = x3 a y = x3 + 2 b

= (x 4)3 c y = (x 1)(x + 2)(x 3) d y = x(2x + 1)(x 5) e y = (1 x)(1 + x)(2 + x) f y = (2x + 1)2(x 4) g y = x2(1 x) h

= (2 x)2(5 x) i

7 Sketchthegraphsofthesequarticpolynomials,clearlyindicatingallinterceptswiththeaxes.Identifyall doublezeroes,triplezeroes,andquadruplezeroes,

F(x) = x4 a F(x) = (x + 2)4 b

F(x) = x(3x + 2)(x 3)(x + 2) c F(x) = (1 x)(x + 5)(x 7)(x + 3) d F(x) = x2(x + 4)(x 3) e F(x) = (x + 2)3(x 5) f

F(x) = (2x 3)2(x + 1)

DEVELOPMENT

8 Thesepolynomialsarenotfactored,butthepositionsoftheirzeroescanbefoundbytrialanderror.Copy andcompleteeachtableofvalues,thensketchthegraph,andstatehowmanyzeroesthereare,andbetween whichintegerstheylie.

9 Sketcheachpolynomialfunction,clearlyindicatingallinterceptswiththeaxes.

(x) = x(2x + 3)3(1 x)4 c

(

) = (x + 2)2(3 x)3

(x) = (x + 1)(4 x2)(x2 3x 10) d

10 Usethegraphsdrawninthepreviousquestiontosolvetheseinequations.

(x 2)

11 Factoreachpolynomial,thensketchit,showingallinterceptswiththeaxes.

12 Considerthepolynomial P(x) = x4 5x2 + 4x + 13.

Showthat P(x)canbeexpressedintheform(x2 a)2 + (x b)2 . a

Howmany x-interceptsdoesthegraphof P(x)have?Explainyouranswer. b

13 Atwhatpointsdothegraphsofthepolynomials f (x) = (x + 1)n and g(x) = (x + 1)m intersect,where m n? (Hint:Considerthecaseswhere m and n areoddandeven.)

14 Toprove: Let P(x) = an xn + an 1

+ a0 beapolynomialofdegreeatleast1.Thenthe leadingtermdominatesthebehaviourof P(x) forlargepositivevaluesof x,andforlargenegativevalues of x.

Writedown P(x) xn . a

b

c

Takethelimitofthisexpressionas x →∞

Drawaconclusionaboutthebehaviourof P(x)as x →∞

Drawaconclusionaboutthebehaviourof P(x)as x →−∞ d

e

Whatconclusion,ifany,canyoudrawaboutthezeroesofapolynomialofodddegree,andaboutthe zeroesofapolynomialofevendegree?

15 Toprove: Let P(x) beapolynomialsuchthat P(x) = 0 forall x.Then P(x) isthezeropolynomial Z(x) = 0 thathasnotermwithanon-zerocoefficient.

Usethepreviousquestiontoprovethat P(x)cannothavedegree ≥ 1,andhenceisaconstantpolynomial P(x) = a0 a

Explainwhytheconstant a0 cannotbenon-zero. b

16 Toprove: If P(x) = Q(x) forall x,then P(x) and Q(x) havethesamecoefficients.

Usethepreviousquestion,andthepolynomial A(x) = P(x) Q(x),toprovethisresult.

11C

Divisionofpolynomials

Learningintentions

• Applythedivisionalgorithmforpolynomials,andcompareitwithintegerdivision.

Section11Ahadexamplesofadding,subtracting,andmultiplyingpolynomials,operationsthatarequite straightforward.Thedivisionofonepolynomialbyanother,however,ismoreelaborate.

Divisionofpolynomials

Itcanhappenthatthequotientoftwopolynomialsisagainapolynomial:

Butusually,divisionresultsinrationalfunctions,notpolynomials:

Thereisacloseanalogyherebetweentheset Z ofallintegersandthesetofallpolynomials.Inbothcases, everythingworksnicelyforaddition,subtraction,andmultiplication,buttheresultsofdivisiondonotusually liewithintheset.Forexample,although20 ÷ 5 = 4isaninteger,thedivisionoftwointegersusuallyresultsina fractionratherthananinteger,asin23 ÷ 5 = 4 3 5

Inbothcases,thebestwaytohandledivisionistouseremainders.

Thedivisionalgorithmforintegers

Ontherightisanexampleofthewell-knownlongdivisionalgorithmfor integers,appliedhereto197 ÷ 12.Thenumber12iscalledthe divisor, 197iscalledthe dividend,16iscalledthe quotient,and5iscalledthe remainder

Theresultofthedivisioncanbewrittenas 197 12 = 16 5 12 ,butwecanavoid fractionscompletelybywritingtheresultas:

197 = 12 × 16 + 5,dividend = divisor × quotient + remainder.

Theremainder5mustbelessthan12,otherwisethedivisionprocesscouldbecontinued.Thusthegeneralresult fordivisionofintegerscanbeexpressedas:

9Divisionofintegers

• Let p (the dividend )and d (the divisor)beintegers,with d > 0.Thenthereareuniqueintegers q (the quotient)and r (the remainder)suchthat p = dq + r and0 ≤ r < d

• Whentheremainder r iszero, d isa divisorof p,andtheinteger p factors as p = d × q

Thedivisionalgorithmforpolynomials

Themethodofdividingonepolynomialbyanotherissimilartothemethodofdividingintegers.

10Themethodoflongdivisionofpolynomials

• Ateachstep,dividetheleadingtermoftheremainderbytheleadingtermofthedivisor.Continuethe processforaslongaspossible.

• Unlessotherwisespecified,expressthefinalanswerintheform dividend = divisor × quotient + remainder.

UNCORRECTEDSAMPLEPAGES

Noteonmissingterms: Intheexamplebelow,itisvitaltonoticethatthereisnotermin x2 inthedividend. Therearetwoapproachestodealwiththis:

• Leaveagapforthe x2 column.Thisiswhathasbeendonebelow.

• Ifyouprefernottohaveanygaps,writeinthemissingterm0x2 . Whynottrybothmethods?Bothareverysatisfactory.

Example4 Longdivisionofpolynomials

Divide3x4 4x3 + 4x 8by:

x 2 a x2 2 b

Giveresultsfirstinthestandardmanner,thenusingrationalfunctions.

Solution

Ineachpart,thestepshavebeenannotatedtoexplainthemethod.

a 3x3 + 2x2 + 4x + 12

x 2 3x4 4x3 + 4x 8(divide x into3x4,givingthe3x3 above) 3x4 6x3 (multiply x 2by3x3 andthensubtract)

2x3 + 4x 8(divide x into2x3,givingthe2x2 above) 2x3 4x2 (multiply x 2by2x2 andthensubtract)

4x2 + 4x 8(divide x into4x2,givingthe4x above) 4x2 8x (multiply x 2by4x andthensubtract) 12x 8(divide x into12x,givingthe12above) 12x 24(multiply x 2by12andthensubtract) 16(thisisthefinalremainder)

Hence3x4 4x3 + 4x 8 = (x 2)(3x3 + 2x2 + 4x + 12) + 16, or,writingtheresultusingrationalfunctions,

3x4 4x3 + 4x 8 x 2 = 3x 3 + 2x 2 + 4x + 12 + 16 x 2 .

b 3x2 4x + 6

x2 2 3x4 4x3 + 4x 8(divide x2 into3x4,givingthe3x2 above)

3x4 6x2 (multiply x2 2by3x2 andthensubtract)

4x3 + 6x2 + 4x 8(divide x2 into 4x3,givingthe 4x above)

4x3 + 8x (multiply x2 2by 4x andthensubtract)

6x2 4x 8(divide x2 into6x2,givingthe6above)

6x2 12(multiply x2 2by6andthensubtract) 4x + 4(thisisthefinalremainder)

Hence3x 4 4x 3 + 4x 8 = (x 2 2)(3x 2 4x + 6) + ( 4x + 4), or 3x4 4x3 + 4x 8 x2 2 = 3x 2 4x + 6 + 4x + 4 x2 2 .

Thedivisiontheorem

Thedivisionprocessillustratedabovecanbecontinueduntiltheremainderiszeroorhasdegreelessthanthe degreeofthedivisor.Thusthegeneralresultforpolynomialdivisionis:

11Divisionofpolynomials

• Supposethat P(x)(the dividend)and D(x)(the divisor)arepolynomialswith D(x) 0.Thenthereare uniquepolynomials Q(x)(the quotient)and R(x)(the remainder)suchthat:

1 P(x) = D(x)Q(x) + R(x),

2 eitherdeg R(x) < deg D(x),or R(x) = 0.

• Whentheremainder R(x)iszero,then D(x)iscalleda divisor of P(x),andthepolynomial P(x) factors intotheproduct P(x) = D(x) × Q(x).

Forexample,inthetwolongdivisionsinExample4above:

• Inpart(a),theremainderafterdivisionbythedegree1polynomial x 2isthepolynomial16ofdegree0.

• Inpart(b),theremainderafterdivisionbythedegree2polynomial x2 2isthelinearpolynomial 4x + 4of degree1.

TheuniquenessofthequotientandremainderinthefirstdotpointaboveisprovenintheEnrichmentsectionof thefollowingexercise.

Exercise11C

UNCORRECTEDSAMPLEPAGES

FOUNDATION

1 Performeachintegerdivision,andwritetheresultintheform p = dq + r,where0 ≤ r < d.Forexample, 30 ÷ 7 = 4,remainder2,so30 = 4 × 7 + 2.

63 ÷ 5

2 Uselongdivisiontoperformeachdivision.Expresseachresultintheform P(x) = D(x) Q(x) + R(x). (x2 4x + 1) ÷ (x + 1) a (x2 6x + 5) ÷ (x 5) b

(x3 x2 17x + 24) ÷ (x 4) c (2x3 10x2 + 15x 14) ÷ (x 3) d

(4x3 4x2 + 7x + 14) ÷ (2x + 1) e (x4 + x3 x2 5x 3) ÷ (x 1) f (6x4 5x3 + 9x2 8x + 2) ÷ (2x 1) g (10x4 x3 + 3x2 3x 2) ÷ (5x + 2) h

3 Expresstheanswerstoparts(a)–(d)ofthepreviousquestioninrationalform,thatis,as P(x) D(x) = Q(x) + R(x)

D(x) .

4 Uselongdivisiontoperformeachdivision.Expresseachresultinthestandardform P(x) = D(x) Q(x) + R(x).

(x3 + x2 7x + 6) ÷ (x2 + 3x 1) a (x3 4x2 2x + 3) ÷ (x2 5x + 3) b

(x4 3x3 + x2 7x + 3) ÷ (x2 4x + 2) c (2x5 5x4 + 12x3 10x2 + 7x + 9) ÷ (x2 x + 2) d

5a Ifthedivisorofapolynomialhasdegree3,whatarethepossibledegreesoftheremainder?

b Ondivisionby D(x),apolynomialhasremainder R(x)ofdegree2.Whatarethepossibledegreesof D(x)?

DEVELOPMENT

6 Uselongdivisiontoperformeachdivision.Takecaretoensurethatthecolumnslineupcorrectly.Express eachresultintheform P(

). (x3 5x + 3) ÷ (x 2) a

(x3 3x2 + 5x 4) ÷ (x2 + 2)

x3 3) ÷ (2x 4) e

x3 + x2 11) ÷ (x + 1)

Writetheanswerstoparts(c)and(f)aboveinrationalform,thatis,intheform

7a Uselongdivisiontoshowthat P(x) = x3 + 2x2 11x 12isdivisibleby x 3,andhenceexpress P(x)as theproductofthreelinearfactors.

b Findthevaluesof x forwhich P(x) > 0.

8a Uselongdivisiontoshowthat F(x) = 2x4 + 3x3 12x2 7x + 6isdivisibleby x2 x 2,andhence express F(x)astheproductoffourlinearfactors.

b Findthevaluesof x forwhich F(x) ≤ 0.

9a Findthequotientandremainderwhen x4 2x3 + x2 5x + 7isdividedby x2 + x 1.

b Hencefind a and b sothat x4 2x3 + x2 + ax + b isexactlydivisibleby x2 + x 1.

10a Uselongdivisiontodividethepolynomial f (x) = x4 x3 + x2 x + 1bythepolynomial d(x) = x2 + 4. Expressyouranswerintheform f (x) = d(x)q(x) + r(x).

b Hencefindthevaluesof c and d suchthat x4 x3 + x2 + cx + d isdivisibleby x2 + 4.

11 If x4 2x3 20x2 + mx + n isexactlydivisibleby x2 5x + 2,find m and n.

12 Supposethat P(x) = x4 + x3 5x2 22x + 5and D(x) = x2 + 3x + 5.

a

Findthepolynomials Q(x)and R(x),where R(x)isoflowerdegreethan D(x),sothat P(x) = D(x) Q(x) + R(x).

Henceexplainwhy P(x)and D(x)cannothaveacommonzero. b

13 Considerthecubicequation x3 kx + (k + 11) = 0.

Uselongdivisiontoshowthat k = x2 + x + 1 + 12 x 1 a

CHALLENGE

Hencefindalltheintegervaluesof k forwhichtheequationhasatleastone positive integersolutionfor x. b

14 Toprove: Let P(x) and D(x) bepolynomialswith D(x) 0.Thenthereexistsuniquepolynomials Q(x) and R(x) suchthat P(x) = D(x)Q(x) + R(x) andeither R(x) = 0 or deg R(x) < deg D(x)

Existencefollowsfromthelongdivisionalgorithm,twoexamplesofwhichhavebeengiven.Toprove uniqueness,let Q1(x)and R1(x)bepolynomialssuchthat P(x) = D(x)Q1(x) + R1(x),andeither R1(x) = 0ordeg R1(x) < deg D(x).

SAMPLEPAGES

Showthat D(x) Q(x) Q1(x) = R1(x) R(x). a UsethepossibledegreesofLHSandRHStoprovetheresult. b

11D

Theremainderandfactortheorems

Learningintentions

• Proveandusetheremaindertheoremtofindremainders.

• Proveandusethefactortheoremtofindzeroes.

• Identifypossiblezeroesbyfactoringtheconstantterm.

• Combinethefactortheoremandlongdivisiontofactorapolynomial.

Longdivisionofpolynomialsisacumbersomeprocess.Itisthereforeusefultohavetwotheorems,calledthe remaindertheorem andthe factortheorem,thatprovideinformationabouttheresultsofadivisionwithoutthe divisionactuallybeingcarriedout.Inparticular,thefactortheoremgivesasimpletestwhetheraparticularlinear polynomialisafactor.

Theremaindertheorem

Theremaindertheoremisaremarkableresultwhich,inthecaseoflineardivisors,allowstheremaindertobe foundwithoutthelongdivisioneverbeingperformed.

12Theremaindertheorem

Supposethat P(x)isapolynomialand α isaconstant. Thentheremainderafterdivisionof P(x)by x α is P(α).

Proof Because x α isapolynomialofdegree1,thedivisiontheoremtellsusthatthereareuniquepolynomials Q(x)and R(x)suchthat P(x) = (x α)Q(x) + R(x), whereeither R(x) = 0ordeg R(x) = 0.

Hence R(x)iszerooranon-zeroconstant,whichwecanwritemoresimplyas r, sothat

Substituting x = α gives P(α) = (α α)Q(α) + r andrearranging, r = P(α),asrequired.

Example5 Applyingtheremaindertheorem

Findtheremainderwhen3x4 4x3 + 4x 8isdividedby x 2: bylongdivision, a bytheremaindertheorem. b

Solution

a In Example4ofSection11C,performingthedivisionshowedthat 3x 4 4x 3 + 4x 8 = (x 2)(3x 3 + 2x 2 + 4x + 12) + 16, thatis,theremainderis16.

b Alternatively,substituting x = 2into P(x),

remainder = P(2)(Thisistheremaindertheorem.)

= 48 32 + 8 8

= 16,asexpected.

Example6 Findingcoefficientsusingtheremaindertheorem

Thepolynomial P(x) = x4 2x3 + ax + b hasremainder3afterdivisionby x 1,andhasremainder 5after divisionby x + 1.Find a and b

Solution

UNCORRECTEDSAMPLEPAGES

Applyingtheremaindertheoremforeachdivisor, P(1) = 3

1 2 + a + b = 3

a + b = 4. (1)

Also P( 1) = 5

1 + 2 a + b = 5

a + b = 8.(2)

Adding(1)and(2), 2b = 4, andsubtractingthem, 2a = 12.

Hence a = 6and b = 2.

Thefactortheorem

Theremaindertheoremtellsusthatthenumber P(α)istheremainderafterdivisionby x α.But x α isafactor ifandonlyiftheremainderafterdivisionby x α iszero,so:

13Thefactortheorem

Supposethat P(x)isapolynomialand α isaconstant. Then x α isafactorof P(x)ifandonlyif P(α) = 0.

Thisisaquickandeasywaytotestwhether x α isafactorof P(x).

Example7 Usingthefactortheoremandlongdivisiontofactorapolynomial

a Showthat x 3isafactorof P(x) = x3 2x2 + x 12,and x + 1isnot.

b Thenuselongdivisiontofactorthepolynomialcompletely.

Solution

a P(3) = 27 18 + 3 12 = 0,so x 3isafactor.

P( 1) = 1 2 1 12 = 16 0,so x + 1isnotafactor.

b Longdivisionof P(x) = x3 2x2 + x 12by x 3(whichweomit)gives

P(x) = (x 3)(x 2 + x + 4), andbecause ∆= 1 16 = 15 < 0forthequadratic,thisfactoringiscomplete.

Factoringpolynomials—theinitialapproach

Thefactortheoremgivesusthebeginningsofanapproachtofactoringpolynomials.Thisapproachwillbe furtherrefinedinthenexttwosections.

14Factoringpolynomials—theinitialapproach

• Usetrialanderrortofindanintegerzero x = α of P(x).

• Thenuselongdivisiontofactor P(x)intheform P(x) = (x α)Q(x).

Ifthecoefficientsof P(x)areallintegers,thenalltheintegerzeroesof P(x)aredivisorsoftheconstant term.

Proof Wemustprovetheclaimthatifthecoefficientsof P(x)areintegers,theneveryintegerzeroof P(x)isa divisoroftheconstantterm.

Let

wherethecoefficients an, an 1,...

Substitutinginto P(α) = 0gives

1, a0 areallintegers,andlet x = α beanintegerzeroof P(x).

so a0 isanintegermultipleof α

Example8

Factoringtheconstanttermtofindpossiblezeroes

Factor P(x) = x4 + x3 9x2 + 11x 4completely.

Solution

Becauseallthecoefficientsareintegers,anyintegerzeroisadivisoroftheconstantterm 4.Thuswetest1,2, 4, 1, 2and 4. P(1) = 1 + 1 9 + 11 4 = 0,so x 1isafactor.

Afterlongdivision(omitted), P(x) = (x 1)(x 3 + 2x 2 7x + 4).

Let Q(x) = x 3 + 2x 2 7x + 4,then Q(1) = 1 + 2 7 + 4 = 0,so x 1isafactor.

Againafterlongdivision(omitted), P(x) = (x 1)(x 1)(x 2 + 3x 4).

Factoringthequadratic, P(x) = (x 1)3(x + 4).

Note: Inthenexttwosections,andagaininYear12,wewilldevelopmethodsthatwilloftenallowlongdivision tobeavoided.

Exercise11D FOUNDATION

1 Withoutdivision,findtheremainderwhen P(x) = x3 x2 + 2x + 1isdividedby: x 1 a x 3 b x + 2 c x + 1 d x 5 e

2 Withoutdivision,findwhichofthefollowingarefactorsof F(x) = x3 + 4x2 + x 6.

x 1 a x + 1 b x 2 c x + 2 d x 3 e x + 3 f

3a Find k,if x 1isafactorof P(x) = x3 3x2 + kx 2.

b Find m,if 2isazeroofthefunction F(x) = x3 + mx2 3x + 4.

c Whenthepolynomial P(x) = 2x3 x2 + px 1isdividedby x 3,theremainderis2.Find p.

d Forwhatvalueof a is3x4 + ax2 2divisibleby x + 1?

4 Factoreachpolynomialandsketchitsgraph,indicatingallinterceptswiththeaxes.Rememberthatany integerzeroesaredivisorsoftheconstantterm.

5 SolvetheseequationsbyfirstfactoringtheLHS.

+

6a Showthat P(x) = x3 8x2 + 9x + 18isdivisiblebyboth x 3and x + 1.

DEVELOPMENT

b Byconsideringtheleadingtermandconstantterm,express P(x)asaproductofthreelinearfactors.

7a Showthat P(x) = 2x3 x2 13x 6isdivisiblebyboth x 3and2x + 1.

b Byconsideringtheleadingtermandconstantterm,express P(x)asaproductofthreelinearfactors.

8a Whenthepolynomial P(x) = 2x3 x2 + ax + b isdividedby x 1theremainderis16,andwhenitis dividedby x + 2theremainderis 17.Find a and b.

b Thepolynomial P(x)isgivenby P(x) = x3 + ax2 + bx 18.Find a and b giventhat x + 2isafactorof P(x),and 24istheremainderwhen P(x)isdividedby x 1.

9 Withoutdivision,findtheremainderwhen P(x) = x3 + 2x2 4x + 5isdividedby: 2x 1 a 2x + 3 b 3x 2 c

a

10 If P(x) = 2x3 + x2 13x + 6,evaluate P 1 2 .Henceuselongdivisiontoexpress P(x)infullyfactored form.

b

Given P(x) = 6x3 + x2 5x 2,evaluate P 2 3 thenexpress P(x)infactoredform.

11 Iseither x + 1or x 1afactorof xn + 1,where n isapositiveinteger? (Hint:Considerthecaseswhere n isevenoroddseparately.)

12 P(x)isanoddpolynomialofdegree3.Ithas x + 4asafactor,andwhenitisdividedby x 3the remainderis21.Find P(x).

a Find p sothat x p isafactorof4x3 (10p 1)x2 + (6p2 5)x + 6. b

13 Whenthepolynomial P(x)isdividedby(x 1)(x + 3),thequotientis Q(x)andtheremainderis2x + 5. Writedownadivisionidentitybasedonthisinformation. a Hence,byevaluating P(1),findtheremainderwhen P(x)isdividedby x 1. b Whatistheremainderwhen P(x)isdividedby x + 3? c

14 Thepolynomial P(x)isdividedby(x 1)(x + 2).Supposethatthequotientis Q(x)andtheremainderis R(x).

Explainwhythegeneralformof R(x)is ax + b,where a and b areconstants. a If P(1) = 2and P( 2) = 5,find a and b.(Hint:Usethedivisionidentity.) b

15 Thepolynomial P(x)isdividedby(x + 4)(x 3).If P( 4) = 11and P(3) = 3,usethesameapproachas thepreviousquestiontofindtheremainder.

16a Whenapolynomialisdividedby(2x + 1)(x 3),theremainderis3x 1.Whatistheremainderwhen thepolynomialisdividedby2x + 1?

b When x5 + 3x3 + ax + b isdividedby x2 1,theremainderis2x 7.Find a and b

c Whenapolynomial P(x)isdividedby x2 5,theremainderis x + 4.Findtheremainderwhen P(x) + P( x)isdividedby x2 5.(Hint:Writedownthedivisionidentity.)

CHALLENGE

17 Whenthepolynomial P(x)isdividedby x2 k2,theremainderis ax + b

Showthat a = 1 2k P (k)

Giventhat P(x) = 8x5 4x4 + 6x3 11x2 2x + 3and k = 1 2 ,find a and b,andhencefactor P(x)fully. b

18a Usethefactortheoremtoprovethat a + b + c isafactorof a3 + b3 + c3 3abc.Thenfindtheotherfactor. (Hint:Regarditasapolynomialin a.)

b Factor ab3 ac3 + bc3 ba3 + ca3 cb3 .

19a Ifallthecoefficientsofamonicpolynomialareintegers,provethatalltherationalzeroesareintegers. (Hint:LookcarefullyattheproofunderBox14.)

b Ifallthecoefficientsofapolynomialareintegers,provethatthedenominatorsofalltherationalzeroes (inlowestterms)aredivisorsoftheleadingcoefficient.

11E Consequencesofthefactortheorem

Learningintentions

• Developconsequencesofthefactortheoremtohelpfactorapolynomial.

• Developboundsonthenumberofzeroesofapolynomialofacertaindegree.

• Developatestfortwopolynomialstobeidenticallyequal.

• Developgeometricconsequencesofthefactortheorem.

Thefactortheoremhasanumberofstraightforwardbutveryusefulconsequences.Theyarepresentedhereassix successivetheorems.

A.Severaldistinctzeroes

Supposethatseveraldistinctzeroesofapolynomialhavebeenfound,probablyusingtestsubstitutionsintothe polynomial.

15Distinctzeroes

Supposethat α1, α2,... αs aredistinctzeroesofapolynomial P(x).Then(x α1)(x α2) ··· (x αs)isa factorof P(x).

Proof Because α1 isazero, x α1 isafactor,and P(x) = (x α1)P1(x).

Because P(α2) = 0but α2 α1 0, P1(α2)mustbezero. Hence x α2 isafactorof P1(x),and P1(x) = (x α2)P2(x),so P(x) = (x α1)(x α1)P2(x).

Continuingsimilarlyfor s steps,(x α1)(x α2) (x αs)isafactorof P(x).

B.Alldistinctzeroes

If n distinctzeroesofapolynomialofdegree n canbefound,thenthefactoringiscomplete,andthepolynomial istheproductofdistinctlinearfactors.

16Alldistinctzeroes

If α1, α2,..., αn are n distinctzeroesofapolynomial P(x)ofdegree n,then P(x) = a(x α1)(x α2) (x αn), where a istheleadingcoefficientof P(x).

Proof Bytheprevioustheorem,(x α1)(x α2) (x αn)isafactorof P(x), so P(x) = (x α1)(x α2) ··· (x αn)Q(x),forsomepolynomial Q(x).

But P(x)and(x α1)(x α2) ··· (x αn)bothhavedegree n,so Q(x)isaconstant.

Equatingcoefficientsof xn,theconstant Q(x)istheleadingcoefficient.

Factoringpolynomials—findingseveralzeroesfirst

Ifwecanfindseveralzeroesofapolynomial,thenwehaveaquadraticorcubicfactor,andthelongdivisions requiredcanbereduced,orevenavoidedcompletely.

17Factoringpolynomials—findingseveralzeroesfirst

• Usetrialanderrortofindasmanyintegerzeroesof P(x)aspossible.

• Usinglongdivision,divide P(x)bytheproductoftheknownfactors.

Ifthecoefficientsof P(x)areallintegers,thenanyintegerzeroof P(x)mustbeoneofthedivisorsofthe constantterm.

UNCORRECTEDSAMPLEPAGES

Whenthisprocedureisappliedtothepolynomialfactoredintheprevioussection,oneratherthantwolong divisionsisrequired.

Example9 Findingseveralzeroesbeforelongdivision

Factor P(x) = x4 + x3 9x2 + 11x 4completely(doneinExample8).

Solution

Asbefore,allthecoefficientsareintegers,soanyintegerzeroisadivisoroftheconstantterm 4.Thatis,we test1,2,4, 1, 2and 4.

P(1) = 1 + 1 9 + 11 4 = 0,so x 1isafactor.

P( 4) = 256 64 144 44 4 = 0,so x + 4isafactor.

Afterlongdivisionby(x 1)(x + 4) = x2 + 3x 4(omitted),

P(x) = (x 2 + 3x 4)(x 2 2x + 1).

Factoringbothquadratics, P(x) = (x 1)(x + 4) × (x 1)2 = (x 1)3(x + 4).

Note: Themethodsofthenextsectionwillallowthisparticularfactoringtobedonewithnolongdivisions.

Thenextexampleinvolvesapolynomialthatfactorsintodistinctlinearfactors—nothingmorethanthefactor theoremisrequiredtocompletethetask.

Example10 Findingallthezeroesbythefactortheorem

Factor P(x) = x4 x3 7x2 + x + 6completely.

Solution

Thedivisorsoftheconstantterm6are1,2,3,6, 1, 2, 3and 6.

P(1) = 1 1 7 + 1 + 6 = 0,so x 1isafactor.

P( 1) = 1 + 1 7 1 + 6 = 0,so x + 1isafactor.

P(2) = 16 8 28 + 2 + 6 = 12 0,so x 2isnotafactor.

P( 2) = 16 + 8 28 2 + 6 = 0,so x + 2isafactor.

P(3) = 81 27 63 + 3 + 6 = 0,so x 3isafactor.

Wenowhavefourdistinctzeroesofapolynomialofdegree4.

Hence P(x) = (x 1)(x + 1)(x + 2)(x 3).(Noticethat P(x)ismonic.)

C.Themaximumnumberofzeroes

Ifapolynomialofdegree n had n + 1zeroes,thenbythefirsttheoremabove(Box15),itwouldbedivisiblebya polynomialofdegree n + 1,whichisimpossible.

18Maximumnumberofzeroes

Apolynomialofdegree n hasatmost n zeroes.

UNCORRECTEDSAMPLEPAGES

D.Avanishingcondition

Theprevioustheoremtranslateseasilyintoaconditionforapolynomialtobethezeropolynomial.

19Avanishingcondition

• Supposethat P(x)isapolynomialthathasnotermofdegreemorethan n,yetiszeroforatleast n + 1 distinctvaluesof x.Then P(x)isthezeropolynomial.

• Inparticular,theonlypolynomialthatiszeroforallvaluesof x isthezeropolynomial(aswasproven inExercise11BEnrichment).

Proof Supposethat P(x)hadadegree.Thisdegreemustbeatmost n becausethereisnotermofdegree morethan n.Butthedegreemustalsobeatleast n + 1becausethereare n + 1distinctzeroes.Thisisa contradiction,so P(x)hasnodegree,andisthereforethezeropolynomial.

Note: Thisagainhighlightsthefactthatthezeropolynomial Z(x) = 0isquitedifferentinnaturefromallother polynomials.Itistheonlypolynomialwithaninfinitenumberofzeroes—infacteveryrealnumberisa zeroof Z(x).Associatedwiththisisthefactthat x α isafactorof Z(x)forallrealvaluesof α,because Z(x) = (x α)Z(x)(whichistriviallytrue,becausebothsidesarezeroforall x).Nowonderthenthatthe zeropolynomialdoesnothaveadegree!

E.Aconditionfortwopolynomialstobeidenticallyequal

Amostimportantconsequenceofthislasttheoremisaconditionfortwopolynomials P(x)and Q(x)tobe identicallyequal.

20Anidenticallyequalcondition

• Supposethat P(x)and Q(x)aredegree n polynomialsthathavethesamevaluesforatleast n + 1values of x.

• Thenthepolynomials P(x)and Q(x)areidenticallyequal(meaningthattheyareequalforallvalues of x),andtheircoefficientsareequal.

• Inparticular:

▷ Alinearpolynomialisdeterminedbytwovalues.

▷ Aquadraticpolynomialisdeterminedbythreevalues.

▷ Acubicpolynomialisdeterminedbyfourvalues.

▷ Aquarticpolynomialisdeterminedbyfivevalues.

Proof Let F(x) = P(x) Q(x).Because F(x)iszerowhenever P(x)and Q(x)havethesamevalue,itfollows that F(x)iszeroforatleast n + 1valuesof x,sobytheprevioustheorem, F(x)isthezeropolynomial,so P(x) = Q(x)forallvaluesof x

AndwestatedbeforeinBox5ofSection11A—proveninExercise11BEnrichment—thatitnow followsthatthecoefficientsareequal.

Example11

Usingtheconditionthatpolynomialsareidenticallyequal

Find a, b, c and d,if x3 x = a(x 2)3 + b(x 2)2 + c(x 2) + d foratleastfourvaluesof x.

Solution

Becausethecubicsareequalforfourvaluesof x,theyareidenticallyequal.

Substituting x = 2, 6 = d.

Equatingcoefficientsof x 3,1 = a.

Hencetheidentityisnow

Substituting x = 0, 0 = 8 + 4b 2c + 6 2b c = 1. (1)

Substituting x = 1, 0 = 1 + b c + 6 b c = 5. (2)

Solving(1)and(2)simultaneously, b = 6and c = 11.

F.Geometricimplicationsofthefactortheorem

Herearesomeofthegeometricversionsofthefactortheorem—theytranslatetheconsequencesaboveintothe languageofcoordinategeometry.Youwillalreadyhaveseentheminoperationwhendealingwithgraphsof quadratics.

21Geometricimplicationsofthefactortheorem

1 Thegraphofapolynomialfunctionofdegree n iscompletelydeterminedbyany n + 1pointsonthe curve.

2 Thegraphsoftwodistinctpolynomialfunctionscannotintersectinmorepointsthanthemaximumof thetwodegrees.

3 Alinecannotintersectthegraphofapolynomialofdegree n inmorethan n points.

Example12 Examiningintersectionsofcurvesusingthefactortheorem

Byfactoringthedifference F(x) = P(x) Q(x),describetheintersectionsbetweenthecurves P(x) = x4 + 4x3 + 2and Q(x) = x4 + 3x3 + 3x,andfindwhere P(x)isabove Q(x).

Solution

Subtracting, F(x) = x 3 3x + 2.

Substituting, F(1) = 1 3 + 2 = 0,so x 1isafactor. F( 2) = 8 + 6 + 2 = 0,so x + 2isafactor.

Afterlongdivisionby(x 1)(x + 2) = x2 + x 2, F(x) = (x 1)2(x + 2).

Hence y = P(x)and y = Q(x)aretangentat x = 1,butdonotcrossthere,andalsointersectalsoat x = 2, wheretheycrossatanangle—seeBox22belowaboutthisstep.

Because F(x)ispositivefor 2 < x < 1or x > 1,andnegativefor x < 2, P(x)isabove Q(x)for 2 < x < 1 or x > 1,andbelowitfor x < 2.

Simpleandmultiplerootswhenfindingintersectionsofpolynomials

Whentwopolynomialgraphscross,asintheworkedexampleabove,solvingthemsimultaneouslyresultsina polynomialequation,whichmayhavemultipleroots.Thebehaviouratamultiplerootisexactlyanalogoustothe behaviourofasinglepolynomialatamultiplezero,asdescribedinBox8inSection11B:

22Thebehaviouratanintersdectionoftwopolynomialgraphs

Supposethat x = åisarootofthepolynomialequationobtainedwhentwopolynomialgraphs y = P(x) and y = Q(x)aresolvedsimultaneously.

• If x = α isasimpleroot(sometimescalledasingleroot),thenthecurvescrosseachotheratanangle, andarenottangenttoeachotherthere.

• If x = α hasevenmultiplicity,thenthecurvesaretangenttoeachother,anddonotcross.

• If x = α hasoddmultiplicityatleast3,thenthecurvesaretangenttoeachother,andcrossatthepoint ofintersection.

Again,theproofreliesonYear12calculus.Butthisresultdoesfollowimmediatelyfromtheearlierstatementin Box8,ifoneconsidersinsteadthe difference F(x) = P(

),aswasdoneintheworkedexampleabove.

AnoteforExtension2students

The fundamentaltheoremofalgebra cannotbeprovenintheExtension2course,butthetheoremhelpsusto understandtheimportanceofcomplexnumbersforpolynomials.Ittellsusthateverypolynomialequationof degree n ≥ 1hasexactly n roots,providedfirstthatrootsarecountedaccordingtotheirmultiplicity,andsecondly thatcomplexrootsarealsocounted.Forexample:

• x3 = 0hasoneroot x = 0,butthisroothasmultiplicity3.

• x3 1 = 0,whichfactorsto(x 1)(x2 + x + 1) = 0,hasroot x = 1,butalsohasthetwocomplexrootsof x2 + x + 1 = 0.

Thismeansthatthegraphofapolynomialofdegree n ≥ 2intersectseverylineinexactly n points,providedfirst thatpointswherethelineisatangentarecountedaccordingtotheirmultiplicity,andsecondlythatcomplex pointsofintersectionarealsocounted.Thistheoremprovidesthefundamentallinkbetweenthealgebraof polynomialsandthegeometryoftheirgraphs,andallowsthedegreeofapolynomialtobedefinedalgebraically asthehighestindex,orgeometricallyasthenumberoftimeseverylinecrossesit.

Exercise11E

1 Usethefactortheoremtowritedowninfactoredform: amoniccubicpolynomialwithzeroes 1,3and4, a amonicquarticpolynomialwithzeroes0, 2,3and1, b acubicpolynomialwithleadingcoefficient6andzeroesat 1 3 , 1 2 and1. c

2a Showthat2and5arezeroesof P(x) = x4 3x3 15x2 + 19x + 30.

b Henceexplainwhy(x 2)(x 5)isafactorof P(x).

FOUNDATION

c Divide P(x)by(x 2)(x 5)andhenceexpress P(x)astheproductoffourlinearfactors.

SAMPLEPAGES

3 Usetrialanderrortofindasmanyintegerzeroesof P(x)aspossible.Uselongdivisiontodivide P(x)bythe productoftheknownfactorsandhenceexpress P(x)infactoredform.

4 RefertoBox19toanswerparts(a)and(b).

Thepolynomial(a 2)x2 + (1 3b)x + (5 2c)hasthreezeroes.Whatarethevaluesof a, b and c? a

b

Thepolynomial(a + 1)x3 + (b 3)x2 + (2c 1)x + (5 4d)hasfourzeroes.Whatarethevaluesof a, b, c and d?

DEVELOPMENT

UNCORRECTEDSAMPLEPAGES

5a If3x2 4x + 7 = a(x + 2)2 + b(x + 2) + c forall x,find a, b and c. b If2x3 8x2 + 3x 4 =

, b, c and d.

c Usesimilarmethodstoexpress x3 + 2x2 3x + 1asapolynomialin(x + 1).

d Ifthepolynomials2x2 + 4x + 4and a(x + 1)2 + b(x + 2)2 + c(x + 3)2 areequalforthreevaluesof x,find a, b and c.

6a Apolynomialofdegree3hasadoublezeroat2.When x = 1ittakesthevalue6andwhen x = 3ittakes thevalue8.Findthepolynomial.

b Twozeroesofapolynomialofdegree3are1and 3.When x = 2ittakesthevalue 15andwhen x = 1ittakesthevalue36.Findthepolynomial.

7 Showthat x2 3x + 2isafactorof P(x) = xn(2m 1) + xm(1 2n) + (2n 2m),where m and n arepositive integers.

8 Iftwopolynomialshavedegrees m and n,where m > n,whatisthemaximumnumberofintersectionpoints oftheirgraphs?

9 Explainwhythegraphofacubicpolynomialwiththreedistinctzeroesmusthavetwoturningpoints.

10 Theline y = k meetsthecurve y = ax3 + bx2 + cx + d fourtimes.Findthevaluesof a, b, c and d interms of k.

11 Find,inexpandedform,themonicdegreefivepolynomialwhosezeroesare0, 1,1,2 √2and2 + √2.

12 Byfactoringthedifference F(x) = P(x) Q(x),describetheintersectionsbetweenthecurves P(x)and Q(x).

P(x) = 2x3 4x2 + 3x + 1, Q(x) = x3 + x2 8 a

P(x) = x4 + x3 + 10x 4, Q(x) = x4 + 7x2 6x + 8 b

P(x) = 2x3 + 3x2 25, Q(x) = 3x3 x2 + 11x + 5 c

P(x) = x4 3x2 2, Q(x) = x3 5x d

P(x) = x4 + 4x3 x + 5, Q(x) = x3 3x2 2x + 5 e

13 If a and b arenon-zero,and a + b = 0,provethatthepolynomials A(x) = x3 + ax2 x + b and B(x) = x3 + bx2 x + a haveacommonfactorofdegree2butarenotidenticalpolynomials.Whatisthecommon factor?

CHALLENGE

14a Factor xn 1.

b Supposethattherootsoftheequation xn 1 = 0are x = 1, α1, α2, , αn 1.Showthat(1 α1)(1 α2) (1 αn 1) = n

15 Supposethat P(x) = x5 + x2 + 1and Q(x) = x2 2.If r1, r2, r3, r4 and r5 arethefivezeroesof P(x),findthe valueof Q(r1) × Q(r2) × Q(r3) × Q(r4) × Q(r5).

16 Supposethat P(x)isapolynomialof odddegree n.Itisknownthat P(k) = k k + 1 for k = 0,1,2, ..., n.

Writedownthezeroesofthepolynomial(x + 1) P(x) x a

b Find P(n + 1). c

Let A betheleadingcoefficientofthepolynomial(x + 1) P(x) x.Factorthepolynomial,andhence showthat A = 1 1 × 2 × 3 ×···× n × (n + 1) = 1 (n + 1)!

UNCORRECTED

11F Sumsandproductsofzeroes

Learningintentions

• Developandusethesum-and-product-of-rootsformulaefordegrees2,3,and4.

• Usetheseformulaetohelpfactorpolynomials,andforotherpurposes.

Whenexpandingamonicpolynomialwithonlylinearfactors,suchas

P(x) = (x 2)(x 3)(x 5)(x 7) = x 4 17x 3 + 101x 2

247x + 210, thefourzeroes2,3,5and7ofthepolynomialclearlydeterminethefivecoefficients1, 17,101, 247and210. Butwhataretheformulaeforthecoefficients?

Ifwestudythecoefficient 17ofthetermin x3,andtheconstantterm210,itdoesnottakelongtorealisethat

17 = (2 + 3 + 5 + 7) = (sumofthezeroes)

210 =+2 × 3 × 5 × 7 =+(productofthezeroes).

Itisnotatallclear,however,howthecoefficients101of x2,and 247of x,arerelatedtothezeroes.(Weinvite readerstotryworkingitoutbeforecontinuing.)

Thissectionanswersthesequestionsforquadratic,cubic,andquarticpolynomials.Knowingtheseformulaeisa helpfultechniquewhentryingtofactorapolynomial,andhasothermoregeneralapplications.

Thezeroesofaquadratic

Let P(x) = ax2 + bx + c beaquadraticwithzeroes α and β andleadingcoefficient a.Then P(x) = a(x α)(x β) bythefactortheorem.

Expanding, P(x) = a(x α)(x β) = ax2 a(α + β)x + aαβ

Hencethecoefficientof x is a timesthesumofthezeroes,andtheconstantis +a timestheproductofthe zeroes, b = a(α + β)and c =+

Thisisjustwhathappenedwiththequarticabove,exceptformultiplicationbytheleadingcoefficient a.Solving forthesumandproductofthezeroes:

23Sumandproductofzeroesofaquadratic

Let P(x) = ax2 + bx + c havezeroes α and β.Then α + β = b a and αβ =+ c a .

Example13 Usingthesumandproductofzeroesofaquadratic

ai Showbysubstitutionthat x = 5isazeroof P(x) = 3x2 30x + 75.

ii Usesum-of-zeroestofindtheotherzero.

iii Useproduct-of-zeroestofindtheotherzero.

b Findthesumofthezeroesof Q(x) = x2 + 7x 11,andhencefinditsaxisofsymmetry.

Solution

ai P(5) = 3 × 25 30 × 5 + 75 = 0.

ii α + β =+ 30 3 α + 5 = 10 α = 5,so5isadoublezero.

b α + β = 7 1 = 7.

iii αβ = 75 3 α × 5 = 25 α = 5,soagain,5isadoublezero.

Theaxisofsymmetryismidwaybetweenzeroes,soitis x = 3 1 2

(Thiscalculationisexactlythesameastheformula x = b 2a fortheaxis.)

Thezeroesofacubic

Let P(x) = ax3 + bx2 + cx + d beacubicwithzeroes α, β and γ andleadingcoefficient a.Then P(x) = a(x α)(x β)(x γ)bythefactortheorem.

Expanding, P(x) = a(x α)(x β)(x γ) = ax 3 a(α + β + γ)x 2 + a(αβ + βγ

soaswesawbeforewiththequarticandthequadratic,

b = a(α + β + γ)and d = aαβγ , wherethenegativesignoftheproductcomesfromthecubeof 1. Butthenewphenomenonhereisthecoefficientof x, c = a(αβ + βγ + γα) =+(sumofproductsofpairsofzeroes).

Solvingforthesumsandproductsofthezeroes:

24Sumsandproductsofzeroesofacubic

Let P(x) = ax3 + bx2 + cx + d havezeroes α, β and γ.Then α + β + γ = b a (sumofthezeroes) αβ + βγ + γα =+ c a (sumofproductsofpairsofzeroes) αβγ = d a (productofthezeroes)

Example14

Usingthesumandproductofzeroesofacubic

a Showthat 6isazeroof P(x) = x3 4x2 39x + 126.

b Usesumandproductofzeroestofindtheothertwozeroes.

c Checktheformulaforthesumofproductsofpairsofzeroes.

Solution

a P( 6) = 216 144 + 234 + 126 = 0.

b α + β 6 = 4 1

α + β = 10 and αβ × ( 6) = 126 1 αβ = 21. Hencebyinspection, α and β are3and7. (Youhavebeenusingthis‘byinspection’approachforyearstosolvequadratics.)

c αβ + βγ + γα = 3 × 7 + 7 × ( 6) + ( 6) × 3 = 39,whichisthecoefficientof x.

Thezeroesofaquartic

Supposethatthefourzeroesofthequarticpolynomial

P(x) = ax 4 + bx3 + cx 2 + dx + e

are α, β, γ and δ.Bythefactortheorem(seeBox16inSection11E), P(x)isamultipleoftheproduct (x α)(x β)(x γ)(x δ):

P(x) = a(x α)(x β)(x γ)(x δ) = ax 4 a(α + β + γ + δ)x 3 + a(αβ + αγ + αδ

Equatingcoefficientsoftermsin x3 , x2 , x andconstantsnowgives:

25Zeroesandcoefficientsofaquartic

(sumofthezeroes)

(sumofproductsofpairsofzeroes)

(sumofproductsoftriplesofzeroes)

(productofthezeroes)

Thesecondformulagives thesumoftheproductsofpairsofzeroes,andthethirdformulagives thesumofthe productsoftriplesofzeroes.

Thegeneralcase

Themethodisthesameforalldegrees.Notationisunfortunatelyamajordifficultyhere,andtheresultsarebetter writteninwords.Supposethat α1, α2,... αn arethe n zeroesofthedegree n polynomial

P(x) = an xn + an 1 xn 1 + ··· + a1 x + a0

26Zeroesandcoefficientsofapolynomial

sumofthezeroes = α1 + α2 + + αn = an 1 an

sumofproductsofpairsofzeroes =+ an 2 an

sumofproductsoftriplesofzeroes = an 3 an

productofthezeroes =

Noticethealternatingsignsofthesuccessiveresults.Itisunlikelythatanythingapartfromthefirstandlast formulaewouldberequired.

Example15 Usingthesumandproductofzeroesofacubic

Let α, β and γ betherootsofthecubicequation x3 3x + 2 = 0.Usetheformulaeabovetofind:

Checktheresultwiththefactoring x3 3x + 2 = (x 1)2(x + 2)obtainedinthesolutionofExample12in Section11E.

Solution

Factoringpolynomialsusingthefactortheoremandthesumand productofzeroes

Longdivisioncanbeavoidedinmanysituationsbyapplyingthesumandproductofzeroesformulaeafteroneor morezeroeshavebeenfound.Herearethestepsthatwehavedevelopedsofarforfactoringpolynomials:

UNCORRECTEDSAMPLEPAGES

27Factoringpolynomials—thestepssofar

• Usetrialanderrortofindasmanyintegerzeroesof P(x)aspossible.

• Usesumandproductofzeroestofindtheotherzeroes.

• Alternatively,uselongdivisionof P(x)bytheproductoftheknownfactors.

Ifthecoefficientsof P(x)areallintegers,thenanyintegerzeroof P(x)mustbeoneofthedivisorsofthe constantterm.

Inthenextexample,wefactorapolynomialfactoredtwicealready,butthistimethereisnoneedforanylong divisionatall.

Usingthesumandproductofzeroesofaquartic

Factor F(x) = x4 + x3 9x2 + 11x 4completely.

Solution

Asbefore, F(1) = 1 + 1 9 + 11 4 = 0, and F( 4) = 256 64 144 44 4 = 0.

Letthezeroesbe1, 4, α and β

Then α + β + 1 4 = 1

α + β = 2. (1)

Also αβ × 1 × ( 4) = 4

αβ = 1. (2)

From(1)and(2), α = β = 1,so F(x) = (x 1)3(x + 4).

Example17 Usingthesumandproductofzeroesofacubic

Factorcompletelythecubic G(x) = x3 x2 4.

Solution

First, G(2) = 8 4 4 = 0.

Letthezeroesbe2, α and β

Then2 + α + β = 1

α + β = 1,(1) and2 × α × β = 4

αβ = 2. (2)

Substituting(1)into(2), α( 1 α) = 2

α2 + α + 2 = 0

Thisisanirreduciblequadratic,because ∆= 7,sothecompletefactoringis G(x) = (x 2)(x2 + x + 2).

Example16

Note: Thisprocedure—developingtheirreduciblequadraticfactorfromthesumandproductofzeroes—is reallylittleeasierthanthelongdivisionitavoids.

Formingidentitieswiththecoefficients

Ifsomeinformationcanbegainedabouttherootsofapolynomialequation,itmaybepossibletoforman identitywiththecoefficientsofthepolynomial.

Example18 Identitiesonthecoefficientsofacubic

Ifonezeroofthecubic f (x) = ax3 + bx2 + cx + d istheoppositeofanother,provethat ad = bc.

Solution

Weknowthatoneofthezeroesistheoppositeofanother,sowecanbeginwiththefollowingsentence,which expressesthisfactsymbolically:

Letthethreezeroesofthecubicbe α, α and β

Nowwecanusetheformulaforthesumoftheroots,

Thenusingtheformulafortheproductoftheroots,

Therearethreeproductsofpairsofroots,namely α2 and αβ and βα,sousingthesumofproductsofpairs ofroots,

Nowwemusteliminatetheroots α and β fromequations(1),(2),and(3).

Substituting(3)into(2), cβ = d, (4) anddividing(1)by(4), ac = b d , thatis, ad = bc

Exercise11F

1 If α and β aretherootsofthequadraticequation x2 4x + 2 = 0,find:

FOUNDATION

2 If α, β and γ aretherootsoftheequation x3 + 2x2 11x 12 = 0,find:

+ β + γ a

Nowfindtherootsoftheequation x3 + 2x2 11x 12 = 0byfactoringtheLHS.Hencecheckyouranswers fortheexpressionsinparts(a)–(i).

3 If α, β, γ and δ aretherootsoftheequation x

= 0,find:

4 If α and β aretherootsoftheequation2x2 + 5x 4 = 0,find:

DEVELOPMENT

5a Thepolynomial P(x) = 2x3 5x2 14x + 8haszeroesat 2and4.Usethesumofthezeroestofindthe otherzero.

b Supposethat x 3and x + 1arefactorsof P(x) = x3 6x2 + 5x + 12.Usetheproductofthezeroesto findtheotherfactorof P(x).

6 Considerthepolynomial P(x) = x3 x2 x + 10.

Showthat 2isazeroof P(x). a

Supposethatthezeroesof P(x)are 2, α and β.Showthat α + β = 3and αβ = 5. b

Bysolvingthetwoequationsinpart(b)simultaneously,showthat α2 3α + 5 = 0. c Henceshowthattherearenosuchrealnumbers α and β. d Hencestatehowmanytimesthegraphofthecubiccrossesthe x-axis. e

7 Showthat x = 1and x = 2arezeroesof P(x),andusethesumandproductofzeroestofindtheotherone ortwozeroes.Noteanymultiplezeroes.

P(x) = x3 2x2 5x + 6 a P(x) = 2x3 + 3x2 3x 2 b

P(x) =

8a Findthevaluesof a and b forwhich x3 + ax2 10x + b isexactlydivisibleby x2 + x 12,andthenfactor thecubic.

b Findthevaluesof a and b forwhich x2 x 20isafactorof x4 + ax3 23x2 + bx + 60,andthenfindall thezeroes.

9a Ifoneoftherootsoftheequation x2 + bx + c = 0istwicetheotherroot,showthat2b2 = 9c.(Hint:Let therootsbe α and2α.)

b Ifoneoftherootsoftheequation x2 + px + q = 0isonemorethantheotherroot,showthat p2 = 4q + 1. (Hint:Lettherootsbe α and α + 1.)

10a Findtherootsoftheequation3x3 x2 48x + 16 = 0giventhatthesumoftwoofthemiszero.(Hint: Lettherootsbe α, α and β.)

b Findtherootsoftheequation2x3 5x2 46x + 24 = 0giventhattheproductoftwoofthemis3.(Hint: Lettherootsbe α, 3 α and β.)

c Findtherootsoftheequation x3 27x 54 = 0giventhattwoofthemareequal.(Hint:Lettheroots be α, α and β.)

d Findthezeroesofthepolynomial P(x) = 2x3 13x2 + 22x 8giventhatoneofthemistheproductof theothertwo.(Hint:Letthezeroesbe α, β and αβ.)

11a Twooftherootsoftheequation x3 + 3x2 4x + a = 0areopposites.Findthevalueof a andthethree roots.

b Twooftherootsoftheequation4x3 + ax2 47x + 12 = 0arereciprocals.Findthevalueof a andthe threeroots.

12 Findthezeroesofthepolynomial x4 3x3 8x2 + 12x + 16iftheyare α,2α, β and2β.

13a Ifonerootoftheequation x3 bx2 + cx d = 0isequaltotheproductoftheothertwo,showthat (c + d)2 = d(b + 1)2 .

b Thepolynomial P(x) = x4 + ax3 + bx2 + cx + d hastwozeroesthatareoppositesandanothertwozeroes thatarereciprocals.Showthat: b = 1 + d i c = ad ii

14 Thecubicequation x3 Ax2 + 3A = 0,where A > 0,hasroots α, β and α + β

Usethesumoftherootstoshowthat α + β = 1 2 A a

b

Usethesumoftheproductsofpairsofrootstoshowthat

Showthat A = 2√6. c

15 Thepolynomial P(x) = x3 Lx2 + Lx M haszeroes α, 1 α and β

a Showthat: α + 1 α + β = L i 1 + αβ +

= L ii β = M iii

b Showthateither M = 1or M = L 1.

16 Supposethatthepolynomial P(x) = ax3 + bx2 + cx + d haszeroes α, β and γ

Showthat α2 + β2 + γ2 = b2 2ac a2 . a

Henceexplainwhythepolynomial2x3 3x2 + 5x 8cannothavethreerealzeroes. b

17 If α, β and γ aretherootsoftheequation x3 + 5x 4 = 0,evaluate α3 + β3 + γ3 . (Hint: x = α, x = β and x = γ satisfythegivenequation.)

18 Supposethattheequation x2 + bx + c = 0hasroots α and β.

a Showthat b and c aretherootsoftheequation x2 + (α + β αβ)x αβ(α + β) = 0.

b Findthenon-zerovaluesof b and c forwhichtherootsoftheequationinpart(a)are: α and β i α2 and β2 ii

CHALLENGE

11G

Geometryusingpolynomialtechniques

Learningintentions

• Usethemethodsofpolynomialstosolvegeometricproblems.

UNCORRECTEDSAMPLEPAGES

Thisfinalsectionaddsthemethodsoftheprecedingsections,particularlythesumandproductofzeroes,tothe availabletechniquesforstudyingthegeometryofvariouscurves.Thestandardtechniqueistoexaminetheroots oftheequationformedintheprocessofsolvingtwocurvessimultaneously. Thissectionisratherdemanding,andcouldallberegardedasEnrichment.

Midpointsandtangents

Whentwocurvesintersect,wecanformtheequationwhosesolutionsarethe x-or y-coordinatesofpointsof intersectionofthetwocurves.Themidpointoftwopointsofintersectioncanthenbefoundusingtheaverageof theroots.Tangentscanbeidentifiedascorrespondingtodoubleroots.

Thenextexamplecouldalsobedoneusingquadraticequations,butitisaclearexampleoftheuseofsumand productofroots.

Example19 Dealingwithtangentsusingdoubleroots

Theline y = 2x meetstheparabola y = x2 2x 8atthetwopoints A(α,2α)and B(β,2β).

a Showthat α and β arerootsof x2 4x 8 = 0,andhencefindthecoordinatesofthemidpoint M of AB.

b Usetheidentity(α β)2 = (α + β)2 4αβ tofindthehorizontaldistance |α β| from A to B.Thenuse Pythagoras’theoremandthegradientofthelinetofindthelengthof AB.

c Findthevalueof b forwhich y = 2x + b isatangenttotheparabola,andfindthepoint T ofcontact.

Solution

a Solvingthelineandtheparabolasimultaneously,

x 2 2x 8 = 2x x 2 4x 8 = 0.

Hence α + β = 4, and αβ = 8.

Averagingtheroots, M has x-coordinate x = 2,andsubstitutingintotheline, M = (2,4).

b Weknowthat(α β)2 = (α + β)2 4αβ = 16 + 32 = 48

so |α β| = 4√3. Becausethelinehasgradient2,theverticaldistanceis8√3, sousingPythagoras, AB2 = (4√3)2 + (8√3)2

= 16 × 15

AB = 4√15.

c Solving y = x2 2x 8and y = 2x + b simultaneously, x 2 4x (8 + b) = 0

Becausethelineisatangent,lettherootsbe θ and θ Thenusingthesumofroots, θ + θ = 4, so θ = 2,

Usingtheproductofroots, θ2 = 8 b andbecause θ = 2, b = 12.

Sotheline y = 2x 12isatangentat T (2, 8).

Geometricproblemsusingsumandproductofroots

Thesumandproductofrootscanmakesomeinterestinggeometricproblemsquitestraightforward.

Example20 Tangentsandthesumandproductofroots

Alinewithgradient m throughthepoint P( 1,0)onthecubic y = x3 x crossesthecurveattwofurther points A and B with x-coordinates α and β respectively.

a Sketchthesituation.

b Showthat α and β satisfythecubicequation x3 (m + 1)x m = 0.

c Showthatthemidpoint M of AB liesontheverticalline x = 1 2 .

d Findthelinethrough P tangenttothecubicatapointdistinctfrom P

Solution

a Thecubicfactorsas y = x(x 1)(x + 1), sothezeroesare x = 1, x = 0and x = 1.

b Thelinethrough P( 1,0)hasequation y = m(x + 1).

Solvingthelinesimultaneouslywiththecubic,

c Thecubichasroots α, β and1. Usingthesumofroots, α + β + ( 1) = 0(thereisnotermin x 2) so α + β = 1.

Hencethemidpoint M of AB has x-coordinate 1 2 (α + β) = 1 2 ,so M liesontheline x = 1 2

d Theline PM isatangentatanotherpointonthecurvewhenthepoints A, M and B coincide,thatis,when α = β, andbecause α + β = 1,thismeansthat α = β = 1 2

Usingtheproductofroots, α × β × ( 1) = m (theconstanttermis m) 1 2 × 1 2 × ( 1) = m m = 1 4 ,

sothetangentthrough P is y = 1 4 (x + 1).

Exercise11G

Note: Sketchesshouldbedrawninallthesequestionstomakethesituationclear.

FOUNDATION

1a Showthatthe x-coordinatesofthepointsofintersectionoftheparabola y = x2 6x andtheline y = 2x 16satisfytheequation x2 8x + 16 = 0.

b Solvethisequation,andhenceshowthatthelineisatangenttotheparabola.Findthepoint T ofcontact.

2a Showthatthe x-coordinatesofthepointsofintersectionoftheline y = 2x + b andtheparabola y = x2 6x satisfythequadraticequation x2 4x b = 0.

b Supposethatthelineisatangenttotheparabola,sothattherootsofthequadraticequationareequal.Let theserootsbe α and α.

Usingthesumofroots,showthat α = 2. i

Usingtheproductofroots,showthat α2 = b,andhencefind b ii

Findtheequationofthetangentanditspoint T ofcontact. iii

3 Theline y = x + 1meetstheparabola y = x2 3x at A and B

a Find α + β,andhencefindthecoordinatesofthemidpoint M of AB. b

Showthatthe x-coordinates α and β of A and B satisfytheequation x2 4x 1 = 0.

4a Showthatthe x-coordinatesofthepointsofintersectionoftheline y = 3 x andthecubic y = x3 5x2 + 6x satisfytheequation x3 5x2 + 7x 3 = 0.

b Showthat x = 1and x = 3arerootsoftheequation,andusethesumoftherootstofindthethirdroot.

c Explainwhythelineisatangenttothecubic,thenfindthepointofcontactandtheotherpointof intersection.

5a Showthatthe x-coordinatesofthepointsofintersectionoftheline y = mx andthecubic y = x3 5x2 + 6x satisfytheequation x3 5x2 + (6 m)x = 0.

b Supposenowthatthelineisatangenttothecubicatapointotherthantheorigin,sothattherootsofthe equationare0, α and α.

Usingthesumofroots,showthat α = 5 2 i

Usingtheproductofpairsofroots,showthat α2 = 6 m,andhencefind m ii

Findtheequationofthetangentanditspoint T ofcontact. iii

6 Theline y = x 2meetsthecubic y = x3 5x2 + 6x at F(2,0),andalsoat A and B.

a

Showthatthe x-coordinates α and β of A and B satisfy x3 5x2 + 5x + 2 = 0.

Find α + β,andhencefindthecoordinatesofthemidpoint M of AB b

c

Showthat αβ = 1,thenusetheidentity(α β)2 = (α + β)2 4αβ toshowthatthehorizontaldistance |α β| between A and B is √13.

HenceusePythagoras’theoremtofindthelength AB d

7 Alinepassesthroughthepoint A( 1, 7)onthecurve y = x3 3x2 + 4x + 1.Supposethatthelinehas gradient m andistangenttothecurveatanotherpoint P onthecurvewhose x-coordinateis α

a

b

c

SAMPLEPAGES

Showthatthelinehasequation y = mx + (m 7).

Showthatthecubicequationwhoserootsarethe x-coordinatesofthepointsofintersectionoftheline andthecurveis x3 3x2 + (4 m)x + (8 m) = 0.

Explainwhytherootsofthisequationare 1, α and α,andhencefindthepoint P andthevalueof m

8 Thepoint P(p, p3)liesonthecurve y = x3.Alinethrough P withgradient m intersectsthecurveagainat A and B.

Findtheequationofthelinethrough P a

Showthatthe x-coordinatesof A and B satisfytheequation x3 mx + mp p3 = 0.

c

b Hencefindthe x-coordinateofthemidpoint M of AB,andshowthatforfixed p, M alwaysliesonaline thatisparalleltothe y-axis.

UNCORRECTEDSAMPLEPAGES

9a Theequation x3 (m + 1)x + (6 2m) = 0hasarootat x = 2andadouble rootat x = α.Find α and m.

b Writedowntheequationoftheline ℓ passingthroughthepoint P( 2, 3)with gradient m.

c Thediagramshowsthecurve y = x3 x + 3andthepoint P( 2, 3)onthe curve.Theline ℓ cutsthecurveat P,andistangenttothecurveatanother point A onthecurve.Findtheequationoftheline ℓ P() −2−3 , x y 3

10a Usethefactortheoremtofactorthepolynomial y = x4 4x3 9x2 + 16x + 20,giventhattherearefour distinctzeroes,thensketchthecurve.

b Theline ℓ: y = mx + b touchesthequartic y = x4 4x3 9x2 + 16x + 20attwodistinctpoints A and B. Explainwhythe x-coordinates α and β of A and B aredoublerootsoftheequation x4 4x3 9x2 + (16 m)x + (20 b) = 0.

c Usethetheoryofthesumandproductofrootstowritedownfourequationsinvolving α, β, m and b

d Hencefind m and b,andwritedowntheequationof ℓ

Note: Iftwocurvestoucheachotherat P,thentheyaretangenttoeachotherat P

11a Find k andthepointsofcontactiftheparabola y = x2 k touchesthequartic y = x4 attwopoints.

b Find k andthepoint T ofcontactiftheparabola y = x2 k touchesthecubic y = x3

c Find k andthepointsofcontactiftheparabola y = x2 k touchesthecircle x2 + y2 = 1attwopoints.

CHALLENGE

12 Acirclepassingthroughtheorigin O istangenttothehyperbola xy = 1at A,andintersectsthehyperbola againattwodistinctpoints B and C.Provethat OA ⊥ BC.

13 Thediagramtotherightshowsthecircle x2 + y2 = 1andtheparabola y = (λx 1)(x 1),where λ isaconstant.Thecircleandparabolameetinthe fourpoints

P(1,0), Q(0,1), A(α, φ), B(β, ψ).

Thepoint M isthemidpointofthechord AB.

a Showthatthe x-coordinatesofthepointsofintersectionofthetwocurves satisfytheequation λ2 x 4 2λ(1 + λ)x 3 + (λ2 + 4λ + 2)x 2 2(1 + λ)x = 0.

b Usetheformulaforthesumoftherootstoshowthatthe x-coordinateof M is λ + 2 2λ .

c Useasimilarmethodtofindthe y-coordinateof M,andhenceshowthat M liesonthelinethroughthe origin O parallelto PQ.

d Forwhatvaluesof λ istheparabolatangenttothecircleinthefourthquadrant?

e Forwhatvaluesof λ arethefourpoints P, Q, A and B distinct,withrealnumbersascoordinates.

Chapter11Review

Reviewactivity

• Createyourownsummaryofthischapteronpaperorinadigitaldocument.

Chapter11Multiple-choicequiz

• Thisautomatically-markedquizisaccessedintheInteractiveTextbook.AprintablePDFWorksheetversionis alsoavailablethere.

SkillsChecklist

• Checklist AvailableintheInteractiveTextbook,usethechecklisttotrackyourunderstandingofthelearningintentions. PrintablePDFandworddocumentversionsarealsoavailablethere.

ChapterReviewExercise

1 Considerthepolynomial P(x) = 2x3 5x2 6x 11.State: thedegreeof P(x), a theleadingcoefficientof P(x), b theleadingtermof P(x), c theconstanttermof P(x). d

2 Thepolynomial P(x)hasdegree3.Writedownthedegreeofthepolynomial: 3 P(x) a (P(x))3 b

3 Findthecoefficientof x2 inthepolynomial P(x) = (x2 3x 7)(2x2 + 4x 9).

4a Sketchthegraphofthepolynomialfunction y = (x + 2)2(x 1)(x 3),showingallinterceptswiththe coordinateaxes. b Hencefindthevaluesof x forwhich(x + 2)2(x 1)(x 3) < 0.

5 Sketchthegraphofthepolynomial P(x) = x3 x5 .

6 Supposethatthepolynomial P(x) = 2x3 + 7x2 4x + 5isdividedby D(x) = x 3. Findthequotient Q(x)andtheremainder R(x). a Writedownadivisionidentityusingtheinformationabove. b

7 Withoutlongdivision,findtheremainderwhen P(x) = x3 5x2 + 1isdividedby: x 3 a x + 2 b

8a Usethefactortheoremtoshowthat x 2isafactorof P(x) = x3 19x + 30. b Hencefactor P(x)fully.

9 Findthevalueof k giventhat x + 3isafactorof P(x) = x3 + 4x2 + kx 12.

10 Findthevaluesof b and c giventhat x + 1isafactorof P(x) = x3 + bx2 + cx 7,andtheremainderis 12 when P(x)isdividedby x 5.

11 Findthevaluesof h and k giventhat x + 2isafactorof Q(x) = (x + h)2 + k,andtheremainderis16when Q(x)isdividedby x.

12 Thepolynomial P(x)isdividedby(x + 1)(x 2).Supposethatthequotientis Q(x)andtheremainderis R(x).

Explainwhythegeneralformof R(x)is ax + b,where a and b areconstants. a When P(x)isdividedby x + 1theremainderis10,andwhen P(x)isdividedby x 2theremainderis 8.Find a and b.(Hint:Usethedivisionidentity.) b

13 Supposethatthepolynomial Q(x) = x2 6x 4haszeroes α and β.Withoutfindingthezeroes,findthe valueof:

UNCORRECTEDSAMPLEPAGES

14 If α, β and γ aretherootsoftheequation x3 + 10x2 + 5x 20 = 0,find:

15 Theequation x3 + 5x2 + cx + d = 0hasroots 3,7and α.

Usethesumoftherootstofind α a

Usetheproductoftherootstofind d b

Usethesumoftherootsinpairstofind c c

16 Theequation6x3 17x2 5x + 6 = 0hasroots α, β and γ,where αβ = 2.

Usetheproductoftherootstofind γ. a

Usethesumoftherootstofindtheothertworoots. b

17 Onerootoftheequation ax2 + 2bx + c = 0isthereciprocalofthesquareoftheotherroot.Showthat a3 + c3 + 2abc = 0.

18 Solvetheequation9x3 27x2 + 11x + 7 = 0giventhattherootsare α β, α and α + β.

19 Findthezeroesofthepolynomial P(x) = 8x3 14x2 + 7x 1giventhattheyare α β , α and αβ.

20 Theline y = 9x + 5isthetangenttothecurve y = x3 3x2 atthepoint A( 1, 4).Thelineintersectsthe curveatanotherpoint B.Supposethatthe x-coordinateof B is α

Writedownthecubicequationwhoserootsarethe x-coordinatesof A and B. a

Explainwhytherootsofthisequationare 1, 1and α. b Hencefindthepoint B. c

16 Furthertrigonometry

Chapterintroduction

Thefirstsectionofthischapterappliestrigonometrytothree-dimensionalproblems.Threenewissuesarise immediatelywhenmovingfrom2to3dimensions.

UNCORRECTEDSAMPLEPAGES

▶ Visualisationisthefirstnewissuehere,andacleardiagramdisplayingallthetrianglesisrequired—atask thatmayinvolveseveralattempts.

▶ Thesecondnewissueistoidentifyallrightangles,andtounderstandwhatitmeansforaplaneandaline,or twoplanes,tobeperpendicular.

▶ Thethirdnewissueistounderstandhowtoidentifymoregenerallytheanglebetweenalineandaplane, andbetweentwoplanes.

Three-dimensionalworkwillcontinueintheYear12studyof2and3-dimensionalvectors,wherethesesame threeissueswillarise.

Thenexttwosectionsdevelopaseriesoftrigidentitiesinvolvingcompoundanglesanddoubleangles.These arerequiredinYear12whenthetrigfunctionsaredifferentiated,which,andasalwayswithnewfunctions,will beginwithanappealtogeometry.Theseidentitieswillalsoberequiredwhensketchingfunctionsinvolvingthe trigfunctions,andinmodellingvariousperiodicphenomena.

Thenewidentities,togetherwiththosedevelopedpreviously,areappliedinSection16Dtothesolutionofa widevarietyoftrigonometricequationsthatariselaterwhenmodellingwithcalculus.

ThefinalSection16Edealswithfunctionsoftheform a sin x + b cos x,whichsurprisinglyturnouttobesine orcosinefunctions—shiftedhorizontally,anddilatedverticallytogiveadifferentamplitude.Theseresults andmethodsrequiretransformationoftrigonometricfunctionspresentedintheYear12Advancedcourse,soa preliminarysubheadingquicklyappliesthemethodsofChapter5tothetwotransformationsthatareneeded.

ThemethodsofthislastsectionarethefirststepinFourieranalysis,whichisthebasisofavastnumberofwave phenomenainscience,engineeringandmedicine—ourearssplitasoundwaveintoindividualfrequencies, asisclearwhenwelistentomusic,andtheanalysisofgravitywavesisattheveryedgeofphysicsrightnow. JosephFourierwasaFrenchscientistdeeplyinvolvedwithNapoleonBonaparteandtheFrenchRevolution. Aswellashisground-breakingworkwiththeanalysisofperiodicphenomena,hewasanexpertinEgyptian archaeology.

16A Three-dimensionaltrigonometry

Learningintentions

• Interpretdatagivenindiagramorwrittenformabouta3Dtrigproblem.

• Applytrigonometrytosolvea3Dproblem.

Trigonometryisbasedontriangles,whicharetwo-dimensionalobjects.Whentrigonometryisappliedtoathreedimensionalproblem,thediagrammustbebrokenupintoacollectionoftrianglesinspace,andtrigonometryis thenappliedtoeachtriangleinturn.Acarefullydrawndiagramisalwaysessential.

Twonewideasaboutanglesareneeded—theanglebetweenalineandaplane,andtheanglebetweentwo planes.Pythagoras’theoremremainsfundamental.

TrigonometryandPythagoras’theoreminthreedimensions

Herearethestepsinasuccessfulapproachtoathree-dimensionalproblem.

1TrigonometryandPythagoras’theoreminthreedimensions

1 Drawacarefulsketchofthesituation.

2 Notecarefullyallthetrianglesinthefigure.

3 Mark,ornote,allrightanglesinthesetriangles.

4 Alwaysnamethetriangleyouareworkingwith.

Example1 UsingPythagoras’theoremina3Dfigure

Therectangularprismsketchedbelowhasdimensions:

= 4cmand

a UsePythagoras’theoremin △CFG tofindthelengthofthediagonal FC.

b Similarlyfindthelengthsofthediagonals AC and AF

c UsePythagoras’theoremin △ACG tofindthelengthofthespace diagonal AG.

d Usetrigonometryin △BAF tofind ∠BAF (nearestminute).

e Usetrigonometryin △GAF tofind ∠GAF (nearestminute).

Solution

a In △CFG, FC2 = 32 + 42 , FC = 5cm. usingPythagoras,

b In △ABC, AC2 = 52 + 42 (Pythagoras)

AC = √41cm.

In △ABF, AF2 = 52 + 32 (Pythagoras)

AF = √34cm.

c In △ACG,theangle ∠ACG isarightangle,and AC = √41and CG = 3.

Hence AG2 = AC2 + CG2 ,

= 41 + 32

AG = √50

= 5√2cm. usingPythagoras,

d In △BAF,theangle ∠ABF isarightangle,and AB = 5and BF = 3.

Hencetan ∠BAF = BF AB = 3 5

∠BAF ≑ 30◦58′

e In △GAF,theangle ∠AFG isarightangle,and AF = √34and FG = 4.

Hencetan ∠GAF = FG AF = 4 √34

∠GAF ≑ 34◦27′

Theanglebetweenalineandaplane

In3Dspace,aplane P andaline ℓ canberelatedinthreedifferentways:

UNCORRECTEDSAMPLEPAGES

• Inthefirstdiagram,thelinelieswhollywithintheplane.

• Intheseconddiagram,thelinenevermeetstheplane.Wesaythatthelineandtheplaneare parallel.

• Inthethirddiagram,thelineintersectstheplaneinasinglepoint P.

Whentheline ℓ meetstheplane P inthesinglepoint P,itcandosointwodistinct ways.

Intheupperdiagram,theline ℓ isperpendiculartoeverylineintheplanethrough P. Wesaythatthelineis perpendicular totheplane.

Inthelowerdiagram,theline ℓ isnotperpendicularto P.Toconstructtheangle θ betweenthelineandtheplane:

• Chooseanotherpoint A ontheline ℓ

• Constructthepoint M intheplane P sothat AM ⊥P

Then ∠APM istheanglebetweenthelineandtheplane.

Example2 Findingtheanglebetweenalineandaplane

Findtheanglebetweenaslantedgeandthebaseinasquarepyramidofheight8metreswhosebasehasside length12metres(nearestminute).

Solution

UsingPythagoras’theoreminthebase ABCD,

AC2 = 122 + 122

AC = 12√2metres.

Theperpendicularfromthevertex V tothebasemeetsthebaseatthemidpoint M ofthediagonal AC

P

In △MAV,tan ∠MAV = MV MA = 8 6√2

∠MAV ≑ 43◦19′ , andthisistheanglebetweentheslantedge AV andthebase.

Theanglebetweentwoplanes

In3Dspace,twoplanesthatarenotparallelintersectinaline ℓ.Toconstructthe anglebetweentheplanes:

• Takeanypoint P onthislineofintersection.

• Constructtheline p through P perpendicularto ℓ lyingintheplane P

• Constructtheline q through P perpendicularto ℓ lyingintheplane Q

Theanglebetweentheplanes P and Q isdefinedtobetheangle θ betweenthese twolines p and q.

Example3 Findingtheanglebetweentwoplanes

Inthepyramidofthepreviousexample,findtheanglebetweenanobliquefaceofthepyramidandthebase.

Solution

Let P bethemidpointoftheedge BC

Then VP ⊥ BC and MP ⊥ BC, so ∠VPM istheanglebetweentheobliquefaceandthebase.

In △VPM,tan ∠VPM = VM PM =

Three-dimensionalproblemsinwhichnotrianglecanbesolved

Inthefollowingclassicproblem,therearefourtrianglesformingatetrahedron,butnotrianglecanbesolved, becausenomorethantwomeasurementsareknowninanyoneofthesetriangles.

Themethodistointroduceapronumeral h = TF fortheheight,thenworkaroundthefigureuntil four measurementsareknownintermsof h inthebasetriangle—atthispointanequationin h canbeformedandsolved.

Example4 Solvingaprobleminwhichnotrianglecanbesolved

Amotoristdrivingonlevelgroundsees,duenorthofher,atowerwhoseangleofelevationis10◦.After driving3kmfurtherinastraightline,thetowerisinthedirectionduewest,withangleofelevation12◦ Howhighisthetower? a Inwhatdirectionisshedriving? b

Solution

Letthetowerbe TF,andletthemotoristbedrivingfrom A to B

a Therearefourtriangles,noneofwhichcanbesolved.

Let h betheheightofthetower.

In △TAF, AF = h cot10◦ .

In △TBF, BF = h cot12◦ .

Wenowhaveexpressionsforfourmeasurementsin △ABF,sowecanusePythagoras’theoremtoforman equationin h

In △ABF, AF2 + BF2 = AB2 h2 cot2 10◦ + h2 cot2 12◦ = 32 h2(cot2 10◦ + cot2 12◦) = 9

sothetowerisabout407metreshigh.

b Let θ = ∠FAB,thenin △AFB,sin θ

soherdirectionisaboutN64◦E.

Thegeneralmethodofapproach

Hereisasummaryofwhathasbeensaidabout3Dproblems:

2Three-dimensionaltrigonometry

1 Understandanglesbetweenalineandaplane,andbetweentwoplanes.

2 Drawacarefuldiagramofthesituation,markingallrightangles.

3 Aplandiagram,lookingdown,isusuallyagreathelp.

4 Identifyeverytriangleinthediagram,toseewhetheritcanbesolved.

5 Ifonetrianglecanbesolved,thenworkfromitaroundthediagramuntiltheproblemissolved.

6 Ifnotrianglecanbesolved,assignapronumeraltowhatistobefound,thenworkaroundthediagram untilanequationinthatpronumeralcanbeformedandsolved.

Exercise16A

1 Thediagramtotherightshowsarectangularprism.

a UsePythagoras’theoremtofindthelengthofthebasediagonal BE

b Hencefindthelengthoftheprismdiagonal BH

c Find,correcttothenearestdegree,theangle α that BH makeswiththe baseoftheprism.

2 Thediagramtotherightshowsacube.

a Writedownthesizeof:

b UsePythagoras’theoremtofindtheexactlengthof:

AF ii AG

c Hencefind,correcttothenearestdegree:

∠GAF

FOUNDATION

∠AGB

3 Thediagramtotherightshowsatriangularprism.

a Findtheexactlengthof:

i AC ii AF

b Whatisthesizeof ∠ACF?

c Find ∠AFC,correcttothenearestdegree.

4 Thediagramtotherightshowsasquarepyramid.Thepoint C isthecentreofthebase,and TC is perpendiculartothebase.

a Writedownthesizeof: i ∠CMQ ii ∠TCM iii ∠TCQ

b Findthelengthof: i CM ii CQ

c Find,correcttothenearestdegree: i theanglebetweenasidefaceandthebase, ii theanglebetweenaslantedgeandthebase.

5 Thediagramtotherightshowsarectangularprism.

a Writedownthesizeof:

i ∠ABF ii ∠DBF

b Find,correcttothenearestdegree,theanglethatthediagonalplane DBFH makeswiththebaseoftheprism.

6 Thediagramtotherightshowsasquareprism.Theplane ABC isinside theprism,and M isthemidpointofthebasediagonal BC.

a Findtheexactlengthof MD

b Hencefind,correcttothenearestdegree,theanglethattheplane ABC makeswiththebaseoftheprism.

7 Twolandmarks P and Q onlevelgroundareobservedfromthetop T ofa verticaltower BT ofheight30m.Landmark P isduesouthofthetower,while landmark Q isdueeastofthetower.Theanglesofelevationof T from P and Q are15◦ and18◦ respectively.

a Showthat BP = 30tan75◦ andfindasimilarexpressionfor BQ.

b Find,correcttothenearestmetre,thedistancebetweenthetwolandmarks.

8 Atree BT isduenorthofanobserverat P andduewestofanobserverat Q Thetwoobserversare50mapartandthebearingof Q from P is36◦.The angleofelevationof T from Q is28◦ .

a Showthat BQ = 50sin36◦

b Hencefindtheheight h ofthetreecorrecttothenearestmetre.

c Find,correcttothenearestdegree,theangleofelevationof T from P

9 Twomonuments A and B are400mapartonahorizontalplane.Theangleof depressionof A fromthetop T ofatallbuildingis18◦.Also, ∠TAB = 52◦ and ∠TBA = 38◦

a Showthat TA = 400cos52◦ .

b Findtheheight h ofthebuilding,correcttothenearestmetre.

c Find,correcttothenearestdegree,theangleofdepressionof B from T .

10 Thediagramshowsacubeofside2cm,withdiagonals AG and CE intersectingat P.Thepoint M isthemidpointofthefacediagonal EG. Let α betheacuteanglebetweenthediagonals AG and CE

a Whatisthelengthof PM?

b Findtheexactlengthof EM.

c Writedowntheexactvalueoftan ∠EPM

d Hencefind α,correcttothenearestminute.

11 Thediagramshowsarectangularpyramid. X and Y arethemidpointsof AD and BC respectivelyand T isdirectlyabove Z. TX = 15cm, TY = 20cm, AB = 25cmand BC = 10cm.

a Showthat ∠XTY = 90◦ .

b UsingeithersimilartrianglesorPythagoras’theorem,showthat TZ = 12cm.

c Hencefind,correcttothenearestminute,theanglethatthefrontface DCT makeswiththebase.

12 Twoobserversat A and B onhorizontalgroundare300mapart.From A,the angleofelevationofthetop C ofatallbuilding DC is32◦.Itisalsoknownthat

∠DAB = 59◦ and ∠ADB = 78◦

a Showthat AD = 300sin43◦ sin78◦

b Hencefindtheheightofthebuilding,correcttothenearestmetre.

13

Aballoon B isduenorthofanobserver P anditsangleofelevationis62◦.Fromanotherobserver Q 100metresfrom P,theballoonisduewestanditsangleofelevationis55◦.Lettheheightoftheballoonbe h metresandlet C bethepointonthelevelgroundverticallybelow B

a Showthat PC = h cot62◦,andwritedownasimilarexpressionfor QC

b Explainwhy ∠PCQ = 90◦

c UsePythagoras’theoremin △CPQ toshowthat

h2 = 1002 cot2 62◦ + cot2 55◦ .

d Hencefind h,correcttothenearestmetre.

14 Fromapoint P duesouthofaverticaltower,theangleofelevationofthetopofthetoweris20◦.Froma point Q situated40metresfrom P anddueeastofthetower,theangleofelevationis35◦.Let h metresbe theheightofthetower.

Drawadiagramtorepresentthesituation.

b

a Showthat h = 40 √tan2 70◦ + tan2 55◦ ,andevaluate h,correcttothenearestmetre.

15 Fromtwopoints P and Q onlevelground,theanglesofelevationofthetop T ofa38mtowerare26◦ and22◦ respectively.Point P isduesouthofthe tower,andthebearingof Q fromthetoweris100◦T.

a Showthat PB = 38tan64◦,andfindasimilarexpressionfor QB

b Usethecosineruletodetermine,correcttothenearestmetre,thedistance between P and Q

16 Inthediagram, TF representsaverticaltowerofheight x metresstandingon levelground.From P and Q atgroundlevel,theanglesofelevationof T are22◦ and27◦ respectively. PQ = 63metresand ∠PFQ = 51◦ .

a Showthat PF = x cot22◦ andwritedownasimilarexpressionfor QF

b Usethecosineruletoshowthat x2 = 632 cot2 22◦ + cot2 27◦ 2cot22◦ cot27◦ cos51◦ .

c Findthevalueof x tothenearestinteger.

17 Thediagramshowsatowerofheight h metresstandingonlevelground.Theangles ofelevationofthetop T ofthetowerfromtwopoints A and B onthegroundnearby are55◦ and40◦ respectively.Thedistance AB is50metresandtheinterval AB is perpendiculartotheinterval AF,where F isthefootofthetower.

a Find AT and BT intermsof h.

b Whatisthesizeof ∠BAT ?

c UsePythagoras’theoremin △BAT toshowthat h = 50sin55◦ sin40◦ sin2 55◦ sin2 40◦

d Hencefindtheheightofthetower,correcttothenearestmetre.

18 Inthediagramofatriangularpyramid, AQ = x, BQ = y, PQ = h, ∠APB = θ,

∠PAQ = α and ∠PBQ = β.Also,therearethreerightanglesat Q.

a Showthat x = h cot α andwritedownasimilarexpressionfor y

b UsePythagoras’theoremandthecosineruletoshowthat cos θ = h2 (x2 + h2)(y2 + h2) .

c Henceshowthatsin α sin β = cos θ.

19 Thediagramshowsatriangularpyramid,allofwhosefacesareequilateraltriangles— suchasolidiscalleda regulartetrahedron.Supposethattheslantedgesareinclinedat anangle θ tothebase.Showthatcos θ = 1 √3

CHALLENGE

UNCORRECTEDSAMPLEPAGES

20 Asquarepyramidhasperpendicularheightequaltothesidelengthofitsbase.Showthattheanglebetween aslantedgeandabaseedgeitmeetsistan 1 √5.

21 Threetourists T1, T2 and T3 atgroundlevelareobservingalandmarkwhosetopweshallcall L. T1 isdue northof L, T3 isdueeastof L,and T2 isonthelineofsightfrom T1 to T3 andbetweenthem.Theanglesof elevationto L from T1, T2 and T3 are25◦,32◦ and36◦ respectively.

a

Showthattan ∠LT1T2 = cot36◦ cot25◦ .

Usethesinerulein △LT1T2 tofind,correcttothenearestminute,thebearingof T2 from L. b

16B Trigonometricfunctionsofcompoundangles

Learningintentions

• Developandapplythecompoundangletrigformulae.

ThederivativesofthetrigonometricfunctionswillbedevelopedinYear12.Beforethatcanbedone,however, variousformulaeinvolvingcompoundanglesneedtobeestablished,beginningwiththeexpansionofobjects suchassin(x + h),tan(x y)andcos2x.Suchtrigonometricidentitiesaremostimportantforallsortsofother reasonsaswell,andmustbethoroughlymemorised.Theirdevelopmentistheconcernofthissectionandthe next.

Aswithallfundamentalresultsintrigonometry,theseformulaerequireaninitialappealtogeometry,inthis casecircles,Pythagoras’theoremintheformofthedistanceformula,thecosinerule,andthePythagorean trigonometricidentity.

Theapproachgivenherebeginswiththeexpansionofcos(α β)andusesthatresulttoderivetheother expansions.Therearemanyalternativeapproaches.

Theexpansionof cos(α − β)

Weshallprovethatforallrealnumbers α and β, cos(α β) = cos α cos β

Proof Lettherayscorrespondingtotheangles α and β intersectthecircle x2 + y2 = r2 atthepoints A and B respectively.Thenbythedefinitionsof thetrigonometricfunctionsforgeneralangles, A = (r cos α , r sin α)and B = (r cos β , r sin β).

Nowwecanusethedistanceformulatofind AB2:

=

(cos

(cos

(1

Buttheangle ∠AOB is α β,sobythecosinerulein △AOB,

AB2 = r 2 + r 2 2r 2 cos(α β) = 2r 2 1 cos(α β)

Equatingthesetwoexpressionsfor AB2 , cos(α β) = cos α cos β + sin α sin β

Note: Itwasclaimedintheproofthat ∠AOB = α β.Thisisnotnecessarilythecase,becauseit’salsopossible that ∠AOB = β α,orthat ∠AOB differsfromeitherofthesetwovaluesbyamultipleof2π.But thecosinefunctioniseven,anditisperiodicwithperiod2π.Soitwillstillfollowineverycasethat cos ∠AOB = cos(α β),whichisallthatisrequiredintheproof.

Thesixcompound-angleformulae

Hereareallsixcompound-angleformulaeforthesine,cosineandtangentfunctions,followedbytheremaining fiveproofs.

3Thecompound-angleformulae

A sin(α + β) = sin α cos β + cos α sin β

B cos(α + β) = cos α cos β sin α sin β

C tan(α + β) = tan α + tan β 1 tan α tan β

D sin(α β) = sin α cos β cos α sin β

E cos(α β) = cos α cos β + sin α sin β

F tan(α β) = tan α tan β 1 + tan α tan β

Theseformulaeareofcoursetruewhethertheangleisgivenindegreesorradians.

Proof WeproceedfromformulaE,whichhasalreadybeenproven.

B Replacing β by β inE,whichistheexpansionofcos(α β), cos(α + β) = cos α ( β)

= cos α cos( β) + sin α sin( β) = cos α cos β sin α sin β,becausecosineisevenandsineisodd.

A Usingtheidentitysin θ = cos( π 2 θ), sin(α + β) = cos π 2 (α + β) = cos ( π 2 α) β)

= cos( π 2 α)cos β + sin( π 2 α)sin β

= sin α cos β + cos α sin β

D Replacing β by β,andnotingthatcosineisevenandsineisodd, sin(α β) = sin α cos β cos α sin β

C Becausetan θ istheratioofsin θ andcos θ, tan(α + β) = sin(α + β) cos(α + β) = sin α cos β + cos α sin β cos α cos β sin α sin β = tan α + tan β 1 tan α tan β ,afterdividingtopandbottombycos α cos β.

F Replacing β by β,andnotingthatthetangentfunctionisodd,

tan(α β) = tan α tan β 1 + tan α tan β .

Example5 Usingthecompoundangleformulae

Expresssin(x + 2π 3 )intheform a cos x + b sin x

Solution

UNCORRECTEDSAMPLEPAGES

sin(x + 2π 3 ) = sin x cos 2π 3 + cos x sin 2π 3

= 1 2 sin x + 1 2 √3cos x

Example6 Usingthecompoundangleformulae

Giventhatsin α = 1 3 andcos β = 4 5 ,where α isacuteand π 2 < β < 0,findsin(α β)andcos(α + β).

Solution

First,usingthediagramsontheright,

cos α = 2 3 √2andsin β = 3 5 .

Sosin(α β) = sin α cos β cos α sin β

= 4 15 + 6 15 √2

= 2 15 (2 + 3√2),

andcos(α + β) = cos α cos β sin α sin β

= 8 15 √2 + 3 15 = 1 15 (8√2 + 3).

Furtherexactvaluesoftrigonometricfunctions

Thevariouscompound-angleformulaecanbeusedtofindexpressionsinsurdsfortrigonometricfunctionsof manyanglesotherthanoneswhoserelatedanglesarethestandard30◦,45◦ and60

Example7 Findingexactvaluesofanglesotherthan30◦,45◦,and60◦

Findexactvaluesof:

Solution

Therearemanyalternativemethods.

◦ = sin(30

1 Usethecompound-angleformulaetoexpand:

2 Expressasasingletrigonometricfunction:

3 Usethecompound-angleformulaetoprove:

sin(90◦ + A) = cos A a

cos(90◦ A) = sin A b

tan(180◦ + A) = tan A d cos(270◦ A) = sin A e

4 Provetheidentities:

sin(A + 45◦) = 1 √2 (sin A + cos A) a

tan(360◦ A) = tan A c

sin(360◦ A) = sin A f

2cos(θ + π 3 ) = cos θ √3sin θ b

c sin(A 30◦) = 1 2 (√3sin A cos A) d

tan( π 4 A) = 1 tan A 1 + tan A

5a Iftan α = 1 2 andtan β = 1 3 ,findtan(α + β).

b Ifcos A = 4 5 andsin B = 12 13 ,where A and B arebothacute,findsin(A + B).

c Ifsin θ = 2 3 andcos φ = 1 4 ,where θ and φ arebothacute,findcos(θ φ).

6 Proveeachidentity.

sin(A + B) + sin(A B) = 2sin A cos B a

cos(x y) cos(x + y) = 2sin x sin y b

c

sin(x + y) + cos(x y) = (sin x + cos x)(sin y + cos y)

7 Findfromthediagram,usingappropriatecompound-angleresults:

a sin ∠BAC

b cos ∠BAC

8a Byexpressing15◦ as(45◦ 30◦),showthat: sin15◦ = √3 1 2√2 i

b Hencefindsurdexpressionsfor:

◦ i

◦ ii

9 Inthediagramopposite,itisknownthattan

a Showthattan(α +

b Writedownanalternativeexpressionfortan(α + β).

c Henceshowthat b =

Ifsin

11 Usecompound-angleformulaetofindtheexactvalueof:

Showthatsin(

SAMPLEPAGES

Hencesimplifysin

13 Showthat:

◦ iii

14 Proveeachidentity: 2sin(x y)

cos(x + y) cos(x y) = cot x cot y a

sin(θ + φ)

b sin(α β)

c

cos(θ φ) = tan θ + tan φ 1 + tan θ tan φ

sin α sin β + sin(β γ) sin β sin γ + sin(γ α) sin γ sin α = 0

QP R T 3 cm2 cm 1 cm

a Writedowntheformulaforsin(α + β).

b Henceshowthattheangles α and β inthe diagramabovehavesum45◦ .

Thediagramshowstworectangles.Eachrectangleis 6cmlongand3cmwide,andtheyshareacommon diagonal PQ.Showthattan α = 3 4

CHALLENGE

17 Inthediagramopposite, P and Q arelandmarksthatare160metresand 70metresduenorthofpoints A and B respectively.Points A and B lie130 metresapartonawest–eastroad,and C isapointontheroadbetween A and B sothat ∠PCQ = 45◦.Find AC. (Let AC = x and ∠ACP = α.)

18a Provethetrigonometricidentity

b Henceshowthatinanytriangle

16C Thedouble-angleformulae

Learningintentions

• Developandapplythevariousdouble-angletrigformulae.

Substituting θ = α = β intothecompoundangleformulaegivesformulaefordouble-angleexpressionssuchas sin2θ

Double-angleformulae

Inthecompound-angleformulasin(α + β) = sin α cos β + cos α sin β,replacebothangles α and β bytheone angle θ.Thisgives:

sin2θ = sin(θ + θ) = sin θ cos θ + cos θ sin θ = 2sin θ cos θ

Thesameproceduregivesexpansionsofcos2θ andtan2θ:

4Thedouble-angleformulae

sin2θ = 2sin θ cos θ

Theexpansionofcos2θ canthenbecombinedwiththePythagoreanidentitytogivetwootherformsofthe expansion,firstbyusingsin

,thenbyusingcos

5The cos2θ formulae

cos2θ = cos2 θ sin2 θ andrearrangingthelasttwoidentities:

Thelasttwoareonlyrearrangements—perhapsjustremembertheyarethere.

Example8 Provingfurtherdouble-angleidentities

Provethat(sin x + cos x)2 = 1 + sin2x.

Solution

LHS = (sin x + cos x)2 = sin2 x + cos2 x + 2sin x cos x = 1 + sin2x = RHS.

Example9 Provingfurtherdouble-angleidentities

Expresscot2x intermsofcot x.

Solution

cot2x = 1 tan2x = 1 tan2 x 2tan x = cot2 x 1 2cot x ,afterdivisionoftopandbottombytan2 x.

Furtherexactvaluesusingthedouble-angleformulae

Thedouble-angleformulaecanbeusedtofindexactvaluesofthetrigonometricfunctionsatanglessuchas22

Example10 Findingexactvaluesoffurtheracuteangles

Findtheexactvalueoftan22

Solution

1 Usethedouble-angleformulaetosimplify:

2 Provethat: (cos A sin A)(cos A + sin A) = cos2A a (sin α cos α)2 = 1 sin2α b sin2θ = 2sin θ sin( π 2 θ) c 1 1 tan θ 1 1 + tan θ = tan2θ d

3a Ifcos α = 4 5 ,findcos2α

b Ifsin x = 2 3 ,findcos2x

c Ifsin θ = 5 13 and θ isacute,findsin2θ

d Iftan A = 1 2 ,findtan2A.

UNCORRECTEDSAMPLEPAGES

DEVELOPMENT

4 Ifsin x = 3 4 and π 2 < x < π,findtheexactvalueofsin2x

5 Proveeachidentity.

cos4 α sin4 α = cos2α a cos2x + cos x = (cos x + 1)(2cos x 1) b sin2A 1 cos2A = cot A c cos θ sin θ sin2θ = cos θ cos2θ d tan( π 4 + α) tan( π 4 α) = 2tan2α e sin2θ + sin θ cos2θ + cos θ + 1 = tan θ f

6a Showthat 1 cos2x 1 + cos2x = tan2 x.

b Hencefindtheexactvalueoftan π 8

7 Eliminate θ fromeachpairofparametricequations. x = 2 + cos θ, y = cos2θ a x = tan θ + 1, y = tan2θ b

8 Points A, B, C,and W lieinthesameverticalplane.Abirdat A observesa wormat W atanangleofdepression θ.Afterflying20metreshorizontallyto B,theangleofdepressionofthewormis2θ.Ifthebirdflewanother10metres horizontallyitwouldbedirectlyabovetheworm.Let WC = h

Writetan2θ intermsoftan θ a

Usethetworight-angledtrianglestowritetwoequationsin h and θ. b

Useparts(a)and(b)toshowthat 1 10 = 60 900 h2 c

Henceshowthat h = 10√3metres. d

Howcould h havebeenfoundwithouttrigonometry? e

9 In △ABC, b c = 4 3 and B = 2C.Usethesineruletoshowthatcos C = 2 3

10a Bywriting3θ as2θ + θ andusingcompound-angleanddouble-angleresults,provethatcos3θ = 4cos3 θ 3cos θ. b Henceshowthatcos 2π 9 isarootoftheequation8x3 6x + 1 = 0.

11 Usedouble-angleformulaetoshowthat: 2sin 4π 5 cos π 5 = sin 2π 5 a cos2 4π 7 sin2 3π 7 = cos 6π 7 b

12 Proveeachidentity.

cot2α + tan α = cosec2α a

sin3A sin A + cos3A cos A = 4cos2A b

tan2x cot x = 1 + sec2x c sin2θ cos2θ + 1 sin2θ + cos2θ 1 = tan(θ + π 4 ) d

1 + sin2α 1 + cos2α = 1 2 (1 + tan α)2 e

13a Showthattan3θ = 3tan θ tan3 θ 1 3tan2 θ

cosec4A + cot4A = 1 2 (cot A tan A) f

CHALLENGE

b Atower AB hasheight h metres.Theangleofelevationofthetopofthetower atapoint C 20metresfromitsbaseisthreetimestheangleofelevationata point D 80metresfurtherawayfromitsbase.Usetheidentityinpart(a)to showthat h = 100 √7 metres.

14a Writedowntheexactvalueofcos45◦ . b Henceshowthat:

15a Showthat 8 4√3 = √6 √2. b Showthattan165◦ = √3 2.

c Henceshowthattan82

16D

Trigonometricequations

Learningintentions

• Applythecompoundangleformulaetothesolutionoftrigonometricequations.

• Decidewhichmethodormethodstouseforparticulartrigonometricequations.

Trigonometricequationsoccurwhenevertrigonometricfunctionsandtheirgraphsarebeinganalysed,andcareful studyofthemisessential.TheywereaddressedindegreesinChapter7,andinradiansinChapter13.The identitiesofthelasttwosectionsnowallowfurtherequationstobesolved.

Solvingatrigequationsusingfactoring

Aswehaveseen,factoringisfundamentaleverywhereinourcourse.Thedifferenceofsquaresistheimmediately obviousapproachtothenextworkedexample.

Example11

Solvingatrigequationbyfactoring.

Solvesin2 x 4cos2 x = 0,for π ≤ x ≤ π,byfactoring(threedecimalplaces).

Solution

Theequationis sin2 x 4cos2 x = 0.

Usingdifferenceofsquares,(sin x + 2cos x)(sin x 2cos x) = 0

÷ cos2 x (tan x + 2)(tan x 2) = 0.

Hencetan x = 2ortan x = 2.

Therelatedangleis1.107148...(leaveinthecalculator) so x ≑ 2.034, 1.107,1.107,or2.034.

Equationsrequiringalgebraicsubstitutionsorfactoring

Thisisareviewofthemethodaspresentedearlier.

Example12

Solvingtrigequationsusingsubstitutionorfactoring

Solve2cos x = 1 + sec x,for0 ≤ x ≤ 2π: usingasubstitution, a usingidentitiesandfactoring. b

Solution

Let u = cos x.

Then2u = 1 + 1 u

2u 2 u 1 = 0 (2u + 1)(u 1) = 0 u = 1or u = 1 2 , so,cos x = 1orcos x = 1 2 . Hence x = 0,2π, 2π 3 ,or 4π 3 . a

Hence x = 0,2π, 2π 3 ,or 4π 3 . b

2cos x = 1 + sec x × cos x 2cos2 x = cos x + 1 2cos2 x cos x 1 = 0 (2cos x + 1)(cos x 1) = 0 cos x = 1orcos x = 1 2

Equationswithmorethanonetrigonometricfunction,butthesame angle

Thisiswheretrigonometricidentitiescomeintoplay.

6Equationswithmorethanonetrigonometricfunction

Trigonometricidentitiescanusuallybeusedtoproduceanequationinonlyonetrigonometricfunction.

Example13 Usingtrigidentitiestosolveatrigequation

Solvetheequation2tan θ = sec θ,for0◦ ≤ θ ≤ 360◦: usingtheratioidentities, a bysquaringbothsides. b

Solution

a 2tan θ = sec θ 2sin θ cos θ = 1 cos θ sin θ = 1 2 θ = 30◦ or150◦

UNCORRECTEDSAMPLEPAGES

b Squaring,4tan2 θ = sec2 θ 4sec2 θ 4 = sec2 θ sec2 θ = 4 3

Checkingeachsolution, θ = 30◦ or150◦ .

Warning—Thedangersofsquaringanequation

Method(b)inthepreviousexampleisintendedasawarning—avoidsquaringanequationifpossible,because squaringmayintroduceextrasolutions.

Ifanequationhastobesquared,eachsolutionmustbecheckedintheoriginalequationtoseewhetheritisa solutionornot.Herearetwoverysimpleequations,onealgebraicandonetrigonometric,wheretheeffectof squaringisobvious.

a Supposethat √x = 5.

Squaring, x = 25.

But √25 = 5,not 5.

Infact,therearenosolutions.

b Supposethatcos x = 1.

Squaring,cos2 x = 1

1 sin2 x = 1

sin2 x = 0

sin x = 0.

x = nπ,where n ∈ Z.

Butcos nπ = 1,foreveryoddmultipleof π

Equationsinvolvingdifferentangles

Whendifferentanglesareinvolvedinthesametrigonometricequation,theusualapproachistousecompoundangleidentitiestochangeallthetrigonometricfunctionstofunctionsoftheoneangle.

7Equationsinvolvingdifferentangles

Usecompound-angleidentitiestochangeallthetrigonometricfunctionstofunctionsoftheoneangle.

Frequentlysuchanequationcanbesolvedbymorethanonemethod.

Example14 Usingthedouble-angleformulae

Usethetan2θ formulatosolvetan4x = tan2x,for0 ≤ x ≤ π 2

Solution

tan4x = tan2x 2tan2x 1 tan2 2x = tan2x 2tan2x = tan2x + tan3 2x

tan3 2x 3tan2x = 0

tan2x(tan2 2x 3) = 0

tan2x = 0,or √3,or √3.

Therestrictionon2x is0 ≤ 2x ≤ π, sothesolutionsare 2x = 0,or π,or π 3 ,or 2π 3 x = 0,or π 2 ,or π 6 ,or π 3 .

Equationsinvolvingdifferentanglesandfunctions

Thesixtrigfunctionsareallverycloselyrelated.Thebestapproachisusually:

8Approachingtrigonometricequations

• First,trytogetalltheanglesthesame.

• Thentrytogetallthetrigonometricfunctionsthesame.

Example15 Solvingequationsinvolvingdifferentanglesandfunctions

Solvecos2x = 4sin2 x 14cos2 x,for0 ≤ x ≤ 2π: bychangingalltheanglesto x, a bychangingalltheanglesto2x b

Solution cos2x = 4sin2 x 14cos2 x cos2 x sin2 x = 4sin2 x 14cos2 x 15cos2 x = 5sin2 x tan x = √3or

Homogeneousequations

Equationshomogeneousinsin x andcos x areanimportantspecialcase.

9Homogeneousequations

• Anequationiscalled homogeneousin sin x and cos x ifthesumoftheindicesofsin x andcos x ineach termisthesame(andthesumiscalledthe degree).

• Tosolveanequationhomogeneousinsin x andcos x,dividethroughbyapowerofcos x toproducean equationintan x alone.

Theexpansionsofsin2x andcos2x arehomogeneousofdegree2insin x andcos x.Also,1 = sin2 x + cos2 x can beregardedasbeinghomogeneousofdegree2.

Example16 Solvehomogeneoustrigequations

Solvesin2x + cos2x = sin2 x + 1,for0 ≤ x ≤ 2π.

Solution

Expanding,2sin x cos x + (cos2 x sin2 x) = sin2 x + (sin2 x + cos2 x) 3sin2 x 2sin x cos x = 0(thisishomogeneousinsin x andcos x.)

÷ cos2 x 3tan2 x 2tan x = 0 tan x(3tan x 2) = 0 tan x = 0ortan x = 2 3 .

Hence x = 0or π or2π,or x ≑ 0.588or3.730.

Atrigonometricequationcanoftenbesolvedinmorethanoneway

WorkedExample11abovewasaclassicdifference-of-squaresequation.Butitisalsoaclassicforahomogeneousequationapproach.

Example17

TrigonometricequationsoftenhavealternativeapproachesSolvesin2 x 4cos2 x = 0,for π ≤ x ≤ π,asa homogeneousequation.

Solution

Dividingthroughbycos2 x givestan2 x 4 = 0. Therestisobvious,andproceedsalongthesamelinesasworkedExample11.

TheEquations sin x = sin α, cos x = cos α,and tan x = tan α

Itispossibletosolvetheseequationsveryneatlyandquickly,providedthatyoukeepyoureyeontheAllStations ToCentralquadrantsdiagram.

• Onesolutionis α

• WeknowfromtheASTCquadrantsdiagramthattherearesolutionsinoneoftheotherthreequadrants—find oneexampleofthesesolutions.

• Addintegermultiplesof360◦ (orof2π ifworkinginradians)tothesetwosolutions,tofindallthesolutions satisfyingthegivenrestrictionon x

• Butif α isaboundaryangle,justreadthesolutionsoff thegraph

Example18 Solvingequationsoftheform sin x = sin α

a Solvesin x = sin25◦,for 180◦ ≤ x ≤ 180◦

b Solvetan x = tan0.2,for0 ≤ x ≤ 2π.

c Solvecos x = cos160◦,for 360◦ ≤ x ≤ 360◦ .

d Solvesin x = sin 3π 2 ,for 2π ≤ x ≤ 2π.

Solution

a sin x ispositiveinquadrants1and2,sothetwosolutionsare25◦ and155◦

b BytheASTCdiagram,tan x > 0inquadrants1and3. Hencethetwosolutionsin0 ≤ x ≤ 2π are0.2,and0.2 + π (Alternatively,thegraphof y = tan x hasperiod π ,andeachbranchbetweentwoasymptotesisincreasing ateverypoint.)

c Theangle160◦ hasrelatedangle20◦,andcos x < 0inquadrants2and3,sothetwosolutionsin

0◦ ≤ x ≤ 360◦ are160◦ and200◦ Hencethefoursolutionsin 360◦ ≤ x ≤ 360◦ are 200◦ , 160◦,160◦,and200◦

d Thisisaboundaryangle—fromthegraph,thetwosolutionsare 3π 2 and π 2

Exercise16D FOUNDATION

1 Considertheequationsin2x cos x = 0.

Byusingadouble-angleformulaandthenfactoring,showthatcos x = 0orsin x = 1 2 . a Hencesolvetheequationfor0 ≤ x ≤ 2π b

2 Considertheequationcos2x cos x = 0.

Byusingadouble-angleformulaandthenfactoring,showthatcos x = 1or 1 2 . a Hencesolvetheequationfor0 ≤ x ≤ 2π. b

3 Considertheequationsin(x + π 4 ) = 2cos(x π 4 ).

Usecompound-angleformulaetoshowthattan x = 1. a Hencesolvetheequationfor0 ≤ x ≤ 2π b

4 Usecompound-angleformulaetosolve,for0 ≤ θ ≤ 2π. sin(θ + π 6 ) = 2sin(θ π 6 ) a

(Hint:Inpart(d),writecos3θ ascos(2θ + θ).)

5 Usedouble-angleformulaetosolve,for0 ≤ x ≤ 2π

sin2x = sin x a sin2x + √3cos x = 0 b

3sin x + cos2x = 2 c

x + 3cos x + 2 = 0 d tan2x + tan x = 0 e

x = tan x f

DEVELOPMENT

6 Solve,for0◦ ≤ θ ≤ 360◦,givingsolutionscorrecttothenearestminutewherenecessary.

2sin2θ + cos θ = 0 a 2cos2 θ + cos2θ = 0 b 2cos2θ + 4cos θ = 1 c

+ sin θ = 1 e

θ + 13cos 1 2 θ = 5 g

7 Considertheequationtan( π 4 + θ) = 3tan( π 4 θ).

Showthattan2 θ 4tan θ + 1 = 0. a

2 θ f

Henceusethequadraticformulatosolvetheequationfor0 ≤ θ ≤ π b

8 Giventheequation2cos x 1 = 2cos2x:

Showthatcos x = 1 4 (1 + √5)orcos x = 1 4 (1 √5). a

Hencesolvetheequationfor0 ≤ x ≤ 2π b

9a Showthatsin(α + β)sin(α β) = sin2 α sin2 β.

b Hencesolvetheequationsin2 3θ sin2 θ = sin2θ,for0 ≤ θ ≤ π.

10a Showthatsin3x = 3sin x 4sin3 x.

b Hencesolvetheequationsin3x + sin2x = sin x,for0 ≤ x ≤ 2π.

11a Giventheequationsin(θ + π 6 ) = cos(θ π 4 ),showthattan θ = √6 √3 √2 + 2.

b Hencesolvetheequationfor0 ≤ θ ≤ 2π

12 Solve,for0 ≤ θ ≤ 2π,givingsolutionscorrecttotwodecimalplaceswherenecessary.

cos2 2θ = sin2 θ a cos2θ + 3 = 3sin2θ [Hint:Write3as3(cos2 θ + sin2 θ).] b

UNCORRECTEDSAMPLEPAGES

CHALLENGE

13a Usetheproduct-to-sumidentity2cos A cos B = cos(A + B) + cos(A B)toprovethesum-to-product identitycos P + cos Q = 2cos P + Q 2 cos P Q 2

b Hencesolvetheequationcos4x + cos x = 0,for0 ≤ x ≤ π.

14a Showthatcos3x = 4cos3 x 3cos x.

b Bysubstituting x = 2cos θ,showthattheequation x3 3x 1 = 0hasroots x = 2cos20◦ , 2sin10◦ or 2cos40◦

c Useasimilarapproachtofind,correcttothreedecimalplaces,thethreerealrootsoftheequation x3 12x = 8√3.

15a If t = tan x,showthattan4x = 4t(1 t2) 1 6t2 + t4 .

b Iftan4x tan x = 1,showthat5t4 10t2 + 1 = 0.

c Showthatsin A sin B = 1 2 (cos(A B) cos(A + B)) andthat cos A cos B = 1 2 (cos(A B) + cos(A + B))

d Henceshowthat π 10 and 3π 10 bothsatisfytan4x tan x = 1.

e Hencewritedown,intrigonometricform,thefourrealrootsofthepolynomial equation5x4 10x2 + 1 = 0.

16 Considertheequationcos2x = sin3x,for0◦ ≤ x ≤ 360◦

Solvetheequationovertherestricteddomainbywritingsin3x ascos(90◦ 3x). a

b Hencedeterminetheexactvalueofsin18◦ c

Alternatively,usetheidentitysin3x = 3sin x 4sin3 x andthefactorisation

4u3 2u2 3u + 1 = (u 1)(4u2 + 2u 1)toshowthatsin x = 1, 1 + √5 4 or 1 √5 4

Thesumofsineandcosinefunctions

Learningintentions

• Express a sin x + b cos x intheform R sin(x + α)orrelatedforms.

• Understandtheresultasadilatedandshiftedsineorcosinefunction.

• Solvetrigequationsoftheform a sin x + b cos x = c andrelatedinequations.

Thissectionanalyseswhathappenswhenthesineandcosinecurvesareadded,and,moregenerally,when multiplesofthetwocurvesareadded.Thesurprisingresultisthat y = a sin x + b cos x isstillasineorcosine wave,whateverthevaluesof a and b are,butshiftedsidewaysandstretchedvertically.

Theseformsfor a sin x + b cos x alsogiveasystematicmethodofsolvinganyequationoftheform a cos x + b sin x = c.

Preliminarynotesonverticaldilationsandhorizontalshiftsof y = sin x and y = cos x

TheboxedresultsbelowfollowimmediatelyfromthenotesontransformationsinChapter5.Theyalsoestablish theamplitudeofverticallydilatedsineorcosinefunctions.

10Verticaldilationsandhorizontalshiftsof y = sin x and y = cos x

• Whenshiftedright α:

)and

andtheresultingwavefunctionsstillhave amplitude1.

• Whendilatedverticallywithfactor R > 0: y = sin x −→ y = R sin x and y = cos x −→

andtheresultingwavefunctionsnowhave amplitude R.

),

• Whenshiftedright α anddilatedverticallywithfactor R > 0(ineitherorder): y = sin x −→ y = R sin(x α)and y = cos x −→ y = cos(x α), andtheresultingwavefunctionshave amplitude R.

Example19 Sketchingverticaldilationsandhorizontalshiftsof sin x and cos x

Sketch,over 360◦ ≤ x ≤ 360◦,onsinglepairsofaxes:

y = sin x and y = 2sin x a y = cos x and y = 2cos x b y = sin x and y = sin(x 120◦) c y = cos x and y = cos(x 120◦) d y = sin x and y = 2sin(x 120◦) e y = cos x and y = 2cos(x 120◦) f

Sketching

y = sin x + cos x bygraphicalmethods

Wecannowreturntothesumof y = sin x and y = cos x.Chapter6preparedthegroundforthisbysketchingthe sumoftwogivensketchedgraphs.

Thediagramtotherightshowsthetwographsof y = sin x and y = cos x.Fromthesetwographs,thesumfunction y = sin x + cos x hasbeendrawnonthesamediagram—the crossesrepresentobviouspointstomarkonthegraphofthesum.

• Thenewgraphobviouslyhasthesameperiod2π as y = sin x and y = cos x.Itlookslikeawave,andwithin[0,2π]there arezeroesatthetwovalues x = 3π 4 and x = 7π 4 wheresin x and cos x takeoppositevalues.

• Thenewamplitudeisbiggerthan1.Thevalueat x =

2,soifthemaximumoccursthere, asseemslikely,theamplitudeis √2.

• Thissuggeststhattheresultingsumfunctionis y = √2sin(x + π 4 ),becauseitisthestretchedsinecurveshifted left π 4 .Wecancheckthisbyexpansion:

Thatisexactlywhatweexpectedfromthesketchesofthegraphs.

Thegeneralalgebraicapproach—theauxiliaryangle

Itistrueingeneralthatanyfunctionoftheform f (x) = a sin x + b cos x canbewrittenasasinglewavefunction. Therearefourpossiblestandardformsinwhichthewavecanbewritten,andtheprocedureisdonebyexpanding thestandardformandequatingcoefficientsofsin x andcos x.

11Auxiliary-anglemethod

• Anyfunctionoftheform f (x) = a sin x + b cos x,where a and b areconstants(notbothzero),canbe writteninanyoneofthefourforms:

y = R sin(x α) y = R cos(x α)

y = R sin(x + α) y = R cos(x + α)

where R > 0and0◦ ≤ α < 360◦.Theconstant R = √a2 + b2 isthesameforallforms,butthe auxiliary angle α dependsonwhichformischosen.

• Tobegintheprocess,expandthestandardformandequatecoefficientsofsin x andcos x

• Becarefultoidentifythequadrantinwhichtheauxiliaryangle α lies.

Thenextexamplecontinueswiththeexamplegivenatthestartofthesection,andshowsthesystematicalgorithm usedtoobtaintherequiredform.

Example20 Usingtheauxiliaryangletorewriteasumofsineandcosine

Express y = sin x + cos x inthetwoforms: R sin(x + α), a R cos(x + α), b where,ineachcase, R > 0and0 ≤ α < 2π.Thensketchthecurve,showingallinterceptsandmaximaand minimaintheinterval0 ≤ x ≤ 2π.

Solution

a Expanding,

soforall x,

Equatingcoefficientsofsin x, R cos α = 1, (1)

equatingcoefficientsofcos x, R sin α = 1. (2)

Squaringandadding, R2 = 2,

andbecause R > 0, R = √2.

From(1), cos α = 1 √2 , (1A) andfrom(2), sin α = 1 √2 , (2A)

sotherelatedangle α isinthe1stquadrant,withrelatedangle π 4

Hence α = π 4 ,andsin x + cos x = √2sin(x + π 4 ).

Thegraphis y = sin x shiftedleftby π 4 ,andstretchedverticallybya factorof √2.Thusthe x-interceptsare x = 3π 4 and x = 7π 4 ,thereisa maximumof √2when x = π 4 ,andaminimumof √2when x = 5π 4

b Expanding, R cos(x + α) = R cos x cos α R sin x sin α, soforall x, sin x + cos x = R cos x cos α R sin x sin α

Equatingcoefficientsofcos x, R cos α = 1, (1)

equatingcoefficientsofsin x, R sin α = 1. (2)

Squaringandadding, R2 = 2,

UNCORRECTEDSAMPLEPAGES

andbecause R > 0, R = √2.

From(1),cos α = 1 √2 ,(1A)

andfrom(2),sin α = 1 √2 ,(2A)

sotheauxiliaryangle α isinthe4thquadrant,withrelatedangle π 4 ˙

Hence α = 7π 4 ,sosin x + cos x = √2cos(x + 7π 4 ).

Thegraphabovecouldequallywellbeobtainedfromthis.

Itis y = cos x shiftedleftby 7π 4 andstretchedverticallybyafactorof √2. (Alternatively,shiftrightby π 4 ,becausetheperiodis2π.)

Approximatingtheauxiliaryangle

Unlessspecialanglesareinvolved,theauxiliaryangle α willneedtobeapproximatedonthecalculator.Degrees orradianmeasuremaybeused,butthenextexampleusesdegreestomaketheworkingalittlemoreintuitive.

Example21 Approximatingtheauxiliaryangleandskeetchingthecurve

a Express y = 3sin x 4cos x intheform y = R cos(x α),where R > 0and0◦ ≤ α < 360◦,giving α correct tothenearestdegree.

b Sketchthecurve,showing,correcttothenearestdegree,allinterceptsandturningpointsintheinterval 180◦ ≤ x ≤ 180◦ .

Solution

a Expanding, R cos(x

, soforall x, 3sin x 4cos

Equatingcoefficientsofcos x, R cos α = 4, (1) equatingcoefficientsofsin x, R sin α = 3. (2)

Squaringandadding, R2 = 25, andbecause R > 0, R = 5.

From(1), cos α = 4 5 ,(1A) andfrom(2),sin α = 3 5 ,(2A) so α isinthe2ndquadrant,withrelatedangleabout37◦ .

Hencetheauxiliaryangleis α ≑ 143◦,and3sin x 4cos x = 5cos(x α),

b Thegraphis y = cos x shiftedrightby α ≑ 143◦ andstretched verticallybyafactorof5.

Thusthe x-interceptsare x ≑ 53◦ and x ≑ 127◦,thereisa maximumof5when x ≑ 143◦,andaminimumof 5when x ≑ 37◦

(Findthe y-intercept 4bysubstituting x = 0intotheoriginal equation.)

Anoteonthecalculatoranditsapproximationsfortheauxiliaryangle

InworkedExample21,theexactvalueof α is α = 180◦ sin 1 3 5 ,because α isinthe2ndquadrant.The calculatorholdsthisvaluecorrecttomanydecimalplaces.

Whentherearesubsequentcalculationstodo,asinworkedExample22below,thisvalueshouldbestoredin memoryandusedwhenevertheauxiliaryangleisrequired.Re-entryofanapproximationmayleadtorounding errors.

Solvingequationsoftheform a sin x + b cos x = c,andassociated inequations

OncetheLHSisinoneofthefourstandardforms,thesolutionstothisequationareeasilyobtained.Worked Example22continuesfromworkedExample21.

Note: Itisalwaysimportanttokeeptrackofrestrictionsonthecompoundangle.

Example22

Usingtheauxiliaryangletosolveequationsandinequations

a Usingthepreviousworkedexample,anditscalculatorapproximation,solve3sin x 4cos x = 2,for 180◦ ≤ x ≤ 180◦,correcttothenearestdegree.

b Henceusethegraphtosolve3sin x 4cos x ≤−2,for 180◦ ≤ x ≤ 180◦

Solution

a Weknowthat3sin x 4cos x = 5cos(x α),where α ≑ 143◦ , sotheequationis5cos(x α) = 2, cos(x α) = 2 5 . Thus x α isinquadrant2or3,withrelatedangleabout66◦ Therestrictionon x is 180◦ ≤ x ≤ 180◦ thatis,about 323◦ ≤ x α ≤ 37◦ , so x α ≑ 114◦ or 246◦ x ≑ 30◦ or 103◦ .

Becarefultousethecalculator’smemoryhere,fortheangle α,andfortheangle66◦ above. Neverre-enterapproximationsofthoseangles.

b Thegraphtotherightshowsthepreviouslydrawngraphof y = 3sin x 4cos x withthehorizontalline y = 2added. Thisroughlyverifiestheanswersinpart(a).

Italsoshowsthatthesolutionoftheinequation

3sin x 4cos x ≤−2isabout 103◦ ≤ x ≤ 30◦

UNCORRECTEDSAMPLEPAGES

12Theauxiliary-anglemethodforequationsoftheform a sin x + b cos x = c

• GettheLHSintooneofthefourforms R sin(x + α)or R sin(x α)or R cos(x + α)or R cos(x α).

• Solvetheresultingequation,keepingapproximationsinthecalculatormemory.

• Usethegraphtosolveanyassociatedinequation.

Exercise16E

FOUNDATION

1a Whattransformationmoves y = cos x to y = 4cos x?Drawbothcurvesononesetofaxes,andstatethe newamplitude.

b Whattransformationmoves y = sin x to y = sin(x π 4 )?Drawbothcurvesononesetofaxes.

2 Find R and α exactly,if R > 0and0 ≤ α < 2π,and: R sin α = √3and R cos α = 1, a R sin α = 3and R cos α = 3. b

3 Find R (exactly)and α (correcttothenearestminute),if R > 0and0◦ ≤ α < 360◦,and:

R sin α = 5and R cos α = 12, a R cos α = 2and R sin α = 4. b

4a Ifcos x sin x = A cos(x + α),showthat A cos α = 1and A sin α = 1.

b Findthepositivevalueof A bysquaringandadding.

c Find α,if0 ≤ α < 2π.

d Statethemaximumandminimumvaluesofcos x sin x,andthefirstpositivevaluesof x forwhichthey occur.

e Solvetheequationcos x sin x = 1,for0 ≤ x ≤ 2π.

f Writedowntheamplitudeandperiodofcos x sin x.Hencesketch y = cos x sin x,for0 ≤ x ≤ 2π. Indicateonyoursketchtheline y = 1andthesolutionstotheequationinpart(e).

5a If √3cos x sin x = B cos(x + θ),showthat B cos θ = √3and B sin θ = 1.

b Find B,if B > 0,bysquaringandadding.

c Find θ,if0 ≤ θ < 2π.

d Statethegreatestandleastpossiblevaluesof √3cos x sin x,andthevaluesof x closestto x = 0for whichtheyoccur.

e Solvetheequation √3cos x sin x = 1,for0 ≤ x ≤ 2π.

f Sketch y = √3cos x sin x,for0 ≤ x ≤ 2π.Onthesamediagram,sketchtheline y = 1.Indicateonyour diagramthesolutionstotheequationinpart(e).

6 Let4sin x 3cos x = A sin(x α),where A > 0and0◦ ≤ α < 360◦ .

Showthat A cos α = 4and A sin α = 3. a

Showthat A = 5and α = tan 1 3 4 b

c

Hencesolvetheequation4sin x 3cos x = 5,for0◦ ≤ x ≤ 360◦.Givethesolution(s)correcttothe nearestminute.

UNCORRECTEDSAMPLEPAGES

7 Considertheequation2cos x + sin x = 1.

Let2cos x + sin x = B cos(x θ),where B > 0and0◦ ≤ θ < 360◦.Showthat B = √5and θ = tan 1 1 2 . a

Hencefind,correcttothenearestminutewherenecessary,thesolutionsoftheequation,for0◦ ≤ x ≤ 360◦ b

8 Letcos x 3sin x = D cos(x + φ),where D > 0and0◦ ≤ φ < 360◦

Showthat D = √10and φ = tan 1 3. a

Hencesolvecos x 3sin x = 3,for0◦ ≤ x ≤ 360◦.Givethesolutionscorrecttothenearestminutewhere necessary. b

9 Considertheequation √5sin x + 2cos x = 2.

TransformtheLHSintotheform C sin(x + α),where C > 0and0◦ ≤ α < 360◦ a

Find,correcttothenearestminutewherenecessary,thesolutionsoftheequation,for0◦ ≤ x ≤ 360◦ b DEVELOPMENT

10 Solveeachequation,for0◦ ≤ x ≤ 360◦,bytransformingtheLHSintoasingle-termsineorcosinefunction.

Givesolutionscorrecttothenearestminute.

3sin x + 5cos x = 4 a 6sin x 5cos x = 7 b

7cos x 2sin x = 5 c 9cos x + 7sin x = 3 d

11 Find A and α exactly,if A > 0and0 ≤ α < 2π,and: A sin α = 1and A cos α = √3, a A

α = 5and A sin α = 5. b

12ai Express √3cos x + sin x intheform A cos(x + θ),where A > 0and0 < θ < 2π

ii Hencesolve √3cos x + sin x = 1,for0 ≤ x < 2π

bi Expresscos x sin x intheform B sin(x + α),where B > 0and0 < α < 2π ii Hencesolvecos x sin x = 1,for0 ≤ x < 2π

ci Expresssin x √3cos x intheform C sin(x + β),where C > 0and0 < β < 2π

ii Hencesolvesin x √3cos x = 1,for0 ≤ x < 2π

di Express cos x sin x intheform D cos(x φ),where D > 0and0 < φ < 2π.

ii Hencesolve cos x sin x = 1,for0 ≤ x < 2π.

13 Solve,for0◦ ≤ x ≤ 360◦,givingsolutionscorrecttothenearestminute:

2sec x 2tan x = 5 a 2cosec x + 5cot x = 3 b

14a Giventheequationsin θ + cos θ = cos2θ,showthattan θ = 1orcos θ sin θ = 1.

b Hencesolvesin θ + cos θ = cos2θ,for0 ≤ θ < 2π

15 Solve,for0 ≤ x ≤ 2π: sin x cos x = √1.5 a √3sin2x cos2x = 2 b sin4x + cos4x = 1 c

16a Showthat(√3 + 1)cos2x + (√3 1)sin2x = 2√2cos(2x π 12 ).

b Hencesolve(√3 + 1)cos2x + (√3 1)sin2x = 2,for π < x ≤ π

17 Thecurrent I inamperesinacircuitafter t secondsisgivenby I = 2sin(t π 3 ) cos(t + π 2 ).Findthe maximumcurrent,andtheearliesttimethatitoccurscorrecttothenearesttenthofasecond.

18ai Showthatsin x cos x = √2sin(x π 4 ).

ii Hencesketchthegraphof y = sin x cos x,for0 ≤ x ≤ 2π

iii Useyoursketchtodeterminethevaluesof x inthedomain0 ≤ x ≤ 2π forwhichsin x cos x > 1.

b Useasimilarapproachtopart(a)tosolve,for0 ≤ x ≤ 2π: sin x + √3cos x ≤ 1 i sin x √3cos x < 1 ii √3sin x + cos x < 1 iii cos x sin x ≥ 1 2 √2 iv

19 Considerthefunction y = 4sin(3x + π 6 ) + 2sin3x

UNCORRECTEDSAMPLEPAGES

CHALLENGE

Showthatthemaximumvalueofthefunctionis2 5 + 2√3. a Find,correcttoonedecimalplace,thefirstpositivevalueof x forwhichthemaximumvalueoccurs.

b

20a Showthatifcos(x α) = cos β,thentan x = tan(α + β)ortan x = tan(α β).

Hint:Ifcos A = cos B,then A = 2nπ + B or A = 2nπ B,where n isaninteger.

b Showthat2cos x + 11sin x = 5√5cos x tan 1 11 2

c Considertheequation2cos x + 11sin x = 10,for0 ≤ x < 2π

Bywritingtheequationintheformcos(x α) = cos β andusingpart(a),showthattan x = 4 3 or 24 7 i

Deducethattheequationhasrootstan 1 4 3 and π tan 1 24 7 ii Provethatoneoftherootsistwicetheother. iii

Chapter16Review

Reviewactivity

• Createyourownsummaryofthischapteronpaperorinadigitaldocument.

Chapter16Multiple-choicequiz

• Thisautomatically-markedquizisaccessedintheInteractiveTextbook.AprintablePDFWorksheetversionis alsoavailablethere.

SkillsChecklist

• Checklist AvailableintheInteractiveTextbook,usethechecklisttotrackyourunderstandingofthelearningintentions. PrintablePDFandworddocumentversionsarealsoavailablethere.

ChapterReviewExercise

1 Fromtwopoints P and Q onhorizontalground,theanglesofelevationofthetop T ofa10mmonumentare 16◦ and13◦ respectively.Itisalsoknownthat ∠PBQ = 70◦,where B isthebaseofthemonument.

Showthat PB = 10tan74◦,andwritedownasimilarexpressionfor QB. a Hencedetermine,correcttothenearestmetre,thedistancebetween P and Q b

2 Thepoints P, Q and B lieinahorizontalplane.From P,whichisduewestof B,the angleofelevationofthetopofatower AB ofheight h metresis42◦.From Q,which isonabearingof196◦ fromthetower,theangleofelevationofthetopofthetower is35◦.Thedistance PQ is200metres.

UNCORRECTEDSAMPLEPAGES

c

Showthat PB = h cot42◦,andwritedownasimilarexpressionfor QB. a Explainwhy ∠PBQ = 74◦ . b Usethecosineruletoshowthat

Hencefindtheheightofthetower,correcttothenearestmetre. d

3 Atriangularpyramid ABCD hasbase BCD andperpendicularheight AD

a Find BD and CD intermsof h.

b Usethecosineruletoshowthat2h2 = x2 √3 hx.

c Let u = h x .Writetheresultofthepreviouspartasaquadraticequationin u,and henceshowthat

4 Simplify,usingthecompound-angleresults:

α cos2α + cos4α sin2α e

5 Simplify,usingthedouble-angleresults: 2sin2θ cos2θ a

2 1 2 x sin2 1 2 x b 2cos2 3α 1 c 2tan35◦ 1 tan2 35◦ d 1 2sin2 25◦ e

6 Giventhattheangles A and B areacute,andthatsin A = 3 5 andcos B = 5 13 ,find:

A a

B d

7a Bywriting75◦ as45◦ + 30◦,showthat:

◦ = √3 + 1 2√2 i

b Henceshowthat:

8 Usethecompound-angleanddouble-angleresultstofindtheexactvalueof: 2sin15◦ cos15◦ a cos35◦ cos5◦

9 Proveeachidentity.

θ(tan θ + cot θ) = 2 c

1 + tan A = tan2A g tan2A(cot A tan A) = 2, (providedcot A tan A) h

10 Anoffice-workerislookingoutawindow W ofabuildingstandingonlevel ground.From W,acar C hasanangleofdepression α,whileaballoon B directly abovethecarhasanangleofelevation2α.Theheightoftheballoonabovethecar is x,andtheheightofthewindowabovethegroundis h

a Showthat tan α h = tan2α x h .

b Henceshowthat h x = 1 tan2 α 3 tan2 α . x h W

11 Solveeachequationfor0 ≤ x ≤ 2π.

sin2x + cos x = 0 a

x = sin x b

x + 8cos x + 5 = 0 c cos2x + 5sin x + 2 = 0 d

x π 6 ) = cos(x π 3 ) e

x = 3tan x f

12a Usecompoundanddouble-angleformulaetoprovethatcos3x = 4cos3 x 3cos x

b Hencesolvecos3x + sin2x + cos x = 0,for0 ≤ x ≤ 2π.

13a Expresssin x cos x intheform R sin(x α),where R > 0and0 < α < π 2 .

b Hencesolvesin x cos x = √2,for0 ≤ x ≤ 2π

14a Express √3cos x + sin x intheform A cos(x θ),where A > 0and0 < θ < π 2

b Hencesolve √3cos x + sin x = 1,for0 ≤ x ≤ 2π

UNCORRECTEDSAMPLEPAGES

15a Express2sin x + √5cos x intheform R sin(x + α),where R > 0and α isacute.

b Hencesolve2sin x + √5cos x = 3,for0◦ ≤ x ≤ 360◦,writingthesolutionindegreescorrecttoone decimalplace.

16a Express3cos x 2sin x intheform A cos(x + θ),where A > 0and θ isacute.

b Hencesolve3cos x 2sin x = 1,for0◦ ≤ x ≤ 360◦,writingthesolutionscorrecttothenearestminute.

17

Combinatorics

Chapterintroduction

Arithmeticbeginswithcounting,andthroughoutallbranchesandapplicationsofmathematics,counting continuestobeimportant.

▶ HowmanyNSWnumberplatesarepossiblewiththecurrentpattern: Letter + Letter + Letter + Digit + Digit + Letter?

▶ Howmanypossible8-bitbyteshavethreeonesandfivezeroes?

▶ Howmanywayscanfourchickensbechosenfromaflockof20chickens?Thischapterintroducesand developssomeofthestandardmethodsofcounting.

Afterintroducing factorialnotation,suchas5! = 5 × 4 × 3 × 2 × 1,threesuccessivebasiccountingmethodsare addressed:

▶ Countingorderedselectionsallowingrepetition.Thisisdoneusingpowers.

▶ Countingorderedselectionswithoutrepetition,called permutations,Thisrequiresthenumbers nPr ,which areevaluatedusingfactorials.

▶ Countingunorderedselections,whicharejustsubsets,andarealsocalled combinations.Thisrequiresthe numbers nCr ,alsoevaluatedusingfactorials.

Countingarrangementsinacircleoraroundaroundtableisalsoaddressed.

Countingisparticularlyimportantinprobability.Whatistheprobabilityofbeingdealttwoacesandtwojacks inaBridgehandof13cards?Thecountingmethodsdevelopedhereareappliedtoprobabilitytocountsample andeventspaces.

ThefinalChapter18examinesbinomialexpansions(x + y)n.Itturnsoutthatthebasiccountingmethodshere, andparticularlythenumbers nCr ,areessentialforunderstandingtheseexpansions.

Anoteontheorderofthechapters: Somebasicsettheoryisobviouslyhelpfulincombinatorics.In particular,thestandardcountingrule:

oftenmakesacomplicatedsituationmuchclearer,andcomplementarysetsoccurroutinely.Readerswho havenotyetstudiedtheAdvancedChapter14:Probabilityareadvisedtoworkattheveryleastthroughthe introductorysettheoryinSection14Abeforeembarkingonthischapter.Farbetterwouldbetoworkthrough thewholeofChapter14,becauseprobabilityiscentraltoSection17F.

UNCORRECTEDSAMPLEPAGES

17A

Factorialnotation

Learningintentions

• Defineandevaluatefactorials.

• Manipulatefactorialsbyunrollingand/orcancelling.

Productssuchas5 × 4 × 3 × 2 × 1 = 120,called factorials.Theyoccurthroughoutmathematics,butareparticularly importantincombinatorics.Thischapterintroducesfactorialsandsomeoftheirelementaryarithmetic.

Theneedforfactorialnotation

Howmanywayscanfivepeopleformaqueueatabusstop?Solutionsofsuchproblemswillbeformalisedinthe nextsectionasthe multiplicationprinciple,butthisparticularproblemcanbesolvedstraightforwardly,andthe boxesbelowhelptovisualisethesolution.Theresultbelowisa factorial:

• Choosethepersonattheheadofthequeueinfiveways.

• Fourpeopleremain,sothepersoninsecondplacecanbechoseninfourways.

• Threepeopleremain,sothepersoninthirdplacecanbechoseninthreeways.

• Twopeopleremain,sothepersoninfourthplacecanbechosenintwoways.

• Andthereisnowonlyonewaytochoosethepersoninthelastplace.

1stplace 2ndplace 3rdplace 4thplace 5thplace 5 4 3 2 1

Numberofpossiblequeues = 5 × 4 × 3 × 2 × 1 = 120.

Thisproductiscalled‘5factorial’,withsymbol5! = 5 × 4 × 3 × 2 × 1.

Manyapparentlyunrelatedsituationsinmathematicsalsogeneratefactorials.Forexample,whatisthefifth derivativeof y = x5 ?

y ′ = 5x 4

y ′′ = 5 × 4 × x 3

y ′′′ = 5 × 4 × 3 × x 2

y(4) = 5 × 4 × 3 × 2 × x

y(5) = 5 × 4 × 3 × 2 × 1 = 120.

Thedefinitionof n factorial

Hereisthegeneraldefinitionof n!,called‘n factorial’,statedtwoways:

1Thedefinitionof n factorial

• Foreachwholenumber n ≥ 1,thenumber n!(n factorial )istheproductofallwholenumbersfrom n downto1: n! = n × (n 1) × (n 2) ×···× 3 × 2 × 1, anddefine0! = 1.

• Thebetterdefinition,however,is recursive —firstdefine0! = 1,andthenforeachsuccessivevalue of n,sayexactlyhowtodefine n!intermsof(n 1)!.

0! = 1, n! = n × (n 1)!,forallwholenumbers n ≥ 1.

Therecursivedefinitionhasthreeadvantages.Itavoidsthedots ··· inthefirstdefinition,thevalue0! = 1isbuilt morefirmlyintothedefinition,andasweshallsoonsee,itgivesabetterinsightintohowtomanipulatefactorial notation

Thefactthat0!isdefinedtobe1needssomeexplanation.

• An emptyproduct isregardedasbeing1,becauseifnothinghasyetbeenmultiplied,theregisterremainsat1 whereitwasoriginallysetinpreparationforperformingmultiplication.

• Inasimilarway,an emptysum is0,becauseifnothinghasyetbeenadded,theregisterremainsat0whereit wasoriginallysetinpreparationforperformingaddition.

Usingtherecursivedefinitionthatdefineseachfactorialintermsofitspredecessor:

andsoon,increasingveryquicklyindeed.Ifyourcalculatorhasafactorialbuttonlabelled x! or n! ,useit straightawaytoseethatatleastthe calculator believesthat0! = 1.Noticealsotheerrormessageif n isnota wholenumber,becausethedomainofthefunction n!isthewholenumbers0,1,2,....

Unrollingfactorials

Therecursivedefinitionof n!givenandusedaboveisthekeyideainmanycalculations.Successiveapplications ofthedefinitioncanbethoughtofas unrolling thefactorialfurtherandfurther:

8! = 8 × 7!(unrollingonce)

= 8 × 7 × 6!(unrollingtwice)

= 8 × 7 × 6 × 5!(unrollingthreetimes) andsoon.Thisideaisvitalwhentherearefractionsinvolved.

Example1

Simplifyingafactorialexpressionbyunrolling

Simplifyeachexpressionusingunrollingtechniques:

= 10 × 9 × 8 × 7!

= 10 × 9 × 8 = 720

n! (n r)! = n(n 1)(n 2) ··· (n r + 1)(n r)! (n r)! = n(n 1)(n 2) (n r + 1) r factors

(n + 2)!

n 1)!

(n + 2)(n + 1)n(n 1)! (n 1)! = (n + 2)(n + 1)n

Example2 Simplifyingafactorialexpressionusingacommondenominator

Simplifyeachexpressionusingacommondenominator.

2Calculatingbyunrollingfactorials

• Afactorialcanbeunrolledonestepatatime: 7! = 7 × 6! = 7 × 6 × 5! = 7 × 6 × 5 × 4! =

• Cancelfractionswithfactorialsbyunrollinguntilthefactorialscancel:

4! ≑ 7 × 6 × 5 × 4! 4! = 7 × 6 × 5 = 210.

Example3

Examiningtheprimefactorsinafactorial

a Withoutusinganydeviceortheinternet,findhowmanyfinalzeroestherearewhen25!isevaluated.

b Canthisbecheckedonacalculatororotherdevice?

Solution

a Everythingdependsonthefactthat10 = 5 × 2,and5and2areprimes. Thereareplentyoffactorsof2in25!,sothenumberoffinalzeroesisthenumberoffactorsof5inthe product.Therearefactorsof5in5,10,15,20and25(whichis52),making6altogether,so25!has6final zeroes.

b Itdependsonthedeviceorwebpage.Withoutsomereasoning,itwillneedtogivetheanswercorrectto26 significantfigures!

Exercise17A FOUNDATION

1 Useargumentssimilartothatusedattheverystartofthissectiontoexpressthefollowingusingfactorial notation.

a Thenumberofwaystoformaqueuewith8people.

b Thenumberofwaystoarrange4distinctbooksonabookself.

c Thenumberofways3particularpeoplecanbeplacedfirst,secondandthirdinacompetition,assuming thateachisplacedinoneofthesethreepositions.

d Samdropshisportablekeyboardandall101keysfalloff.Howmanywayscanheputthekeysbackon thekeyboard,assumingthattheyareallinterchangable?

e Whentheteachercallsonstudentsinalphabeticalorder,AndrzejZywiecisupsetthatheisalwayscalled last.Inaclassof20,howmanywayscouldtherollbecalled,ifthealphabeticalorderingrestrictionwere dropped?

2 Usethedefinitionof n!andmethodsofunrollingfactorialstoevaluateeachexpression.Donotusea calculator.

UNCORRECTEDSAMPLEPAGES

3 Usethefactorialbutton n! onyourcalculatortoevaluateeachexpression.

4 If f (x) = x6,findexpressionsfor:

)

5 Simplifybyunrollingfactorialsappropriately:

! (n 1)!

+ 2)! n! e (n 2)!

6 Simplifybytakingoutacommonfactor:

7 Writeeachexpressionasasinglefraction. 1 n! + 1 (n 1)! a

8a If f (x) = xn,find:

′(x) i

b If f (x) = 1 x ,find:

9a Showthat k × k! = (k + 1)! k!

. iv

b Hencebyconsideringeachindividualtermasadifferenceoftwoterms,sumtheseries1 × 1! + 2 × 2! + 3 × 3! + ··· + n × n!

10a Findthelargestpowerof: 2, i 10,thatisadivisorof10! ii

b Findthelargestpowerof: 2, i 5, ii 7, iii 13,thatisa divisorof100! iv

11 [Arelationshipbetweenhigherderivativesofpolynomialsandfactorials]

a If f (x) = 11x3 + 7x2 + 5x + 3,showthat: f (0) = 3 × 0! i f ′(0) = 5 × 1! ii f ′′(0) = 7 × 2! iii f ′′′(0) = 11 × 3! iv f (k)(0) = 0,forall k ≥ 4. v

Henceexplainwhy f (x)canbewritten f (x) = f (0) 0! + f ′(0) x 1! + f ′′(0) x2 2! + f ′′′(0) x3 3! .

b Showthatif f (x) = an xn + an 1 xn 1 + + a1 x + a0 isanypolynomial,then f (k)(0) =

ak k!,for k = 0,1,2,..., n, 0,for k > n,

andhenceexplainwhy f (x) = f (0) 0! +

(0) x 1! +

Because f (x)isapolynomial,this powerseries hasonlyfinitelymanyterms.Therearewaysof generalisingthistosomeotherfunctionsthatarenotpolynomials.

12a Evaluate k (k + 1)! ,for k = 1,2,3,4and5.

b Evaluate 1 (1 + 1)! + 2 (2 + 1)! + ··· + n (n + 1)! ,for n = 1,2,3,4and5.

c Writetheexpressioninpart(b)as S n,toindicatethatitisasumwhosevaluedependson n.Thatis, S n = 1 (1 + 1)! + 2 (2 + 1)! + + n (n + 1)!

Makeareasonableguessaboutthevalueof S n.Hencefindlimn→∞ S n

d Provethat k (k + 1)! = 1 k! 1 (k + 1)! ,andhenceproduceaproofofpart(c)usingacollapsingsum.

CHALLENGE

UNCORRECTEDSAMPLEPAGES

13 Expressusingfactorialnotation:

14 [Stirling’sformula]Thefollowingformulaistoodifficulttoproveatthisstage,butitismostimportant becauseitprovidesacontinuousfunctionthatapproximates n!forintegervaluesof n:

Showthattheformulahasanerrorofapproximately2.73%for3!and0.83%for10!Findthepercentage errorfor60!

17B Orderedselectionswithandwithoutrepetition

Learningintentions

• Developthemultiplicationprincipleofcounting,usingboxestoillustrate.

• Countorderedarrangementsallowingrepetition.

• Countorderedarrangementswithoutrepetition.

• Understandpermutations,usethenotation nPr ,andevaluate nPr usingfactorials.

• Developthecountingprinciple—dealwiththedifficultiesfirst.

Twoquestionsdominatediscussionofcountinginthenextfoursections.

• Aretheselectionswearecountingorderedorunordered?

• Iftheyareordered,isrepetitionallowedornot?

Thesequestionsgeneratethethreesituationsdescribedinthechapterintroduction.

Sections17B–17Ddevelopthetheoryofcountingorderedselections,withandwithoutrepetition,then Section17Edealswithunorderedselections.

Ageneralcountingprinciple—themultiplicationprinciple

Thismorning,Stefanchoseashirttowearfromthe12thatheowns.Thenwithoutworryingaboutamatch,he choseapairoftrousersfromthe6pairsheowns.Howmanypossibleoutfitscouldhehavewalkedoutofthe housewearing?

Theansweris12 × 6 = 72.Foreachchoiceoftrousers,hehas12choicesofshirt,making12possibleoutfits.But therewere6choicesoftrousers,so

numberofoutfits = 12 + 12 + 12 + 12 + 12 + 12 = 12 × 6.

Themultiplicationprinciplemaybeappliedtomorethantwosuccessivechoices.Stefanalsochoseapairof shoesfromhis10pairs,andatiefromhisextraordinarycollectionof100wonderfulties.Takingthesechoices intoaccountaswell,

numberofoutfits = 12 × 6 × 10 × 100 = 72000.

3Ageneralcountingprinciple—themultiplicationprinciple

• Supposethataselectionistobemadein r stages.Supposethatthefirststagecanbechosenin n1 ways, thesecondin n2 ways,...,the rthin nr ways.Then numberofwaysofchoosingthecompleteselection = n1 × n2 ×···× nr

• Thesuccessivechoicescanbevisualisedinaboxdiagram,asdescribedbelow,

Usingboxestovisualiseamultiplicationprinciplequestion

Anorderedselectioncanusuallyberegardedasasequenceofchoicesmadeoneaftertheother.Aboxdiagram isanefficientsetting-outhere,andkeepstrackofthesesuccessivechoices.InthesituationabovewithStefan’s outfits:

shirt trousers shoes tie 12 6 10 100

Numberofoutfits = 12 × 6 × 10 × 100 = 72000.

Example4

Usingthemultiplicationprinciple

Howmanyfive-letterwordscanbeformedinwhichthesecondandfourthlettersarevowelsandtheother threelettersareconsonants?

Note: Unlessotherwiseindicated,alwaystaketheletter‘y’asaconsonant.

Solution

Thereare5vowelsand26 5 = 21consonants.Wecanselecteachletterinorder:

1stletter 2ndletter 3rdletter 4thletter 5thletter 21 5 21 5 21

Hencenumberofwords = 21 × 5 × 21 × 5 × 21 = 231525.

Orderedselectionsallowingrepetition

Thisisthefirstsituationlistedinthechapterintroduction.Supposethat r-letterwordsareformedfrom n distinct letters,whereanylettercanbeusedanynumberoftimes.Theneachsuccessiveletterinthewordcanbechosen in n ways:

1stletter 2ndletter 3rdletter ··· rthletter n n n ... n

giving nr distinctwordsaltogether.Theresultisthusasimplepower:

4Orderedselectionsallowingrepetition

If r lettersarechosensuccessivelyfrom n distinctletters,allowingrepetitionofletters,andplacedin order,then:

numberofarrangements = n r

Example5

Countingorderedselectionsallowingrepetition

a Howmanysix-digitnumberscanbeformedentirelyfromodddigits?

b Howmanyofthesenumberscontainatleastoneseven?

Solution

a Therearefiveodddigits,sothenumberofsuchnumbersis56

b Wefirstcountthenumberofthesesix-digitnumbersnotcontaining7.Suchnumbersareformed fromthedigits1,3,5and9,sothereare46 ofthem.Subtractingthisfromtheanswertopart(a), numberofnumbers = 56 46 = 11529.

Orderedselectionswithoutrepetition

Thisisthesecondofthethreesituationslistedinthechapterintroduction.Countingorderedselectionswithout repetitiontypicallyinvolvesfactorials,becauseaseachstageiscompleted,thenumberofpossibleobjects diminishesby1.

Note: Thephrases‘with(orallowing)replacement’and‘with(orallowing)repetition’areusedalmost interchangeably.Similarly,thephrases‘withoutreplacement’and‘withoutrepetition’arealsoused almostinterchangeably.

Example6 Countingorderedselectionswithoutrepetition

Inhowmanywayscanaclassof16selecta4-personcommitteeconsistingofapresident,avice-president,a treasurer,andasecretary?

Selectinorderthepresident,thevice-president,thetreasurerandthesecretary.

president vice-president treasurer secretary 16 15 14 13

Hencethereare16 × 15 × 14 × 13 = 16! 12! possiblecommittees(thatis,43680).

Thelanguageofpermutations

A permutation isanarrangementofobjectschosenfromacertainfinitesetwithoutrepetition(thatis,without replacement).Forexample,thewordsABC,CED,EABandDBCaresomeofthemany3-letterpermutations takenfromthe5-memberset{A,B,C,D,E}.

Thesymbol nPr isusedtodenotethenumberofpermutationsof r letterschosenwithoutrepetitionfromasetof n distinctletters.Thepreviousexampleiseasilygeneralisedtoshowthatthereare n! (n r)! suchpermutations,so thisbecomestheformulafor nPr : 1stletter 2ndletter 3rdletter 4thletter rthletter n n 1 n 2 n 3 n r + 1

Hence nPr = n(n 1)(n 2)(n 3) (n r + 1) = n(n 1)(n 2)(n 3) ×···× 2 × 1 (n r)(n r 1) ×···× 2 × 1 = n! (n r)!

5Permutations—orderedselectionswithoutrepetition

• A permutation isanarrangementofobjectschosenfromacertainfinitesetwithoutrepetition(thatis, withoutreplacement).

• Weoftenimaginepermutationsas words formedbychoosing,withoutrepetition,lettersfromasetof distinctletters.

• Thenumberof r-letterpermutationschosenfromasetof n distinctletters,is

nPr = n! (n r)!

• Thenumberofpermutationsofall n distinctlettersis

nPn = n! 0! = n!.

Theterm‘distinctobjects’isoftennecessaryinthissituation.

Scientificcalculatorshaveabuttonlabelled n Pr thatwillfindvaluesof nPr .Forlowvaluesof n and r,the answersareexact,butforhighervaluestheyareonlyapproximations.Makeapracticeofevaluatingthese numberbyhandwhenitisreasonabletodoso,becausesuchcalculationsgreatlyhelptheintuition.

Example7 Countingpermutationstakenfroma5-memberset.

a Howmany3-letterwordscanbeformedwithoutrepetitionfromthe5-memberset{A,B,C,D,E}?

b Howmany5-letterwordswithoutrepetitioncanbeformedfromtheset?

Solution

a ByBox5,numberofpermutations =

b ByBox5,numberofpermutations = 5! = 120.

Thepermutationsofaset

A permutationofaset isanarrangementofallthemembersofthesetinsomeorder.Box5establishedthatthe numberofsuchpermutationis nPn = n!.

Example8 Permutationsofallmembersandofallbutonemember

a Howmany8-digitnumbers,andhowmany9-digitnumbers,canbeformedfromthe9non-zerodigitsifno repetitionisallowed?

b Commentonthetwoanswersinpart(a).

Solution

a Numberof8-digitnumbers =

b Theresultsarethesame,becauseevery8-digitnumbercanbeextendedinoneandonlyonewaytoa 9-digitnumber,thatis,byaddingtheunuseddigit.

Example9 Usingthecalculatorforverylargenumbers

Inhowmanywayscan20peopleand40peopleformaqueue?Answercorrecttotwosignificantfigures.

Solution

UNCORRECTEDSAMPLEPAGES

Ageneralcountingprinciple—dealwiththerestrictionsfirst

Manyproblemshaverestrictionsinthewaythingscanbearranged.Theserestrictionsshouldbedealtwithfirst. Itisalsoimportanttokeepinmindthattheorderoftheboxesusuallyrepresentstheorderthechoicesaremade in,nottheorderingoftheobjects,andthattheycanbeusedinsurprisinglyflexibleways.

6Ageneralcountingprinciple—dealwiththedifficultiesfirst

• Whencountingorderedselections,dealwithanyrestrictionsfirst.

• Usuallyplacetheboxesintheorderinwhichtheselectionsaremade.

Example10 Dealingwiththedifficultiesfirst

Eightpeopleformtwoqueues,eachwithfourpeople.Albertwillonlystandintheleft-handqueue,Bethonly intheright-handqueue,andCharlesandDianainsistonstandinginthesamequeue.Inhowmanywayscan thetwoqueuesbeformed?

Solution

PlaceAlbertinanyofthe4possiblepositionsintheleft-handqueue, ThenplaceBethinanyofthe4positionsintheright-handqueue. PlaceCharlesinanyoftheremaining6positions.

PlaceDianainoneofthe2remainingpositionsinthesamequeue. Thereremain4unfilledpositions,whichcanbefilledin4!ways:

Albert Beth Charles Diana lastfourpositions 4 4 6 2 4!

Hencenumberofways = 4 × 4 × 6 × 2 × 4! = 4608.

Exercise17B FOUNDATION

1 ListallthepermutationsofthelettersofthewordDOG.Howmanyarethere?

2 ListallthepermutationsofthelettersEFGHI,beginningwithF,takenthreeatatime.

3 FindhowmanyarrangementsofthelettersofthewordFRIENDarepossibleifthelettersaretaken: fouratatime, a sixatatime. b

4 Findhowmanyfour-digitnumberscanbeformedusingthedigits5,6,7,8and9if: nodigitistoberepeated, a anyofthedigitscanoccurmorethanonce. b

5 Howmanythree-digitnumberscanbeformedusingthedigits2,3,4,5and6ifnodigitcanberepeated? Howmanyofthesearegreaterthan400?

6 Inhowmanywayscansevenpeoplebeseatedinarowofsevendifferentchairs?

7 Thesymbol nPr isthenumberofwaysofarranging r objectsselectedwithoutreplacementfrom n objects. Usethisexpression,andthe n Pr buttononyourcalculator,toanswerthefollowingquestions.

a Fromagroupof10,threepeoplelineuptobuytickets.Howmanywayscanthishappen?

b Fivecardsareeachlabelleduniquelywithoneofthedigits1,2,3,4,5.Threeofthefivecardsareplaced downinarow.Howmanywayscanthecardsbearranged?

c Onehundredpeopleeachbuyoneticketinalottery.Howmanywayscanthefirstthreeplacesbe awarded?

8 Theexpression nr isthenumberofwaysofarranging r objectsselectedwithreplacementfrom n objects. Usethisexpressiontoanswerthefollowingquestions.

a Howmanythree-digitnumberscanbewrittendownfromthedigits1to9?Thedigitsneednotbe distinct.

b Onehundredpeopleeachbuyoneticketinalottery.Ticketsareselectedonebyoneatrandomfroma barrelandthenreplacedbetweenselections.Howmanywayscanthefirstthreeplacesbeawarded?

c Acomputersendsastringoftenbinarydigits,thatis,eachsymbolcanonlybe0or1.Howmanysuch ten-digitstringsarepossible?

9 Eightrunnersareparticipatingina400-metrerace.

a Inhowmanywayscantheyfinish?

b Inhowmanywayscanthegold,silverandbronzemedalsbeawarded?

10a Ifyoutossacoinandrolladie,howmanyoutcomesarepossible?

b Ifyoutosstwocoinsandrollthreedice,howmanyoutcomesarepossible?

11 Awomanhasfourhats,threeblouses,fiveskirts,twohandbagsandsixpairsofshoes.Inhowmanyways canshebeattired,assumingthatshewearsoneofeachitem?

12 JackhassixdifferentfootballcardsandMeghasanothereightdifferentfootballcards.Inhowmanyways canoneofJack’scardsbeexchangedforoneofMeg’scards?

DEVELOPMENT

13 InSydney,landlinephonenumbers,ignoringtheareacode,consistofeightdigits.Letusconsiderthose startingwiththedigit9.

a Howmanysuchphonenumbersarepossible?

b Howmanyoftheseendinanoddnumber?

c Howmanyconsistofodddigitsonly?

d Howmanyaretherethatdonotcontainazero,andinwhichtheconsecutivedigitsalternatebetweenodd andeven?

14 Usersofautomatictellermachinesarerequiredtoenterafour-digitPIN(personalidentificationnumber). FindhowmanyPINs: arepossible, a consistoffourdistinctdigits, b consistofodddigitsonly, c startandendwiththesamedigit. d

15a Ifrepetitionsarenotallowed,howmanyfour-digitnumberscanbeformedfromthedigits1,2,...8,9? Howmanyoftheseendin1? b Howmanyoftheseareeven? c Howmanyaredivisibleby5? d Howmanyaregreaterthan7000? e

16 Repeatthepreviousquestionifrepetitionsareallowed.

17 InTasmania,acarlicenceplateconsistsoftwolettersfollowedbyfourdigits.Findhowmanyoftheseare possible:

a iftherearenorestrictions,

b ifthereisnorepetitionoflettersordigits,

c ifthesecondletterisXandthethirddigitis3, d ifthelettersareDandQandthedigitsare3,6,7and9.

18a InhowmanywayscanthelettersofthewordNUMBERbearranged?

b HowmanybeginwithN?

c HowmanybeginwithNandendwithU?

d InhowmanyistheNsomewheretotheleftoftheU?

19 Inhowmanywayscanaboatcrewofeightwomenbearrangedifthreeofthewomencanonlyrowonthe bowsideandtwootherscanonlyrowonthestrokeside?

20 Amotorbikecancarrythreepeople:thedriver,onepassengerbehindthedriverandoneinthesidecar.If amongfivepeople,onlytwocandrive,inhowmanywayscanthebikebefilled?

21a Howmanyfive-digitnumberscanbeformedwithoutrepetitionfromthedigits2,3,4,5and6?

b Howmanyofthesenumbersaregreaterthan56432?

c Howmanyofthesenumbersarelessthan56432?

22a Integersareformedfromthedigits2,3,4and5,withrepetitionsnotallowed. Howmanysuchnumbersarethere? i Howmanyofthemareeven? ii

b Repeatthetwopartstothisquestionifrepetitionsareallowed.

23a Howmanyfive-digitnumberscanbeformedfromthedigits0,1,2,3and4ifrepetitionsarenot allowed?

b Howmanyoftheseareodd?

c Howmanyaredivisibleby5?

24a If 8Pr = 336,findthevalueof r

b If7 × 2

UNCORRECTEDSAMPLEPAGES

,find

c Usingtheresult nPr = n! (

r)! ,provethat:

CHALLENGE

25 Recallthatawholenumberisdivisibleby3ifandonlyifthesumofthedigitsisdivisibleby3.

a Howmany5-digitwholenumbersaredivisibleby3?

b Howmany5-digitwholenumberswithno0saredivisibleby3?

c Howmany5-digitwholenumberswithno0saredivisibleby2?

d Howmany5-digitwholenumberswithno0saredivisibleby6?

17C Orderedselections—threemoreprinciples

Learningintentions

• Developthegroupingprinciple—orderthegroups,thenordereachgroup.

• Developthecomplementaryprinciple—dealwiththecomplementarysituation.

• Developthecasesprinciple—splittheproblemupintocases.

Section17Bdevelopedthemultiplicationprinciple,andtheprincipleofdealingwiththedifficultiesfirst.This sectiondevelopsthreefurtherprinciples.

Ageneralcountingprinciple—grouping

Insomeorderingproblems,particularmembersmustbegroupedtogether.Thisproducesa compoundordering, inwhichthevariousgroupsmustfirstbeordered,andthentheindividualsorderedwithineachgroup.

7Ageneralcountingprinciple—usegroupingincounting

• Firstorderthegroups,thenordertheindividualswithineachgroup.

• Agroupmayconsistofasingleindividual.

Example11 Usinggroupingtocountarrangements

Fourboysandfourgirlsformaqueueatthebusstop.Onecouplewanttostandtogether.Theotherthreegirls wanttostandtogether,buttheotherthreeboysdon’tcarewheretheystand.Howmanyacceptablewaysare thereofformingthequeue?

Solution

Therearefivegroups—thecouple,thegroupofthreegirls,andthethreegroupseachconsistingofone individualboy.Firstorderthefivegroups,thenorderthecouple,thenorderthethreegirls. orderthe5groups orderthecouple orderthe3girls 5! 2! 3! Hencenumberofways = 5! × 2! × 3! = 1440.

Ageneralcountingprinciple—dealwiththecomplementarysituation

ManyprobabilityquestionshavealreadybeensolvedinChapter14usingcomplementaryevents.Thesame principleappliestocounting—counttheunacceptableorderings,thensubtractthemfromthetotalnumberof orderings.Theword‘not’mayormaynotbetheretopromptyou.

Example12 Usingthecomplementarysituationincounting

Howmany7-letterwordscanbeformedfromthelettersA,B,C,D,E,F,Gifthetwovowelsmustbe separatedbyatleastoneconsonant?

Solution

Numberoforderingswithoutrestriction = 7!

NumberoforderingswithAandEtogether = 2! × 6! (OrdertheAandEandgluethemtogether,thenorderthe6groups.)

HencenumberoforderingswithAandEapart = 7! 2 × 6! = 3600.

8Ageneralcountingprinciple—dealwiththecomplementarysituation

Counttheunacceptableorderings,thensubtracttocounttheacceptableorderings.

Ageneralcountingprinciple—usecases

Sometimesthefiddlyconditionsofaproblemmeanthatonesetofboxesisnotenoughtosolveit,andseparate casesneedtobeconsidered.

Inthissituation,thecasesshouldnotoverlap,oriftheydo,thenumberintheoverlapneedstobesubtracted.

9Ageneralcountingprinciple—usecases

• Thecasesshouldnotoverlap.

• Ifthecasesdooverlap,theoverlapneedstobesubtracted.

ThissameprinciplewasexpressedinSection14Aonsettheory,bytheformulainBox4ofthatchapter:

Example13

Usingcasesinadifficultcountingproblem

a Howmanywholenumberslessthan1000areoddandgreaterthan500,ormultiplesof5andlessthan200?

b Howmanywholenumberslessthan1000areoddandgreaterthan200,ormultiplesof5andlessthan500?

Solution

a Thereare250oddnumbersbetween500and1000. Thereare40multiplesof5lessthan200(includingzero). Thetwocasesdonotoverlap,so

Total = 250 + 40 = 290.

b Thereare400oddnumbersbetween200and1000. Thereare100multiplesof5lessthan500(includingzero). Butthetwocasesoverlapthistime—thereare30oddnumbersfrom200to500thataremultiplesof5. Hence

SAMPLEPAGES

Total = 400 + 100 30 = 470.

Exercise17C FOUNDATION

1 Howmanyrearrangementsarethereofthelettersofeachword,ifthevowelsmustbetogether? BOARDS a RIO b QUIT c TROUNCE d

2 HowmanyarrangementsofthewordMATHSarepossible,if:

a theTandHmustremaintogether?

b theTHmustremaintogetherandinthisorder?

3 HowmanywayscanAndrew,Becky,Courtney,DionandElliesitinarow,ifAndrewandBeckysit togetherandDionandElliesittogether?

4 Inhowmanywayscanthreedifferentmathematicsbooks,sixdifferentsciencebooksandfourdifferent Englishbooksbeplacedonashelf,ifthebooksrelatingtoeachsubjectaretobekepttogether?

5 AclassisaskedtodeterminehowmanywaysthelettersofthewordSOLARcanbebearranged,ifthefirst twopositionscannotbothbevowels.

a Jackdecidestousecases(thewordeitherstartswithavoweloritdoesnot).UseJack’smethodto answerthequestion.

b Jilldecidestoconsiderthecomplementarysituation(bothfirstpositionsarevowels).UseJill’smethodto answerthequestion.

6 Afamilyoftwoparentsandtwochildrenaregoingonacartrip.Onlytheparentscandrive.Ifthefather drives,thenthemotherwillsitinthebackseatwhereshefeelssafer.Thefatheralwayssitsinafrontseatof thecar.Howmanyarrangementsarepossible,iftwositinthefrontandtwointheback?

7 Howmanynumberscanbewrittendownusingeachdigitof789atmostonce,iftheresultmustbeatleast 80?

DEVELOPMENT

8 FindhowmanyarrangementsofthelettersofthewordUNIFORMarepossible:

a ifthevowelsmustoccupythefirst,middleandlastpositions,

b ifthewordmuststartwithUandendwithM,

c ifalltheconsonantsmustbeinagroupattheendoftheword, d iftheMissomewheretotherightoftheU.

9 FindhowmanyarrangementsofthelettersofthewordBEHAVING: endinNG, a beginwiththreevowels, b havethreevowelsoccurring together. c

10 AMathstestistoconsistofsixquestions.Inhowmanywayscanitbearrangedsothat: a theshortestquestionisfirstandthelongestquestionislast, b theshortestandlongestquestionsarenexttooneanother?

11 InMorsecode,lettersareformedbyasequenceofdashesanddots.Howmanydifferentlettersisitpossible torepresentifamaximumoftensymbolsareused?

12 Fourboysandfourgirlsaretositinarow.Findhowmanywaysthiscanbedoneif: theboysandgirlsalternate, a theboysandgirlssitindistinctgroups. b

13 Five-letterwordsareformedwithoutrepetitionfromthelettersofPHYSICAL.

a Howmanyconsistonlyofconsonants?

b HowmanybeginwithPandendwithS?

c Howmanybeginwithavowel?

d HowmanycontaintheletterY?

e Howmanyhavethetwovowelsoccurringnexttooneanother?

f HowmanyhavetheletterAimmediatelyfollowingtheletterL?

14a Howmanyseven-letterwordscanbeformedwithoutrepetitionfromthelettersofthewordINCLUDE?

b HowmanyofthesedonotbeginwithI?

c HowmanyendinL?

d Howmanyhavethevowelsandconsonantsalternating?

e HowmanyhavetheCimmediatelyfollowingtheD?

f HowmanyhavethelettersNandDseparatedbyexactlytwoletters?

g HowmanyhavethelettersNandDseparatedbymorethantwoletters?

15 Repeatparts(a)–(d)ofthepreviousquestionifrepetitionisallowed.

16a Inhowmanywayscantenpeoplebearrangedinaline:

i withoutrestriction, ii ifoneparticularpersonmustsitateitherend, iii iftwoparticularpeoplemustsitnexttooneanother, iv ifneitheroftwoparticularpeoplecansitoneitherendoftherow?

b Inhowmanywayscan n peoplebeplacedinarowof n chairs: i ifoneparticularpersonmustbeoneitherendoftherow, ii iftwoparticularpeoplemustsitnexttooneanother, iii iftwoofthemarenotpermittedtositateitherend?

17 Fiveboysandfourgirlsformaqueueatthecinema.Therearetwobrotherswhowanttostandtogether,the remainingthreeboyswishtostandtogether,andthefourgirlsdon’tmindwheretheystand.Inhowmany wayscanthequeuebeformed?

18 Eightpeoplearetoformtwoqueuesoffour.Inhowmanywayscanthisbedoneif:

a therearenorestrictions,

b Jimwillonlystandintheleft-handqueue,

c SeanandLiammuststandinthesamequeue?

19 Thereareeightswimmersinarace.Inhowmanywayscantheyfinishiftherearenodeadheatsandthe swimmerinLane2finishes:

a immediatelyaftertheswimmerinLane5,

b anytimeaftertheswimmerinLane5?

20 Fivebackpackersarriveinacitywheretherearefiveyouthhostels.

a Howmanydifferentaccommodationarrangementsarethereiftherearenorestrictionsonwherethe backpackersstay?

b Howmanydifferentaccommodationarrangementsarethereifeachbackpackerstaysatadifferentyouth hostel?

c Supposethattwoofthebackpackersarebrotherandsisterandwishtostayinthesameyouthhostel. Howmanydifferentaccommodationarrangementsarethereiftheotherthreecangotoanyoftheother youthhostels?

21 Numberslessthan4000areformedfromthedigits1,3,5,8and9,withoutrepetition.

Howmanysuchnumbersarethere? a

Howmanyofthemaredivisibleby5? c

Howmanyofthemareodd? b

Howmanyofthemaredivisibleby3? d

CHALLENGE

22 [Derangements]A derangement of n distinctlettersisapermutationofthemsothatnoletterappearsinits originalposition.Forexample,DABCisaderangementofABCD,butDACBisnot.Denotethenumberof derangementsof n lettersby D(n).

a BylistingallthederangementsofA,AB,ABCandABCD,findthevaluesof D(1), D(2), D(3)and D(4).

b SupposethatwehaveformedaderangementofthefivelettersABCDE.Letthelastletterinthe derangementbeX,andexchangeXwithE—thisputsEbacktoitsoriginalposition.EitherXisnow alsoinitsoriginalpositionsothatthreelettersareawayfromtheiroriginalpositions,orXisnotinits originalpositionsothatfourlettersareawayfromtheiroriginalpositions.Henceexplainwhy

D(5) = 4 × D(4) + 4 × D(3).

c Usethisformulatoevaluate D(5).Thenapplythecorrespondingargumentsandformulaetoevaluate D(6), D(7)and D(8).

17D Orderedselectionswithidenticalelements

Learningintentions

• Countrearrangementsofawordwhoselettersarenotalldistinct.

• Usecasestocountmorecomplicatedsituations.

• Developthespecialcasesofwordswithonlytwodistinctletters.

UNCORRECTEDSAMPLEPAGES

Sofar,ourpermutationshavebeendrawinglettersfromawordwhoselettersarealldistinct.Thissectiondeals withrearrangementsof allthelettersofawordwhoselettersarenotalldistinct.

Countingwithidenticalelements

Findingthenumberofdifferentwordsformedusingallthelettersoftheword‘PRESSES’iscomplicatedbythe factthattherearethreeSsandtwoEs.Ifthesevenletterswerealldifferent,wewouldconcludethat numberofways = 7!

Butwehave overcountedbyafactorof 2! = 2,becausetheEscanbeinterchangedwithoutchangingtheword. Wehavealso overcountedbyafactorof 3! = 6,becausethethreeSscanbepermutedamongstthemselvesin 3!wayswithoutchangingtheword.Takingaccountofbothovercountings: numberofways = 7! 2! × 3! = 420.

Thismethodiseasilygeneralised.Continuinginthelanguageof‘words’:

10Countingwithidenticalelements

Supposethatawordof n lettershas r1 alikeofonetype, r2 alikeofanothertype,..., rk alikeofafinal type.Thenthenumberofdistinctwordsthatcanbeformedbyrearrangingthelettersis numberofwords

If ri = 1,thatis,ifthereisonlyoneletterofthe ithtype,then ri! = 1,soitdoesn’tmatterwhetherweincludeitin theformulaornot.

Example14 Rearrangingobjectsthatarenotalldistinct

Threeidenticalwineglassesandfiveidenticaltumblersaretobearrangedinarowacrossthefrontofa cupboard.

a Inhowmanywayscanthisbedone(countingonlythepatterns)?

b Howdoesthischangeifoneofthewineglassesbecomesclearlychipped,andtwotumblersbreakandare replacedbytwoidenticaltumblersdifferentfromtheotherthree?

Solution

a Thereare8glasses,3alikeofonetypeand2alikeofanother, sonumberofways = 8! 3! × 5! = 56.

b Therearenow2alikeofonetype,1ofanother,3ofanother,2ofanother, sonumberofways = 8! 2! × 1! × 3! × 2! = 1680(the1!canbeomitted).

Usingcasesforcounting

Asmentionedintheprevioussection,manycountingproblemsaretoocomplicatedtobeanalysedcompletelyby asingleboxdiagramorasinglemethod.Insuchsituations,theuseofcasesisunavoidable.Attentionshouldbe given,however,tominimisingthenumberofdifferentcasesthatneedtobeconsidered.

Example15 Adifficultcountingproblemrequiringcases

Howmany6-letterwordscanbeformedbyusingthe7lettersoftheword‘PRESSES’?

Solution

WeomitinturneachofthefourlettersP,R,EandS. Thisleavessixletters,whichwemustthenarrangeinorder.

a IfanSisomitted,therearethen2Esand2Ss, sonumberofwords = 6! 2! × 2! = 180.

b IfanEisomitted,therearethen3Ss, sonumberofwords = 6! 3! = 120.

c IfPorRisomitted(2cases),therearethen2Esand3Ss, sonumberofwords = 6! 3! × 2! × 2(doublingforthetwocases) = 120.

Hencetotalnumberofwords = 180 + 120 + 120 = 420.

Countingwordsconsistingofjusttwodifferentletters

Thissituationinvolvestwocountingformulaethatwillbevitalinthenextsection.

ThesetwoformulaearespecialcasesofmethodsthathavealreadybeendevelopedinSections17Bandthis section,andarebestintroducedwithanexample.

Example16

Countingwordsconsistingofjusttwodifferentletters

Anopinionpollasks8independentquestions,eachtobeansweredYorN.

a Howmanypossibleanswersheetsarethere?

b Howmanypossibleanswersheetshave5Ysand3Ns?

Solution

AnsweringthepollgeneratesawordsuchasYNNYYNYYmadeupofYsandNs.

a ByBox4inSection17B,thenumberofwordsis28.Orusingboxes:

UNCORRECTEDSAMPLEPAGES

b ByBox10above,thenumberofwordsis 8! 5! × 3!

Bothformulaeforthegeneralcasenowfolloweasilyfromthisexample.

11Rearrangementsofwordscontainingonlytwodifferentletters

• Thenumberof n-letterwordsconsistingonlyofYsandNsis: numberofwords = 2n

• Thenumberof n-letterwordsconsistingof r Ysand n r Nsis: numberofwords = n! r! × (n r)! .

Afterthenextsection,wewillbeabletousetheconcisesymbol nCr forthisexpression n! r! × (n r)!

Example17

UNCORRECTEDSAMPLEPAGES

Arrangementsofobjectsofjusttwotypes

a Inaqueueoftenadults,howmanypatternsofmenandwomenarepossible?

b Sixwomenandfourmenformaqueueatthebusstop.Howmanypatternsofmenandwomenare possible?

Solution

a ByBox11Dotpoint1,thenumberofpossiblepatternsis210 = 1024.

b ByBox11Dotpoint2,thenumberofpossiblepatternsis 10! 6! × 4! = 210.

Exercise17D FOUNDATION

1 Findthenumberofpermutationsofthefollowingwordsifallthelettersareused. BOB a ALAN b SNEEZE c TASMANIA d BEGINNER e FOOTBALLS f EQUILATERAL g COMMITTEE h WOOLLOOMOOLOO i

2 Thesixdigits1,1,1,2,2,3areusedtoformasix-digitnumber.Howmanynumberscanbeformed?

3 Sixcoinsarelineduponatable.Findhowmanypatternsarepossibleifthereare: fivetailsandonehead, a fourheadsandtwotails, b threetailsandthreeheads. c

4 Eightballs,identicalexceptforcolour,arearrangedinaline.Findhowmanydifferentarrangementsare possibleif:

a allballsareofadifferentcolour, b therearesevenredballsandonewhiteball, c therearesixredballs,onewhiteballandoneblackball, d therearethreeredballs,threewhiteballsandtwoblackballs.

5 Fiveidenticalgreenchairsandthreeidenticalredchairsarearrangedinarow.Findhowmanyarrangements arepossible: iftherearenorestrictions, a iftheremustbeagreenchaironeitherend. b

6 Amotoristtravelsthrougheightsetsoftrafficlights,eachofwhichisredorgreen.Heisforcedtostopat threesetsoflights.

a Inhowmanywayscouldthishappen?

b Whatothernumberofredlightswouldgiveanidenticalanswertopart(a)?

7 InhowmanywayscanthelettersofthewordSOCKSbearrangedinaline: a withoutrestriction, b sothatthetwoSsaretogether, c sothatthetwoSsareseparatedbyatleastoneotherletter, d sothattheKissomewheretotheleftoftheC?

8a FindthenumberofarrangementsofthelettersinSLOOPSif: therearenorestrictions, i thetwoOsaretogether, ii thetwoOsaretobeseparated, iii theOsaretogetherandtheSsaretogether. iv

b InhowmanyarrangementsofthelettersinTATTOOarethetwoOsseparated?

9 InhowmanywayscanthelettersofthewordDECISIONSbearranged: a withoutrestriction, b sothatthevowelsandconsonantsalternate, c sothatthevowelscomefirstfollowedbytheconsonants, d sothattheNissomewheretotherightoftheD?

10 InhowmanywayscanthelettersofthewordPROPORTIONALITYbearrangedsothatthevowelsand consonantsstilloccupythesameplaces?

11 Aformhastenquestionsinorder,eachofwhichrequirestheanswer‘Yes’or‘No’.Findthenumberof waystheformcanbefilledin: withoutrestriction, a ifthefirstandlastanswersare‘Yes’, b iftwoare‘Yes’andeightare‘No’, c iffiveare‘Yes’andfiveare‘No’, d ifmorethansevenanswersare‘Yes’, e ifanoddnumberofanswersare‘Yes’, f ifexactlythreeanswersare‘Yes’,andtheyoccur together, g ifthefirstandlastanswersare‘Yes’andexactly fourmoreare‘Yes’.

12 Containersareidentifiedbyarowofcoloureddotsontheirlids.Thecoloursusedareyellow,greenand purple.Inanyarrangement,therearetobenomorethanthreeyellowdots,nomorethantwogreendotsand nomorethanonepurpledot.

a Ifsixdotsareused,whatisthenumberofpossiblecodes?

b Whatisthenumberofdifferentcodespossibleifonlyfivedotsareused?

13a Howmanyfive-letterwordscanbeformedbyusingthelettersofthewordSTRESS?

b Howmanyfive-letterwordscanbeformedbyusingthelettersofthewordBANANA?

14 FindhowmanyarrangementsofthelettersofthewordTRANSITIONarepossibleif: therearenorestrictions, a theIsaretogether, b theIsaretogether,andsoaretheNs,andsoare theTs, c theNsoccupytheendpositions, d anNoccupiesthefirstbutnotthelastposition, e theletterNisnotateitherend, f thevowelsaretogether. g

15 Tencolouredmarblesareplacedinarow.

a Iftheyareallofdifferentcolours,howmanyarrangementsarepossible?

b Whatistheminimumnumberofcoloursneededtoguaranteeatleast10000differentpatterns?(Thiswill needaguess-and-checkapproach.)

CHALLENGE

16 FindhowmanyarrangementsthereareofthelettersofthewordGUMTREEif:

a therearenorestrictions, b theEsaretogether,

c theEsareseparatedby:

one, i two, ii three, iii four, iv fiveletters, v d theGissomewherebetweenthetwoEs, e theMissomewheretotheleftofbothEsandtheUissomewherebetweenthem, f theGissomewheretotheleftoftheUandtheMissomewheretotherightoftheU.

17 IfthelettersofthewordGUMTREEandthelettersofthewordKOALAarecombinedandarrangedinto asingletwelve-letterword,inhowmanyofthesearrangementsdothelettersofKOALAappearintheir correctorder,butnotnecessarilytogether?

18 Bobisabouttohanghiseightshirtsinthewardrobe.Hehasfourdifferentstylesofshirt,withtwoidentical shirtsineachstyle.Howmanydifferentarrangementsarepossible ifnotwoidenticalshirtsarenexttooneanother?

19 [Derangementsandthenumber e]A derangement wasdefinedinquestion22ofExercise14Casa permutationthatleavesnoletterunmoved,and D(n)wasdefinedasthenumberofderangementsof n letters. Anotherapproachtofindingaformulafor D(n)usesthe inclusion–exclusionprinciple introducedinthe EnrichmentsectionofExercise12C.Consider,forexample,thederangementsofABCD.

a HowmanypermutationsarethereofABCD?

b Howmanyoftheseleaveinitsoriginalposition: A, i B, ii

Eachofthesenumberswillneedtobesubtractedfromtheanswertopart(a).

c Indoingpart(b),however,wehavesubtractedsomeofthepermutationstwice.Forexample,someof themwouldleavebothAandBunmoved.Thusweneedtoaddbackthenumberofpermutationsthat leaveanytwoparticularlettersunmoved.Howmanyofthesearethere?

d Nowyouwillneedtosubtractthenumberofpermutationsthatleavethreelettersunmoved,andsoon. Hencefindanexpressionfor D(4).

e Rearrangeyourexpressionintotheform D(4)

f Explainhowthiscanbegeneralisedto

g WeshallproveinanEnrichmentquestionoftheYear12volumethatthesequenceinthebracketsof part(f)aboveconvergesto1/e as n →∞.Givebothacombinatorialandaprobabilisticinterpretationof thisresultintermsoftheratioofthenumbersofpermutationsandderangementsof n letters.

17E Countingunorderedselections

Learningintentions

• Countallsubsets,andall r-membersubsets,ofan n-memberset.

• Usethenotation nCr ,andprovethat nC0 + nC1 + nC2 + ··· + nCn = 2n

• Developtheformula nCn r = nCr ,andexplainitusingcomplements.

Thissectionturnsattentionawayfromtheorderedselectionsofthepreviousthreesectionstowardsthecounting ofunorderedselections.Anunorderedselectionofdistinctobjectschosenfromacertainsetisjust asubsetofthe set.Thusgivenan n-memberset S ,therearetwobasicquestionstoask:

• Howmanysubsetsdoes S havealtogether?

• Howmany r-membersubsetsdoes S have,for r = 0,1,..., n?

Anexampleoftheresult

Hereisanexampletoillustratethesituation.Let S bethefive-memberset S = {A,B,C,D,E}.

Hereisthelistofallthesubsetsof S ,arrangedbythenumberofmembers: 10-membersubsets: ∅ (theemptyset)

51-membersubsets:{A},{B},{C},{D},{E} 102-membersubsets:{A,B},{A,C},{A,D},{A,E},{B,C}, {B,D},{B,E},{C,D},{C,E},{D,E} 103-membersubsets:{A,B,C},{A,B,D},{A,B,E},{A,C,D},{A,C,E}, {A,D,E},{B,C,D},{B,C,E},{B,D,E},{C,D,E} 54-membersubsets:{A,B,C,D},{A,B,C,E},{A,B,D,E}, {A,C,D,E},{B,C,D,E} 15-membersubset:{A,B,C,D,E}

making1 + 5 + 10 + 10 + 5 + 1 = 32 = 25 subsetsaltogether.

Howmanysubsetsdoes S havealtogether?

Choosingasubsetof S requireslookingateachmemberof S inturnanddecidingwhethertoincludeitinthe subsetornot.LetuswritethecodeYfor‘Yes’ifitisincluded,andNfor‘No’ifitisnotincluded.Usingthis code,eachsubsetof S correspondstoafive-letterwordmadeupofYsandNs.Forexample,

YYNYN ←→ {A,B,D}andNNNNY ←→ {E}.

Hencethetotalnumberofsubsetsof S isthenumberoffive-letterwords madeupofYsandNs.ByBox11ofSection17D,orusingtheboxtothe righttovisualisethechoices,thisis25,so

Numberofsubsetsof S = 25 = 32,asdemonstratedabove.

Thissameargumentappliestosetsofanyfinitesize,sothegeneralresultis:

Numberofsubsetsofan n-memberset = 2n .

Howmanythree-membersubsetsdoes S have?

UsingthesamecodeofYsandNs,thenumberof3-membersubsetsof S isthenumberof5-letterwordswith3 Ysand2Ns.ThusbyBox11,seconddotpoint:

Numberof3-membersubsetsof S = 5! 3! × 2! = 10,asdemonstratedabove.

UNCORRECTEDSAMPLEPAGES

Again,thisargumentappliestosetsofanyfinitesize,sothegeneralresultis:

Numberofr-membersubsetsofan n-memberset = n! r! × (n r)! .

Thenotation nCr

Thenotation nCr isaconvenientshorthand,andmeansthenumberof r-membersubsetsofan n-memberset. Thuswehavetheformula nCr = n! r! × (n r)!

12Countingthesubsetsofaset

Let S bean n-memberset,andlet0 ≤ r ≤ n

• Thesymbol nCr denotesthenumberof r-membersubsetsofan n-memberset.

• Totalnumberofallthesubsetsof S = 2n

• Numberof r-membersubsetsof S = nCr = n! r!(n r)!

• Addingupthesubsetswith0,1,2,... n membersgivestheformula: nC0 + nC1 + nC2 + ··· + nCn = 2n ,

becauseLHSandRHSarebothcountingthetotalnumberofsubsetsof S .

Thesymbol nCr isspokenas‘n choose r’,andhasanalternativenotation n r .

Thenotations nPr and nCr areintendedtobesimilar.TheletterCstandsfor‘combination’—anoldtermfor ‘unorderedselection’—justastheletterPstandsfor‘permutation’.Byaconvenient,butfalse,etymology, Calsostandsfor‘Choose’,hencethemorerecentconventionofsaying‘n choose r’for nCr

Scientificcalculatorshaveabuttonlabelled n Cr thatwillfindvaluesof nCr .Theanswersareexactforlowvalues of n and r,butaswith nPr ,theyareonlyapproximationsforhighervalues.Again,makeapracticeofevaluating thesenumbersbyhandwhenreasonable—suchcalculationsgreatlyhelptheintuition.

Aproofmovingfromorderedselectionstounorderedselections

Thereisanotherstandardwaytoprovetheformulafor nCr .InSection17Bwesawthatthenumberofthreeletterwordsformed,withoutrepetition,fromtheset S = {A,B,C,D,E} offivelettersis 5P3 = 5 × 4 × 3 = 60. Whenweturntounorderedselections,however,therearesixdistinctwordsthatallcorrespond,forexample,to thethree-membersubset{B,C,E}:

BCE,BEC,CBE,CEB,EBC,ECB ←→ {B,C,E}

Thereasonforthisisthatthereare 3P3 = 3 × 2 × 1 = 6waysoforderingthesubset{B,C,E}.Thusthecorrespondencebetweenthree-letterwordsandthree-membersubsetsismany-to-one,withasix-foldovercounting. Hencethenumberofthree-membersubsetsis60 ÷ 6 = 10,asillustratedabove.

Ingeneral, nPr = n! (n r)! wordsof r letterscanbeformedwithoutrepetitionfromthemembersofan n-member set S .Butevery r-membersubsetcanbeorderedin r Pr = r!ways,sothecorrespondencebetweentheordered selectionsandtheunorderedselectionsismany-to-one,withovercountingbyafactorof r!.

Hencethenumberof(unordered) r-membersubsetsoftheset S is nPr ÷ r Pr = n! (n r)! ÷ r! = n! r! × (n r)! .

Calculationsof nCr

Herearesomeexamplesofusingtheformulatocalculate nCr forsomevaluesof n and r

Example18 Calculationsinvolvingtheformulafor nCr

a Usetheformulafor nCr toevaluate: 8C5 i

b Find 16C5,leavingyouranswerfactoredintoprimes.

c EvaluatethetermsontheLHStoprove 5C

Solution

ai

=

b 16C5 = 16 × 15 × 14 × 13 × 12 1 × 2 × 3 × 4 × 5

= 2 × 14 × 13 × 12

= 24 × 3 × 7 × 13(Checkthisonthecalculator.)

c LHS = 5! 0! × 5! + 5! 1! × 4! + 5! 2! × 3! + 5! 3! × 2! + 5! 4! ×

= 1 + 5 + 10 + 10 + 5 + 1

= 32 = RHS,asshownonthefirstpageofthissection.

Anatural(orcanonical)correspondence— nCr = nCn−r

Supposethattwopeoplearetobechosenfromfivetomakeafternoontea.Thistaskcanbedoneintwoways:

• Choosethetwopeopleoutoffivewhowill makethetea

• Choosethethreepeopleoutoffivewhowill notmakethetea

Thusforeverychoiceoftwopeopleoutoffive,theremainingthreepeopleisacorrespondingchoiceofthree peopleoutoffive.Thisconfirmsthat 5C2 = 5C3

Butitalsogivesaone-to-onecorrespondencebetweenthetwo-membersubsetsandthethree-membersubsetsof afive-memberset:

{A,B} ←→ {C,D,E}

{A,C} ←→ {B,D,E}

{A,D} ←→ {B,C,E}

{A,E} ←→ {B,C,D}

{B,C} ←→ {A,D,E}

{B,D} ←→ {A,C,E}

{B,E} ←→ {A,C,D}

{C,D} ←→ {A,B,E}

{C,E} ←→ {A,B,D}

{D,E} ←→ {A,B,C}

Inthis natural or canonicalcorrespondence betweenthe2-membersubsetsandthe3-membersubsets,every subset T ispairedwithitscomplement T : T ←→ T

13Acanonicalcorrespondence

Let n and r bewholenumberswith0 ≤ r ≤ n,andlet S bean n-memberset.

• nCr = nCn r

• The r-membersubsetsof S are naturally or canonically pairedupwiththe(n r)-membersubsetsof S bypairingeachsubsetwithitscomplement.

Thecorrespondenceisbynomeansrestrictedtomathematics.Innormallanguage,asituationcanoftenbe describedjustaswellbysayingwhatitisnotasbysayingwhatitis—weareallfamiliarwith‘dayswhenno rainfell’or‘unforgivableactions’or‘invisibleenemies’.

Example19

Illustratingtheformulaefor nCr involvingcomplements

Write 7C2 and 7C5 infactorialnotation,showingthattheyareequal.

Solution

UNCORRECTEDSAMPLEPAGES

Using nCr incountingproblems

Hereareanumberofexamplesofcountingproblems.Asalways,wordssuchas‘atleast’,‘atmost’,‘not’and ‘excluding’shouldalwaysberegardedaswarningsthattheproblemmaybestbesolvedbyconsideringthe complementarysituation.

Example20 Using nCr incountingproblems

Tenpeoplemeettoplaydoublestennis.

a Inhowmanywayscanfourpeoplebeselectedfromthisgrouptoplaythefirstgame?(Ignorethe subsequentorganisationintopairs.)

b HowmanyofthesewayswillincludeMariaandexcludeAlex?

c Iftherearefourwomenandsixmen,inhowmanywayscantwomenandtwowomenbechosenforthis game?

d Againwithfourwomenandsixmen,inhowmanywayswillwomenbeinthemajority?

Solution

a Numberofways = 10C4 = 210.

b BecauseMariaisincluded,threefurtherpeoplemustbechosen,andbecauseAlexisexcluded,thereare noweightpeopletochoosethesethreefrom. Hencenumberofways = 8C3 = 56.

c Numberofwaysofchoosingthetwowomen = 4C2 = 6, numberofwaysofchoosingthetwomen = 6C2 = 15, sonumberofwaysofchoosingallfour = 15 × 6 = 90.

d Numberofwayswithonemanandthreewomen = 6C1 × 4C3 = 6 × 4 = 24, numberofwayswithfourwomen = 1, sonumberofwayswithamajorityofwomen = 24 + 1 = 25.

Example21 Countingusing nCr withcomplications

Let S = {2,4,6,8,10,12} bethesetofthefirstsixpositiveevennumbers.

a Howmanysubsetsof S containatleasttwonumbers?

b Howmanysubsetswithatleasttwonumbersdonotcontain8?

c Howmanysubsetswithatleasttwonumbersdonotcontain8butdocontain10?

Solution

a Numberof1-memberand0-membersubsets = 6C1 + 6C0 = 6 + 1 = 7, sonumberwithatleast2members = 26 7 = 57.

b Weconsidernowthe5-memberset T = {2,4,6,10,12}

Numberof1-memberand0-membersubsets = 5C1 + 5C0 = 6, sonumberwithatleast2members = 25 6 = 26.

c Because10hasalreadybeenchosen,weneedtochooseasubset,withatleastonemember,fromthe four-memberset U = {2,4,6,12}.

Numberof0-membersubsets = 1(theemptyset), sonumberofsuchsubsetswithatleastonemember = 24 1 = 15.

Example22 Ahardergeometricquestioninvolving nCr

Tenpoints A1, A2,..., A10 arearrangedequallyspacedaroundacircle.

a Howmanytrianglescanbedrawnwiththesepointsasvertices?

b Howmanypairsofsuchtrianglescanbedrawn,iftheverticesofthetwotriangles aredistinct?

c Inhowmanysuchpairswillthetriangles: i notoverlap, ii overlap?

Solution

a Toformatriangle,wemustchoose3pointsoutof10, sonumberoftriangles = 10C3 = 120.

b Toformtwotriangles,firstchoose6pointsoutof10,whichcanbedonein 10C6 = 210ways. Takeanyoneofthose6points,thenchoosetheother2pointsinitstriangle,whichcanbedonein 5C2 = 10 ways.

Thesecondtriangleisthendrawnusingtheotherthreepoints. Hencenumberofpairsoftriangles = 210 × 10 = 2100.

c Toformtwonon-overlappingtriangles,wefirstchoose6pointsoutof10,whichagaincanbedonein 10C6 = 210ways.

These6pointscanbemadeintotwonon-overlappingtrianglesin3ways,byarrangingthe6pointsin cyclicorder,andchoosing3adjacentpoints.

i Hencenumberofnon-overlappingpairs = 210 × 3 = 630.

ii Bysubtraction,numberofoverlappingpairs = 2100 630 = 1470.

SAMPLEPAGES

Exercise17E FOUNDATION

1 TwopeoplearechosenfromagroupoffivepeoplecalledP,Q,R,SandT.Listallpossiblecombinations, andfindhowmanythereare.

2 Findinhowmanywaysyoucanformagroupof: twopeoplefromachoiceofseven, a threepeoplefromachoiceofseven, b twopeoplefromachoiceofsix, c fivepeoplefromachoiceofnine. d

3a Findhowmanypossiblecombinationsthereareif,fromagroupoftenpeople: twopeoplearechosen, i eightpeoplearechosen. ii

b Whyaretheanswersidentical?

4 Fromapartyoftwelvemenandeightwomen,findhowmanygroupscanbechosenconsistingof: fivemenandthreewomen, a fourwomenandfourmen. b

5 Fournumbersaretobeselectedfromthesetofthefirsteightpositiveintegers.Findhowmanypossible combinationsthereareif: therearenorestrictions, a therearetwooddnumbersandtwoevennumbers, b thereisexactlyoneoddnumber, c allthenumbersmustbeeven, d thereisatleastoneoddnumber. e

6 Fourballsaresimultaneouslydrawnfromabagcontainingthreeidenticalgreenballsandsixidenticalblue balls.Findhowmanywaysthereareofdrawingthefourballsif: theballsmaybeofanycolour, a thereareexactlytwogreenballs, b thereareatleasttwogreenballs, c therearemoreblueballsthangreenballs. d

7 Acommitteeoffiveistobechosenfromsixmenandeightwomen.Findhowmanycommitteesare possibleif: therearenorestrictions, a allmembersaretobefemale, b allmembersaretobemale, c thereareexactlytwomen, d therearefourwomenandoneman, e thereisamajorityofwomen, f aparticularmanmustbeincluded, g aparticularmanmustnotbeincluded. h

DEVELOPMENT

8a WhatisthenumberofcombinationsofthelettersofthewordEQUATIONtakenfouratatime(without repetition)?

b Howmanyofthefour-lettercombinationscontainfourvowels?

c Howmanyofthefour-lettercombinationscontaintheletterQ?

9 AteamofsevennetballersistobechosenfromasquadoftwelveplayersA,B,C,D,E,F,G,H,I,J,Kand L.Inhowmanywayscantheybechosen: withnorestrictions, a ifthecaptainCistobeincluded, b ifJandKarebothtobeexcluded, c ifAisincludedbutHisnot, d ifoneofFandListobeincludedandtheother excluded? e

10a Considerthedigits9,8,7,6,5,4,3,2,1and0.Findhowmanyfive-digitnumbersarepossibleifthe digitsaretobein: descendingorder, i ascendingorder. ii

b Whydothesetwoquestionsinvolveunorderedselections?

11 Twelvepeoplearriveatarestaurant.Thereisonetableforsix,onetableforfourandonetablefortwo.In howmanywayscantheybeassignedtoatable?

12 Twentystudents,tenmaleandtenfemale,aretotravelfromschooltothesportsground.Eightofthemgoin aminibus,sixofthemincars,fourofthemonbikesandtwowalk.

a Inhowmanywayscantheybedistributedforthetrip?

b Inhowmanywayscantheybedistributedifnoneoftheboyswalk?

13 Tenpoints P1, P2,..., P10 arechoseninaplane,nothreeofthepointsbeingcollinear.

a Howmanylinescanbedrawnthroughpairsofthepoints?

b Howmanytrianglescanbedrawnusingthegivenpointsasvertices?

c Howmanyofthesetriangleshave P1 asoneoftheirvertices?

d Howmanyofthesetriangleshave P1 and P2 asvertices?

14 Tenpointsarechoseninaplane.Fiveofthepointsarecollinear,butnoothersetofthreeofthepointsis collinear.

a Howmanysetsofthreepointscanbeselectedfromthefivethatarecollinear?

b Howmanytrianglescanbeformedusingthreeofthetenpointsasvertices?

15 Fromastandarddeckof52playingcards,findhowmanyfive-cardhandscanbedealt: consistingofblackcardsonly, a consistingofdiamondsonly, b containingallfourkings, c consistingofthreediamondsandtwoclubs, d consistingofthreetwosandanotherpair, e consistingofonepairandthreeofakind. f

16a Inhowmanywayscanagroupofsixpeoplebedividedinto: twounequalgroups(neithergroupbeing empty), i twoequalgroups? ii

b Repeatpart(a)forfourpeople.

c Repeatpart(a)foreightpeople.

17 Findhowmanydiagonalstherearein: aquadrilateral, a apentagon, b adecagon, c apolygonwith n sides. d

18 Twelvepointsarearrangedinorderaroundacircle.

a Howmanytrianglescanbedrawnwiththesepointsasvertices?

b Inhowmanypairsofsuchtrianglesaretheverticesofthetwotrianglesdistinct?

c Inhowmanysuchpairswillthetriangles: notoverlap, i overlap? ii

19 Let S = {1,3,5,7,9,11,13,15,17,19} bethesetofthefirsttenpositiveoddintegers.

a Howmanysubsetsdoes S have?

b Howmanysubsetsof S containatleastthreenumbers?

c Howmanysubsetswithatleastthreenumbersdonotcontain7?

d Howmanysubsetswithatleastthreenumbersdonotcontain7butdocontain19?

20 Inhowmanywayscantwonumbersbeselectedfrom1,2,...,8,9sothattheirsumis: even, a odd, b divisibleby3, c divisibleby5, d divisibleby6? e

21 Therearetenbasketballersinateam.Findinhowmanyways: thestartingfivecanbechosen, a theycanbesplitintotwoteamsoffive. b

22 Nineplayersaretobedividedintotwoteamsoffourandoneumpire.

a Inhowmanywayscantheteamsbeformed?

b Iftwoparticularpeoplecannotbeonthesameteam,howmanydifferentcombinationsarepossible?

23 Byconsideringtheirprimefactorisations,findthenumberofpositivedivisorsof:

24a Thesixfacesofanumberofidenticalcubesarepaintedinsixdistinctcolours.Howmanydifferentcubes canbeformed?

b Adiefitsperfectlyintoacubicalbox.Howmanywaysarethereofputtingthedieintothebox?

25 Thediagramshowsa6 × 4grid.Theaimistowalkfromthepoint A inthetop left-handcornertothepoint B inthebottomright-handcornerbywalkingalongthe blacklineseitherdownwardsortotheright.Asinglemoveisdefinedaswalkingalong onesideofasinglesmallsquare,thusittakesyoutenmovestogetfrom A to B

a Findhowmanydifferentroutesarepossible: i withoutrestriction, ii ifyoumustpassthrough C, iii ifyoucannotmovealongthetoplineofthegrid, iv ifyoucannotmovealongthesecondrowfromthetopofthegrid.

b Noticethateveryroutemustpassthroughoneandonlyoneofthefivecrossedpoints.Henceprovethat

c Drawanothersuitablediagonaland,usingamethodsimilartothatinpart(b),provethat

d Drawupasimilar6 × 6grid,thenusingthesameideaasthatusedinparts(b)and(c),provethat

CHALLENGE

26 Apieceofartreceivesanintegermarkfromzeroto100foreachofthecategoriesdesign,techniqueand originality.Inhowmanywaysisitpossibletoscoreatotalmarkof200?

27 Howmanydifferentcombinationsarethereofthreedifferentintegersbetweenoneandthirtyinclusivesuch thattheirsumisdivisiblebythree?

28a Howmanydoublestennisgamesarepossible,givenagroupoffourplayers?

b Inhowmanywayscantwogamesofdoublestennisbearranged,givenagroupofeightplayers?

c Sixmenandsixwomenaretoplayinthreegamesofdoublestennis.Findhowmanywaysthepairings canbearrangedif:

therearenorestrictions, i eachgameistobeagameofmixeddoubles. ii

29 ReferringtoQuestion18ofExercise17D,Bob’sinterestinshirtshasmaturedrecently—henowhas 2n shirts,withtwoidenticalshirtsineachof n distinctstyles.Hestillwantstohanghisshirtsinthe wardrobesothatnotwoidenticalshirtsarenexttooneanother.

a Showthatthenumberofallowedarrangementsis

b Evaluatethisnumberfor n = 1,2,3,4,5and6,andfindthecorrespondingratioofthetotalnumberof arrangementstothenumberofallowedarrangements.

30 Computingisbasedon binarystrings,whicharesequencesof0sand1s,suchas00101and1001110.The probleminthisquestionistofindthenumber N ofbinarystringsthatcontainexactly a 0sandatmost b 1s, where a and b arewholenumbers.Wewillcountsuchstringsintwodifferentways,andhenceprovean interestingidentity.

a Using nCr notation,findhowmanybinarystringswithexactly a 0scontain: no1s i one1 ii two1s iii three1s iv r 1s. v

b Henceprovethat

c Let S beabinarystringconsistingof a 0sand r 1s,where r isatmost b.Extend S toalongerbinary string S 01 ... 1byadding0ontheright,andthenadding b r 1s.Howmany0sand1sarethereinthe resultingstring,andwhatisitstotallength?

d Describetheinverseprocessbywhichastringof(a + 1)0sand b 1scanbeconvertedtoastringof a 0s andatmost b 1s,andshowthatthetwoprocessesareone-to-onecorrespondences.

e Henceprovethat N = a+b+1Cb

f Showthat aC

17F Usingcountinginprobability

Learningintentions

• Applycountingprocedurestofindingsampleandeventspacesinprobability.

Thepurposeofthissectionistoapplythecountingproceduresofthelastfoursectionstoquestionsabout probability.Inthesemorecomplicatedquestions,countingproceduresarerequiredforcountingbothsample spaceandeventspace.

Countingthesamplespaceandtheeventspace

Asalwaysinthistopic,thetwoquestionsthatneedtobeaskedare:

• Aretheselectionswearecountingorderedorunordered?

• Iftheyareordered,isrepetitionallowedornot?

Ifthequestionscanbedonewithorderedselectionsorwithunorderedselections,itisusuallyeasiertouse unorderedselectionsbecausethenumbersaresmaller.

Example23

Threecardsaredealtfromapackof52.

a Findtheprobabilitythatoneclubandtwoheartsaredealt,inanyorder.

b Findtheprobabilitythatoneclubandtwoheartsaredealtinthatorder.

Solution

a Letthesamplespacebethesetofallunorderedselectionsof3cardsfrom52, sonumberofunorderedhands = 52C3 = 52 × 51 × 50 3 × 2 × 1 . Wecannowchoosethehandbychoosing1clubfrom13in 13C1 = 13ways,andchoosingthe2hearts from13in 13C2 = 78ways,sothehandcanbechosenin13 × 78ways.

Hence P(1cluband2hearts) = 13 × 78 × 3 × 2 × 1 52 × 51 × 50 = 39 850 .

b Letthesamplespacebethesetofallorderedselectionsof3cardsfrom52, so numberoforderedhands = 52P3 = 52 × 51 × 50, andnumberofsuchhandsintheorder ♣♡♡ = 13 × 13 × 12.

Hence P(♣♡♡) = 13 × 13 × 12 52 × 51 × 50 = 13 850

Note: Theanswertopart(b)mustbe 1 3 oftheanswertopart(a),becauseinahandwithoneclubandtwo hearts,theclubcanbeanyoneofthreepositions.Thisindicatesthatitwouldbequitereasonabletodo part(a)usingorderedselections,andtodopart(b)usingunorderedselections,althoughthemethods chosenabovearemorenaturaltothewayinwhicheachquestionwasworded.

Problemsrequiringavarietyofmethods

Thesamplespacesinthenexttwoexamplesareeasilyfound,butavarietyofmethodsisneededtoestablishthe sizesofthevariouseventspaces.

Example24 Findingprobabilityusingavarietyofmethods

Afive-digitnumberischosenatrandom.Findtheprobability:

a thatitisatleast60000,

b thatitconsistsonlyofevendigits,

c thatthedigitsaredistinct,

d thatthedigitsaredistinctandinincreasingorder.

Solution

Thefirstdigitofafive-digitnumbercannotbezero,givingninechoices,buttheotherdigitscanbeanyoneof thetendigits.

Hencethenumberoffive-digitnumbers = 9 × 10 × 10 × 10 × 10 = 90000.

a Tobeatleast60000,thefirstdigitmustbe6,7,8or9, sothenumberoffavourablenumbersis4 × 10 × 10 × 10 × 10 = 40000. Hence P(atleast60000) = 4 9

b Ifallthedigitsareeven,therearefourchoicesforthefirstdigit(itcannotbezero)andfivechoicesforeach oftheotherfour.

Hencenumberofsuchnumbers = 4 × 5 × 5 × 5 × 5 = 2500, and P(alldigitsareeven) = 2500 90000 = 1 36

c Thisiscountingwithoutreplacement: 1stdigit

and P(digitsaredistinct) =

d Every unordered five-membersubsetofthesetofninenon-zerodigitscanbearrangedinexactlyoneway intoafive-digitnumberwiththedigitsinincreasingorder.(Notethatthedigitzerocannotbeused,because anumbercan’tbeginwiththedigitzero.)

Hencenumberofsuchnumbers = numberofunordered5-membersubsetsof{1,2,3,4,5,6,7,8,9} = 9C5 = 126, so P(digitsaredistinctandinincreasingorder) = 126 90000 = 7 5000 .

Example25 Aharderexampleusingavarietyofmethods

ContinuewithExample24,whereafive-digitnumberischosenatrandom,givingasamplespaceofsize 90000.Findtheprobabilitythat

a thenumbercontainsatleastone4,

b thenumbercontainsatleastone4andatleastone5,

c thenumbercontainsexactlythree7s,

d thenumbercontainsatleastthree7s.

Solution

a Thiscanbeapproachedusingthecomplementaryevent: numberoffive-digitnumberswithouta4 = 8 × 9 × 9 × 9 × 9 = 52488, sonumberoffive-digitnumberswitha4 = 90000 52488 = 37512. Hence P(atleastone4) = 37512 90000 = 521 1250 .

b Thisisbestapproachedusingthecountingrule |

Let A bethesetoffive-digitnumberswithouta4,andlet B bethesetoffive-digitnumberswithouta5. Then A ∩ B isthesetoffive-digitnumberwithno4 and no5,and A ∪ B isthesetoffive-digitnumberwith no4 or no5.

Fromline2ofthesolutiontopart(a), |A| = 52488, andsimilarly, |B| = 52488, thenproceedingagainasinpart(a), |A ∩ B| = 7 × 8 × 8 × 8 × 8 = 8672.

Nowweapplythecountingrule,

|−|A ∩ B| = 52488 + 52488 28672 = 76304, sothereare76304five-digitnumberswithno4 or no5.

Wewantthesetofallfive-digitnumberswithatleastone4 and atleastone5, whichisthecomplementaryset A ∪ B,and A ∪ B = 90000 76304 = 13696. Hence P(atleastone4andatleastone5) = 13696 90000 , = 856 5625 .

c Countingthenumberoffive-digitnumberswithexactlythree7srequirescases.Firstwecountthefive-digit stringswithexactlythree7s,byfirstplacingthethree7s,andthenchoosingthefirstandsecondnon-7 digits:

positionofthethree7s choosefirstnon-7 choosesecondnon-7

5C3 = 10 9 9

giving810suchstrings.Secondly,wemustsubtractthenumberoffive-digitstringswithexactlythree7s andbeginningwithzero:

positionofthethree7s choosetheothernon-7

4C3 = 4 9 giving36suchstrings.Hencethereare810 36 = 774suchnumbers,and P(numberhasexactlythree7s) = 774 90000 = 43 5000 .

d Thenumber77777istheonlyfive-digitnumberwithfive7s. Anyfive-digitnumberwithexactlyfour7shasoneofthefiveforms

7777,7

, wherethe ∗ in ∗7777isanon-zerodigit.Thereareeightnumbersofthefirstform,andnineoftheother fourforms,giving44numbersaltogether.

Hencethenumberwithatleastthree7s = 774 + 44 + 1 = 819, and P(atleastthree7s) = 819 90000 = 91 10000 .

Exercise17F

1 Acommitteeofthreeistobeselectedfromtheninemembersinaclub.

a Howmanydifferentcommitteescanbeformed?

FOUNDATION

b Iftherearefivemenintheclub,whatistheprobabilitythattheselectedcommitteeconsistsentirelyof males?

2 Theintegersfrom1to10inclusivearewrittenontenseparatepiecesofpaper.Fourpiecesofpaperare drawnatrandom.Findtheprobabilitythat:

a thefournumbersdrawnare1,2,3and6, b thenumber9isoneofthenumbersdrawn, c thenumber8isnotdrawn, d thenumber7isdrawnbutthenumber1isnot.

3 Abagcontainsthreered,sevenyellowandfiveblueballs.Ifthreeballsaredrawnfromthebagsimultaneously,findtheprobabilitythat: allthreeballsareyellow, a alltheballsareofthesamecolour, b therearetworedballsandoneblueball, c alltheballsareofdifferentcolours. d

4 AsportscommitteeoffivemembersistobechosenfromeightAFLfootballersandsevensoccerplayers. Findtheprobabilitythatthecommitteewillcontain: onlyAFLfootballers, a onlysoccerplayers, b threesoccerplayersandtwoAFLfootballers, c atleastonesoccerplayer, d atmostonesoccerplayer, e Ian,aparticularsoccerplayer. f

5 Fromastandardpackof52cards,threeareselectedatrandom.Findtheprobabilitythat: theyarethejackofspades,thetwoofclubsand thesevenofdiamonds, a allthreeareaces, b theyarealldiamonds, c theyareallofthesamesuit, d theyareallpicturecards, e twoareredandoneisblack, f oneisaseven,oneisaneightandoneisanine, g twoaresevensandoneisasix, h exactlyoneisadiamond, i atleasttwoofthemarediamonds. j

6 Repeatthepreviousquestionifthecardsareselectedfromthepackoneatatime,andeachcardisreplaced beforethenextoneisdrawn.

7 Threeboysandthreegirlsaretositinarow.Findtheprobabilitythat: a theboysandgirlsalternate, b theboyssittogetherandthegirlssittogether, c twospecificgirlssitnexttooneanother.

8 Afamilyoffiveareseatedinarowatthecinema.Findtheprobabilitythat: a theparentssitontheendandthethreechildrenareinthemiddle, b theparentssitnexttooneanother.

9 Sixpeople,ofwhomPatrickandJessicaaretwo,arrangethemselvesinarow.Findtheprobabilitythat:

a PatrickandJessicaoccupytheendpositions, b PatrickandJessicaarenotnexttoeachother.

10

ThelettersofPROMISEarearrangedrandomlyinarow.Findtheprobabilitythat:

a thewordstartswithRandendswithS, b thelettersPandRarenexttooneanother, c thelettersPandRareseparatedbyatleastthreeletters, d thevowelsandtheconsonantsalternate, e thevowelsaretogether.

DEVELOPMENT

11 Thedigits3,3,4,4,4and5areplacedinarowtoformasix-digitnumber.Ifoneofthesenumbersis selectedatrandom,findtheprobabilitythat:

a itiseven, b itendsin5, c the4soccurtogether, d thenumberstartswith5andthenthe4sand3salternate, e the3sareseparatedbyatleastoneothernumber.

12 ThelettersofthewordPRINTERarearrangedinarow.Findtheprobabilitythat:

a thewordstartswiththeletterE,

b thelettersIandParenexttooneanother,

c therearethreelettersbetweenNandT, d thereareatleastthreelettersbetweenNandT.

13 ThelettersofKETTLEarearrangedrandomlyinarow.Findtheprobabilitythat:

a thetwolettersEaretogether, b thetwolettersEarenottogether,

c thetwolettersEaretogetherandthetwolettersTaretogether, d theEsandTsaretogetherinonegroup.

14 ThelettersofENTERTAINMENTarearrangedinarow.Findtheprobabilitythat: thelettersEaretogether, a twoEsaretogetherandoneisapart, b allthelettersEareapart, c thewordstartsandendswithE. d

15 Atankcontains20taggedfishand80untaggedfish.Oneachday,fourfishareselectedatrandom,andafter notingwhethertheyaretaggedoruntagged,theyarereturnedtothetank.Answerthefollowingquestions, correcttothreesignificantfigures.

a Whatistheprobabilityofselectingnotaggedfishonagivenday?

b Whatistheprobabilityofselectingatleastonetaggedfishonagivenday?

c Calculatetheprobabilityofselectingnotaggedfishoneverydayforaweek.

d Whatistheprobabilityofselectingnotaggedfishonexactlythreeofthesevendaysduringtheweek?

16 Abagcontainssevenwhiteandfiveblackdiscs.Threediscsarechosenfromthebag.Findtheprobability thatallthreediscsareblack,ifthediscsarechosen: a withoutreplacement, b withreplacement, c sothataftereachdrawthediscisreplacedwithoneoftheoppositecolour.

17 Sixpeoplearetobedividedintotwogroups,eachwithatleastoneperson.Findtheprobabilitythat: a therewillbethreeineachgroup, b therewillbetwoinonegroupandfourintheother, c therewillbeonegroupoffiveandanindividual.

18 Athree-digitnumberisformedfromthedigits3,4,5,6and7(norepetitionsallowed).Findtheprobability that:

thenumberis473, a thenumberisodd, b thenumberisdivisibleby5, c thenumberisdivisibleby3, d thenumberstartswith4andendswith7, e thenumbercontainsthedigit3, f thenumbercontainsthedigits3and5, g thenumbercontainsthedigit3or5, h alldigitsinthenumberareodd, i thenumberisgreaterthan500. j

19 Thedigits1,2,3and4areusedtoformnumbersthatmayhave1,2,3or4digitsinthem.Ifoneofthe numbersisselectedatrandom,findtheprobabilitythat: ithasthreedigits, a itiseven, b itisgreaterthan200, c itisoddandgreaterthan3000, d itisdivisibleby3. e

20a AsenatecommitteeoffivemembersistobeselectedfromsixLaborandfiveLiberalsenators.Whatis theprobabilitythatLaborwillhaveamajorityonthecommittee?

b Thesenatecommitteeistobeselectedfrom N LaborandfiveLiberalsenators.Usetrialanderrorto findtheminimumvalueof N,giventhattheprobabilityofLaborhavingamajorityonthecommitteeis greaterthan 3 4 .

21 FourbasketballteamsA,B,CandDeachconsistoftenplayers,andineachteam,theplayersarenumbered 1,2,...9,10.Fiveplayersaretobeselectedatrandomfromthefourteams.Findtheprobabilitythatofthe fiveplayersselected:

a threearenumbered4andtwoarenumbered9, b atleastfourarefromthesameteam.

22 Apokerhandoffivecardsisdealtfromastandardpackof52.Findtheprobabilityofobtaining:

a onepair, b twopairs, c threeofakind, d fourofakind, e afullhouse(onepairandthreeofakind), f astraight(fivecardsinsequenceregardlessofsuit,acehighorlow), g aflush(fivecardsofthesamesuit), h aroyalflush(ten,jack,queen,kingandaceinasinglesuit).

23 Fouradultsarestandinginaroomthathasfiveexits.Eachadultisequallylikelytoleavetheroomthrough anyoneofthefiveexits.

a Whatistheprobabilitythatallfouradultsleavetheroomviathesameexit?

b Whatistheprobabilitythatthreeparticularadultsusethesameexitandthefourthadultusesadifferent exit?

c Whatistheprobabilitythatanythreeofthefouradultscomeoutthesameexit,andtheremainingadult comesoutadifferentexit?

d Whatistheprobabilitythatnomorethantwoadultscomeoutanyoneexit?

24a Fivedinersinarestaurantchooserandomlyfromamenufeaturingfivemaincourses.Findthe probabilitythatexactlyoneofthemaincoursesisnotchosenbyanyofthediners.

b Repeatthequestionifthereare n dinersandachoiceof n maincourses.

25 [Thebirthdayproblem]

a Assuminga365-dayyear,findtheprobabilitythatinagroupofthreepeopletherewillbeatleastone birthdayincommon.Answercorrecttotwosignificantfigures.

b Ifthereare n peopleinthegroup,findanexpressionfortheprobabilityofatleastonecommonbirthday.

c Bychoosinganumberofvaluesof n,plotagraphoftheprobabilityofatleastonecommonbirthday against n for n ≤ 50.

d Howmanypeopleneedtobeinthegroupbeforetheprobabilityexceeds0.5?

e Howmanypeopleneedtobeinthegroupbeforetheprobabilityexceeds90%?

CHALLENGE

26 Duringthesevengamesofthefootballseason,MaxandBertmusteachmissthreeconsecutivegames.The gamestobemissedbyeachplayerarerandomlyandindependentlyselected.

a Whatistheprobabilitythattheybothhavethefirstgameoff together?

b WhatistheprobabilitythatthesecondgameisthefirstonewhereMaxandBertarebothmissing?

c WhatistheprobabilitythatMaxandBertmissatleastoneofthesamegames?

27 Eightplayersmakethequarter-finalsatWimbledon.Thewinnerofeachofthequarter-finalsplaysa semi-finaltoseewhoentersthefinal.

a Assumingthatalleightplayersareequallylikelytowinamatch,showthattheprobabilitythatanytwo particularplayerswillplayeachotheris 1 4 .

b Whatistheprobabilitythattwoparticularpeoplewillplayeachotherifthetournamentstartswith16 players?

c Whatistheprobabilitythattwoparticularplayerswillmeetinasimilarknockouttournamentif2n playersenter?

17G Arrangementsinacircle

Learningintentions

• Developprocedurestocountarrangementsinacircle.

• Countarrangementsinacircletocalculateprobabilities.

Arrangementsinacircle,oraroundaroundtable,arecomplicatedbecausetwoarrangementsareregardedas equivalentifonecanberotatedtoproducetheother.Forexample,allthefiveround-tableseatingsbelowofKing Arthur,QueenGuinevere,SirLancelot,SirBorsandSirPercivalaretoberegardedasthesame:

Thebasicalgorithm

Themoststraightforwardwayofcountingarrangementsinacircleistoseatthepeopleinorder,dealingwiththe restrictionsfirstasalways,butreckoningthatthereisessentiallyonlyonewaytoseatthefirstpersonwhosits down,becauseuntilthattime,alltheseatsareidentical.

14CountingArrangementsinaCircle

Thereisessentiallyonlyonewaytoseatthefirstperson,becauseuntilthen,alltheseatsareidentical.

Example26 Countingarrangementsinacircle

KingArthur,QueenGuinevere,SirLancelot,SirBorsandSirPercivalsitarounda roundtable.Findinhowmanywaysthiscanbedone:

a withoutrestriction,

b ifQueenGuineveresitsatKingArthur’sleftthand,

c ifQueenGuineveresitsbetweenSirLancelotandSirBors,

d ifKingArthurandSirLancelotdonotsittogether.

Solution

a

Numberofways = 24.

b

Numberofways = 6.

c

Numberofways = 4.

d

Numberofways = 12.

Arranginggroupsaroundacircle

Whenarranginggroupsaroundacircle,theprincipleisthesameastheprincipleforcompoundorderings establishedinSection17C.

15Arranginggroupsaroundacircle

• Firstchooseanorderforeachgroup.

• Thenarrangethegroupsaroundthecircle,reckoningthatthereisessentiallyonlyonewaytoplacethe firstgroup.

Example27 Usinggroupingtocountarrangementsinacircle

Fiveboysandfivegirlsaretositaroundatable.Findinhowmanywaysthiscanbedone:

a withoutrestriction,

b iftheboysandgirlsalternate,

c iftherearefivecouples,allofwhomsittogether,

d iftheboyssittogetherandthegirlssittogether,

e iffourcouplessittogether,butWalterandMaudedonot.

Solution

Numberofways = 9! = 362880. b

Numberofways = 5! × 4! = 2880.

c Eachcouplecanbeorderedin2ways,giving25 orderingsofthefivecouples.Thenseatthefivecouples aroundthetable: 1stcouple 2ndcouple 3rdcouple 4thcouple 5thcouple 1 4 3 2 1

Numberofways = 25 × 4! = 768.

d Theboyscanbeorderedin5!ways,andthegirlsin5!waysalso.Thenseatthetwogroupsaroundthe table: groupofboys groupofgirls 1 1

Numberofways = 5! × 5! × 1 = 14400.

e Ordereachofthefourcouplesin2ways,giving16orderingsofthecouples.Therearenowfourcouples andtwoindividualstoseataroundthetable,withtherestrictionthatMaudedoesnotsitnexttoWalter: Walter Maude 1stcouple 2ndcouple 3rdcouple 4thcouple 1 3 4 3 2 1

Numberofways = 24 × 3 × 4! = 1152.

Probabilityinarrangementsaroundacircle

Asalways,countingallowsprobabilityproblemstobesolvedbycountingthesamplespaceandtheeventspace.

Example28 Findingprobabilitieswitharrangementsinacircle

ThreeTasmanians,threeNewZealanders,andthreeQueenslandersareseatedatrandomaroundaroundtable. Whatistheprobabilitythatthethreegroupsareseatedtogether?

Solution

Usingthesameboxesasbefore,thereare1 × 8!possibleorderings.Tofindthe numberoffavourableorderings,firstordereachgroupin3! = 6ways,thenorderthe threegroupsaroundthetablein1 × 2 × 1 = 2ways,sothetotalnumberoffavourable orderingsis6 × 6 × 6 × 2.

Hence P(groupsaretogether) =

Exercise17G

1a Inhowmanywayscanfivepeoplebearranged: inaline, i inacircle? ii

b Inhowmanywayscantenpeoplebearranged: inaline, i inacircle? ii

2 Eightpeoplearearrangedin: astraightline, a acircle. b Inhowmanywayscantheybearrangedsothattwoparticularpeoplesittogether?

FOUNDATION

3 Bob,Betty,Ben,BradandBelindaaretobeseatedataroundtable.Inhowmanywayscanthisbedone: iftherearenorestrictions, a ifBettysitsonBob’sright-handside, b ifBradistositbetweenBobandBen, c ifBelindaandBettysitapart, d ifBenandBelindasitapart,butBettysitsnextto Bob? e

4 Fourboysandfourgirlsarearrangedinacircle.Inhowmanywayscanthisbedone:

a iftherearenorestrictions,

b iftheboysandthegirlsalternate,

c iftheboysandgirlsareindistinctgroups, d ifaparticularboyandgirlwishtositnexttooneanother, e iftwoparticularboysdonotwishtositnexttooneanother, f ifoneparticularboywantstositbetweentwoparticulargirls?

5 ThelettersA,E,I,P,QandRarearrangedinacircle.Findtheprobabilitythat: thevowelsaretogether, a AisoppositeR, b thevowelsandconsonantsalternate, c atleasttwovowelsarenexttooneanother. d

6 Inhowmanywayscantheintegers1,2,3,4,5,6,7,8beplacedinacircleif: therearenorestrictions, a alltheevennumbersaretogether, b theoddandevennumbersalternate, c atleastthreeoddnumbersaretogether, d thenumbers1and7areadjacent, e thenumbers3and4areseparated? f

7 Acommitteeofthreewomenandsevenmenistobeseatedrandomlyataroundtable.

a Whatistheprobabilitythatthethreefemaleswillsittogether?

b Thecommitteeelectsapresidentandavice-president.Whatistheprobabilitythattheyaresitting oppositeoneanother?

8 Findhowmanyarrangementsof n peoplearoundacirclearepossibleif: therearenorestrictions, a twoparticularpeoplemustsittogether, b twoparticularpeoplesitapart, c threeparticularpeoplesittogether. d

9 Twelvemarblesaretobeplacedinacircle.Inhowmanywayscanthisbedoneif:

a allthemarblesareofdifferentcolours, b thereareeightred,threeblueandonegreenmarble?

10 Therearetworoundtables,oneoakandonemahogany,eachwithfiveseats.Inhowmanywaysmaya groupoftenpeoplebeseated?

11 Asportscommitteeconsistingoffourrowers,threebasketballersandtwocricketerssitsatacirculartable.

a Howmanydifferentarrangementsofthecommitteearepossibleiftherowersandbasketballersbothsit togetheringroups,butnorowersitsnexttoabasketballer?

b Onerowerandonecricketerarerelated.Iftheconditionsin(a)apply,whatistheprobabilitythatthese twomembersofthecommitteewillsitnexttooneanother?

CHALLENGE

12 Agroupof n menand n + 1womensitaroundacirculartable.Whatistheprobabilitythatnotwomensit nexttooneanother?

13a Consideranecklaceofsixdifferentlycolouredbeads.Becausethenecklacecanbeturnedover, clockwiseandanti-clockwisearrangementsofthebeadsdonotyielddifferentorders.Hencefindhow manydifferentarrangementsthereareofthesixbeadsonthenecklace.

b Inhowmanywayscantendifferentkeysbeplacedonakeyring?

c Inhowmanywayscanoneyellow,tworedandfourgreenbeadsbeplacedonabraceletifthebeadsare identicalapartfromcolour?(Thiswillrequirealistingofpatternstoseeiftheyareidenticalwhenturned over.)

Isomers—apossiblecomputingproject

Becauseofbranching,itisdifficulttocountthenumberofpossiblehydrocarbonswithsay20carbonatoms.For example,forbutaneC4H10 therearetwocarbonchains,andforpentaneC5H12 therearethreecarbonchains:

Thisisahardproblem.Ifyoucanwritecomputerprogrammes,youcouldwriteyourownprogrammeto investigatethenumberofpossiblecarbonchainsforhydrocarbonswithincreasingnumbersofcarbonatoms. Perhapsyourprogrammecandisplaydiagramsofallthechains,aswithbutaneandpentaneabove.

Chapter17Review

Reviewactivity

• Createyourownsummaryofthischapteronpaperorinadigitaldocument.

Chapter17Multiple-choicequiz

• Thisautomatically-markedquizisaccessedintheInteractiveTextbook.AprintablePDFWorksheetversionis alsoavailablethere.

SkillsChecklist

• Checklist AvailableintheInteractiveTextbook,usethechecklisttotrackyourunderstandingofthelearningintentions. PrintablePDFandworddocumentversionsarealsoavailablethere.

ChapterReviewExercise

1 Howmanywayscan8peoplelineupinaqueue?

2 Byunrollingthefactorial(seeBox2inSection14A)simplify:

3 Useyourcalculatortoevaluate:

4 Howmanyfour-letterwords,withnorepeatedletters,canbeformedfromthelettersofJACKSON?

5 Anumberplateinacertaincountryconsistsof3lettersA–Zfollowedby4digits0–9.Howmanynumber platesarepossible?

6 FindhowmanyarrangementsofthelettersofthewordFOUNDERarepossible:

a ifthevowelsandconsonantsmustalternate, b ifthewordmuststartwithNandendwithD,

c ifalltheconsonantsmustbeinagroupattheendoftheword, d iftheRissomewheretotherightoftheU.

7 Fiveboysandfivegirlsaretositinarow.Findhowmanywaysthiscanbedoneif:

a therearenorestrictions,

b theboysandgirlssitindistinctgroups,

c aparticularboyandgirlmustsittogether.

8 HowmanywayscanthelettersofREPORTERbearranged?

9 HowmanywordsofthreeorfourlettersmaybeformedusingthelettersofSAMUEL?

10 Aquizconsistsoftenquestions,eachtakingtheanswerYesorNo.Howmanywaysisitpossibletoget6 correctand4wronganswers?

11 Acommitteeofsevenistobechosenfromsixmenandtenwomen.Findhowmanycommitteesare possibleif: therearenorestrictions, a allmembersaretobefemale, b allmembersaretobemale, c therearetobeexactlytwomen, d therearetobefourwomenandthreemen, e thereistobeamajorityofwomen, f aparticularmanmustbeincluded, g aparticularmanmustnotbeincluded, h Mustafarefusestobeonacommittee withYingYue.

12 Eightpeoplearriveatarestaurant.Findhowmanywayscantheybeassignedto: a alargetableforfiveandasmallertableforthree, b twoquitedifferenttablesforfour, c twoindistinguishabletablesforfour.

13 Acommitteeofsixisformedatrandomfromfourmenandthreewomen.Whatistheprobabilitythatitwill havemorementhanwomen?

14 Fromastandardpackof52cards,threeareselectedatrandom.Findtheprobabilitythat: theyarethequeenofspades,thethree ofclubsandthenineofhearts, a allthreearekings, b theyareallclubs, c theyareallofthesamesuit, d oneisredandtwoareblack, e oneisathree,oneisafive,andoneisaneight, f twoarefivesandoneisaseven, g atleasttwoofthemarespades. h

15 Threeboysandthreegirlsarearrangedinacircle.Inhowmanywayscanthisbedone: a iftherearenorestrictions, b iftheboysandthegirlsalternate, c iftheboysandgirlsareindistinctgroups, d ifaparticularboyandgirlwishtositnexttooneanother, e iftwoparticularboysdonotwishtositnexttooneanother, f ifaparticularboywantstositoppositeaparticulargirl?

18

Thebinomialtheorem andPascal’striangle

Chapterintroduction

InChapter11wediscussedthefactoringofapolynomialintoirreduciblefactors,sothatitcouldbewrittenina formsuchas

P(x) = (x 4)2(x + 1)3(x 2 + x + 1).

Inthischapterwewillnowstudyinmoredetailtheindividualbinomialpowerfactorssuchas(x 4)2 and (x + 1)3 thatappearinsuchafactoring,andtheirexpansions.Forexample,wehavealreadyseenthat

(x + 1)3 = x 3 + 3x 2 + 3x + 1.

Thecoefficientsinthegeneralexpansionof(x + y)n willbeinvestigatedthroughthepatternstheyformwhen theyarewrittendownin Pascal’striangle.Itturnsoutthatbasiccountingmethodsofthepreviouschapterare essentialforunderstandingtheseexpansions.

Pascal’striangledisplaysinaclearvisualformtheinterrelationshipsbetweenthecountingmethodsof Chapter17andthebinomialexpansionsofthischapter.Thereareagreatnumberofsymmetriesandother patterns.Sections18Eand18Finvestigatethesepatternsusingvariouscombinatoricandalgebraicmethods.

BinomialexpansionswillbeusedintheYear12topicofbinomialdistributions

18A BinomialexpansionsandPascal’striangle

Learningintentions

• Investigatethebinomialexpansions(1 + x)n,forlowwholenumbers n

• UsetheseexpansionstoconstructthefirstfewrowsofPascal’striangle.

• Noticeandexplainpatterns,suchastheadditionproperty,inPascal’striangle.

• UsePascal’striangletosolveproblemsinvolvingabinomialexpansion.

A binomial isapolynomialwithtwoterms,suchas1 + x or3x4 1 2 x2 .

A binomialexpansion istheexpansionofapowerofabinomial,forexample

(1 + x)3 = 1 + 3x + 3x 2 + x 3

Thisfirstsectionisrestrictedtotheexpansionof(1 + x)n andtothevarioustechniquesarisingfromsuch expansions.ThetechniquesarebasedonPascal’striangleanditsthreemostbasicproperties.

Someexpansionsof (1 + x)n

Herearetheexpansionsof(1 + x)n forlowvaluesof n.Thecalculationshavebeencarriedoutusingtworows sothatliketermscanbewrittenaboveeachotherincolumns.Inthisway,theprocessbywhichthecoefficients buildupcanbefollowedbetter.

Examinethelastexpansioninparticular,andworkoutwhytheboxed4 isthesumoftheboxed1 and3

(1 + x)0 = 1

(1 + x)1 = 1 + x (1 + x)2 = 1(1 + x) + x(1 + x) = 1 + x + x + x 2 = 1 + 2x + x 2

Noticehowtheexpansionof(1 + x)2 has3terms,thatof(1 + x)3 has4terms,andsoon.Ingeneral,theexpansion of(1 + x)n has n + 1terms,fromtheconstanttermin x0 = 1tothetermin xn.Becareful—thisisinclusive counting—thereare n + 1numbersfrom0to n inclusive.

Note: Thepower00 isundefined,andasaconsequence,thereshouldbecontinualqualificationstoavoidit. Butasiscustomaryinthistopic,wewillomitthemall,leavingthereadertointerpretsituationswherea problemmayarise.

Pascal’striangleandtheadditionproperty

Whenthecoefficientsintheexpansionsof(1 + x)n arearrangedinatable,theresultisknownas Pascal’striangle Thetablebelowcontainsthefirstfiverowsofthetriangle,copiedfromtheexpansionsabove,plusthenextfour rows,obtainedbycontinuingthesecalculationsupto(1 + x)8 .

Coefficientof:

1 1 11

2 121 3 133 1 4 1464 1

5 15101051

6 1615201561

7 172135352171

8 18285670562881

Threebasicpropertiesofthistriangleshouldquicklybecomeobvious.Theywillbeusedinthissection,and provenformallylater.

1ThreebasicpropertiesofPascal’striangle

1 Eachrowstartsandendswith1.

2 Eachrowisreversible.Thatis,therowsaresymmetric.

3 [Theadditionproperty]Everynumberinthetriangle,apartfromthe1s,isthesumofthenumber directlyabove,andthenumberaboveandtotheleft.

Thefirsttwopropertiesshouldbereasonablyobviousafterlookingattheexpansionsatthestartofthesection. Thethirdproperty,calledthe additionproperty,however,needsattention.ThreenumbersinPascal’striangle abovehavebeenboxedasanexampleofthis—noticehow

3 + 1 = 4.

Thebinomialexpansionsonthelastpagewerewrittenwiththecolumnsaligned,andwiththeseparticular coefficientsboxed,tomakethispropertystandout.

• Thesum3 + 1 = 4arisesbecausethecoefficientof x3 intheexpansionof(1 + x)4 isthesumofthecoefficients of x3 and x2 intheexpansionof(1 + x)3 .

Pascal’strianglecanbeconstructedusingtheserules,andthefirstquestioninExercise18Aasksforthefirst thirteenrowstobecalculated.

Pascal’striangleisoftendrawninthelayouttotheright below,likeanequilateraltriangle.Thislayoutdisplaysthe left-rightsymmetrywell,butitislessusefulforourpurposes becausewewantthecolumnstolineupwiththepowersof x. Nevertheless,youshouldbeabletoworkfrombothlayoutsof thetriangle. 1 11

Pascaldidnotdiscoverthetriangle,althoughhedidwriteanimportanttreatiseonitin1653.Itwasknownto theancientIndianmathematicianPingalainthe2ndcenturyBC,andlatertomediaevalPersianandChinese mathematicians,butthefirstknownoccurrenceinEuropeisina1527bookonbusinesscalculationsbyPetrus Adrianus.BelowisPascal’sversionofthetrianglefromhistreatise,withyetanotherlayout.

UsingPascal’striangle

Examples1–5illustratevariouscalculationsinvolvingthecoefficientsof(1 + x)n forlowvaluesof n.

Example1 UsingPascal’striangletowriteoutexpansions

UsePascal’striangletowriteouttheexpansionsof:

UNCORRECTEDSAMPLEPAGES

b Beparticularlycarefulwiththealternatingsignsinthisexpansion.

c Thesignsalsoalternateinthisexpansion.

Example2 UsingPascal’striangletoapproximatepowers

Byexpandingthefirstfewtermsof(1 + 0.02)8,findanapproximationof1.028 correcttofivedecimalplaces.

Solution

(1 + 0.02)8 = 1 + 8 × 0.02 + 28 × (0.02)2 + 56 × (0.02)3 + 70 × (0.02)4 + = 1 + 0.16 + 0.0112 + 0.000448 + 0.00001120 + ≑ 1.17166.

Theremainingfourtermsaretoosmalltoaffectthefifthdecimalplace.

Example3 Examiningaproductofbinomialspowers

a Writeouttheexpansionof 1 + 5 x 2 ,thenwriteoutthefirstfourtermsintheexpansionof(1 x)8 .

b Hencefind,intheexpansionof 1 + 5 x 2 (1 x)8: thetermindependentof x, i thetermin x. ii

Solution

a 1 + 5 x 2 = 1 + 10x 1 + 25x 2 (1 x)8 = 1 8x + 28x 2 56x 3 +

b Henceintheexpansionof 1 + 5 x 2 (1 x)8: i constantterm = 1 × 1 + (10x 1) × ( 8x) + (25x 2) × (28x 2) = 1 80 + 700 = 621.

ii termin x = 1 × ( 8x) + (10x 1) × (28x 2) + (25x 2) × ( 56x 3) = 8x + 280x 1400x = 1128x.

Example4 Findingpronumeralsgivenaconditiononabinomialexpansion

a Writedownthetermsin x4 and x3 intheexpansionof(1 + 2kx)6

b Find k ifthesetermsin x4 and x3 havecoefficientsintheratio2:3.

Solution

a (1 + 2kx)6 = + 15(2kx)2 + 20(2kx)3 + 15(2kx)4 + = + 60k2 x 2 + 160k3 x 3 + 240k4 x 4 + (Alternatively,justwritedownthetwoterms.)

b Put 240k4 160k3 = 2 3 . Then 3 2 k = 2 3 k = 4 9

Example5 Aharderexample—expandingapowerofatrinomial

Expand(1 + x + x2)4 usingPascal’striangle,bywriting1

Solution

Exercise18A

FOUNDATION

Note: Question1constructstherowsofPascal’striangleupto n = 12.Thisis‘yourcopy’ofPascal’striangle —keepitinaprominentplaceforconstantuseinthischapter.Yourcalculatormaygiveyouparticular values,butitdoesnotdisplaythepatterns.

1 CompletealltherowsofPascal’strianglefor n = 0,1,2,3,...,12.

2 UsingPascal’striangletoprovidethebinomialcoefficients,givetheexpansionsof: (1 + x)6 a (1 x)6 b (1 + x)9 c

3 Continuethecalculationsoftheexpansionsof(1 + x)n atthebeginningofthissection,expanding(1 + x)5 and(1 + x)6 inthesamemanner.Keepyourworkincolumns,sothattheadditionpropertyofPascal’s triangleisclear.

4 Findthespecifiedtermineachexpansion.

a For(1 + x)11 : i findthetermin x2 , ii findthetermin x8 .

c For(1 + 2x)6 : i findthetermin x4 , ii findthetermin x5 .

b For(1 x)7 : i findthetermin x3 , ii findthetermin x5 .

d For 1 3 x 4 : i findthetermin x 1 , ii findthetermin x 2 .

5 Expand(1 + x)9 and(1 + x)10,andshowthatthesumofthecoefficientsinthesecondexpansionistwicethe sumofthecoefficientsinthefirstexpansion.

DEVELOPMENT

6 Withoutexpanding,simplify:

7 Findthecoefficientof x4 intheexpansionof(1 x)4 + (1 x)5 + (1 x)6 .

8 Findintegers a and b suchthat: (1 + √3)5 = a +

9 Verifybydirectexpansion,andbytakingoutthecommonfactor,that:

10 Donotuseacalculatorinthisquestion.

a Expandthefirstfewtermsof(1 + x)6,henceevaluate1.0036 tofivedecimalplaces.

b Similarly,expand(1 4x)5,andhenceevaluate0.965 tofivedecimalplaces.

11ai Expand(1 + x)4 asfarasthetermin x2 .

ii Hencefindthecoefficientof x2 intheexpansionof(1 5x)(1 + x)4 .

bi Expand(1 + 2x)5 asfarasthetermin x3 .

ii Hencefindthecoefficientof x3 intheexpansionof(2 3x)(1 + 2x)5 .

ci Expand(1 3x)4 asfarasthetermin x3

ii Hencefindthecoefficientof x3 intheexpansionof(2 + x)2(1 3x)4

12a When(1 + 2x)5 isexpandedinincreasingpowersof x,thethirdandfourthtermsintheexpansionare equal.Findthevalueof x.

b When(1 + x)7 isexpandedinincreasingpowersof x,thesixthtermistheaverageofthefifthandseventh termsintheexpansion.Findthevalueof x.

13 Findthecoefficientof:

a x3 in(3 4x)(1 + x)4

b x in(1 + 3x + x2)(1 x)3

c x4 in(5 2x3)(1 + 2x)5

d x0 in 1 x 3 3 1 + 2 x 2

14 Determinethevalueofthetermindependentof x intheexpansionof: (1 + 2x)4 1 1 x2 6 a 1 x 3 5 1 + 2 x 3 b

15a Intheexpansionof(1 + x)6:

i findthetermin x2 , ii findthetermin x3 ,

iii findtheratioofthetermin x2 tothetermin x3 , iv findthevaluesof(i),(ii)and(iii)when x = 3.

b Intheexpansionof 1 + 2 3x 7 :

i findthetermin x 5 , ii findthetermin x 6 , iii findtheratioofthetermin x 5 tothetermin x 6 , iv findthevaluesof(i),(ii)and(iii)when x = 2.

16a Findthecoefficientsof x4 and x5 intheexpansionof(1 + kx)8.Hencefind k ifthesecoefficientsarein theratio1:4.

b Findthecoefficientsof x5 and x6 intheexpansionof(1 3 4 kx)9.Hencefind k ifthesecoefficientsare equal.

17 [PatternsinPascal’striangle]CheckthefollowingresultsusingthetriangleyouconstructedinQuestion1. (Someofthesewillbeprovenlater.)

a Thesumofthenumbersintherowbeginning1, n,...isequalto2n

b Ifthesecondmemberofarowisaprimenumber,allthenumbersinthatrowexcludingthe1sare divisiblebyit.

c [Thehockey-stickpattern]Startatthetop1ofanycolumnofPascal’striangle,andgoverticallydown anynumberofrows.Thenthesumofthesenumbersisthenumberinthenextrowdownandtotheright. Forexample,ifyoustartatthe1inthe x2 column,andadddownwards:

1 + 3 + 6 + 10 + 15 + 21 = 56,whichisonerowdowninthe x3 column.

d [Thepowersof11]Ifarowismadeintoasinglenumberbyusingeachelementasadigitofthenumber, thenumberisapowerof11(exceptthataftertherow1,4,6,4,1,thepatterngetsconfusedbycarrying).

e Findthediagonalandthecolumncontainingthetriangularnumbers,andshowthataddingadjacentpairs givesthesquarenumbers.

CHALLENGE

18 Bywriting(1 + x + 3x2)6 as(1 + A)6,where A = x + 3x2,expand(1 + x + 3x2)6 asfarasthetermin x3 Henceevaluate(1.0103)6 tofourdecimalplaces.

19 [ThePascalpyramid]Byconsideringtheexpansionof(1 + x + y)n,where0 ≤ n ≤ 4,calculatethefirstfive layersofthePascalpyramid.

18B Binomialexpansionswithseveralvariables

Learningintentions

• Understandthatapolynomial,andabinomial,canhavemorethanonevariable.

• Understandthatabinomialexpansion(x + y)n ishomogeneousin x and y

• Understandthatthecoefficientsof(x + y)n alsocomefromPascal’striangle.

• Solveproblemswithgeneralbinomialexpansions.

Themoregeneralcaseoftheexpansionof(x + y)n issimilar.Because x and y arebothvariables,however,the symmetriesoftheexpansionwillbemoreobvious.

Aminorpointaboutlanguage—wearenowwideningtheterm polynomial toincludetermsmadeupofpowers ofanynumberofvariables.Thus5xy4 isamonomial, x + y isabinomial,and

are trinomials.

Someexpansionsof

(x + y)n

Herearetheexpansionsof(x + y)n forlowvaluesof n.Again,thecalculationshavebeencarriedoutwithlike termswritteninthesamecolumnsothattheadditionpropertyisclear—seetheboxedcoefficients.

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x(x + y) + y(x + y) = x 2 + xy + xy + y 2 = x 2 +

UNCORRECTEDSAMPLEPAGES

First,thecoefficientsintheexpansionsareexactlythesameasbefore,soasbeforetheycanbetakenfrom Pascal’striangle.Thisiseasilyprovenbysubstituting y = 1—thisturnstheexpansionof(x + y)n intothe expansionof(x + 1)n

Secondly,thepatternfortheindicesof x and y isstraightforward.

• Theexpansionof(x + y)3 hasfourterms,andineachtermtheindicesof x and y arewholenumbersadding to3.

• Similarlytheexpansionof(x + y)4 hasfiveterms,andineachtermtheindicesof x and y arewholenumbers addingto4.

Moregenerally,ineachsuccessiveexpansion,beginningwith(x + y)0 = 1,thetermsofthepreviousexpansion aremultipliedfirstby x,andthenby y,sothesumofthetwoindicesgoesupby1.

2Theexpansionof (x + y)n ishomogeneousofdegree n in x and y together

• Theexpansionof(x + y)n has n + 1terms,andineachtermtheindicesof x and y arewholenumbers addingto n.

▷ Theexpansionof(x + y)n iscalled homogeneousofdegree n in x and y together,becauseineach term,thesumoftheindicesof x and y is n.

• Thecoefficientsintheexpansionof(x + y)n arethesameasthecoefficientsintheexpansionof(1 + x)n Proof:Substitute y = 1.

Usingthegeneralexpansion

Thegeneralexpansionof(x + y)n isappliedsimilarlytotheexpansionof(1 + x)n

Example6

Expandingageneralbinomial

UsePascal’striangletowriteouttheexpansionsof:

Example7 Findingparticulartermsinabinomialexpansion

UsePascal’striangletowriteouttheexpansionof(2x + x 2)6,leavingthetermsunsimplified.Hencefind: thetermindependentof x, a thetermin x 3 b

Solution

Constantterm = 15 × (2x)4 × (x 2)2 = 15 × 24 × x 4 × x 4 = 240 a Termin x 3 = 20 × (2x)3 × (x 2)3 = 20 × 23 × x 3 × x 6 = 160x 3 b

Example8 Findingaterminabinomialexpansion

Expand(2 3x)7 asfarasthetermin x2,andhencefindthetermin x2 intheexpansionof(5 + x)(2 3x)7 .

Solution

(2 3x)7 = 27 + 7 × 2

= 128 1344 x + 6048 x 2 .

)

Hencethetermin x2 intheexpansionof(5 + x)(2 3x)7 = 5 × 6048 x 2 x × 1344 x = 28896 x 2

Exercise18B FOUNDATION

1 UsePascal’striangletoexpand:

+

)4

2 UsePascal’striangletoexpand: (1 + x2)4 a (1 3x2)3 b (x2 + 2y3)6 c x 1 x 9 d (

3 Simplifywithoutexpandingthebrackets: a y5 + 5y4(x y) + 10y3(x y)2 + 10y2(x y)3 + 5y(x

c x3 + 3x2(2y x) + 3x(2y x)2 + (2y x)3

d (x + y)6 6(x + y)5(x y) + 15(x + y)4(x y)2 20(x + y)3(x y)3 + 15(x + y)2(x y)4

6(x + y)(x y)5 + (x y)6

4ai Expand(4 + x)5 asfarasthetermin x3

ii Hencefindthecoefficientof x3 intheexpansionof(3 x)(4 + x)5

bi Expand(1 2x)6 asfarasthetermin x4

ii Hencefindthecoefficientof x4 intheexpansionof(1 3x)(1 2x)6 .

ci Expand(3 y)7 asfarasthetermin y4 .

ii Hencefindthecoefficientof y4 intheexpansionof(1 y)2(3 y)7 .

5a Expandandsimplify(x + y)6 + (x y)6

b Hence(andwithoutacalculator)provethat

6 Findthecoefficientof: x3 in(2 5x)(x2 3)4 a x5 in(x2 3x + 11)(4 + x3)3 b x0 in(3 2x)2 x + 2 x 5 c x9 in(x + 2)3(x 2)7 d

DEVELOPMENT

7ai UsePascal’striangletoexpand(x + h)3 .

ii If f (x) = x3,simplify f (x + h) f (x).

iii Henceusethedefinition f ′(x) = limh→0 f (x + h) f (x) h todifferentiate x3

b Similarly,differentiate x5 fromfirstprinciples.

8a Showthat(3 + √5)6 + (3 √5)6 = 20608.

b Showthat(2 + √7)4 + (2 √7)4 isrational.

c If(√6 + √3)3 (√6 √3)3 = a√3,where a isaninteger,findthevalueof a

9 Showthat 1 (

ThensimplifytheexpressionusingPascal’striangle.

10 Expand(x + 2y)5 andhenceevaluate:

a (1.02)5 correcttotofivedecimalplaces,

b (0.98)5 correcttotofivedecimalplaces.

byputtingtheLHSoveracommondenominator.

11a Expand: x + 1 x 3 i x + 1 x 5 ii x + 1 x 7 iii

b Hence,if x + 1 x = 2,evaluate:

12 Findthecoefficientsof x and x 3 intheexpansionof 3x a x 5 .Hencefindthevaluesof a ifthese coefficientsareintheratio2:1.

13 Thecoefficientsofthetermsin a3 and a 3 intheexpansionof ma + n a2 6 areequal,where m and n are non-zerorealnumbers.Provethat m2 : n2 = 10:3.

CHALLENGE

14a Expand x + 1 x 6 .

b If U = x + 1 x ,express x6 + 1 x6 intheform U6 + AU4 + BU2 + C.Statethevaluesof A, B and C

15a Bystartingwith ((x + y) + z)3,expand(x + y + z)3 .

b Findthetermindependentof x intheexpansionof(x + 1 + x 1)4

16 [TheSierpinskitrianglefractal]

a Drawanequilateraltriangleofsidelength1unitonapieceofwhitepaper.Jointhemidpointsofthe sidesofthistriangletoformasmallertriangle.Colouritblack.Repeatthisprocessonallwhitetriangles thatremain.Whatdoyounotice?

b DrawupPascal’striangleintheshapeofanequilateraltriangle,thencolouralltheevennumbersblack andleavetheoddnumberswhite.Whatdoyounotice?Thispatternwillbemoreevidentifyoutakeat leastthefirst16rows—perhapsuseacomputerprogramtogenerate100rowsofPascal’striangle.

18C

Thebinomialtheorem

Learningintentions

• Provethebinomialtheoremusingcombinatorics.

• Applythebinomialtheoremtoproblemswithbinomialexpansions.

• Applythebinomialtheoremtoproblemswithbinomialexpansions.

UNCORRECTEDSAMPLEPAGES

ThereaderhasprobablyrealisedalreadythattheentriesinPascal’striangleareexactlythenumbers nCr that aroseinthepreviouschapterwhencounting r-membersubsetsofan n-memberset.Oncethishasbeenproven below,wecanwritethegeneralbinomialexpansionoutexplicitlyas

orusingthealternativenotation n r for‘n choose r’,

(

Thisresultisknownasthe binomialtheorem.Itgivesastrikingconnectionbetweenthecountingmethodsofthe previouschapterandthealgebraicstructuresinthischapter,showingyetagaintheunitybetweenalgebraand arithmetic.

Provingthebinomialtheorem

Wehavealreadyestablishedthat (

where ∗ denotesthedifferentcoefficients.Whatremainstobeprovenisthatthecoefficientof xn r yr is nCr

Asusual,themoststraightforwardwaytoestablishthisisbylookingathowthingsworkinaspecialcase.For example,letusestablishwhythecoefficientof x2y2 intheexpansionof(x + y)4 is 4C2 = 6.

Expanding(x + y)4 = (x + y)(x + y)(x + y)(x + y)withoutcollectingliketerms,orevenapplyingthecommutative lawofmultiplication,gives24 = 16terms:

(x + y)4 = xxxx (thetermwith4 x s)

+ xxxy + xxyx + xyxx + yxxx (thetermswith3 x sand1 y)

+ xxyy + xyxy + yxxy + xyyx + yxyx + yyxx (2 x sand2 y s)

+ xyyy + yxyy + yyxy + yyyx (thetermswith1 x and3 y s)

+ yyyy (thetermwith4 y s)

whichthenbecomes x4 + 4x3y + 6x2y2 + 4xy3 + y4 aftercollectingliketerms.

Themiddlerowaboveshowsthatthecoefficientof x2y2 is6becausetherearesixtermswithtwo x sandtwo y s.

Whyaretheresixterms?Thereasonis:

• thesesixtermsareallthewordsformedwith4letters,2alikeofonekind,and2ofanother.

Weshowedinthelastchapterthatthenumberofsuchwordsis 4! 2! × 2! = 6.

Moregenerally,whenweexpand(x + y)n,thecoefficientof xr yn r isthenumberofwordsformedwith n letters, r alikeofonekindand n r alikeofanother.

Nowwecanbringinthetheoryofthelastchapter,whereweusedthesymbol nCr forthenumberof r-member subsetsofan n-memberset.

Otherwiseexpressed,thisisthenumberofunorderedselectionsof r objectschosenfrom n objects.Weshowed therethat

nCr = n! r! × (n r)! , andwealsoshowedthatthiswasequaltothenumberof n-letterwordswith r lettersalikeofonekindand n r lettersalikeofanother.Thismeansthatthecoefficientof xr yn r canbewrittenas nCr ,givingaconciseformof theexpansion:

UNCORRECTEDSAMPLEPAGES

3Thebinomialtheorem,andaformulafortheentriesinPascal’striangle

• Forallwholenumbers n, (x + y)

where nCr = n! r!(n r)! = numberof r-membersubsetsofan n-memberset,for r = 0,1,..., n.

• Thisgivesanotationandaformulaforeachbinomialexpansioncoefficient.

• WenowhavetwointerpretationsofPascal’striangle:

▷ Itisatableofcoefficientsinthebinomialexpansion.

▷ Itisatableofthenumberof r-membersubsetsofan n-memberset.

Wecanalsowrite nCr = n × (n 1) ×···× (n r + 1) 1 × 2 ×···× r .

Remembertoothatthenotations nCr and n r meanexactlythesamething.Butdon’tmixthetwonotationsupin thesameproblembecauseitlooksdreadful.

Examplesofthebinomialtheorem

Wecalculated nCr inSection17E.Theseexamplesusetheformulafor nCr tocalculatecoefficientsinbinomial expansions.

Example9 Usingthebinomialtheoremtocalculatetermsandcoefficients

Usethebinomialtheoremtocalculate:

a thecoefficientof x8 in(1 + x)12 ,

b thetermin x3y4 in(x + y)7 ,

c thecoefficientof A5 B5 in(2A 3B)10 (factoredintoprimes),

d Thetermin an 4b4 in(a 2b)n

Solution

a (1 + x)12 = + 12C8 × 14 × x 8 + ,

socoefficientof x 8 = 12! 8! × 4! = 12 × 11 × 10 × 9 4 × 3 × 2 × 1 = 495.

b (x + y)7 = + 7 4 × x 3 × y 4 + (alternativenotationfor nCr ),

sotermin x 3 y 4 = 7! 4! × 3! x 3 y 4 = 7 × 6 × 5 3 × 2 × 1 x 3 y 4 = 35 x 3 y 4 .

c (2A 3B)10 =

socoefficientof A5

d (a 2b)n = + nC4 × an 4 × ( 2b)4 + ,

sotermin

Someimportantvaluesof nCr,andthesymmetryoftherowsofPascal’s triangle

Theformulaefor nCr for n = 0,1and2areimportantenoughtobememorised: nC0 = n! 0! n! = 1 nC1 = n

WesawinChapter17that nCr = nCn r for r = 0,1,2,..., n.Itfollowsthereforethat nCn = 1, nCn 1 = n and nCn 2 = 1 2 n(n 1).

4Someimportantvaluesof nCr ,andtherowsymmetryofPascal’striangle

• Forallwholenumbers n, nC0 = nCn = 1, nC1 = nCn 1 = n,

Inparticular,alltherowsofPascal’strianglebeginandendwith1.

• Forallwholenumbers n,andfor r = 0,1,2,..., n, nCr = nCn r

Thatis,therowsarereversible.

CheckallthisonyourcopyofPascal’striangle.

Example10 Binomialexpansionproblemsonfindingapronumerals

Findthevalueof n if:

nC2 = 55 a

Solution

= 29 b

Weknowthat nC0 = 1and nC1 = n and nC2 = 1 2 n(n 1).

1 2 n(n 1) = 55 n 2 n 110 = 0

(n 11)(n + 10) = 0

Because n ≥ 0, n = 11.

Exercise18C

n + 2n + 2 =

2 + n 56 = 0 (n 7)(n + 8) = 0

Because n ≥ 0, n = 7.

FOUNDATION

1 Usetheresult nCr = n! r!(n r)! toevaluatethefollowing.Donotuseacalculator—youwillneedtounroll thefactorialsymbol.CheckyouranswersagainstPascal’striangle.

2 Repeatthepreviousquestionforthesebinomialcoefficients.Rememberthealternativenotation

Cr .

3 Useyourcalculatorbutton n Cr toevaluate:

4a Expand(1 + x)4,andhencewritedownthevaluesof

b Hencefind:

5 Usethevaluesof nCr fromPascal’striangletofind:

6a Evaluate: 8 3 and 8 5 , i 7 4 and 7 3 ii

b If n 3 = n 2 ,findthevalueof n.

c If 12 4 = 12 n ,findthevalueof n

7a ByevaluatingtheLHSandRHS,verifythefollowingresultfor n = 8and r = 3: n r 1 + n r = n + 1 r

b Usethisidentitytosolveeachequationfor n 5 3 + 5 4 = n 4 i n 7 + n 8 = 11 8 ii

8 Findthespecifiedtermorcoefficientineachexpansion.

a For(1 + x)18,findthetermin x5

b For(1 + 6x)12,findthetermin x9

c For(1 7x)8,findthetermin x3

d For(1 + 3x)7,findthecoefficientof x2

9 Findthespecifiedtermsineachexpansion.

a For(2 + x)7,findthetermin x2

b For(x + 1 2 y)14,findthetermin x9y5

c For( 1 2 x 3y2)11,findthetermin x10y2

d For(a b 1 2 )20,findthetermin a2b9

10a Find x 0ifthetermsin x10 and x11 intheexpansionof(5 + 2x)15 areequal.

b Find x 0ifthetermsin x13 and x14 intheexpansionof(2 3x)17 areequal.

11a Intheexpansionof(1 + x)16,findtheratioofthetermin x13 tothetermin x11

b Findtheratioofthecoefficientsof x14 and x5 intheexpansionof(1 + x)20

c Intheexpansionof(2 + x)18,findtheratioofthecoefficientsof x10 and x16

12a Usethebinomialtheoremtoobtainformulaefor: nC0 i nC1 ii

b Hencesolveeachequationfor n

iv

C2 + nC1 = 22

c Usetheformulafor nC2 toshowthat n

DEVELOPMENT

,andverifytheresultonthethirdcolumnof Pascal’striangle.

13 Theexpression(1 + ax)n isexpandedinincreasingpowersof x.Findthevaluesof a and n ifthefirstthree termsare:

14a Intheexpansionof(2 + 3x)n,thecoefficientsof x5 and x6 areintheratio4:9.Findthevalueof n

b Intheexpansionof(1 + 3x)n,thecoefficientsof x8 and x10 areintheratio1:2.Findthevalueof n

15 Intheexpansionof x + 1 x 40 x 1 x 40 ,findthetermindependentof x.Giveyouranswerintheform nCr , andalsocorrecttofoursignificantfigures.

16 [Divisibilityproblems]

a Usethebinomialtheoremtoshowthat7n + 2isdivisibleby3,where n isapositiveinteger.(Hint: Write7 = 6 + 1.)

b Usethebinomialtheoremtoshowthat5n + 3isdivisibleby4,where n isapositiveinteger.

c Supposethat b, c and n arepositiveintegers,and a = b + c.Usethebinomialexpansionof(b + c)n to showthat an bn 1(b + cn)isdivisibleby c2.Henceshowthat542 248 isdivisibleby9.

17a Usethebinomialtheoremtoexpand(x + h)n

b Henceusethedefinition f ′(x) = lim

h todifferentiate xn fromfirstprinciples.

CHALLENGE

18 Usetheformula nCr = n! r!(n r)! toprovethatifthesecondmemberofarowisaprimenumber,allthe numbersinthatrow,excludingthe1s,aredivisiblebyit.

19 [ThesegeometricalresultsshouldberelatedtothenumbersinPascal’striangle.]

a Placethreepointsonthecircumferenceofacircle.Howmanylinesegmentsandtrianglescanbeformed usingthesethreepoints?

b Placefourpointsonthecircumferenceofacircle.Howmanysegments,trianglesandquadrilateralscan beformedusingthesefourpoints?

c Whathappensiffivepointsareplacedonthecircle?

d Howmanypentagonscouldyouformifyouplacedsevenpointsonthecircumferenceofacircle?

20 [Amoregeneralformofthebinomialtheorem]

a Showthatthebinomialexpansioncanbewrittenas

b Inthisform,itcanbeshownthattheexpansionistruefornegativeorfractionalvaluesof n,provided thattheRHSisregardedasthelimitofaninfinitesumofpowersof x.Thisiscalledthe powerseries expansion of(1 + x)n.Assumingthis,generatethebinomialexpansionsof:

c Verify,usingyourexpansionsinparts(b)(i)and(ii),that x 1 1 x = 1 (1 x)2 .(Thisassumesthata powerseriescanbedifferentiatedterm-by-term.)

18D

Usingthegeneralterm

Learningintentions

• Identifyandusethegeneraltermofabinomialexpansion.

UNCORRECTEDSAMPLEPAGES

Thissectioninvolveswritingdownandusingthegeneraltermofabinomialexpansion.Thismakesiteasierto identifyparticularterms,andtocomparetwoexpansions,bothofwhicharerequiredinthefinaltwosections.

Thegeneraltermofabinomialexpansion

The generalterm ofabinomialexpansionisanalgebraicexpressionthatisafunctionof r,sothateveryterm isobtainedbysubstitutingtheappropriatevalueof r.Forexample,thegeneraltermofthestandardbinomial expansion

,orwecanchoosetouse

5Thegeneraltermofabinomialexpansion

Example11 Findingandusingthegeneralterm

a Findthegeneraltermintheexpansionof(x2 + 3x)7 .

b Intheanswerstothesethreeparts,giveeachcoefficientfactoredintoprimes:

Findthetermin x12 i Findthetermin x10 ii

Solution

a Generalterm = 7Cr × (x 2)7 r × (3x)r = 7Cr × x 14 2r × 3r × x r = 7Cr × 3r × x 14 r .

bi Toobtainthetermin x12 , put14 r = 12

r = 2.

Hencethetermin x12 = 7C2 × 32 × x 12 = 7 × 6 1 × 2 × 32 × x 12 = 33 × 7 × x 12 .

iii Tofindthetermin x6,put14 r = 6

r = 8.

Findthetermin x6 iii

ii Toobtainthetermin x10 , put14 r = 10

r = 4.

Hencethetermin x10 = 7C4 × 34 × x 10 = 7 × 6 × 5 1 × 2 × 3 × 34 × x 10 = 34 × 5 × 7 × x 10 .

Thisisimpossible,becauseevaluating 7Cr requires0 ≤ r ≤ 7,sothereisnosuchterm(oralternatively,the termin x6 iszero).

Example12 Findingandusingthegeneralterm

a Findthegeneraltermintheexpansionof(2x2 x 1)9 .

b Findthetermin x12,givingthecoefficientfactoredintoprimes.

c Findtheconstantterm.

d Findthetermoflowestindex(withnon-zerocoefficient).

Solution

a Generalterm =

b Toobtainthetermin x12,put18

(Itisoftenbesttoleavelargenumbersfactoredintoprimes,asinparts(b)and(c).)

c Toobtaintheconstantterm,put18

d Thelowestpossibleindexiswhen r = 9(lookat 9Cr ),andthistermis ( 1)9 × 9C9 × 20 × x 18 27 = x 9 , whichisobviousbysimplylookingattheoriginalexpansion.

Exercise18D

1 Writedownthegeneraltermforeachbinomialexpansion.

2 Considertheexpansion x2 + 1 x 9

a Showthateachtermintheexpansionof x2 + 1 x 9 canbewrittenas 9Ci x18 3i .

b Hencefindthecoefficientsof: x3 i x 3 ii x0 iii

FOUNDATION

3 Intheexpansionof(2x3 + 3x 2)10,thegeneraltermis 10Ck 2x3 10 k 3x 2 k .

a Showthatthisgeneraltermcanbewrittenas 10Ck 210 k 3k x30 5k

b Hencefindthecoefficientsoftheseterms,givingyouranswersfactoredintoprimes: x10 i x 5 ii x0 iii

4a Showthatthegeneraltermintheexpansionof x 2 5 x 15 canbewrittenas 15C j ( 1) j 5 j 2 j 15 x 15 2 j

b Hencefind,withoutsimplifying,thecoefficientsof: x11 i x ii x 5 iii

5 Findthetermindependentof x ineachexpansion. x + 3 x 8 a 2x3 1 x 12 b

6 Findthecoefficientofthepowerof x specifiedineachexpansion. x15 in x3 2 x 9 a

theconstanttermin 1 2x3 + x 20 c

2x 8 d x 1 in(x 1 + 2 7 x)5 e

7

UNCORRECTEDSAMPLEPAGES

DEVELOPMENT

)

5x2 +

7 Determinethecoefficientsofthespecifiedtermineachexpansion.

a For(3 + x)(1 x)15,findthecoefficientofthetermin x4

b For(2 5x + x2)(1 + x)11,findthecoefficientofthetermin x9

c For(x 3)(x + 2)15,findthecoefficientofthetermin x12

d For(1 2x 4x2) 1 3 x 9 ,findthecoefficientofthetermin x0 .

8a Findthecoefficientof x intheexpansionof x + 1 x 5 x 1 x 4 .

b Findthecoefficientof x2 intheexpansionof x 1 x 9 x + 1 x 5 .

c Findthecoefficientof y 3 intheexpansionof y + 1 y 10 y 1 y 7 .

9a Intheexpansionof(2 + ax + bx2)(1 + x)13,thecoefficientsof x0 , x1 and x2 areallequalto2.Findthe valuesof a and b

b Intheexpansionof(1 + x)n,thecoefficientof x5 is1287.Findthevalueof n bytrialanderror,andhence findthecoefficientof x10 .

CHALLENGE

10 Showthattherewillalwaysbeatermindependentof x intheexpansionof x p + 1 x2 p 3n ,where n isa positiveinteger,andfindthatterm.

11a Writedownthetermin xr intheexpansionof(a bx)12

b Intheexpansionof(1 + x)(a bx)12,thecoefficientof x8 iszero.Findthevalueoftheratio a b insimplest form.

12a Bywritingitas (1 x) + x2 4 ,expand(1 x + x2)4 inascendingpowersof x asfarastheterm containing x4 .

b Intheexpansionof(1 + 3x + ax2)n,where n isapositiveinteger,thecoefficientof x2 is0.Find,interms of n:

thevalueof a, i thecoefficientof x3 . ii

18E

IdentitiesinPascal’striangle

Learningintentions

• ProveaPascal’striangleidentitybysubstitutingintoabinomialexpansion.

• ProveaPascal’striangleidentitybyequatingcoefficientsinabinomialexpansion.

ThereareagreatnumberofpatternsinPascal’striangle.Somearequitestraightforwardtorecogniseandto prove,othersaremorecomplicated.Theyareveryimportantinallapplicationsofthebinomialtheorem,andin particular,somewillbeimportantinYear12binomialdistributions.

Note: HereiswhereyouabsolutelyneedtoreferconstantlytothePascaltriangleupto n = 12thatyou calculatedinthefirstquestionofExercise18A.Thissectionandthenextareallaboutsearchingfor patternsinthetriangle.

IdentitiesinPascal’striangle—theiridentificationandtheirproofs

EachpatterninPascal’striangleisdescribedbyanidentityonthebinomialcoefficients nCr .Theseidentities sometimeshavearatherforbiddingappearance,anditisimportanttotakethetimetointerpreteachidentityas somesortofpatterninPascal’striangle.Usesmallvaluesof n suchas n = 3, n = 4,and n = 5toworkoutwhat theidentityissaying.

HereagainisthefirstpartofPascal’striangleformedbythenumbers nCr .Eachidentitythatisobtainedshould beinterpretedasapatterninthetriangleandverifiedthere,eitherbeforeoraftertheproofiscompleted.

Thereareanumberofapproachestoprovingidentities,andmanypatternscanbeprovenbytwoormoreofthese approaches.Thissectioncoverstwoapproaches(plusathirdintheEnrichmentsection)—theseareallbasedon thebinomialexpansion.Thefinalsectioncoversanotherthree,basedmoreoncombinatorics.

Amethodofproof—Substitutingavalueintoabinomialexpansion

Substituteintosomeformofthebinomialexpansion

Example13 Provingidentitiesbysubstitutingintoabinomialexpansion

Obtainidentitiesbysubstitutingintothebasicformofthebinomialexpansionaswrittenoutabove:

ThenexplainwhatpatterneachidentitydescribesinselectedrowsofPascal’striangletriangle.

Solution

a Substituting x = 1and y = 1,andswappingsides,gives n

whichwasproveninSection17Ebycombinatorics.InPascal’striangle,thismeansthatthesumofevery rowis2n.Forexample,1

b Substituting x = 1and y = 1,andswappingsides,gives

Thismeansthatthealternatingsumofeveryrowiszero. Forodd n,thisistrivial:1 5 + 10 10

c Substituting x = 1and y = 2,andswappingsides,gives

Takingasanexampletherow1,4,6,4,1,

Amethodofproof—Equatingcoefficients

Thismethodinvolvestakingtwoequalexpansionsandequatingcoefficients. Thefollowingidentityisquitedramatic,becauseitshowshowsquaringthetermsrelateseachrowtotherow twiceasfardownthetriangle.

Example14 Provingidentitiesbyequatingcoefficients

a Taking

andexpandingandequatingconstants,provethat

b TheninterprettheidentityinPascal’striangle.

Solution

a OntheRHS,theconstanttermis

OntheLHS,thefirstfactor(x + x 1)n canbeexpandedas

sotheconstanttermsintheproductontheLHSarisefromproductssuchas

ThustheconstanttermontheLHSisthesumoftheproducts

andbecause nCn k = nCk ,bythesymmetryoftherow, theconstanttermontheLHSis(

Equatingthetwoconstanttermsat(1)and(2)givestherequiredidentity:

b Thismeansthatiftheentriesofanyrowaresquaredandadded,thesumisthemiddleentryintherow twiceasfardown.LookatthePascaltriangleonthefirstpageofthissection,andpickouttherowsindexed by3and6.

3 1331 6 1615201561

Thesumofthesquaresoftherowindexedby3is1

= 20,whichisthemiddleterm 6C3 of therowindexedby6.

Addinginsteadthesquaresoftheentriesintherowindexedby6,

whichis 12C6,hopefullycalculatedintheveryfirstquestionofExercise18A.

Exercise18E

1 [Substitution]Beginwiththebinomialexpansionfor n = 4,

FOUNDATION

anduseittoprovethefollowingresults.Explaineachresultintermsoftherow14641indexedby n = 4inPascal’striangle.

a Bysubstituting x = 1,showthat

b Bysubstituting x = 1,showthat

c Hence,byusingtheresultofpart(a),showthat

2 [Substitution]Usethegeneralbinomialexpansion, (1 + x)n = nC0 + nC

toprovethefollowingresults.Explaineachresultintermsoftherow15101051indexedby n = 5inPascal’striangle.

a Bysubstituting x = 1,showthat

b Bysubstituting x = 1,showthat

c Hence,byusingtheresultofpart(a),showthat

3 [Substitution]ThisquestionfollowsthesamestepsasQuestion2,andusestheexpansion

a Showthat

b Showthat

c CheckbothresultsinPascal’striangle,using n = 3and n = 4.

4 [Comparingcoefficients]

a Usethebinomialexpansionof(1 + x)n towriteanexpansionof(1 + x)(1 +

b Byequatingcoefficientsonbothsidesintheidentity(1 + x)(1 + x)n = (1 + x)n+1 deduceanidentity involving:

c Whatidentityhaveyouwrittendown?

5 [Comparingcoefficients]

a Showthat nCk = nCn k .

DEVELOPMENT

bi Bycomparingcoefficientsof x10 onbothsidesof(1 + x)10(1 + x)10 = (1 + x)20,writedownanidentity involving

ii Writedownthevalueof(

c Bycomparingcoefficientsof xn onbothsidesoftheidentity(1 + x)

(1 +

)n = (1 + x)2n,showthat (nC0)2 + (nC1)2 + + (nCn)2 = 2nCn

d CheckthisidentityonthePascaltrianglebyaddingthesquaresoftherowsindexedby n = 1,2,3,4,5 and6.

6a Bycomparingcoefficientsof xn+1 onbothsidesof(1 + x)n(1

,showthat

(2n)! (n 1)!(n + 1)! .

b Checkthisidentityontherowsindexedby n = 3,4,5and6ofthePascaltriangle.

7 [Comparingcoefficients]

a Byequatingcoefficientsof x4 intheexpansionof (1 + x)4 (1 x)4 = 1 x2 4 ,provethat 4C0 2 4C1

b Generalisethisresult,andproveit,byconsideringtheexpansionof (1

c CheckyouridentityonthePascaltriangle,for n = 4,5and6.

8 [Comparingcoefficients]

a Byexpandingbothsidesoftheidentity(1 + x)n+4 = (1 + x)n(1 + x)4,showthat n + 4

andstatethenecessaryrestrictionon r

b CheckthisidentityinPascal’striangle,using n = r = 5andusing n = 6and r = 4.

9 [Substitution]Usetheexpansionof(1 + x)2n,toprovethat 2nC0 + 2nC

10 [Comparingcoefficients]

a Findthecoefficientof xn+r intheexpansionof(1 + x)3n .

b Bywriting(1 + x)3

UNCORRECTEDSAMPLEPAGES

,provethatfor0

c CheckthisidentityinPascal’striangle,using n = 4and r = 3.

11 [Comparingcoefficients]

a Showthat xn(1 + x)n 1 + 1 x n =

b Henceprovethat1

CHALLENGE

ThenextquestionfollowsthesubstitutionmethodofQuestion1–2,butappliescalculustothebinomial expansionfirst.Ifyouhaven’tyetdonedifferentiation,youwillneedtoskipthisquestionforthemoment. Thisapproachofdifferentiation-then-substitutionisnotinthecourse,butitpresentsnoproblemsonceyou havedonedifferentiation.WehaveincludedithereinEnrichmentbecausesomeoftheresultingidentities areneededinYear12binomialdistributions.

12 [Substitutionanddifferentiation]Usethegeneralbinomialexpansion, (1 + x)n = nC0 +

toprovethefollowingresults.Explaineachresultintermsoftherow15101051indexedby n = 5inPascal’striangle.

a Differentiatebothsidesofthebinomialexpansion(∗)above.

b Bysubstituting x = 1,showthat1 × nC1 + 2 × nC2 + + n × nCn = n2n 1

c Bysubstituting x = 1,showthat1 × nC1 2 × nC2 + + ( 1)n 1n × nCn = 0.

13a Usetheresultsofthepreviousquestiontoshowthat

b CheckthisidentityinPascal’striangle,using n = 4,5and6.

14a Byconsideringtheidentity(1

b Whatisthecorrespondingresultif n isodd?

15 If(1 +

18F FurtheridentitiesinPascal’striangle

Learningintentions

• ProveaPascal’striangleidentityusingcombinatoricsassociatedwith nCr

• ProveaPascal’striangleidentityusingthefactorialexpressionof nCr

• ProveaPascal’striangleidentityusingpreviouslyprovenidentities.

ThisfinalsectionprovesPascal’striangleidentitiesusingthreemethodsthatareclosertothecombinatoricsand factorialsofChapter17.

Thereaderisthusinvitedtohaveadoubleviewofbinomialexpansions.Ontheonehand,theyarealgebraic expansions,withanappearancecomplicatedbythemanytermsintheexpansion.Ontheotherhand,theyare veryclosetothecombinatorialsituationpresentedinChapter17,becauseeachcoefficient nCr isthenumberof r-membersubsetsofan n-memberset.

Amethodofproof—Usingcombinatorics

Thefollowingexampledisplaysthecombinatoricsapproachwell,butitcanalsobedonebyequatingcoefficients. Thisallowsacomparisonofmethods.

Example15 Provingidentitiesusingcombinatorics

a Ihave4twenty-centpiecesand6five-centpiecesinmypocket.Howmanysubsetsof3coinsaretherein mypocket?

i Ignoringthetwotypesofcoins,writetheresultas nCr .

ii Countseparatelythesubsetswith0,1,2and3five-centcoins.

iii WhatPascal’striangleidentityhaveyouproven?

b Provetheidentitybyequatingappropriatecoefficientsin (1 + x)4(1 + x)6 = (1 + x)10 .

c UsethevaluesfromPascal’striangletoverifytheidentity.

d IdentifyvisuallyalltogethertheentriesinthePascalTriangle,identifythepattern,andtrytoreproduceit elsewhereonthetriangle.

e Suggestageneralisationoftheidentity.

Solution

ai Numberofsubsets = 10C3.

ii Each3-coinsubsethas3twenty-centsand0five-cents,or2twenty-centsand1five-cent,or1 twenty-centand2five-cents,or0twenty-centsand3five-cents.Hence

Numberofsubsets = 4

b Thetermin x3 ontherightis 10C3 x3 .

Thetermin x3 ontheleftisthesumofthefourproducts:

Thisprovesthesameidentity.

c SubstitutingintotheidentityfromPascal’striangle(yourcopyorSection18E),

LHS = 4 × 1 + 6 × 6 + 4 × 15 + 1 × 20 = 4 + 36 + 60 + 20 = 120 = RHS.

d Visualisationislefttothereader.

e Hereisoneofmanypossiblegeneralisations.For n ≥ m ≥ 3,

UNCORRECTEDSAMPLEPAGES

TestitoutonthePascaltrianglefor n = 5and m = 4. Thenperhapsproveitbyanalogywithparts(a)or(b).

Amethodofproof—Writing nCr intermsoffactorials

Thismethodisnotparticularlyeasytofollow,butthefollowingexampleisthebest-knownapplicationofthe method.Again,theresulthasotherproofs,anditisinterestingtocomparethem.

Example16 Provingidentitiesbywriting nCr intermsoffactorials

a BywritingLHSandRHSintermsoffactorials,provethe additionproperty: nCr = n 1Cr 1 + n 1Cr ,for

1and1

b Giveacombinatorialproofoftheadditionproperty.

c Giveaproofcomparingcoefficients.

Solution

a RHS = (n 1)! (r 1)! × (n r)! + (n 1)! r!

= (n 1)! (r 1)! × (n r 1)! × 1 1

(

) + 1 r × 1 = (n 1)! (r 1)! × (n r 1)! × r r × (n r) + n r

= (n 1)! (r 1)! × (n r 1)! × n r × (n r) = n! r! × (n r)! = LHS

b Represent nCr asthenumberof r-personsubsetsofacrowdof n people. ThereisblokecalledGeoffreyinthecrowd, andevery r-personsubseteithercontainsGeoffrey,ordoesnotcontainGeoffrey.

Numberof r-membersubsetsthatcontainGeoffrey = n 1Cr 1 , (1) becauseweneedtochooseanother r 1peopleoutof n 1people.

Numberof r-membersubsetsnotcontainingGeoffrey = n 1Cr , (2) becauseweneedtochooseall r peopleoutof n 1people.

Addingthecountsin(1)and(2)gives nCr = n 1Cr 1 + n 1Cr

c Considerthetermsin xn intheexpansionof(1 + x)n = (1 + x)n 1 × (1 + x).

Termin xr ontheLHS = nCr x r

Termin xr ontheRHS = n

Equatingthecoefficientsof

Amethodofproof—Usingpreviouslyprovenidentities

Occasionallyapreviouslyprovenidentitycanbeusedinaproof.

Example17 Provingidentitiesbyusingpreviouslyprovenidentities

a Usetheadditionpropertytoprovethat

n+1C2 nC2 = n,forall n ≥ 2.

b Henceshowthat n

c Interpretpart(b)onthePascaltriangle.

Solution

a Bytheadditionproperty,

b Thisproofuses recursion,whichwillbecome mathematicalinduction inYear12. First,wecanrewritetheresulttopart(a)as

Thenapplyingthisformularepeatedly,

(aftermanymoresteps)

c LookatthethirdcolumnofthePascaltriangle(yourcopyorSection18E):

Note: Thenumbers1,3,6,10,15,...arecalledthe triangularnumbers becausetheyare thesuccessivetotalnumbersofdotsin1,2,3,4,5,...rowsofatriangulararray. WewillmeetthemagainwithsequencesandseriesinYear12.

Remarksonthevariousmethodsofproof

Thereaderhasprobablygainedsomeimpressionsaboutthesevariousmethods.

• Substitutionisverysimple,butdoesnotdevelopmanynewideas.

• Equatingcoefficientsandcombinatoricapproachesarebothexcellentmethods,andgenerateinterestingnew identities.

• Expandingfactorialscanbeveryfiddly.

• Usingpreviouslyprovenresultsmaybeusefulinsomesituations,asinallmathematics.

6SomemethodsofprovingidentitiesinPascal’striangle

• Substitutevaluesintoabinomialexpansion.

• Equatecoefficientsintwoequalbinomialexpansions.

• Usecombinatoricarguments.

• Expandthefactorialsintheexpressionsfor nCr

• Usepreviouslyprovenidentities.

• Differentiation-then-substitution(seeExercise18EEnrichment)isnotinthecourse,butitisstraightforward, andgeneratesmanyinterestingidentities,someofwhichwillbeneededinYear12binomialdistributions.

Exercise18F FOUNDATION

Forthenextthreequestions,youshouldusethedefinitionofthesymbol nCr asthenumberofwaysofchoosing an r-membersubsetfroman n-memberset.

1 [Combinatorics]Considertheset S = {A,B,C,D,E}

a Considerthesubset {A,B}.Whatlettershavebeenomittedfromthesubsetthatareinthewholeset?

b Listallthesubsetsof {A,B,C,D,E} containing2letters.

c Alongsideeachofthesetsin(a)writedownthesetthatdoesNOTcontainthosetwoletters.

d Usethecombinatorialdefinitionof nCr andparts(a)-(c)toexplainwhy 5C2 = 5C3.

e Explainwhy nCr = nCn r foranywholenumbers n and r with r ≤ n.

2 [Combinatorics]Considertheset S = {A,B,C,D}

a Writedownallthesubsetsof S ,thenexplainwhythereareexactly24 ofthem.

b Henceexplainwhy 4 0 + 4 1 + 4 2 + 4

c Explainwhy n 0 + n

= 2n,foranywholenumber n.

3 [Acombinatoricsproofoftheadditionproperty]Considerthesets

S = {A,B,C,D,E}and U = {A,B,C,D}.

ai Writedownallthe3-lettersubsetsof S thatdonotnotcontain E

ii Explainwhythisisalistofallthe3-lettersubsetsof U

bi Writedownallthe3-lettersubsetsof S thatcontain E

ii Explainhowtopairthemupwithallthe2-lettersubsetsof U

c Henceexplainwhy 4C2 + 4C3 = 5C3.

d Explainwhy nCr 1 + nCr = n+1Cr ,foranywholenumbers n and r with1 ≤ r ≤ n.

4 [Theadditionpropertyandtheformulafor nCr ]Inthisquestion,youwillprovethatif a, b, c and d areany fourconsecutivetermsinanyrowofPascal’striangle,then a a + b + c c + d = 2b b + c

a Considertherow1,7,21,35,35,21,7,1indexedby n = 7.Showthattheidentityholdsforeach sequence a, b, c, d offourconsecutivetermsfromthisrow.

b Choosefourconsecutivetermsfromanyotherrowandshowthattheidentityholds.

c Provetheidentitybyletting a =

and d = nCr+2.Youwillneedtousethe additionproperty,thentheformula nC

5 [Twocombinatoricsproofs]Wehaveseeninquestion2(a)thatsubstituting x = 1and x = 1intothe binomialexpansionproves

Herearecombinatoricsproofsoftheseresults.

a Let S bean n-memberset,andinterpreteach nCr asthenumberof r-membersubsetsof S .Henceprove thefirstidentity(1).

b Toprovethesecondidentity(2),chooseafixedelementAintheset S .Pairupeachsubset U not containingAwiththeuniquesubset U ∪{A} containingA.

i Explainwhytheprocedurearrangesallthesubsetsof S uniquelyintopairs.

ii Explainwhyonememberofeachpairhasanevennumberofmembers,andtheotherhasanodd numberofmembers.

iii Henceprovethat nC

6 [Theformulafor nCr ]Thisquestioninvolvestheformula

a Provethat

b Whatresulthaveyouproven?

7 [Aninequalityprovenusingtheformulafor nCr ]

a Provethat 2nCr < 2nCr+1,forallwholenumbers n and r with r < n

b Provethat 2n+1Cr < 2n+1Cr+1,forallwholenumbers n and r with r

DEVELOPMENT

8 [Thehockey-stickidentity]Lookatthecolumnindexedby r = 2inPascal’striangle:

Thegeneralformofthiswell-known hockey-stickidentity is

where n and r arewholenumberswith0 ≤ r ≤ n.Hereareproofsofthisidentityusingtheaddition property,andusingacombinatorialproof.

a [Aproofusingtheadditionproperty]

i Toprovetheparticularresult(∗),startwiththeright-handsideandwrite

thenkeepexpandingthetermwith r = 3.Tocompletetheproof,youwillneedtousethefactthat 3C3 = 2C2 = 1.

ii Generalisethistoaproofoftheidentity(∗∗).

b [Acombinatoricsproof]

i Thenumber 7C3 isthenumberof3-membersubsetsofa7-memberset S .Tochoosea3-member subset U of S = {1,2,3,4,5,6,7},makethechoiceinthefollowingway:

• Firstchoosefrom S thegreatestnumber k thatwillbeinthesubset U.Thismustbeoneofthe numbers3,4,5,6or7,because U istohavethreemembers,soitwillhavetwonumberssmaller than k.

• Thenchoosetheremainingtwonumbersin U fromthe k 1possiblenumbers1,2,..., k 1.

Explainwhythismethodofchoosingthesubsetyieldstheidentity(∗).

ii Generalisethistoaproofoftheidentity(∗∗).

9 [Acombinatorialapproachtothesumofsquaresinarow]Inthisquestionweconsiderbinarywords consistingonlyofthelettersAandB.

a Considerabinarywordconsistingof a + b letters,withAoccuring a timesandBoccuring b times.Show thatthereare a+bCa = a+bCb permutationsofsuchaword.

b Howmanypossiblepermutationsarethereofabinarywordwith2n letters,ifAandBbothoccur n times?

c Awordwith2n lettersmaybesplitdownthemiddleintotwowordsof n letters.Considertheexample wheretwoAsfallinthefirst n-letterword.

i Howmanyarrangementsarethereofthefirst n-letterbinarywordwithtwoAs?

ii Howmanyarrangementsarethereofthesecond n-letterbinarywordwith n 2oftheAsand2Bs?

iii Howmanyarrangementsarethereofaten-letterbinarywordwithtwoAsinthefirsthalfandtwoBs inthesecondhalf?

d Henceprovethat

SAMPLEPAGES

10a Whentheentriesoftherow1,5,10,10,5,1indexedby n = 5inPascal’strianglearemultipliedby0, 1,2,3,4,5respectively,theresultsare0,5,20,30,20,5.Ignoringthezero,thisisfivetimestherow1, 4,6,4,1.Formulatethisresultalgebraically,for n = 5andthenforgenerally n,andproveitusingthe binomialtheorem.

b Whentheentriesoftherow1,5,10,10,5,1aredividedby1,2,3,4,5and6respectively,theresultis1, 2 1 2 ,3 1 2 ,2 1 2 ,1, 1 6 .Ifyouadd 1 6 atthestart,thisis 1 6 thoftherow1,6,15,20,15,6,1.Formulatethisresult algebraically,for n = 5andthenforgeneral n,andproveitusingthebinomialtheorem.

CHALLENGE

11a Findthevalueof

b Evaluate

+ 2

c Provethefollowingidentity,andverifyitusingtherowindexedby n = 4:

12ai If r > p + 1,showthat

ii Hencededucethatfor n

iii WhatisthesignificanceofthisresultinthePascal’striangle?

Chapter18Review

Reviewactivity

• Createyourownsummaryofthischapteronpaperorinadigitaldocument.

Chapter18Multiple-choicequiz

• Thisautomatically-markedquizisaccessedintheInteractiveTextbook.AprintablePDFWorksheetversionis alsoavailablethere.

SkillsChecklist

• Checklist AvailableintheInteractiveTextbook,usethechecklisttotrackyourunderstandingofthelearningintentions. PrintablePDFandworddocumentversionsarealsoavailablethere.

ChapterReviewExercise

1 WriteoutthefirstfiverowsofPascal’striangle.

2 Useyouranswertothepreviousquestiontoexpand:

+ x)5

3a Expand(1 + 7x)5 asfarasthetermin x2

b Hencefindthecoefficientof x2 intheexpansionof(1

4a Expand(1 + x)7 .

b Hencefindthefirstdecimalplaceof1.027 .

5 Expand:

6 Usetheresult n

toevaluateeachbinomialcoefficient.Donotuseacalculator—youwill needtounrollthefactorialsymbol.CheckyouranswersagainstthecopyofPascal’strianglethatyou developedinExercise15A.

7 Useyourcalculatortoevaluate:

8 UseyourunderstandingofthepatternsinPascal’striangletosimplify:

9 Solve nC2 = 28.

10 Findthecoefficientof x8 intheexpansionof(1 3x)(1 + 5x)14

11a Writeoutthefirstfewtermsintheexpansionof(1 + x)n .

b Byanappropriatesubstitution,provethat: n 0 + 2 × n 1 + 4 × n 2 + 8 × n 3 + ··· = 3n

c Verifythisresultfortherowindexedby n = 4inPascal’striangle.

12a Provethat nC0 + nC1 + nC2 + nC3 + ··· = 2n .

b WhatisthesignificanceofthisresultforPascal’striangle?

c Howmaythisresultbeinterpretedasasumofcombinations?

13a Showthatthegeneraltermintheexpansion(2x + 1 x2 )18 canbewritten: 18Cr 218 r x 18 3r

b Hencefindinthisexpansion:

i thetermindependentof x

ii thecoefficientof x9

iii thetermin x9

14 Inthisquestionweshallprovetheidentity

a Checkthisidentityinthecase n = 4and r = 0.

b Prove(∗)usingtheadditionproperty nCr + nCr+1 = n+1Cr+1.

c Prove(∗)byequatingcoefficientsof xr+2 intheidentity(1 +

d Acommitteeof8istobeformedfrom12people.

i Howmanycommitteesof8canbeformed? Thegroupof12includesBradandJanet.

ii HowmanycontainneitherBradnorJanet?

iii HowmanycontainoneofeitherBradorJanet?

iv Howmanycontainboth?

e Usepart(d)toprove(∗)inthecase n = 10and r = 6.Generaliseyourargument.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.