▶ Section6F–6Gintroduceinverserelationsandfunctionsgraphically,withtheircorrespondingreflectionsin thediagonalline y = x.Thisisyetanothertypeoftransformationofaknowngraph.Section6Gdevelops theformalnotationforinversefunctions.
▶ ThelastSection6Hintroducesparameterssothatequationsoffunctions,andrelationsingeneral,canbe expressedandgraphedintermsoffunctions x and y ofasingleparameter.
Thechapterisconceptuallydemanding,particularlySection6D.ReadersmayprefertoleaveSection6Duntil laterintheyear—anappropriateplacecouldbebeforeChapter16:Furthertrigonometry,whenthesum a sin x + b cos x oftwotrigonometricgraphsneedstobesketched.
UNCORRECTEDSAMPLEPAGES
6A
Solvingtwoparticularinequations
Learningintentions
• Solveabsolutevalueinequationsoftheform |ax + b| < k inthreeways.
• Solveinequationswith x inthedenominatorbymultiplyingthroughbyitssquare.
Solvetheseabsolutevalueinequationsalgebraically: |x 7| < 5 a |6 x|≥−1 b
Solution
Theabsolutevalueisnevernegative,sothereare nosolutions. a Absolutevalueisalwaysatleastzero,soevery realnumberisasolution.Thustheinequationisan inequality.
Solvinginequationswith x inthedenominator—multiplythroughbyits square
Whenwetrytosolvethisinequation,weimmediatelyrunintoaproblem: 5 x 4 ≥ 1.
Thedenominator x 4issometimespositiveandsometimesnegative.Thusifweweretomultiplybothsidesby thedenominator x 4,theinequalitysymbolwouldreversesometimesandnotothertimes.
▷ Oncethefractionshavebeencleared,therewillusuallybecommonfactorsonbothsides.These should not bemultipliedout,becausethefactoringwillbeeasieriftheyareleftunexpanded.
Atableofsignsisnowunnecessary,butwecandrawoneup.Therearenodiscontinuitiesand nozeroes,soonetestvalue f (0) = 1confirmsthatthefunctionisalwayspositive. x 0 y 1 sign +
ComparingthemethodsofSections6Aand6B
Wenowhavetwowaystosolveaninequationwith x inthedenominator.Forcomparison,hereisaninequality with x inthedenominatorsolvedbothways.Firstitissolvedbymultiplyingbothsidesbythesquareofthe denominator.Thenitissolvedusingatableofsigns.Comparethetwoquitedifferentapproaches.
Example11
Constructingatableoftestpoints
Solve 3 x + 2 ≤ x usingatableofsigns.
Solution
Collectingeverythingontheleft, 3 x + 2 x ≤ 0, usingacommondenominator, 3 x2 2x x + 2 ≤ 0, andfactoring, (3 + x)(1 x) x + 2 ≤ 0.
TheLHShaszeroesat x = 3and x = 1,andadiscontinuityat x = 2.
6 Here isQuestion10fromExercise6A.Thistime,collectalltermsontheLHSasasimplifiedsingle fraction.Findthezeroesanddiscontinuitiestouseinatableofsigns,andhencesolveeachinequation.
7a Findthezeroesanddiscontinuitiesof y = x2 x 3 and constructatableofsigns.
b Foreachfunctioninthepreviousquestion,examinethesignofthefunctionaroundeachzero,andhence drawagraphofthefunction.
10 Findallzeroesofthesefunctions,andanyvaluesof x wherethefunctionisdiscontinuous.Thenanalysethe signofthefunctionbytakingtestpointsaroundthesezeroesanddiscontinuities.
13a Provethat f (x) = 1 + x + x2 ispositiveforall x.
b Provethat f (x) = 1 + x + x2 + x3 + x4 ispositiveforall x.Considerseparatelythethreecases x ≥ 0, 1 < x < 0and x ≤−1.Groupthefivetermsintopairsindifferentwayswiththesecondandthirdcases. c Usesimilarmethodstoprovethatforallintegers n ≥ 0, f (x) = 1 + x + x 2 + ··· + x 2n 1 + x 2n ispositiveforall x.
d Provethat x = 1istheonlyzeroof f (x) = 1 + x + x2 + + x2n 1,forallpositiveintegers n
14 Let f (x) = a 2 1 x + a 1 x a with a > 1.
Forwhatvaluesof k does f (x) = k haveasolution? a Solve f (x) < 2usinganyappropriatemethod. b
Nowchooseasuitablevaluefor a anduseshiftingtosolve 1 x 1 1 x 7 < 4 3 . c
Thissectionsketchesthereciprocalfunction g(x) = 1 f (x) ofagraphedfunction f (x).Readingfromthegraphof y = f (x),wedeveloppropertiesofthisreciprocalfunction y = g(x),andusethesepropertiestosketch y = g(x). Thereciprocaltrigfunctions—cosec,sec,andcot—aredevelopedinChapter7.
• Infinityisnotanumber: Don’teverbetemptedtosaythatif f (x)hasanasymptoteat x = a,thenthe function g(x) = 1/ f (x)iszeroat x = a.
Thesymbols ∞ and −∞ arepartofmathematics,buttheyarenotnumbers,andtheycertainlydonothave reciprocals.
• Thereciprocalofthereciprocalmaynotbetheoriginalfunction: Referringtoourpreviousexample,startinsteadwithreciprocalfunction,thatis, let f (x) = 1 x 2 .Then f (x)isundefinedat x = 2,soitsreciprocal g(x) = 1/ f (x) isalsoundefinedat x = 2. Thatis, g(x) = x 2,where x 2.
Thisisnottheoriginalline y = x 2oftheexample,becauseitszero x = 2hasnow beenremoved.
c Hencestatethedomainof y = 1 tan θ inthisinterval.
d Whatislim θ→90◦ 1 tan θ ?
e Copythegraphof y = tan θ,andaddtoitthegraphof y = 1 tan θ
f Whatistherangeofthereciprocalfunction? y
14 Ineachcasethegraphof y = f (x)isgiven.Sketchthegraphof y = 1 f (x) ,payingcarefulattentiontothe domain,anyasymptotes,andanyrelevantlimits.
y x a y x b
CHALLENGE
15 TheargumentsinthesolutiontoExample15(a)seemstorelyonthefollowingassertionaboutthegraphsof afunction y = f (x)anditsreciprocalfunction y = ( f (x)) 1: ‘Whenonecurvehasalocalmaximum,theotherhasalocalminimum.’ Thisstatementisnotstrictlytrue.Statethequalificationthatneedstobemadeinthisstatement,andgivean examplewherethequalificationisnecessary.
16 Let y = 1 x 2 .Writedownpreciselytheequationofthereciprocalfunction.
6D Sketchingsumsanddifferences
Learningintentions
• Sketchthesumanddifferenceoftwographedfunctions.
Theproblemaddressedinthissectionistotakethesketchesoftwofunctions f (x)and g(x),andworkingjust fromthosesketches,sketchtheirsumanddifference:
Hereisanexampleinwhichonecurvehasahorizontalandavertical asymptote.Asuccessionofstepsallowustosketchthesum s(x) = f (x) + g(x).
1 Thecurvesintersectat(2,2)andat( 1, 1),so
s(2) = f (2) + g(2) = 2 + 2 = 4,
s( 1) = f ( 1) + g( 1) = 1 + ( 1) = 2.
2 Thecurve y = f (x)hasazeroat x = 2,so
s( 2) = f ( 2) + g( 2) = 0 + ( 2) = 2.
3 Addtheordinatesat x = 1,so
s(1) = f (1) + g(1) = 3 + 1 = 4.
4 Therearenovaluesof x whereordinatesareopposites,so s(x)hasno zeroes.
5 Becausetherearenozeroesfor s(x),itcanonlychangesignatthe asymptote x = 0(nextstep).Hence s(x)isnegativefor x < 0,andpositive for x > 0.
Dealingwiththehorizontalandverticalasymptotesof f (x):
6 Vertically,onbothsidesofthe y-axis:
As x → 0+ , f (x) → +∞ and g(x) → 0,so s(x) → +∞.
As x → 0 , f (x) →−∞ and g(x) → 0,so s(x) →−∞. Thusthe y-axisisaverticalasymptoteto y = s(x).
7 Horizontally,ontherightandtheleft:
As x →∞, f (x) → 1and g(x) → +∞,so s(x) → +∞. As x →−∞, f (x) → 1and g(x) →−∞,so s(x) →−∞.
Note: Thereisafinaldetailthatseemsbeyondthecourse,buthasbeenaddedtothediagramforcompleteness. Youwillseethatathirdasymptote,anobliqueasymptote,hasbeendrawn.Hereistheargumentforit. Forlargevaluesof x,positiveornegative, f (x)isalmost1,so y = s(x)isalmostthesamegraphas y = 1 + g(x).
Hence y = s(x)eventuallylookslikealineparallelto y = g(x).
Havingnowarguedfromthegraphsalone,wewillnowrevealtheequationsofthetwofunctions—theyare f (x) = 2 x + 1and(obviously) g(x) = x.Theirsumis
s(x) = x + 1 + 2 x = x2 + x + 2 x . Thishasnozeroesbecausethediscriminant ∆= 1 8 = 7isnegative,andclearlythegraphhasavertical asymptoteat x = 0.
UNCORRECTEDSAMPLEPAGES
Summaryofsketchingthesumoftwosketchedfunctions
11Sketchingthesumoftwosketchedfunctions
• Tosketchthesum s(x) = f (x) + g(x)oftwosketchedfunctions:
If,however, f (x)and g(x)goinoppositedirections,wemaynotbeabledeterminewhathappens withthesum.
AsdiscussedinSection5A,atranslationof y = f (x)up5is y = f (x) + 5.Thisis f (x) + g(x)where g(x) = 5isa constantfunction,sotranslationsupanddownarespecialcasesoftheconstructioninthissection.
Sketchingthedifferenceoftwosketchedfunctions
Nowletussketchthedifference d(x) = f (x) g(x)ofthesametwofunctions f (x) = x 2 36and g(x) = 5x , butthistimewewillworkfromthesketchesaloneandthenconfirmthesketchusing atableofvalues.Thedifferenceisthesumof f (x)and g(x),soitcouldbedoneby reflecting g(x)inthe x-axisandthenaddingthegraphs,butitiseasiertosketchitin onestep. x y ygx() yfx()
0 Subtracttheordinateswherepossible—thekeyidea.
1 If f (x)hasazeroat x = a,then d(a) = 0 g(a) = g(a),sotheordinateof d(x)is theoppositeoftheordinateof f (x).Thishappensat x = 6andat x = 6. If g(x)hasazeroat x = a,then d(a) = f (a) 0 = f (a),sotheordinateof d(x)isthe sameastheordinateof f (x),andthecurve d(x)meetsthecurve f (x).Thishappens at x = 0.
2 Iftheordinatesof f (x)and g(x)areopposites,thentheordinateof d(x)isdoublethe ordinateof f (x).Thishappensat x = 9andat x = 4.
3 Ifthetwocurvesmeetat x = a,thentheyhaveequalordinatesthere,so d(x)hasa zeroat x = a.Thishappensat x = 4andat x = 9. x y ygx() yfx() ydx()
Hereisatableofvaluestoconfirmthesearguments: x 9 6 4
1 Eachdiagrambelowshowsthegraphoftwofunctions, y = f (x)and y = g(x).Copyeachdiagramtoyour bookanddrawthegraphof y = f (x) + g(x),byaddingordinates.Trytodistinguishtheoriginalgraphsfrom thegraphofthesum—usedifferentcolours,ordottheoriginalgraphs.
2 CopyeachdiagraminQuestion1toafreshnumberplane.Subtractordinatestosketchthegraphsof y = f (x) g(x).
3 Thediagramtotherightshowsthegraphsof y = f (x),where f (x) = x4,andof y = g(x),where g(x) = x2
a Copythediagramtoyourbook.
b Onthesamesetofaxesandinadifferentcolour,sketch y = f (x) g(x)by subtractingordinates.Paycarefulattentiontopointswherethegraphscross, andtothezeroesof f (x)and g(x). x y
4 Thediagramtotherightshowsthegraphsof y = f (x),where f (x) = x2,andof y = g(x),where g(x) = x.
a Copythediagramtoyourbook.
b Onthesamesetofaxesandinadifferentcolour,sketch y = f (x) + g(x) byaddingordinates.Paycarefulattentiontopointswhere g(x) = f (x), becauseatthosepoints f (x) + g(x) = 0.Noticealsothezeroesof f (x) because f (x) + g(x) = f (x)atthosepoints,andthezeroesof g(x),because f (x) + g(x) = g(x)atthosepoints.
5a Plot y = x3 and y = x onthesamenumberplane,notinganypointsofintersection.
b Hencesketchthegraphofthedifference, y = x3 x.
6 Sketch y = x4 and y = x(2 x),thensketchthedifference y = x4 x(2 x).
Earlierinthissection,wesketched f (x) = (x + 1)(x 3)anditstransformations y = | f (x)| and y = f (|x|).Use thesegraphstosketch y = f (|x|) :
Solution
Startwiththeearliersketchofeither | f (x)| or f (|x|). y x
Example17 Comparingallthreemethods
Usingthegraphof y = f (x)sketchedtotheright,sketch:
y = | f (x)|
Solution
y
y = f (|x|)
y = f (|x|) y x
Exercise6E
1 Thegraphof y = f (x)issketchedtotheright.Todraweachtransformation,copy thegraphanddrawthetransformedgraphinadifferentcolouronthesameaxes. Replaceanypartofthegraphbelowthe x-axisbyitsreflectionabovethe x-axis.Thiswillgiveyouthegraphof y = | f (x)|.
a
FOUNDATION
b x y
Graphonlythepartsof y = f (x)thataretotherightofthe y-axis.Thenaddthe reflectionofthesepartsinthe y-axis.Thiswillgiveyouthegraphof y = f (|x|).
Noticethesymmetryinthe y-axis.
c
Usingthegraphof y = f (|x|),replaceanypartofthegraphbelowthe x-axisbyitsrefectionabovethe x-axis.Thisgivesthegraphof y = f (|x|)
d
Usingthegraphof y = | f (x)|,graphonlythepartsthataretotherightofthe y-axis.Thenaddthe reflectionofthesepartsinthe y-axis.Whatdoyounoticeabouttheresultofthisandtheanswertopart (c)?
2 Ineachcase,followthestepsofQuestion1andusethegivengraphof y = f (x)tosketch:
3 Sketcheachgivenfunctionanduseittothensketch:
4a Explainwhythegraphsof y = 2x and y = |2x| arethesame.
b Write y = 2|x| usingcases,thensketchitsgraph. DEVELOPMENT
5a Sketch y = f (x)where f (x) = (x + 1)(x 2),showingall x-interceptsandthevertex.
b Hencesketch:
6 Repeatthestepsofthepreviousquestionforthefunction f (x) = x 1 1.
7a Graph y = f (x),where f (x) = 1 x 1 + 1.Becarefultoidentifyanyinterceptswiththeaxesandany asymptotes.
b Hencesketch:
8a Let f (x) = x(x 2).
Sketch y = f (x). i
Userepeatedtransformationstosketch y = | f (|x|)| ii
b Repeatpart(a)forthefunction f (x) = (x + 1)(3 x).
9a Showthat y = |2 x| isneitherevennoroddandgraphit.
b Showthat y = 2 −|x| isevenandusepart(a)tographthisnewfunction.
c Hencegraph y = 1 2 −|x|
d Finallygraph y = 1 2 −|x| .
10a Let f (x)beanyfunction.Explainwhy g(x) = f (|x|)iseven.
b Let f (x)beanoddfunction.Showthat h(x) = | f (x)| iseven.
11a Whenwillthegraphsof y = f (x)and y = | f (x)| bethesame?
b Whenwillthegraphsof y = f (x)and y = | f (x)| besymmetricinthe x-axis?
CHALLENGE
12a ReadcarefullytheinstructioninQuestion1(b)forgraphing y = f (|x|).Writeasimilarinstructionfor graphing |y| = f (x).
b Testyourinstructionbygraphing |y| = f (x)foreachofthefunctionsinQuestion2.
13 Sketch |y| = |x|
14a Describethegraphof y = f (−|x|)intermsofthegraphof y = f (x).
b Whattypeofsymmetrymust y = f (−|x|)possess?
15 Let f (x)beanyfunction,andlet g(x) = f (|x|)and h(x) = 1 2 ( f (x) + f ( x)).
Provethatboth g(x)and h(x)areevenfunctions. a Are g(x)and h(x)alwaysthesamefunction?Ifsothenproveit,otherwisegiveacounter-example. b
16a Investigatethegraphsofthesequenceoffunctions
b Showthatthe2nd,4th,8th,...functionsinthissequencecanbesimplifiedto
Geometrically,thisexchangingofthetwocoordinatescanbedonebyreflectingthe pointinthediagonalline y = x.Thiscanbeseenbycomparingthegraphsof y = x3 and y = 3 √x,whicharedrawnhereonthesamepairofaxes.
17Thegraphoftheinverserelation
Thegraphoftheinverserelationisobtainedbyreflectingtheoriginalgraphinthediagonalline y = x
Forexample,theinverseofthefunction y = x3 is x = y3.Thisparticularequationcanthenbesolvedfor y togive y = 3 √x,confirmingthatinthisparticularcase,theinverserelationisagainafunction.
Example18 Graphingfunctionandinversetogether
a Writedowntheinverserelationofthefunction y = x2 .
b Graphbothrelationsonthesamenumberplane,showingthereflectionline.
c Writedownthedomainandrangeofbothrelations.
d Istheinverserelationafunction?
Solution
a Writing x for y and y for x,theinverseis x = y 2 .
c Fortheoriginal,domain:allreal x,range: y ≥ 0. Fortheinverse,domain: x ≥ 0,range:allreal y. Noticehowthedomainandtherangehavebeen swapped.
d Theinverseisnotafunction—itfailsthevertical linetest. b x y
Example19 Graphingfunctionandinversetogether
Repeatthepreviousquestionsforthefunction y = x3 + 2.
Solution
a Writing x for y and y for x,theinverseis x = y 3 + 2, whichis y = 3 √x 2.
c Forboth,domainandrangeareallrealnumbers.
d Theinverseisagainafunction,bytheverticalline test.
Formingtheinversewhentherearerestrictions
Whenthereareanyrestrictions,then x and y mustbeswappedintheseaswell,asinthenextexample.
Thefirstgraphisafunction,passingthe verticallinetest.Butwhenwereaditbackwards,thevalue y = 3gives twoanswers, x = 1and x = 1.Accordingly,whenwesketchtheinverserelation,weseethatitfailsthevertical linetest,with x = 3crossingthegraphtwice.
Butreflectionin y = x exchangesverticalandhorizontallines!Nowwecanseeimmediatelyfromthefirstgraph thatitsinverseisnotafunction,becauseitfailsthe horizontallinetest —theline y = 3crossesitmorethanonce. Wedidn’tneedtodrawthesecondgraphtoknowthattheinverseisnotafunction.Allweneedtoknowisthat thefirstgraphfailsthehorizontallinetest.
Wecouldalsohavedoneittheslowway—solvetheequation x = 4 y2 oftheinverserelationtogive y = √4 x or y = √4 x ,showingagainthatformanyvaluesof x,thereismorethanonevalueof y,sothe inverseisnotafunction.
Exercise6F
1 Drawtheinverserelationofeachrelationbyreflectingintheline y = x
b Forparts(i)and(iv)above,findthedomainandrangeoftherelation,andthedomainandrangeofthe inverserelation.
8 Writedowntheinverseofeachfunction,solvingfor y ifitisafunction.Sketchthefunctionandtheinverse onthesamegraphandobservethesymmetryintheline y = x.
9 Eachfunctionbelowhasarestriction.Writedownitsinverserelation.Thenattempttosolveitfor y.Ifthe inverseisafunction,rewritetherestrictionasarestrictionon x.Iftheinverseisnotafunction,giveavalue of x thatcorrespondstotwoormorevaluesof y. y = 3x 10,where x < 2
= x3 + 2,where x < 3
10a Factorise f (x) = x2 2x 3inordertoshowthatthegraphof y = f (x)failsthehorizontallinetest.
b Let g(x) = x2 2x 3for x ≥ 1.Explainwhythisfunctionhasaninverseandfinditsequation.
11a Showthattheinversefunctionof y = ax + b x + c is y = b cx x a .
b Henceshowthat y = ax + b x + c isitsowninverseifandonlyif a + c = 0.
12a Showthattheinverseof y = 2x + 2 x 2 isnotafunction.
Afunction f (x)mustbydefinitionpassthe verticallinetest,meaningthateveryvalueof x inthedomain correspondstoexactlyone y-value.Fortheinverseof f (x)tobeafunctionalso, f (x)mustpassthe horizontal linetest,meaningthateveryvalueof y intherangecorrespondstoexactlyone x-value.
Thustheconditionfortheinverseof f (x)tobeafunctionisthat f (x)isa one-to-onecorrespondence betweenthe elementsofthedomainandtheelementsoftherange.Suchafunctioniscalledsimply one-to-one.
21One-to-onefunctions,andtheinverseofafunction
• Afunction f (x)iscalled one-to-one,ora one-to-onecorrespondence,ifforeveryvalueof y inthe range,thereisexactlyoneelement x inthedomainsothat f (x) = y
• Theinverserelationofafunction f (x)isalsoafunction:
▷ ifandonlyif f (x)passesthehorizontallinetest,and
▷ ifandonlyif f (x)isone-to-one,and
▷ ifandonlyiftheequationoftheinversecanbesolveduniquelyfor y.
Supposethat f (x)isaone-to-onefunctionwithinversefunction g(x).Then g(x)isalsoaone-to-onecorrespondence,withthesamepairingofthedomainandrangeasprovidedby f (x),butwiththecorrespondingpairs reversed.Whenweapply f (x)then g(x),itisasifnothinghashappened,thatis,
g f (x) = x,forall x inthedomainof f (x).
Andbecause g(x)sendseachnumberbackwhereitcamefrom,itsinverseis f (x),andtheothercomposite f g(x) isalsoanidentityfunction,
• Thefunction g(x)istheinversefunctionofafunction f (x)ifandonlyif: g f (x) = x,forall x inthedomainof f (x),and f g(x) = x,forall x inthedomainof g(x).
Thatis,ifandonlyif g f (x) and f g(x) arebothidentityfunctions.
• An identityfunction isafunction I(x)suchthat:
I(x) = x,forall x inthedomainof I(x).
Inversefunctionnotation
Supposethat f (x)isaone-to-onefunction,thatis,itsinverseisalsoafunction.Thenthatinversefunctionis writtenas f 1(x).Theindex 1usedheremeans‘inversefunction’andmustnotbeconfusedwithitsmore commonuseforthereciprocalofanumber.Toreturntotheoriginalexampleinthelastsection, If f (x) = x 3,then f 1(x) = 3 √x
Becareful: f (x) 1 = 1 f (x)
Aswehaveseen,theinversefunction f 1(x)isalsoone-to-one,withinverse f (x),andifthefunctionandthe inversefunctionareappliedsuccessivelyineitherorder,theresultistheoriginalnumber.Usingtheexample above,
23Inversefunctionnotation
• Ifafunction f (x)isone-to-one,thenitsinverserelationisalsoaone-to-onefunction,andiswrittenas f 1(x).
Findtheequationof f 1(x)foreachfunction,thenverifythat f 1 f (x) = x and f f 1(x) = x f (x) = x3 + 2 a f (x) = 6 2x,where x > 0 b
Solution
a Let y = x 3 + 2.
Thentheinversehasequation x = y 3 + 2(thekeystep) andsolvingfor y, y = 3 √x 2.
Hence f 1(x) = 3 √x 2.
Verifying, f 1 f (x) = 3 (x3 + 2) 2 = 3 √x3 = x and f f 1(x) = 3 √x 2 3 + 2 = (x 2) + 2 = x
b Let y = 6 2x,where x > 0.
Thentheinversehasequation x = 6 2y,where y > 0(thekeystep) y = 3 1 2 x,where y > 0.
Therestriction y > 0means3 1 2 x > 0 x < 6,
so f 1(x) = 3 1 2 x,where x < 6.
Verifying, f 1 f (x) = f 1(6 2x) = 3 1 2 (6 2x) = 3 3 + x = x and f f 1(x) = f (3 1 2 x) = 6 2(3 1 2 x) = 6 6 + x = x
Example22
Testingwhetherafunctionhasaninversefunction
Findtheinverserelationofeachfunction.Iftheinverseisafunction,findanexpressionfor f 1(x),andverify that f 1 f (x) = x and f f 1(x) = x f (x) = 1 x 1 + x a f (x) = x2 9 b
Whatissurprisingabouttheresultofpart(a)?
Solution
a Let y = 1 x 1 + x .
Thentheinversehasequation x = 1 y 1 + y (thekeystep) × (1 + y) x + xy
(now y occursonlyonce)
Noticethatthisfunction f (x)anditsinverse f 1(x)areidentical,sothatifthefunction f (x)isapplied twice,eachnumberissentbacktoitself.
Thus f f (2) = f 1 3 = 1 1 3 ÷ 2 3 = 2 andingeneral, f f (x) = 1 1 x 1+x 1 + 1 x 1
= (1 + x) (1 x) (1 + x) + (1 x) = x
b Thefunction f (x) = x2 9failsthehorizontallinetest.Forexample, f (3) = f ( 3) = 0,whichmeansthat the x-axismeetsthegraphtwice.Hencetheinverserelationof f (x)isnotafunction. Alternatively,theinverserelationis x = y2 9,whichonsolvingfor y gives y = √x + 9or √x + 9, whichisnotunique,sotheinverserelationisnotafunction.
b Whatdoyouconcludeaboutthefunctions f (x)and g(x)?
FOUNDATION
2 Eachpairoffunctions f (x)and g(x)areknowntobemutualinverses.Showineachcasethat f g(2) = 2 and g f (2) = 2,andthat f g(x) = x and g f (x) = x.
f (x) = x + 13and g(x) = x 13 a
(x) = 7x and g(x) = 1 7 x b f (x) = 2x + 6and g(x) = 1 2 (x 6) c f (x) = x3 6and g(x) = 3 √x + 6 d
3a Findtheinversefunction f 1(x)of f (x) = 2x + 5.Begin‘Let y = 2x + 5’,thenswap x and y tofindthe inverse,thensolvefor y,thenwritedowntheequationof f 1(x).
b Checkyouranswerbycalculating f 1 f (x) and f f 1(x)
c Similarlyfindtheinversefunctionsofeachfunction,andcheckeachanswer.
f (x) = 4 3x i f (x) = x3 2 ii
4 Explainwhethertheinverserelationisafunctionbytestingwhetheritisone-to-one.Ifitisafunction,find f 1(x),specifyingitsdomain.Thenverifythetwoidentities f 1 f (x) = x and f f 1(x) = x
f (x) = x2 a f (x) = √x b f (x) = x4 c f (x) = x3 + 1
(x) = x + 1 x 1 l
5 Let f (x)betherestrictedfunction f (x) = 3x 2,where1 ≤ x ≤ 4.
a Findtheinversefunction f 1(x),beingcarefultoadditsrestriction.
b Showthat f 1 f (x) and f f 1(x) arebothidentityfunctions,andfindtheirrespectivedomains.A sketchmaymakethesituationclearer.
6a Whatisthegradientoftheline y = ax + b?
b Writedowntheinverserelationof y = ax + b
c Whataretheconditionsforthisinverserelationtobeafunction?
d Whentheinverseisafunction,solveitfor y,finditsgradient,andexplainwhythegradientsofthe functionanditsinversebothhavethesamesign.
e Giveanargumentusingreflectionintheline y = x foryouranswersinpart(c).
8 Theparabola y = f (x),where f (x) = (x 3)2 + 1,hasitsvertexat(3,1).Theinverseof f (x)isnota function.
ai Janinesaysthatwhensheappliestherestriction x ≥ a to f (x)theinverseisafunction.Whatisthe leastvalueof a?
ii Findtheequationoftheinverseinthiscase.
bi Jacobsaysthatwhenheappliestherestriction x ≤ b to f (x)theinverseisafunction.Whatisthe greatestvalueof b?
ii Findtheequationoftheinverseinthiscase.
9a Let f (x) = x2 2x 3withtherestriction x ≥ a.Itisknownthattheinverseof f (x)isafunction.Using thepreviousquestionasaguide,findtheleastvalueof a andfind f 1(x)inthatcase.
b Dothesameforthefunction f (x) = 5 4x x2 withtherestriction x ≤ a
10a Let f (x)and g(x)beone-to-onefunctions.Thatis,bothpassthehorizontallinetest.Let h(x) =
Showthattheinversefunctionof
bi Findtheinversefunctionof h(x) = 1 x 3 .
ii Express h(x)asthecompositionofthereciprocalfunctionandalinearfunction,andhenceuse part(a)tofinditsinversefunction.
12a Let f (x) = ax + b and g(x) = αx + β.Find g f (x) ,andhenceprovethattheconditionfor f (x)and g(x) tobemutuallyinversefunctionsis
α = a 1 and β = a 1b .
b Findthreelinearfunctions f (x), g(x)and h(x),noneofwhosegraphspassthroughtheorigin,withno twographsparallel,suchthat h g f (x) istheidentityfunction.
• Acameramaninadistantstand,exactlybehindthepathoftheball,seestheballriseandfall,withitsheight y inmetresgivenby y = 5t2 + 25t,where t istimeinsecondsafterthestrike.
• AdronefilmingtheshotfromhighabovetheCricketGroundseestheballmoveacrosstheground,with distance x fromthebatsmangivenby x = 16t
Theresulting(x, y)-graphshowsthepathoftheball,andeachpointonthe graphcanbelabelledwiththecorrespondingvalueoftime t
Thisvariable t iscalleda parameter,andtheequations
x = 16t, y = 5t2 + 25t arecalled parametricequationsofthecurve
Itispossibleto eliminatetheparameter t fromthesetwoequations. Solvingthefirstequationfor t, t = x 16 , thensubstitutingintothesecond, y = 5 256 x 2 + 25 16 x , y = 5x2 + 400x 256
andfactoringdisplaysthezeroes, y = 5x(80 x) 256
SAMPLEPAGES
24Parameters
• Acurveinthe(x, y)-planemaybe parametricallydefined,meaningthat x and y aregivenasfunctions ofathirdvariable t calleda parameter.
▷ Thesetwoequationsfor x and y intermsof t arecalled parametricequations ofthecurve.
• Inmanysituations,theparameter t maybe eliminated togiveasingleequationin x and y forthecurve.
▷ Thesingleequationin x and y iscalledthe Cartesianequation ofthecurve.
Theletter t isoftenusedfortheparameterbecauseitstandsfor‘time’.Otherlettersareoftenused,however, particularly θ and φ foranangle,and p and q
Fromthefirst, p = 1 4 x,andsubstitutingintothe second, y = 1 16 x 2 + 1, whichisaparabolawithvertex(0,1)andconcave up. a Squaring, x 2 = sec2 θ, and y 2 = sin2 θ = 1 cos2 θ
1 Considertheparametricequations x = t 2and y = 2t 1.
a Completethetabletotheright.
b Explainfromthetablewhythegraphisaline.
c Fromthetable,findthe y-interceptandthegradient.
d Eliminate t tofindtheCartesianequation,andcheckitfrompart(c). t 2 1012 x y
2a Theparametricequations x = 2t 3and y = t + 1representaline. Findthepoints A and B withparameters t = 0and t = 1,andhencefindthegradientoftheline. i Findthevalueof t thatmakes x = 0,andhencefindthe y-intercept. ii Checkyouranswersbyeliminating t toformaCartesianequation. iii
SAMPLEPAGES
b Repeatthestepsinpart(a)fortheselines: x = 2t 3and y = 6t 5 i x = 2t 3and y = 3t 2 ii
3a Completethetablebelowforthecurve x = 4t, y = 2t2 andsketchitsgraph. t 6 4 2 101246 x y
b EliminatetheparametertofindtheCartesianequationofthecurve.
c Thecurveisaparabola.Whatvalueof t givesthecoordinatesofthevertex?
4 Repeatthepreviousquestionforthecurve
5a Showthatthepoint cp, c p liesonthehyperbola xy = c2,where c isaconstant.
b Completethetableofvaluesbelowfor x = 2 p, y = 2 p andsketchthegraph. p 3 2 1 1 2 1 4 0 1 4 1 2 123 x y
c Explainwhathappensas p →∞, p →−∞, p → 0+ and p → 0 .
6a Showthatthepoint(a cos θ, b sin θ)liesontheellipse
bi Completeatableofvaluesforthecurve x = 4cos θ, y = 3sin θ,takingthevalues θ = 0◦,30◦,60
, 90◦,120◦ , ... ,360◦ . ii SketchthecurveandstateitsCartesianequation. DEVELOPMENT
7 EliminatetheparameterandhencefindtheCartesianequationofthecurve. x = 3 p, y = 2
+ 1 p , y = p2 + 1 p2 c
8a Showthat x = a + r cos θ and y = b + r sin θ defineacirclewithcentre(a, b)andradius r. b Hencesketchagraphofthecurve x = 1 + 2cos θ, y = 3 + 2sin θ.
9 Showbyeliminationthat x = t2 1 t2 + 1 and y = 2t t2 + 1 almostrepresenttheunitcircle x2 + y2 = 1.Whatpoint ismissing?
10 [ParametersandCurveOrientation]Let A = (1,2)and B = (2,1).
ai Showthat x = 1 + t, y = 2 t,0 ≤ t ≤ 1parameterisesthelinesegment AB. ii Describehowthepoint P(1 + t,2 t)movesas t increasesfrom0to1.
bi Showthat x = 2 u, y = 1 + u,0 ≤ u ≤ 1alsoparameterisesthelinesegment AB. ii Describehowthepoint P(2 u,1 + u)movesas u increasesfrom0to1.
c Thepoints A and B alsolieonthecirclewithcentre(1,1)andradius1.Considerthepoints P(1 + cos t,1 + sin t)and Q(1 + sin t,1 + cos t),where0◦ ≤ t ≤ 90◦ inbothcases.Explainthedifference betweenthecurvestracedoutbythepoints P and Q
13a Showthattheparametricequations x = c(sec θ tan θ)and y = c(sec θ + tan θ)with 90◦ < θ < 90◦ representstheportionofthehyperbola xy = c2 inthefirstquadrant.
b Whatrestrictionon θ isneededtogettheportioninthethirdquadrant?
14 FindtheCartesianequationofthecurve x = 3 + r cos θ, y = 2 + r sin θ,anddescribeitgeometricallyif: r isconstantand θ isvariable, a θ isconstantand r isvariable. b
15 [ParametersandTransformations]
a Thecirclewithcentretheoriginandradius2hasparametricequations x = 2cos θ and y = 2sin θ with 180◦ < θ ≤ 180◦ .
Byconsideringtranslations,writedowntheparametricequationswhenthiscircleisshiftedright1 andup3. i
Byconsideringdilations,writedowntheparametricequationswhentheoriginalcircleisstretched horizontallyby2andverticallyby 1 2 . ii
b Acertaincurvehasparametricequations x = f (t)and y = g(t).Ignoringanypossiblerestrictionson t, answerthefollowing.
Describethecurvegeneratedby x = f (t) + h and y = g(t) + k. i
Describethecurvegeneratedby x = af (t)and y = bg(t). ii
16 Showbyeliminationthat x = 2
Whatpointismissing?
17a Explainwhytheparametricequations x = cos t, y = sin t, z = t describeaspiral.
18a Showthatthepoint(a sec θ, b tan θ)liesonthecurve x2 a2 y2 b2 = 1.
CHALLENGE
b Completeatableofvaluesforthecurve x = 4sec θ, y = 3tan θ,where0◦ ≤ θ ≤ 360◦.Whathappens when θ = 90◦ and θ = 270◦?
c Sketchthecurve(ithastwoasymptotes)andstateitsCartesianequation.
19 AfterfindingtheCartesianequation,sketchthecurvewhoseparametricequationsare x = 1 2 (2t + 2 t )and y = 1 2 (2t 2 t ).
20 Arelationisdefinedparametricallyby x = f (t)and y = g(t).
a Whattransformationoftherelationoccurswhen t isreplacedby t if:
f (t)and g(t)arebotheven, i
f (t)isevenand g(t)isodd, iii
f (t)and g(t)arebothodd, ii
f (t)isoddand g(t)iseven. iv
b Whatistherelationshipbetweenthisrelationandtherelationdefinedby x = g(t)and y = f (t)?
c Whereisthegraphoftherelation x = | f (t)| and y = |g(t)| located?
d Whereisthegraphoftherelation x = f (t)and y = f (t)located?
Writedownthezeroesofthefunction,anddrawupatableofsigns. a Copyandcomplete:‘ f (x)ispositivefor...,andnegativefor...’ b Writedownthesolutionoftheinequation x(x + 2)(x 3) ≤ 0. c Sketchthegraphofthefunctiontoconfirmtheseresults. d
4 Considerthefunction y = (1 x)(x 3)2
Writedownthezeroesofthefunctionanddrawupatableofsigns. a Hencesolvetheinequation(1 x)(x 3)2 ≥ 0. b Confirmthesolutionbysketchingagraphofthefunction. c
Sketch y = f (x),clearlyindicatingthe x-and y-intercepts. a Alsoshowonyoursketchthepointswhere y = 1and y = 1. b Hencesketchthegraphof y = 1 f (x) onthesamenumberplane. c
Writedowntheequationoftheverticalasymptoteof y = 1 f (x) ,thencopyandcompletethesentence,‘As x → 2 , y → ,andas x → 2+ , y → ’ d
7 Considerthequadraticfunction f (x) = 3 x2 .
Sketch y = f (x),clearlyindicatingthe x-and y-intercepts. a
b
c
Alsoshowonyoursketchthepointswhere y = 1and y = 1.
Hencesketchthegraphof y = 1 f (x) onthesamenumberplane.
Findtheequationsoftheverticalasymptotesofeachfunction. y = 2 x + 1 i y = 2x + 1 x 2 ii y = 4x x2 25 iii
b Inpart(iii)above,identifythezeroesanddiscontinuitiesanddrawupatableofsigns.Thendescribethe behaviourofthecurveneareachverticalasymptotebycopyingandcompleting,‘As x → 5 , y → ... , andas x → 5+ , y → ... ’(andsimilarlyfor 5).
10 Considerthefunction y = 2x x2 1 .
a
Showthatitisanoddfunction.
b Identifyanyverticalandhorizontalasymptotes. c Hencesketchthegraph. d
• The zeropolynomial Z(x) = 0isaspecialcase.Ithasaconstantterm0.Butithasnotermwithanon-zero coefficient.Henceithasnoleadingterm,noleadingcoefficient,andmostimportantly,nodegree.Itsgraphis the x-axis—meaningthateveryrealnumberisazeroofthezeropolynomial.
sothesolutionsare x = 0, x = 2(doubleroot)and x = 2(doubleroot),wherethequadraticfactor x2 + x + 1has nozeroes,because ∆= 3.Thusfactoringapolynomialintolinearandirreduciblequadraticfactorssolvesthe correspondingpolynomialequation.
Thesolutionsofapolynomialequationarecalled roots,whereasthe zeroes ofapolynomialfunctionarethe valuesof x wherethevalueofthepolynomialiszero.Thedistinctionbetweenthetwowordsisnotalways strictlyobserved.
Exercise11A
1 Statewhetherornoteachexpressionisapolynomial.
UNCORRECTEDSAMPLEPAGES
FOUNDATION
2 Foreachpolynomial,state:
thedegree, i theleadingcoefficient, ii theleadingterm, iii theconstantterm, iv whetherornotthepolynomialismonic. v Expandthepolynomialfirstwherenecessary.
Forlargepositivevaluesof x,theleadingterm x3 completelyswampstheother term 4x.Hence P(x) →∞ as x →∞.
Similarly,forlargenegativevaluesof x,theterm 4x isnegligiblecomparedwiththe farbiggernegativevaluesoftheleadingterm x3.Hence P(x) →−∞ as x →−∞. x y −22
Thefunctionchangessignaround x = 2and x = 2,wheretheassociatedfactors(x + 2)3 and(x 2)haveodd degrees,butnotaround x = 0,wherethefactor x2 hasevendegree.
Becausethecurveissmooth—withoutsharpcorners—at x = 0,weknowthatthecurvewillbeincreasing ontheleftof x = 0,decreasingontherightof x = 0,andstationaryat x = 0.Thisproducesa turningpoint at theorigin—the x-axisisatangentthere,andthecurve turnsover smoothlyfromincreasingtostationaryto decreasingwithoutcrossingthe x-axis.
At x = 2,ourtableofvaluestellsusthatthecurvecrossesthe x-axis.WeshallseeinYear12thatthecurveis momentarilyflatthere,witha horizontalinflection onthe x-axisat x = 2—the x-axisisatangenttothecurve thatactuallycrossesthecurvethere.Thiscorrespondstothefactor(x + 2)3 havingodddegreegreaterthan1. Provingallthisrequirescalculus,buttheresultisobviousbycomparisonwiththeknowngraphofthevery simplepolynomialfunction y = x3 thatwefirstdrewinSection3G.
a hastwomultiple(orrepeated)zeroes,andthreesimplezeroes(sometimescalled‘singlezeroes’). b hasdegree9,andhastwotriplezeroesandonedoublezero,andisnon-monic.
Solution (x + 5)2(x 1)(x 2)(x 3)x7 a 12(x + 8)3(x + 7)3(x + 5)2(x + 3) b
Showthat P(x)canbeexpressedintheform(x2 a)2 + (x b)2 . a
Howmany x-interceptsdoesthegraphof P(x)have?Explainyouranswer. b
13 Atwhatpointsdothegraphsofthepolynomials f (x) = (x + 1)n and g(x) = (x + 1)m intersect,where m n? (Hint:Considerthecaseswhere m and n areoddandeven.)
14 Toprove: Let P(x) = an xn + an 1
+ a0 beapolynomialofdegreeatleast1.Thenthe leadingtermdominatesthebehaviourof P(x) forlargepositivevaluesof x,andforlargenegativevalues of x.
• Let p (the dividend )and d (the divisor)beintegers,with d > 0.Thenthereareuniqueintegers q (the quotient)and r (the remainder)suchthat p = dq + r and0 ≤ r < d
• Whentheremainder r iszero, d isa divisorof p,andtheinteger p factors as p = d × q
b Byconsideringtheleadingtermandconstantterm,express P(x)asaproductofthreelinearfactors.
8a Whenthepolynomial P(x) = 2x3 x2 + ax + b isdividedby x 1theremainderis16,andwhenitis dividedby x + 2theremainderis 17.Find a and b.
b Thepolynomial P(x)isgivenby P(x) = x3 + ax2 + bx 18.Find a and b giventhat x + 2isafactorof P(x),and 24istheremainderwhen P(x)isdividedby x 1.
9 Withoutdivision,findtheremainderwhen P(x) = x3 + 2x2 4x + 5isdividedby: 2x 1 a 2x + 3 b 3x 2 c
a
10 If P(x) = 2x3 + x2 13x + 6,evaluate P 1 2 .Henceuselongdivisiontoexpress P(x)infullyfactored form.
b
Given P(x) = 6x3 + x2 5x 2,evaluate P 2 3 thenexpress P(x)infactoredform.
11 Iseither x + 1or x 1afactorof xn + 1,where n isapositiveinteger? (Hint:Considerthecaseswhere n isevenoroddseparately.)
12 P(x)isanoddpolynomialofdegree3.Ithas x + 4asafactor,andwhenitisdividedby x 3the remainderis21.Find P(x).
a Find p sothat x p isafactorof4x3 (10p 1)x2 + (6p2 5)x + 6. b
13 Whenthepolynomial P(x)isdividedby(x 1)(x + 3),thequotientis Q(x)andtheremainderis2x + 5. Writedownadivisionidentitybasedonthisinformation. a Hence,byevaluating P(1),findtheremainderwhen P(x)isdividedby x 1. b Whatistheremainderwhen P(x)isdividedby x + 3? c
• Supposethat P(x)isapolynomialthathasnotermofdegreemorethan n,yetiszeroforatleast n + 1 distinctvaluesof x.Then P(x)isthezeropolynomial.
• Inparticular,theonlypolynomialthatiszeroforallvaluesof x isthezeropolynomial(aswasproven inExercise11BEnrichment).
Proof Supposethat P(x)hadadegree.Thisdegreemustbeatmost n becausethereisnotermofdegree morethan n.Butthedegreemustalsobeatleast n + 1becausethereare n + 1distinctzeroes.Thisisa contradiction,so P(x)hasnodegree,andisthereforethezeropolynomial.
• Supposethat P(x)and Q(x)aredegree n polynomialsthathavethesamevaluesforatleast n + 1values of x.
• Thenthepolynomials P(x)and Q(x)areidenticallyequal(meaningthattheyareequalforallvalues of x),andtheircoefficientsareequal.
• Inparticular:
▷ Alinearpolynomialisdeterminedbytwovalues.
▷ Aquadraticpolynomialisdeterminedbythreevalues.
▷ Acubicpolynomialisdeterminedbyfourvalues.
▷ Aquarticpolynomialisdeterminedbyfivevalues.
Proof Let F(x) = P(x) Q(x).Because F(x)iszerowhenever P(x)and Q(x)havethesamevalue,itfollows that F(x)iszeroforatleast n + 1valuesof x,sobytheprevioustheorem, F(x)isthezeropolynomial,so P(x) = Q(x)forallvaluesof x
The fundamentaltheoremofalgebra cannotbeprovenintheExtension2course,butthetheoremhelpsusto understandtheimportanceofcomplexnumbersforpolynomials.Ittellsusthateverypolynomialequationof degree n ≥ 1hasexactly n roots,providedfirstthatrootsarecountedaccordingtotheirmultiplicity,andsecondly thatcomplexrootsarealsocounted.Forexample:
• x3 = 0hasoneroot x = 0,butthisroothasmultiplicity3.
• x3 1 = 0,whichfactorsto(x 1)(x2 + x + 1) = 0,hasroot x = 1,butalsohasthetwocomplexrootsof x2 + x + 1 = 0.
Thismeansthatthegraphofapolynomialofdegree n ≥ 2intersectseverylineinexactly n points,providedfirst thatpointswherethelineisatangentarecountedaccordingtotheirmultiplicity,andsecondlythatcomplex pointsofintersectionarealsocounted.Thistheoremprovidesthefundamentallinkbetweenthealgebraof polynomialsandthegeometryoftheirgraphs,andallowsthedegreeofapolynomialtobedefinedalgebraically asthehighestindex,orgeometricallyasthenumberoftimeseverylinecrossesit.
Exercise11E
1 Usethefactortheoremtowritedowninfactoredform: amoniccubicpolynomialwithzeroes 1,3and4, a amonicquarticpolynomialwithzeroes0, 2,3and1, b acubicpolynomialwithleadingcoefficient6andzeroesat 1 3 , 1 2 and1. c
13 If a and b arenon-zero,and a + b = 0,provethatthepolynomials A(x) = x3 + ax2 x + b and B(x) = x3 + bx2 x + a haveacommonfactorofdegree2butarenotidenticalpolynomials.Whatisthecommon factor?
CHALLENGE
14a Factor xn 1.
b Supposethattherootsoftheequation xn 1 = 0are x = 1, α1, α2, , αn 1.Showthat(1 α1)(1 α2) (1 αn 1) = n
b = a(α + β + γ)and d = aαβγ , wherethenegativesignoftheproductcomesfromthecubeof 1. Butthenewphenomenonhereisthecoefficientof x, c = a(αβ + βγ + γα) =+(sumofproductsofpairsofzeroes).
Solvingforthesumsandproductsofthezeroes:
24Sumsandproductsofzeroesofacubic
Let P(x) = ax3 + bx2 + cx + d havezeroes α, β and γ.Then α + β + γ = b a (sumofthezeroes) αβ + βγ + γα =+ c a (sumofproductsofpairsofzeroes) αβγ = d a (productofthezeroes)
Example14
Usingthesumandproductofzeroesofacubic
a Showthat 6isazeroof P(x) = x3 4x2 39x + 126.
b Usesumandproductofzeroestofindtheothertwozeroes.
c Checktheformulaforthesumofproductsofpairsofzeroes.
Themethodisthesameforalldegrees.Notationisunfortunatelyamajordifficultyhere,andtheresultsarebetter writteninwords.Supposethat α1, α2,... αn arethe n zeroesofthedegree n polynomial
b Supposethat x 3and x + 1arefactorsof P(x) = x3 6x2 + 5x + 12.Usetheproductofthezeroesto findtheotherfactorof P(x).
6 Considerthepolynomial P(x) = x3 x2 x + 10.
Showthat 2isazeroof P(x). a
Supposethatthezeroesof P(x)are 2, α and β.Showthat α + β = 3and αβ = 5. b
Bysolvingthetwoequationsinpart(b)simultaneously,showthat α2 3α + 5 = 0. c Henceshowthattherearenosuchrealnumbers α and β. d Hencestatehowmanytimesthegraphofthecubiccrossesthe x-axis. e
7 Showthat x = 1and x = 2arezeroesof P(x),andusethesumandproductofzeroestofindtheotherone ortwozeroes.Noteanymultiplezeroes.
P(x) = x3 2x2 5x + 6 a P(x) = 2x3 + 3x2 3x 2 b
P(x) =
8a Findthevaluesof a and b forwhich x3 + ax2 10x + b isexactlydivisibleby x2 + x 12,andthenfactor thecubic.
b Findthevaluesof a and b forwhich x2 x 20isafactorof x4 + ax3 23x2 + bx + 60,andthenfindall thezeroes.
Theline y = 2x meetstheparabola y = x2 2x 8atthetwopoints A(α,2α)and B(β,2β).
a Showthat α and β arerootsof x2 4x 8 = 0,andhencefindthecoordinatesofthemidpoint M of AB.
b Usetheidentity(α β)2 = (α + β)2 4αβ tofindthehorizontaldistance |α β| from A to B.Thenuse Pythagoras’theoremandthegradientofthelinetofindthelengthof AB.
c Findthevalueof b forwhich y = 2x + b isatangenttotheparabola,andfindthepoint T ofcontact.
Solution
a Solvingthelineandtheparabolasimultaneously,
x 2 2x 8 = 2x x 2 4x 8 = 0.
Hence α + β = 4, and αβ = 8.
Averagingtheroots, M has x-coordinate x = 2,andsubstitutingintotheline, M = (2,4).
Explainwhytherootsofthisequationare 1, α and α,andhencefindthepoint P andthevalueof m
8 Thepoint P(p, p3)liesonthecurve y = x3.Alinethrough P withgradient m intersectsthecurveagainat A and B.
Findtheequationofthelinethrough P a
Showthatthe x-coordinatesof A and B satisfytheequation x3 mx + mp p3 = 0.
c
b Hencefindthe x-coordinateofthemidpoint M of AB,andshowthatforfixed p, M alwaysliesonaline thatisparalleltothe y-axis.
UNCORRECTEDSAMPLEPAGES
9a Theequation x3 (m + 1)x + (6 2m) = 0hasarootat x = 2andadouble rootat x = α.Find α and m.
b Writedowntheequationoftheline ℓ passingthroughthepoint P( 2, 3)with gradient m.
c Thediagramshowsthecurve y = x3 x + 3andthepoint P( 2, 3)onthe curve.Theline ℓ cutsthecurveat P,andistangenttothecurveatanother point A onthecurve.Findtheequationoftheline ℓ P() −2−3 , x y 3
b Theline ℓ: y = mx + b touchesthequartic y = x4 4x3 9x2 + 16x + 20attwodistinctpoints A and B. Explainwhythe x-coordinates α and β of A and B aredoublerootsoftheequation x4 4x3 9x2 + (16 m)x + (20 b) = 0.
c Usethetheoryofthesumandproductofrootstowritedownfourequationsinvolving α, β, m and b
d Hencefind m and b,andwritedowntheequationof ℓ
Note: Iftwocurvestoucheachotherat P,thentheyaretangenttoeachotherat P
11a Find k andthepointsofcontactiftheparabola y = x2 k touchesthequartic y = x4 attwopoints.
b Find k andthepoint T ofcontactiftheparabola y = x2 k touchesthecubic y = x3
c Find k andthepointsofcontactiftheparabola y = x2 k touchesthecircle x2 + y2 = 1attwopoints.
CHALLENGE
12 Acirclepassingthroughtheorigin O istangenttothehyperbola xy = 1at A,andintersectsthehyperbola againattwodistinctpoints B and C.Provethat OA ⊥ BC.
1 Considerthepolynomial P(x) = 2x3 5x2 6x 11.State: thedegreeof P(x), a theleadingcoefficientof P(x), b theleadingtermof P(x), c theconstanttermof P(x). d
2 Thepolynomial P(x)hasdegree3.Writedownthedegreeofthepolynomial: 3 P(x) a (P(x))3 b
Explainwhythegeneralformof R(x)is ax + b,where a and b areconstants. a When P(x)isdividedby x + 1theremainderis10,andwhen P(x)isdividedby x 2theremainderis 8.Find a and b.(Hint:Usethedivisionidentity.) b
ThefinalSection16Edealswithfunctionsoftheform a sin x + b cos x,whichsurprisinglyturnouttobesine orcosinefunctions—shiftedhorizontally,anddilatedverticallytogiveadifferentamplitude.Theseresults andmethodsrequiretransformationoftrigonometricfunctionspresentedintheYear12Advancedcourse,soa preliminarysubheadingquicklyappliesthemethodsofChapter5tothetwotransformationsthatareneeded.
Themethodistointroduceapronumeral h = TF fortheheight,thenworkaroundthefigureuntil four measurementsareknownintermsof h inthebasetriangle—atthispointanequationin h canbeformedandsolved.
Amotoristdrivingonlevelgroundsees,duenorthofher,atowerwhoseangleofelevationis10◦.After driving3kmfurtherinastraightline,thetowerisinthedirectionduewest,withangleofelevation12◦ Howhighisthetower? a Inwhatdirectionisshedriving? b
Solution
Letthetowerbe TF,andletthemotoristbedrivingfrom A to B
a Therearefourtriangles,noneofwhichcanbesolved.
Let h betheheightofthetower.
In △TAF, AF = h cot10◦ .
In △TBF, BF = h cot12◦ .
Wenowhaveexpressionsforfourmeasurementsin △ABF,sowecanusePythagoras’theoremtoforman equationin h
a UsePythagoras’theoremtofindthelengthofthebasediagonal BE
b Hencefindthelengthoftheprismdiagonal BH
c Find,correcttothenearestdegree,theangle α that BH makeswiththe baseoftheprism.
2 Thediagramtotherightshowsacube.
a Writedownthesizeof:
b UsePythagoras’theoremtofindtheexactlengthof:
AF ii AG
c Hencefind,correcttothenearestdegree:
∠GAF
FOUNDATION
∠AGB
3 Thediagramtotherightshowsatriangularprism.
a Findtheexactlengthof:
i AC ii AF
b Whatisthesizeof ∠ACF?
c Find ∠AFC,correcttothenearestdegree.
4 Thediagramtotherightshowsasquarepyramid.Thepoint C isthecentreofthebase,and TC is perpendiculartothebase.
a Writedownthesizeof: i ∠CMQ ii ∠TCM iii ∠TCQ
b Findthelengthof: i CM ii CQ
c Find,correcttothenearestdegree: i theanglebetweenasidefaceandthebase, ii theanglebetweenaslantedgeandthebase.
5 Thediagramtotherightshowsarectangularprism.
a Writedownthesizeof:
i ∠ABF ii ∠DBF
b Find,correcttothenearestdegree,theanglethatthediagonalplane DBFH makeswiththebaseoftheprism.
6 Thediagramtotherightshowsasquareprism.Theplane ABC isinside theprism,and M isthemidpointofthebasediagonal BC.
a Findtheexactlengthof MD
b Hencefind,correcttothenearestdegree,theanglethattheplane ABC makeswiththebaseoftheprism.
7 Twolandmarks P and Q onlevelgroundareobservedfromthetop T ofa verticaltower BT ofheight30m.Landmark P isduesouthofthetower,while landmark Q isdueeastofthetower.Theanglesofelevationof T from P and Q are15◦ and18◦ respectively.
a Showthat BP = 30tan75◦ andfindasimilarexpressionfor BQ.
b Find,correcttothenearestmetre,thedistancebetweenthetwolandmarks.
8 Atree BT isduenorthofanobserverat P andduewestofanobserverat Q Thetwoobserversare50mapartandthebearingof Q from P is36◦.The angleofelevationof T from Q is28◦ .
a Showthat BQ = 50sin36◦
b Hencefindtheheight h ofthetreecorrecttothenearestmetre.
c Find,correcttothenearestdegree,theangleofelevationof T from P
9 Twomonuments A and B are400mapartonahorizontalplane.Theangleof depressionof A fromthetop T ofatallbuildingis18◦.Also, ∠TAB = 52◦ and ∠TBA = 38◦
a Showthat TA = 400cos52◦ .
b Findtheheight h ofthebuilding,correcttothenearestmetre.
c Find,correcttothenearestdegree,theangleofdepressionof B from T .
10 Thediagramshowsacubeofside2cm,withdiagonals AG and CE intersectingat P.Thepoint M isthemidpointofthefacediagonal EG. Let α betheacuteanglebetweenthediagonals AG and CE
a Whatisthelengthof PM?
b Findtheexactlengthof EM.
c Writedowntheexactvalueoftan ∠EPM
d Hencefind α,correcttothenearestminute.
11 Thediagramshowsarectangularpyramid. X and Y arethemidpointsof AD and BC respectivelyand T isdirectlyabove Z. TX = 15cm, TY = 20cm, AB = 25cmand BC = 10cm.
a Showthat ∠XTY = 90◦ .
b UsingeithersimilartrianglesorPythagoras’theorem,showthat TZ = 12cm.
c Hencefind,correcttothenearestminute,theanglethatthefrontface DCT makeswiththebase.
12 Twoobserversat A and B onhorizontalgroundare300mapart.From A,the angleofelevationofthetop C ofatallbuilding DC is32◦.Itisalsoknownthat
∠DAB = 59◦ and ∠ADB = 78◦
a Showthat AD = 300sin43◦ sin78◦
b Hencefindtheheightofthebuilding,correcttothenearestmetre.
13
Aballoon B isduenorthofanobserver P anditsangleofelevationis62◦.Fromanotherobserver Q 100metresfrom P,theballoonisduewestanditsangleofelevationis55◦.Lettheheightoftheballoonbe h metresandlet C bethepointonthelevelgroundverticallybelow B
a Showthat PC = h cot62◦,andwritedownasimilarexpressionfor QC
b Explainwhy ∠PCQ = 90◦
c UsePythagoras’theoremin △CPQ toshowthat
h2 = 1002 cot2 62◦ + cot2 55◦ .
d Hencefind h,correcttothenearestmetre.
14 Fromapoint P duesouthofaverticaltower,theangleofelevationofthetopofthetoweris20◦.Froma point Q situated40metresfrom P anddueeastofthetower,theangleofelevationis35◦.Let h metresbe theheightofthetower.
Drawadiagramtorepresentthesituation.
b
a Showthat h = 40 √tan2 70◦ + tan2 55◦ ,andevaluate h,correcttothenearestmetre.
15 Fromtwopoints P and Q onlevelground,theanglesofelevationofthetop T ofa38mtowerare26◦ and22◦ respectively.Point P isduesouthofthe tower,andthebearingof Q fromthetoweris100◦T.
a Showthat PB = 38tan64◦,andfindasimilarexpressionfor QB
b Usethecosineruletodetermine,correcttothenearestmetre,thedistance between P and Q
16 Inthediagram, TF representsaverticaltowerofheight x metresstandingon levelground.From P and Q atgroundlevel,theanglesofelevationof T are22◦ and27◦ respectively. PQ = 63metresand ∠PFQ = 51◦ .
a Showthat PF = x cot22◦ andwritedownasimilarexpressionfor QF
17 Thediagramshowsatowerofheight h metresstandingonlevelground.Theangles ofelevationofthetop T ofthetowerfromtwopoints A and B onthegroundnearby are55◦ and40◦ respectively.Thedistance AB is50metresandtheinterval AB is perpendiculartotheinterval AF,where F isthefootofthetower.
a Find AT and BT intermsof h.
b Whatisthesizeof ∠BAT ?
c UsePythagoras’theoremin △BAT toshowthat h = 50sin55◦ sin40◦ sin2 55◦ sin2 40◦
d Hencefindtheheightofthetower,correcttothenearestmetre.
18 Inthediagramofatriangularpyramid, AQ = x, BQ = y, PQ = h, ∠APB = θ,
∠PAQ = α and ∠PBQ = β.Also,therearethreerightanglesat Q.
a Showthat x = h cot α andwritedownasimilarexpressionfor y
b UsePythagoras’theoremandthecosineruletoshowthat cos θ = h2 (x2 + h2)(y2 + h2) .
21 Threetourists T1, T2 and T3 atgroundlevelareobservingalandmarkwhosetopweshallcall L. T1 isdue northof L, T3 isdueeastof L,and T2 isonthelineofsightfrom T1 to T3 andbetweenthem.Theanglesof elevationto L from T1, T2 and T3 are25◦,32◦ and36◦ respectively.
a
Showthattan ∠LT1T2 = cot36◦ cot25◦ .
Usethesinerulein △LT1T2 tofind,correcttothenearestminute,thebearingof T2 from L. b
Weshallprovethatforallrealnumbers α and β, cos(α β) = cos α cos β
Proof Lettherayscorrespondingtotheangles α and β intersectthecircle x2 + y2 = r2 atthepoints A and B respectively.Thenbythedefinitionsof thetrigonometricfunctionsforgeneralangles, A = (r cos α , r sin α)and B = (r cos β , r sin β).
Nowwecanusethedistanceformulatofind AB2:
=
(cos
(cos
(1
Buttheangle ∠AOB is α β,sobythecosinerulein △AOB,
AB2 = r 2 + r 2 2r 2 cos(α β) = 2r 2 1 cos(α β)
Equatingthesetwoexpressionsfor AB2 , cos(α β) = cos α cos β + sin α sin β
Note: Itwasclaimedintheproofthat ∠AOB = α β.Thisisnotnecessarilythecase,becauseit’salsopossible that ∠AOB = β α,orthat ∠AOB differsfromeitherofthesetwovaluesbyamultipleof2π.But thecosinefunctioniseven,anditisperiodicwithperiod2π.Soitwillstillfollowineverycasethat cos ∠AOB = cos(α β),whichisallthatisrequiredintheproof.
B Replacing β by β inE,whichistheexpansionofcos(α β), cos(α + β) = cos α ( β)
= cos α cos( β) + sin α sin( β) = cos α cos β sin α sin β,becausecosineisevenandsineisodd.
A Usingtheidentitysin θ = cos( π 2 θ), sin(α + β) = cos π 2 (α + β) = cos ( π 2 α) β)
= cos( π 2 α)cos β + sin( π 2 α)sin β
= sin α cos β + cos α sin β
D Replacing β by β,andnotingthatcosineisevenandsineisodd, sin(α β) = sin α cos β cos α sin β
C Becausetan θ istheratioofsin θ andcos θ, tan(α + β) = sin(α + β) cos(α + β) = sin α cos β + cos α sin β cos α cos β sin α sin β = tan α + tan β 1 tan α tan β ,afterdividingtopandbottombycos α cos β.
F Replacing β by β,andnotingthatthetangentfunctionisodd,
17 Inthediagramopposite, P and Q arelandmarksthatare160metresand 70metresduenorthofpoints A and B respectively.Points A and B lie130 metresapartonawest–eastroad,and C isapointontheroadbetween A and B sothat ∠PCQ = 45◦.Find AC. (Let AC = x and ∠ACP = α.)
2 Provethat: (cos A sin A)(cos A + sin A) = cos2A a (sin α cos α)2 = 1 sin2α b sin2θ = 2sin θ sin( π 2 θ) c 1 1 tan θ 1 1 + tan θ = tan2θ d
3a Ifcos α = 4 5 ,findcos2α
b Ifsin x = 2 3 ,findcos2x
c Ifsin θ = 5 13 and θ isacute,findsin2θ
d Iftan A = 1 2 ,findtan2A.
UNCORRECTEDSAMPLEPAGES
DEVELOPMENT
4 Ifsin x = 3 4 and π 2 < x < π,findtheexactvalueofsin2x
5 Proveeachidentity.
cos4 α sin4 α = cos2α a cos2x + cos x = (cos x + 1)(2cos x 1) b sin2A 1 cos2A = cot A c cos θ sin θ sin2θ = cos θ cos2θ d tan( π 4 + α) tan( π 4 α) = 2tan2α e sin2θ + sin θ cos2θ + cos θ + 1 = tan θ f
6a Showthat 1 cos2x 1 + cos2x = tan2 x.
b Hencefindtheexactvalueoftan π 8
7 Eliminate θ fromeachpairofparametricequations. x = 2 + cos θ, y = cos2θ a x = tan θ + 1, y = tan2θ b
8 Points A, B, C,and W lieinthesameverticalplane.Abirdat A observesa wormat W atanangleofdepression θ.Afterflying20metreshorizontallyto B,theangleofdepressionofthewormis2θ.Ifthebirdflewanother10metres horizontallyitwouldbedirectlyabovetheworm.Let WC = h
Writetan2θ intermsoftan θ a
Usethetworight-angledtrianglestowritetwoequationsin h and θ. b
Useparts(a)and(b)toshowthat 1 10 = 60 900 h2 c
Henceshowthat h = 10√3metres. d
Howcould h havebeenfoundwithouttrigonometry? e
9 In △ABC, b c = 4 3 and B = 2C.Usethesineruletoshowthatcos C = 2 3
11 Usedouble-angleformulaetoshowthat: 2sin 4π 5 cos π 5 = sin 2π 5 a cos2 4π 7 sin2 3π 7 = cos 6π 7 b
12 Proveeachidentity.
cot2α + tan α = cosec2α a
sin3A sin A + cos3A cos A = 4cos2A b
tan2x cot x = 1 + sec2x c sin2θ cos2θ + 1 sin2θ + cos2θ 1 = tan(θ + π 4 ) d
1 + sin2α 1 + cos2α = 1 2 (1 + tan α)2 e
13a Showthattan3θ = 3tan θ tan3 θ 1 3tan2 θ
cosec4A + cot4A = 1 2 (cot A tan A) f
CHALLENGE
b Atower AB hasheight h metres.Theangleofelevationofthetopofthetower atapoint C 20metresfromitsbaseisthreetimestheangleofelevationata point D 80metresfurtherawayfromitsbase.Usetheidentityinpart(a)to showthat h = 100 √7 metres.
14a Writedowntheexactvalueofcos45◦ . b Henceshowthat:
a sin x ispositiveinquadrants1and2,sothetwosolutionsare25◦ and155◦
b BytheASTCdiagram,tan x > 0inquadrants1and3. Hencethetwosolutionsin0 ≤ x ≤ 2π are0.2,and0.2 + π (Alternatively,thegraphof y = tan x hasperiod π ,andeachbranchbetweentwoasymptotesisincreasing ateverypoint.)
c Theangle160◦ hasrelatedangle20◦,andcos x < 0inquadrants2and3,sothetwosolutionsin
0◦ ≤ x ≤ 360◦ are160◦ and200◦ Hencethefoursolutionsin 360◦ ≤ x ≤ 360◦ are 200◦ , 160◦,160◦,and200◦
d Thisisaboundaryangle—fromthegraph,thetwosolutionsare 3π 2 and π 2
Exercise16D FOUNDATION
1 Considertheequationsin2x cos x = 0.
Byusingadouble-angleformulaandthenfactoring,showthatcos x = 0orsin x = 1 2 . a Hencesolvetheequationfor0 ≤ x ≤ 2π b
2 Considertheequationcos2x cos x = 0.
Byusingadouble-angleformulaandthenfactoring,showthatcos x = 1or 1 2 . a Hencesolvetheequationfor0 ≤ x ≤ 2π. b
• Solvetrigequationsoftheform a sin x + b cos x = c andrelatedinequations.
Thissectionanalyseswhathappenswhenthesineandcosinecurvesareadded,and,moregenerally,when multiplesofthetwocurvesareadded.Thesurprisingresultisthat y = a sin x + b cos x isstillasineorcosine wave,whateverthevaluesof a and b are,butshiftedsidewaysandstretchedvertically.
Theseformsfor a sin x + b cos x alsogiveasystematicmethodofsolvinganyequationoftheform a cos x + b sin x = c.
Preliminarynotesonverticaldilationsandhorizontalshiftsof y = sin x and y = cos x
10Verticaldilationsandhorizontalshiftsof y = sin x and y = cos x
• Whenshiftedright α:
)and
andtheresultingwavefunctionsstillhave amplitude1.
• Whendilatedverticallywithfactor R > 0: y = sin x −→ y = R sin x and y = cos x −→
andtheresultingwavefunctionsnowhave amplitude R.
),
• Whenshiftedright α anddilatedverticallywithfactor R > 0(ineitherorder): y = sin x −→ y = R sin(x α)and y = cos x −→ y = cos(x α), andtheresultingwavefunctionshave amplitude R.
Example19 Sketchingverticaldilationsandhorizontalshiftsof sin x and cos x
Sketch,over 360◦ ≤ x ≤ 360◦,onsinglepairsofaxes:
y = sin x and y = 2sin x a y = cos x and y = 2cos x b y = sin x and y = sin(x 120◦) c y = cos x and y = cos(x 120◦) d y = sin x and y = 2sin(x 120◦) e y = cos x and y = 2cos(x 120◦) f
Sketching
y = sin x + cos x bygraphicalmethods
Wecannowreturntothesumof y = sin x and y = cos x.Chapter6preparedthegroundforthisbysketchingthe sumoftwogivensketchedgraphs.
Thediagramtotherightshowsthetwographsof y = sin x and y = cos x.Fromthesetwographs,thesumfunction y = sin x + cos x hasbeendrawnonthesamediagram—the crossesrepresentobviouspointstomarkonthegraphofthesum.
• Thenewgraphobviouslyhasthesameperiod2π as y = sin x and y = cos x.Itlookslikeawave,andwithin[0,2π]there arezeroesatthetwovalues x = 3π 4 and x = 7π 4 wheresin x and cos x takeoppositevalues.
Itistrueingeneralthatanyfunctionoftheform f (x) = a sin x + b cos x canbewrittenasasinglewavefunction. Therearefourpossiblestandardformsinwhichthewavecanbewritten,andtheprocedureisdonebyexpanding thestandardformandequatingcoefficientsofsin x andcos x.
11Auxiliary-anglemethod
• Anyfunctionoftheform f (x) = a sin x + b cos x,where a and b areconstants(notbothzero),canbe writteninanyoneofthefourforms:
y = R sin(x α) y = R cos(x α)
y = R sin(x + α) y = R cos(x + α)
where R > 0and0◦ ≤ α < 360◦.Theconstant R = √a2 + b2 isthesameforallforms,butthe auxiliary angle α dependsonwhichformischosen.
• Tobegintheprocess,expandthestandardformandequatecoefficientsofsin x andcos x
Express y = sin x + cos x inthetwoforms: R sin(x + α), a R cos(x + α), b where,ineachcase, R > 0and0 ≤ α < 2π.Thensketchthecurve,showingallinterceptsandmaximaand minimaintheinterval0 ≤ x ≤ 2π.
Solution
a Expanding,
soforall x,
Equatingcoefficientsofsin x, R cos α = 1, (1)
equatingcoefficientsofcos x, R sin α = 1. (2)
Squaringandadding, R2 = 2,
andbecause R > 0, R = √2.
From(1), cos α = 1 √2 , (1A) andfrom(2), sin α = 1 √2 , (2A)
Hence α = π 4 ,andsin x + cos x = √2sin(x + π 4 ).
Thegraphis y = sin x shiftedleftby π 4 ,andstretchedverticallybya factorof √2.Thusthe x-interceptsare x = 3π 4 and x = 7π 4 ,thereisa maximumof √2when x = π 4 ,andaminimumof √2when x = 5π 4
b Expanding, R cos(x + α) = R cos x cos α R sin x sin α, soforall x, sin x + cos x = R cos x cos α R sin x sin α
a Usingthepreviousworkedexample,anditscalculatorapproximation,solve3sin x 4cos x = 2,for 180◦ ≤ x ≤ 180◦,correcttothenearestdegree.
b Henceusethegraphtosolve3sin x 4cos x ≤−2,for 180◦ ≤ x ≤ 180◦
Solution
a Weknowthat3sin x 4cos x = 5cos(x α),where α ≑ 143◦ , sotheequationis5cos(x α) = 2, cos(x α) = 2 5 . Thus x α isinquadrant2or3,withrelatedangleabout66◦ Therestrictionon x is 180◦ ≤ x ≤ 180◦ thatis,about 323◦ ≤ x α ≤ 37◦ , so x α ≑ 114◦ or 246◦ x ≑ 30◦ or 103◦ .
1a Whattransformationmoves y = cos x to y = 4cos x?Drawbothcurvesononesetofaxes,andstatethe newamplitude.
b Whattransformationmoves y = sin x to y = sin(x π 4 )?Drawbothcurvesononesetofaxes.
2 Find R and α exactly,if R > 0and0 ≤ α < 2π,and: R sin α = √3and R cos α = 1, a R sin α = 3and R cos α = 3. b
3 Find R (exactly)and α (correcttothenearestminute),if R > 0and0◦ ≤ α < 360◦,and:
R sin α = 5and R cos α = 12, a R cos α = 2and R sin α = 4. b
4a Ifcos x sin x = A cos(x + α),showthat A cos α = 1and A sin α = 1.
b Findthepositivevalueof A bysquaringandadding.
c Find α,if0 ≤ α < 2π.
d Statethemaximumandminimumvaluesofcos x sin x,andthefirstpositivevaluesof x forwhichthey occur.
e Solvetheequationcos x sin x = 1,for0 ≤ x ≤ 2π.
f Writedowntheamplitudeandperiodofcos x sin x.Hencesketch y = cos x sin x,for0 ≤ x ≤ 2π. Indicateonyoursketchtheline y = 1andthesolutionstotheequationinpart(e).
5a If √3cos x sin x = B cos(x + θ),showthat B cos θ = √3and B sin θ = 1.
b Find B,if B > 0,bysquaringandadding.
c Find θ,if0 ≤ θ < 2π.
d Statethegreatestandleastpossiblevaluesof √3cos x sin x,andthevaluesof x closestto x = 0for whichtheyoccur.
e Solvetheequation √3cos x sin x = 1,for0 ≤ x ≤ 2π.
f Sketch y = √3cos x sin x,for0 ≤ x ≤ 2π.Onthesamediagram,sketchtheline y = 1.Indicateonyour diagramthesolutionstotheequationinpart(e).
6 Let4sin x 3cos x = A sin(x α),where A > 0and0◦ ≤ α < 360◦ .
Showthat A cos α = 4and A sin α = 3. a
Showthat A = 5and α = tan 1 3 4 b
c
Hencesolvetheequation4sin x 3cos x = 5,for0◦ ≤ x ≤ 360◦.Givethesolution(s)correcttothe nearestminute.
UNCORRECTEDSAMPLEPAGES
7 Considertheequation2cos x + sin x = 1.
Let2cos x + sin x = B cos(x θ),where B > 0and0◦ ≤ θ < 360◦.Showthat B = √5and θ = tan 1 1 2 . a
Hencefind,correcttothenearestminutewherenecessary,thesolutionsoftheequation,for0◦ ≤ x ≤ 360◦ b
8 Letcos x 3sin x = D cos(x + φ),where D > 0and0◦ ≤ φ < 360◦
Showthat D = √10and φ = tan 1 3. a
Hencesolvecos x 3sin x = 3,for0◦ ≤ x ≤ 360◦.Givethesolutionscorrecttothenearestminutewhere necessary. b
9 Considertheequation √5sin x + 2cos x = 2.
TransformtheLHSintotheform C sin(x + α),where C > 0and0◦ ≤ α < 360◦ a
Find,correcttothenearestminutewherenecessary,thesolutionsoftheequation,for0◦ ≤ x ≤ 360◦ b DEVELOPMENT
10 Solveeachequation,for0◦ ≤ x ≤ 360◦,bytransformingtheLHSintoasingle-termsineorcosinefunction.
Givesolutionscorrecttothenearestminute.
3sin x + 5cos x = 4 a 6sin x 5cos x = 7 b
7cos x 2sin x = 5 c 9cos x + 7sin x = 3 d
11 Find A and α exactly,if A > 0and0 ≤ α < 2π,and: A sin α = 1and A cos α = √3, a A
α = 5and A sin α = 5. b
12ai Express √3cos x + sin x intheform A cos(x + θ),where A > 0and0 < θ < 2π
ii Hencesolve √3cos x + sin x = 1,for0 ≤ x < 2π
bi Expresscos x sin x intheform B sin(x + α),where B > 0and0 < α < 2π ii Hencesolvecos x sin x = 1,for0 ≤ x < 2π
ci Expresssin x √3cos x intheform C sin(x + β),where C > 0and0 < β < 2π
ii Hencesolvesin x √3cos x = 1,for0 ≤ x < 2π
di Express cos x sin x intheform D cos(x φ),where D > 0and0 < φ < 2π.
ii Hencesolve cos x sin x = 1,for0 ≤ x < 2π.
13 Solve,for0◦ ≤ x ≤ 360◦,givingsolutionscorrecttothenearestminute:
2sec x 2tan x = 5 a 2cosec x + 5cot x = 3 b
14a Giventheequationsin θ + cos θ = cos2θ,showthattan θ = 1orcos θ sin θ = 1.
b Hencesolvesin θ + cos θ = cos2θ,for0 ≤ θ < 2π
15 Solve,for0 ≤ x ≤ 2π: sin x cos x = √1.5 a √3sin2x cos2x = 2 b sin4x + cos4x = 1 c
1 Fromtwopoints P and Q onhorizontalground,theanglesofelevationofthetop T ofa10mmonumentare 16◦ and13◦ respectively.Itisalsoknownthat ∠PBQ = 70◦,where B isthebaseofthemonument.
Showthat PB = 10tan74◦,andwritedownasimilarexpressionfor QB. a Hencedetermine,correcttothenearestmetre,thedistancebetween P and Q b
2 Thepoints P, Q and B lieinahorizontalplane.From P,whichisduewestof B,the angleofelevationofthetopofatower AB ofheight h metresis42◦.From Q,which isonabearingof196◦ fromthetower,theangleofelevationofthetopofthetower is35◦.Thedistance PQ is200metres.
UNCORRECTEDSAMPLEPAGES
c
Showthat PB = h cot42◦,andwritedownasimilarexpressionfor QB. a Explainwhy ∠PBQ = 74◦ . b Usethecosineruletoshowthat
Hencefindtheheightofthetower,correcttothenearestmetre. d
3 Atriangularpyramid ABCD hasbase BCD andperpendicularheight AD
a Find BD and CD intermsof h.
b Usethecosineruletoshowthat2h2 = x2 √3 hx.
c Let u = h x .Writetheresultofthepreviouspartasaquadraticequationin u,and henceshowthat
4 Simplify,usingthecompound-angleresults:
α cos2α + cos4α sin2α e
5 Simplify,usingthedouble-angleresults: 2sin2θ cos2θ a
2 1 2 x sin2 1 2 x b 2cos2 3α 1 c 2tan35◦ 1 tan2 35◦ d 1 2sin2 25◦ e
6 Giventhattheangles A and B areacute,andthatsin A = 3 5 andcos B = 5 13 ,find:
A a
B d
7a Bywriting75◦ as45◦ + 30◦,showthat:
◦ = √3 + 1 2√2 i
b Henceshowthat:
8 Usethecompound-angleanddouble-angleresultstofindtheexactvalueof: 2sin15◦ cos15◦ a cos35◦ cos5◦
9 Proveeachidentity.
θ(tan θ + cot θ) = 2 c
1 + tan A = tan2A g tan2A(cot A tan A) = 2, (providedcot A tan A) h
10 Anoffice-workerislookingoutawindow W ofabuildingstandingonlevel ground.From W,acar C hasanangleofdepression α,whileaballoon B directly abovethecarhasanangleofelevation2α.Theheightoftheballoonabovethecar is x,andtheheightofthewindowabovethegroundis h
a Showthat tan α h = tan2α x h .
b Henceshowthat h x = 1 tan2 α 3 tan2 α . x h W
11 Solveeachequationfor0 ≤ x ≤ 2π.
sin2x + cos x = 0 a
x = sin x b
x + 8cos x + 5 = 0 c cos2x + 5sin x + 2 = 0 d
x π 6 ) = cos(x π 3 ) e
x = 3tan x f
12a Usecompoundanddouble-angleformulaetoprovethatcos3x = 4cos3 x 3cos x
b Hencesolvecos3x + sin2x + cos x = 0,for0 ≤ x ≤ 2π.
13a Expresssin x cos x intheform R sin(x α),where R > 0and0 < α < π 2 .
b Hencesolvesin x cos x = √2,for0 ≤ x ≤ 2π
14a Express √3cos x + sin x intheform A cos(x θ),where A > 0and0 < θ < π 2
b Hencesolve √3cos x + sin x = 1,for0 ≤ x ≤ 2π
UNCORRECTEDSAMPLEPAGES
15a Express2sin x + √5cos x intheform R sin(x + α),where R > 0and α isacute.
b Hencesolve2sin x + √5cos x = 3,for0◦ ≤ x ≤ 360◦,writingthesolutionindegreescorrecttoone decimalplace.
16a Express3cos x 2sin x intheform A cos(x + θ),where A > 0and θ isacute.
b Hencesolve3cos x 2sin x = 1,for0◦ ≤ x ≤ 360◦,writingthesolutionscorrecttothenearestminute.
• An emptyproduct isregardedasbeing1,becauseifnothinghasyetbeenmultiplied,theregisterremainsat1 whereitwasoriginallysetinpreparationforperformingmultiplication.
b Thenumberofwaystoarrange4distinctbooksonabookself.
c Thenumberofways3particularpeoplecanbeplacedfirst,secondandthirdinacompetition,assuming thateachisplacedinoneofthesethreepositions.
d Samdropshisportablekeyboardandall101keysfalloff.Howmanywayscanheputthekeysbackon thekeyboard,assumingthattheyareallinterchangable?
e Whentheteachercallsonstudentsinalphabeticalorder,AndrzejZywiecisupsetthatheisalwayscalled last.Inaclassof20,howmanywayscouldtherollbecalled,ifthealphabeticalorderingrestrictionwere dropped?
Thisisthefirstsituationlistedinthechapterintroduction.Supposethat r-letterwordsareformedfrom n distinct letters,whereanylettercanbeusedanynumberoftimes.Theneachsuccessiveletterinthewordcanbechosen in n ways:
1stletter 2ndletter 3rdletter ··· rthletter n n n ... n
giving nr distinctwordsaltogether.Theresultisthusasimplepower:
4Orderedselectionsallowingrepetition
If r lettersarechosensuccessivelyfrom n distinctletters,allowingrepetitionofletters,andplacedin order,then:
numberofarrangements = n r
Example5
Countingorderedselectionsallowingrepetition
a Howmanysix-digitnumberscanbeformedentirelyfromodddigits?
b Howmanyofthesenumberscontainatleastoneseven?
Solution
a Therearefiveodddigits,sothenumberofsuchnumbersis56
b Wefirstcountthenumberofthesesix-digitnumbersnotcontaining7.Suchnumbersareformed fromthedigits1,3,5and9,sothereare46 ofthem.Subtractingthisfromtheanswertopart(a), numberofnumbers = 56 46 = 11529.
A permutation isanarrangementofobjectschosenfromacertainfinitesetwithoutrepetition(thatis,without replacement).Forexample,thewordsABC,CED,EABandDBCaresomeofthemany3-letterpermutations takenfromthe5-memberset{A,B,C,D,E}.
Thesymbol nPr isusedtodenotethenumberofpermutationsof r letterschosenwithoutrepetitionfromasetof n distinctletters.Thepreviousexampleiseasilygeneralisedtoshowthatthereare n! (n r)! suchpermutations,so thisbecomestheformulafor nPr : 1stletter 2ndletter 3rdletter 4thletter rthletter n n 1 n 2 n 3 n r + 1
Scientificcalculatorshaveabuttonlabelled n Pr thatwillfindvaluesof nPr .Forlowvaluesof n and r,the answersareexact,butforhighervaluestheyareonlyapproximations.Makeapracticeofevaluatingthese numberbyhandwhenitisreasonabletodoso,becausesuchcalculationsgreatlyhelptheintuition.
7 Thesymbol nPr isthenumberofwaysofarranging r objectsselectedwithoutreplacementfrom n objects. Usethisexpression,andthe n Pr buttononyourcalculator,toanswerthefollowingquestions.
a Fromagroupof10,threepeoplelineuptobuytickets.Howmanywayscanthishappen?
b Fivecardsareeachlabelleduniquelywithoneofthedigits1,2,3,4,5.Threeofthefivecardsareplaced downinarow.Howmanywayscanthecardsbearranged?
c Onehundredpeopleeachbuyoneticketinalottery.Howmanywayscanthefirstthreeplacesbe awarded?
8 Theexpression nr isthenumberofwaysofarranging r objectsselectedwithreplacementfrom n objects. Usethisexpressiontoanswerthefollowingquestions.
a Howmanythree-digitnumberscanbewrittendownfromthedigits1to9?Thedigitsneednotbe distinct.
b Onehundredpeopleeachbuyoneticketinalottery.Ticketsareselectedonebyoneatrandomfroma barrelandthenreplacedbetweenselections.Howmanywayscanthefirstthreeplacesbeawarded?
c Acomputersendsastringoftenbinarydigits,thatis,eachsymbolcanonlybe0or1.Howmanysuch ten-digitstringsarepossible?
9 Eightrunnersareparticipatingina400-metrerace.
a Inhowmanywayscantheyfinish?
b Inhowmanywayscanthegold,silverandbronzemedalsbeawarded?
d Howmanyaretherethatdonotcontainazero,andinwhichtheconsecutivedigitsalternatebetweenodd andeven?
14 Usersofautomatictellermachinesarerequiredtoenterafour-digitPIN(personalidentificationnumber). FindhowmanyPINs: arepossible, a consistoffourdistinctdigits, b consistofodddigitsonly, c startandendwiththesamedigit. d
15a Ifrepetitionsarenotallowed,howmanyfour-digitnumberscanbeformedfromthedigits1,2,...8,9? Howmanyoftheseendin1? b Howmanyoftheseareeven? c Howmanyaredivisibleby5? d Howmanyaregreaterthan7000? e
a Howmanywholenumberslessthan1000areoddandgreaterthan500,ormultiplesof5andlessthan200?
b Howmanywholenumberslessthan1000areoddandgreaterthan200,ormultiplesof5andlessthan500?
Solution
a Thereare250oddnumbersbetween500and1000. Thereare40multiplesof5lessthan200(includingzero). Thetwocasesdonotoverlap,so
Total = 250 + 40 = 290.
b Thereare400oddnumbersbetween200and1000. Thereare100multiplesof5lessthan500(includingzero). Butthetwocasesoverlapthistime—thereare30oddnumbersfrom200to500thataremultiplesof5. Hence
SAMPLEPAGES
Total = 400 + 100 30 = 470.
Exercise17C FOUNDATION
1 Howmanyrearrangementsarethereofthelettersofeachword,ifthevowelsmustbetogether? BOARDS a RIO b QUIT c TROUNCE d
a ifthevowelsmustoccupythefirst,middleandlastpositions,
b ifthewordmuststartwithUandendwithM,
c ifalltheconsonantsmustbeinagroupattheendoftheword, d iftheMissomewheretotherightoftheU.
9 FindhowmanyarrangementsofthelettersofthewordBEHAVING: endinNG, a beginwiththreevowels, b havethreevowelsoccurring together. c
10 AMathstestistoconsistofsixquestions.Inhowmanywayscanitbearrangedsothat: a theshortestquestionisfirstandthelongestquestionislast, b theshortestandlongestquestionsarenexttooneanother?
i withoutrestriction, ii ifoneparticularpersonmustsitateitherend, iii iftwoparticularpeoplemustsitnexttooneanother, iv ifneitheroftwoparticularpeoplecansitoneitherendoftherow?
b Inhowmanywayscan n peoplebeplacedinarowof n chairs: i ifoneparticularpersonmustbeoneitherendoftherow, ii iftwoparticularpeoplemustsitnexttooneanother, iii iftwoofthemarenotpermittedtositateitherend?
a Howmanydifferentaccommodationarrangementsarethereiftherearenorestrictionsonwherethe backpackersstay?
b Howmanydifferentaccommodationarrangementsarethereifeachbackpackerstaysatadifferentyouth hostel?
c Supposethattwoofthebackpackersarebrotherandsisterandwishtostayinthesameyouthhostel. Howmanydifferentaccommodationarrangementsarethereiftheotherthreecangotoanyoftheother youthhostels?
22 [Derangements]A derangement of n distinctlettersisapermutationofthemsothatnoletterappearsinits originalposition.Forexample,DABCisaderangementofABCD,butDACBisnot.Denotethenumberof derangementsof n lettersby D(n).
a BylistingallthederangementsofA,AB,ABCandABCD,findthevaluesof D(1), D(2), D(3)and D(4).
b SupposethatwehaveformedaderangementofthefivelettersABCDE.Letthelastletterinthe derangementbeX,andexchangeXwithE—thisputsEbacktoitsoriginalposition.EitherXisnow alsoinitsoriginalpositionsothatthreelettersareawayfromtheiroriginalpositions,orXisnotinits originalpositionsothatfourlettersareawayfromtheiroriginalpositions.Henceexplainwhy
D(5) = 4 × D(4) + 4 × D(3).
c Usethisformulatoevaluate D(5).Thenapplythecorrespondingargumentsandformulaetoevaluate D(6), D(7)and D(8).
a Inaqueueoftenadults,howmanypatternsofmenandwomenarepossible?
b Sixwomenandfourmenformaqueueatthebusstop.Howmanypatternsofmenandwomenare possible?
Solution
a ByBox11Dotpoint1,thenumberofpossiblepatternsis210 = 1024.
b ByBox11Dotpoint2,thenumberofpossiblepatternsis 10! 6! × 4! = 210.
Exercise17D FOUNDATION
1 Findthenumberofpermutationsofthefollowingwordsifallthelettersareused. BOB a ALAN b SNEEZE c TASMANIA d BEGINNER e FOOTBALLS f EQUILATERAL g COMMITTEE h WOOLLOOMOOLOO i
a allballsareofadifferentcolour, b therearesevenredballsandonewhiteball, c therearesixredballs,onewhiteballandoneblackball, d therearethreeredballs,threewhiteballsandtwoblackballs.
5 Fiveidenticalgreenchairsandthreeidenticalredchairsarearrangedinarow.Findhowmanyarrangements arepossible: iftherearenorestrictions, a iftheremustbeagreenchaironeitherend. b
b Whatothernumberofredlightswouldgiveanidenticalanswertopart(a)?
7 InhowmanywayscanthelettersofthewordSOCKSbearrangedinaline: a withoutrestriction, b sothatthetwoSsaretogether, c sothatthetwoSsareseparatedbyatleastoneotherletter, d sothattheKissomewheretotheleftoftheC?
8a FindthenumberofarrangementsofthelettersinSLOOPSif: therearenorestrictions, i thetwoOsaretogether, ii thetwoOsaretobeseparated, iii theOsaretogetherandtheSsaretogether. iv
b InhowmanyarrangementsofthelettersinTATTOOarethetwoOsseparated?
9 InhowmanywayscanthelettersofthewordDECISIONSbearranged: a withoutrestriction, b sothatthevowelsandconsonantsalternate, c sothatthevowelscomefirstfollowedbytheconsonants, d sothattheNissomewheretotherightoftheD?
11 Aformhastenquestionsinorder,eachofwhichrequirestheanswer‘Yes’or‘No’.Findthenumberof waystheformcanbefilledin: withoutrestriction, a ifthefirstandlastanswersare‘Yes’, b iftwoare‘Yes’andeightare‘No’, c iffiveare‘Yes’andfiveare‘No’, d ifmorethansevenanswersare‘Yes’, e ifanoddnumberofanswersare‘Yes’, f ifexactlythreeanswersare‘Yes’,andtheyoccur together, g ifthefirstandlastanswersare‘Yes’andexactly fourmoreare‘Yes’.
b Howmanyfive-letterwordscanbeformedbyusingthelettersofthewordBANANA?
14 FindhowmanyarrangementsofthelettersofthewordTRANSITIONarepossibleif: therearenorestrictions, a theIsaretogether, b theIsaretogether,andsoaretheNs,andsoare theTs, c theNsoccupytheendpositions, d anNoccupiesthefirstbutnotthelastposition, e theletterNisnotateitherend, f thevowelsaretogether. g
15 Tencolouredmarblesareplacedinarow.
a Iftheyareallofdifferentcolours,howmanyarrangementsarepossible?
b Whatistheminimumnumberofcoloursneededtoguaranteeatleast10000differentpatterns?(Thiswill needaguess-and-checkapproach.)
one, i two, ii three, iii four, iv fiveletters, v d theGissomewherebetweenthetwoEs, e theMissomewheretotheleftofbothEsandtheUissomewherebetweenthem, f theGissomewheretotheleftoftheUandtheMissomewheretotherightoftheU.
c Indoingpart(b),however,wehavesubtractedsomeofthepermutationstwice.Forexample,someof themwouldleavebothAandBunmoved.Thusweneedtoaddbackthenumberofpermutationsthat leaveanytwoparticularlettersunmoved.Howmanyofthesearethere?
d Nowyouwillneedtosubtractthenumberofpermutationsthatleavethreelettersunmoved,andsoon. Hencefindanexpressionfor D(4).
e Rearrangeyourexpressionintotheform D(4)
f Explainhowthiscanbegeneralisedto
g WeshallproveinanEnrichmentquestionoftheYear12volumethatthesequenceinthebracketsof part(f)aboveconvergesto1/e as n →∞.Givebothacombinatorialandaprobabilisticinterpretationof thisresultintermsoftheratioofthenumbersofpermutationsandderangementsof n letters.
Choosingasubsetof S requireslookingateachmemberof S inturnanddecidingwhethertoincludeitinthe subsetornot.LetuswritethecodeYfor‘Yes’ifitisincluded,andNfor‘No’ifitisnotincluded.Usingthis code,eachsubsetof S correspondstoafive-letterwordmadeupofYsandNs.Forexample,
YYNYN ←→ {A,B,D}andNNNNY ←→ {E}.
Hencethetotalnumberofsubsetsof S isthenumberoffive-letterwords madeupofYsandNs.ByBox11ofSection17D,orusingtheboxtothe righttovisualisethechoices,thisis25,so
Numberofsubsetsof S = 25 = 32,asdemonstratedabove.
becauseLHSandRHSarebothcountingthetotalnumberofsubsetsof S .
Thesymbol nCr isspokenas‘n choose r’,andhasanalternativenotation n r .
Thenotations nPr and nCr areintendedtobesimilar.TheletterCstandsfor‘combination’—anoldtermfor ‘unorderedselection’—justastheletterPstandsfor‘permutation’.Byaconvenient,butfalse,etymology, Calsostandsfor‘Choose’,hencethemorerecentconventionofsaying‘n choose r’for nCr
Scientificcalculatorshaveabuttonlabelled n Cr thatwillfindvaluesof nCr .Theanswersareexactforlowvalues of n and r,butaswith nPr ,theyareonlyapproximationsforhighervalues.Again,makeapracticeofevaluating thesenumbersbyhandwhenreasonable—suchcalculationsgreatlyhelptheintuition.
Ingeneral, nPr = n! (n r)! wordsof r letterscanbeformedwithoutrepetitionfromthemembersofan n-member set S .Butevery r-membersubsetcanbeorderedin r Pr = r!ways,sothecorrespondencebetweentheordered selectionsandtheunorderedselectionsismany-to-one,withovercountingbyafactorof r!.
Hencethenumberof(unordered) r-membersubsetsoftheset S is nPr ÷ r Pr = n! (n r)! ÷ r! = n! r! × (n r)! .
Calculationsof nCr
Herearesomeexamplesofusingtheformulatocalculate nCr forsomevaluesof n and r
2 Findinhowmanywaysyoucanformagroupof: twopeoplefromachoiceofseven, a threepeoplefromachoiceofseven, b twopeoplefromachoiceofsix, c fivepeoplefromachoiceofnine. d
3a Findhowmanypossiblecombinationsthereareif,fromagroupoftenpeople: twopeoplearechosen, i eightpeoplearechosen. ii
b Whyaretheanswersidentical?
4 Fromapartyoftwelvemenandeightwomen,findhowmanygroupscanbechosenconsistingof: fivemenandthreewomen, a fourwomenandfourmen. b
5 Fournumbersaretobeselectedfromthesetofthefirsteightpositiveintegers.Findhowmanypossible combinationsthereareif: therearenorestrictions, a therearetwooddnumbersandtwoevennumbers, b thereisexactlyoneoddnumber, c allthenumbersmustbeeven, d thereisatleastoneoddnumber. e
6 Fourballsaresimultaneouslydrawnfromabagcontainingthreeidenticalgreenballsandsixidenticalblue balls.Findhowmanywaysthereareofdrawingthefourballsif: theballsmaybeofanycolour, a thereareexactlytwogreenballs, b thereareatleasttwogreenballs, c therearemoreblueballsthangreenballs. d
7 Acommitteeoffiveistobechosenfromsixmenandeightwomen.Findhowmanycommitteesare possibleif: therearenorestrictions, a allmembersaretobefemale, b allmembersaretobemale, c thereareexactlytwomen, d therearefourwomenandoneman, e thereisamajorityofwomen, f aparticularmanmustbeincluded, g aparticularmanmustnotbeincluded. h
b Howmanyofthefour-lettercombinationscontainfourvowels?
c Howmanyofthefour-lettercombinationscontaintheletterQ?
9 AteamofsevennetballersistobechosenfromasquadoftwelveplayersA,B,C,D,E,F,G,H,I,J,Kand L.Inhowmanywayscantheybechosen: withnorestrictions, a ifthecaptainCistobeincluded, b ifJandKarebothtobeexcluded, c ifAisincludedbutHisnot, d ifoneofFandListobeincludedandtheother excluded? e
10a Considerthedigits9,8,7,6,5,4,3,2,1and0.Findhowmanyfive-digitnumbersarepossibleifthe digitsaretobein: descendingorder, i ascendingorder. ii
b Whydothesetwoquestionsinvolveunorderedselections?
a Howmanysetsofthreepointscanbeselectedfromthefivethatarecollinear?
b Howmanytrianglescanbeformedusingthreeofthetenpointsasvertices?
15 Fromastandarddeckof52playingcards,findhowmanyfive-cardhandscanbedealt: consistingofblackcardsonly, a consistingofdiamondsonly, b containingallfourkings, c consistingofthreediamondsandtwoclubs, d consistingofthreetwosandanotherpair, e consistingofonepairandthreeofakind. f
16a Inhowmanywayscanagroupofsixpeoplebedividedinto: twounequalgroups(neithergroupbeing empty), i twoequalgroups? ii
b Repeatpart(a)forfourpeople.
c Repeatpart(a)foreightpeople.
17 Findhowmanydiagonalstherearein: aquadrilateral, a apentagon, b adecagon, c apolygonwith n sides. d
18 Twelvepointsarearrangedinorderaroundacircle.
a Howmanytrianglescanbedrawnwiththesepointsasvertices?
b Inhowmanypairsofsuchtrianglesaretheverticesofthetwotrianglesdistinct?
c Inhowmanysuchpairswillthetriangles: notoverlap, i overlap? ii
19 Let S = {1,3,5,7,9,11,13,15,17,19} bethesetofthefirsttenpositiveoddintegers.
a Howmanysubsetsdoes S have?
b Howmanysubsetsof S containatleastthreenumbers?
c Howmanysubsetswithatleastthreenumbersdonotcontain7?
d Howmanysubsetswithatleastthreenumbersdonotcontain7butdocontain19?
20 Inhowmanywayscantwonumbersbeselectedfrom1,2,...,8,9sothattheirsumis: even, a odd, b divisibleby3, c divisibleby5, d divisibleby6? e
21 Therearetenbasketballersinateam.Findinhowmanyways: thestartingfivecanbechosen, a theycanbesplitintotwoteamsoffive. b
b Adiefitsperfectlyintoacubicalbox.Howmanywaysarethereofputtingthedieintothebox?
25 Thediagramshowsa6 × 4grid.Theaimistowalkfromthepoint A inthetop left-handcornertothepoint B inthebottomright-handcornerbywalkingalongthe blacklineseitherdownwardsortotheright.Asinglemoveisdefinedaswalkingalong onesideofasinglesmallsquare,thusittakesyoutenmovestogetfrom A to B
a Findhowmanydifferentroutesarepossible: i withoutrestriction, ii ifyoumustpassthrough C, iii ifyoucannotmovealongthetoplineofthegrid, iv ifyoucannotmovealongthesecondrowfromthetopofthegrid.
b Noticethateveryroutemustpassthroughoneandonlyoneofthefivecrossedpoints.Henceprovethat
c Drawanothersuitablediagonaland,usingamethodsimilartothatinpart(b),provethat
d Drawupasimilar6 × 6grid,thenusingthesameideaasthatusedinparts(b)and(c),provethat
b Inhowmanywayscantwogamesofdoublestennisbearranged,givenagroupofeightplayers?
c Sixmenandsixwomenaretoplayinthreegamesofdoublestennis.Findhowmanywaysthepairings canbearrangedif:
therearenorestrictions, i eachgameistobeagameofmixeddoubles. ii
29 ReferringtoQuestion18ofExercise17D,Bob’sinterestinshirtshasmaturedrecently—henowhas 2n shirts,withtwoidenticalshirtsineachof n distinctstyles.Hestillwantstohanghisshirtsinthe wardrobesothatnotwoidenticalshirtsarenexttooneanother.
a Showthatthenumberofallowedarrangementsis
b Evaluatethisnumberfor n = 1,2,3,4,5and6,andfindthecorrespondingratioofthetotalnumberof arrangementstothenumberofallowedarrangements.
30 Computingisbasedon binarystrings,whicharesequencesof0sand1s,suchas00101and1001110.The probleminthisquestionistofindthenumber N ofbinarystringsthatcontainexactly a 0sandatmost b 1s, where a and b arewholenumbers.Wewillcountsuchstringsintwodifferentways,andhenceprovean interestingidentity.
a Using nCr notation,findhowmanybinarystringswithexactly a 0scontain: no1s i one1 ii two1s iii three1s iv r 1s. v
b Henceprovethat
c Let S beabinarystringconsistingof a 0sand r 1s,where r isatmost b.Extend S toalongerbinary string S 01 ... 1byadding0ontheright,andthenadding b r 1s.Howmany0sand1sarethereinthe resultingstring,andwhatisitstotallength?
d Describetheinverseprocessbywhichastringof(a + 1)0sand b 1scanbeconvertedtoastringof a 0s andatmost b 1s,andshowthatthetwoprocessesareone-to-onecorrespondences.
d Every unordered five-membersubsetofthesetofninenon-zerodigitscanbearrangedinexactlyoneway intoafive-digitnumberwiththedigitsinincreasingorder.(Notethatthedigitzerocannotbeused,because anumbercan’tbeginwiththedigitzero.)
Let A bethesetoffive-digitnumberswithouta4,andlet B bethesetoffive-digitnumberswithouta5. Then A ∩ B isthesetoffive-digitnumberwithno4 and no5,and A ∪ B isthesetoffive-digitnumberwith no4 or no5.
Wewantthesetofallfive-digitnumberswithatleastone4 and atleastone5, whichisthecomplementaryset A ∪ B,and A ∪ B = 90000 76304 = 13696. Hence P(atleastone4andatleastone5) = 13696 90000 , = 856 5625 .
c Countingthenumberoffive-digitnumberswithexactlythree7srequirescases.Firstwecountthefive-digit stringswithexactlythree7s,byfirstplacingthethree7s,andthenchoosingthefirstandsecondnon-7 digits:
a thefournumbersdrawnare1,2,3and6, b thenumber9isoneofthenumbersdrawn, c thenumber8isnotdrawn, d thenumber7isdrawnbutthenumber1isnot.
3 Abagcontainsthreered,sevenyellowandfiveblueballs.Ifthreeballsaredrawnfromthebagsimultaneously,findtheprobabilitythat: allthreeballsareyellow, a alltheballsareofthesamecolour, b therearetworedballsandoneblueball, c alltheballsareofdifferentcolours. d
4 AsportscommitteeoffivemembersistobechosenfromeightAFLfootballersandsevensoccerplayers. Findtheprobabilitythatthecommitteewillcontain: onlyAFLfootballers, a onlysoccerplayers, b threesoccerplayersandtwoAFLfootballers, c atleastonesoccerplayer, d atmostonesoccerplayer, e Ian,aparticularsoccerplayer. f
5 Fromastandardpackof52cards,threeareselectedatrandom.Findtheprobabilitythat: theyarethejackofspades,thetwoofclubsand thesevenofdiamonds, a allthreeareaces, b theyarealldiamonds, c theyareallofthesamesuit, d theyareallpicturecards, e twoareredandoneisblack, f oneisaseven,oneisaneightandoneisanine, g twoaresevensandoneisasix, h exactlyoneisadiamond, i atleasttwoofthemarediamonds. j
7 Threeboysandthreegirlsaretositinarow.Findtheprobabilitythat: a theboysandgirlsalternate, b theboyssittogetherandthegirlssittogether, c twospecificgirlssitnexttooneanother.
8 Afamilyoffiveareseatedinarowatthecinema.Findtheprobabilitythat: a theparentssitontheendandthethreechildrenareinthemiddle, b theparentssitnexttooneanother.
a thewordstartswithRandendswithS, b thelettersPandRarenexttooneanother, c thelettersPandRareseparatedbyatleastthreeletters, d thevowelsandtheconsonantsalternate, e thevowelsaretogether.
a thetwolettersEaretogether, b thetwolettersEarenottogether,
c thetwolettersEaretogetherandthetwolettersTaretogether, d theEsandTsaretogetherinonegroup.
14 ThelettersofENTERTAINMENTarearrangedinarow.Findtheprobabilitythat: thelettersEaretogether, a twoEsaretogetherandoneisapart, b allthelettersEareapart, c thewordstartsandendswithE. d
a Whatistheprobabilityofselectingnotaggedfishonagivenday?
b Whatistheprobabilityofselectingatleastonetaggedfishonagivenday?
c Calculatetheprobabilityofselectingnotaggedfishoneverydayforaweek.
d Whatistheprobabilityofselectingnotaggedfishonexactlythreeofthesevendaysduringtheweek?
16 Abagcontainssevenwhiteandfiveblackdiscs.Threediscsarechosenfromthebag.Findtheprobability thatallthreediscsareblack,ifthediscsarechosen: a withoutreplacement, b withreplacement, c sothataftereachdrawthediscisreplacedwithoneoftheoppositecolour.
17 Sixpeoplearetobedividedintotwogroups,eachwithatleastoneperson.Findtheprobabilitythat: a therewillbethreeineachgroup, b therewillbetwoinonegroupandfourintheother, c therewillbeonegroupoffiveandanindividual.
thenumberis473, a thenumberisodd, b thenumberisdivisibleby5, c thenumberisdivisibleby3, d thenumberstartswith4andendswith7, e thenumbercontainsthedigit3, f thenumbercontainsthedigits3and5, g thenumbercontainsthedigit3or5, h alldigitsinthenumberareodd, i thenumberisgreaterthan500. j
19 Thedigits1,2,3and4areusedtoformnumbersthatmayhave1,2,3or4digitsinthem.Ifoneofthe numbersisselectedatrandom,findtheprobabilitythat: ithasthreedigits, a itiseven, b itisgreaterthan200, c itisoddandgreaterthan3000, d itisdivisibleby3. e
b Thesenatecommitteeistobeselectedfrom N LaborandfiveLiberalsenators.Usetrialanderrorto findtheminimumvalueof N,giventhattheprobabilityofLaborhavingamajorityonthecommitteeis greaterthan 3 4 .
a onepair, b twopairs, c threeofakind, d fourofakind, e afullhouse(onepairandthreeofakind), f astraight(fivecardsinsequenceregardlessofsuit,acehighorlow), g aflush(fivecardsofthesamesuit), h aroyalflush(ten,jack,queen,kingandaceinasinglesuit).
1a Inhowmanywayscanfivepeoplebearranged: inaline, i inacircle? ii
b Inhowmanywayscantenpeoplebearranged: inaline, i inacircle? ii
2 Eightpeoplearearrangedin: astraightline, a acircle. b Inhowmanywayscantheybearrangedsothattwoparticularpeoplesittogether?
FOUNDATION
3 Bob,Betty,Ben,BradandBelindaaretobeseatedataroundtable.Inhowmanywayscanthisbedone: iftherearenorestrictions, a ifBettysitsonBob’sright-handside, b ifBradistositbetweenBobandBen, c ifBelindaandBettysitapart, d ifBenandBelindasitapart,butBettysitsnextto Bob? e
c iftheboysandgirlsareindistinctgroups, d ifaparticularboyandgirlwishtositnexttooneanother, e iftwoparticularboysdonotwishtositnexttooneanother, f ifoneparticularboywantstositbetweentwoparticulargirls?
5 ThelettersA,E,I,P,QandRarearrangedinacircle.Findtheprobabilitythat: thevowelsaretogether, a AisoppositeR, b thevowelsandconsonantsalternate, c atleasttwovowelsarenexttooneanother. d
6 Inhowmanywayscantheintegers1,2,3,4,5,6,7,8beplacedinacircleif: therearenorestrictions, a alltheevennumbersaretogether, b theoddandevennumbersalternate, c atleastthreeoddnumbersaretogether, d thenumbers1and7areadjacent, e thenumbers3and4areseparated? f
a Whatistheprobabilitythatthethreefemaleswillsittogether?
b Thecommitteeelectsapresidentandavice-president.Whatistheprobabilitythattheyaresitting oppositeoneanother?
8 Findhowmanyarrangementsof n peoplearoundacirclearepossibleif: therearenorestrictions, a twoparticularpeoplemustsittogether, b twoparticularpeoplesitapart, c threeparticularpeoplesittogether. d
b Inhowmanywayscantendifferentkeysbeplacedonakeyring?
c Inhowmanywayscanoneyellow,tworedandfourgreenbeadsbeplacedonabraceletifthebeadsare identicalapartfromcolour?(Thiswillrequirealistingofpatternstoseeiftheyareidenticalwhenturned over.)
11 Acommitteeofsevenistobechosenfromsixmenandtenwomen.Findhowmanycommitteesare possibleif: therearenorestrictions, a allmembersaretobefemale, b allmembersaretobemale, c therearetobeexactlytwomen, d therearetobefourwomenandthreemen, e thereistobeamajorityofwomen, f aparticularmanmustbeincluded, g aparticularmanmustnotbeincluded, h Mustafarefusestobeonacommittee withYingYue.
12 Eightpeoplearriveatarestaurant.Findhowmanywayscantheybeassignedto: a alargetableforfiveandasmallertableforthree, b twoquitedifferenttablesforfour, c twoindistinguishabletablesforfour.
14 Fromastandardpackof52cards,threeareselectedatrandom.Findtheprobabilitythat: theyarethequeenofspades,thethree ofclubsandthenineofhearts, a allthreearekings, b theyareallclubs, c theyareallofthesamesuit, d oneisredandtwoareblack, e oneisathree,oneisafive,andoneisaneight, f twoarefivesandoneisaseven, g atleasttwoofthemarespades. h
15 Threeboysandthreegirlsarearrangedinacircle.Inhowmanywayscanthisbedone: a iftherearenorestrictions, b iftheboysandthegirlsalternate, c iftheboysandgirlsareindistinctgroups, d ifaparticularboyandgirlwishtositnexttooneanother, e iftwoparticularboysdonotwishtositnexttooneanother, f ifaparticularboywantstositoppositeaparticulargirl?
d [Thepowersof11]Ifarowismadeintoasinglenumberbyusingeachelementasadigitofthenumber, thenumberisapowerof11(exceptthataftertherow1,4,6,4,1,thepatterngetsconfusedbycarrying).
e Findthediagonalandthecolumncontainingthetriangularnumbers,andshowthataddingadjacentpairs givesthesquarenumbers.
CHALLENGE
18 Bywriting(1 + x + 3x2)6 as(1 + A)6,where A = x + 3x2,expand(1 + x + 3x2)6 asfarasthetermin x3 Henceevaluate(1.0103)6 tofourdecimalplaces.
19 [ThePascalpyramid]Byconsideringtheexpansionof(1 + x + y)n,where0 ≤ n ≤ 4,calculatethefirstfive layersofthePascalpyramid.
Themoregeneralcaseoftheexpansionof(x + y)n issimilar.Because x and y arebothvariables,however,the symmetriesoftheexpansionwillbemoreobvious.
Aminorpointaboutlanguage—wearenowwideningtheterm polynomial toincludetermsmadeupofpowers ofanynumberofvariables.Thus5xy4 isamonomial, x + y isabinomial,and
b Findthetermindependentof x intheexpansionof(x + 1 + x 1)4
16 [TheSierpinskitrianglefractal]
a Drawanequilateraltriangleofsidelength1unitonapieceofwhitepaper.Jointhemidpointsofthe sidesofthistriangletoformasmallertriangle.Colouritblack.Repeatthisprocessonallwhitetriangles thatremain.Whatdoyounotice?
b DrawupPascal’striangleintheshapeofanequilateraltriangle,thencolouralltheevennumbersblack andleavetheoddnumberswhite.Whatdoyounotice?Thispatternwillbemoreevidentifyoutakeat leastthefirst16rows—perhapsuseacomputerprogramtogenerate100rowsofPascal’striangle.
Otherwiseexpressed,thisisthenumberofunorderedselectionsof r objectschosenfrom n objects.Weshowed therethat
nCr = n! r! × (n r)! , andwealsoshowedthatthiswasequaltothenumberof n-letterwordswith r lettersalikeofonekindand n r lettersalikeofanother.Thismeansthatthecoefficientof xr yn r canbewrittenas nCr ,givingaconciseformof theexpansion:
13 Theexpression(1 + ax)n isexpandedinincreasingpowersof x.Findthevaluesof a and n ifthefirstthree termsare:
14a Intheexpansionof(2 + 3x)n,thecoefficientsof x5 and x6 areintheratio4:9.Findthevalueof n
b Intheexpansionof(1 + 3x)n,thecoefficientsof x8 and x10 areintheratio1:2.Findthevalueof n
15 Intheexpansionof x + 1 x 40 x 1 x 40 ,findthetermindependentof x.Giveyouranswerintheform nCr , andalsocorrecttofoursignificantfigures.
16 [Divisibilityproblems]
a Usethebinomialtheoremtoshowthat7n + 2isdivisibleby3,where n isapositiveinteger.(Hint: Write7 = 6 + 1.)
b Usethebinomialtheoremtoshowthat5n + 3isdivisibleby4,where n isapositiveinteger.
c Supposethat b, c and n arepositiveintegers,and a = b + c.Usethebinomialexpansionof(b + c)n to showthat an bn 1(b + cn)isdivisibleby c2.Henceshowthat542 248 isdivisibleby9.
EachpatterninPascal’striangleisdescribedbyanidentityonthebinomialcoefficients nCr .Theseidentities sometimeshavearatherforbiddingappearance,anditisimportanttotakethetimetointerpreteachidentityas somesortofpatterninPascal’striangle.Usesmallvaluesof n suchas n = 3, n = 4,and n = 5toworkoutwhat theidentityissaying.
b Thismeansthatiftheentriesofanyrowaresquaredandadded,thesumisthemiddleentryintherow twiceasfardown.LookatthePascaltriangleonthefirstpageofthissection,andpickouttherowsindexed by3and6.
3 1331 6 1615201561
Thesumofthesquaresoftherowindexedby3is1
= 20,whichisthemiddleterm 6C3 of therowindexedby6.
a BywritingLHSandRHSintermsoffactorials,provethe additionproperty: nCr = n 1Cr 1 + n 1Cr ,for
1and1
b Giveacombinatorialproofoftheadditionproperty.
c Giveaproofcomparingcoefficients.
Solution
a RHS = (n 1)! (r 1)! × (n r)! + (n 1)! r!
= (n 1)! (r 1)! × (n r 1)! × 1 1
(
) + 1 r × 1 = (n 1)! (r 1)! × (n r 1)! × r r × (n r) + n r
= (n 1)! (r 1)! × (n r 1)! × n r × (n r) = n! r! × (n r)! = LHS
b Represent nCr asthenumberof r-personsubsetsofacrowdof n people. ThereisblokecalledGeoffreyinthecrowd, andevery r-personsubseteithercontainsGeoffrey,ordoesnotcontainGeoffrey.
Numberof r-membersubsetsthatcontainGeoffrey = n 1Cr 1 , (1) becauseweneedtochooseanother r 1peopleoutof n 1people.
Numberof r-membersubsetsnotcontainingGeoffrey = n 1Cr , (2) becauseweneedtochooseall r peopleoutof n 1people.
Addingthecountsin(1)and(2)gives nCr = n 1Cr 1 + n 1Cr
ai Writedownallthe3-lettersubsetsof S thatdonotnotcontain E
ii Explainwhythisisalistofallthe3-lettersubsetsof U
bi Writedownallthe3-lettersubsetsof S thatcontain E
ii Explainhowtopairthemupwithallthe2-lettersubsetsof U
c Henceexplainwhy 4C2 + 4C3 = 5C3.
d Explainwhy nCr 1 + nCr = n+1Cr ,foranywholenumbers n and r with1 ≤ r ≤ n.
4 [Theadditionpropertyandtheformulafor nCr ]Inthisquestion,youwillprovethatif a, b, c and d areany fourconsecutivetermsinanyrowofPascal’striangle,then a a + b + c c + d = 2b b + c
a Considertherow1,7,21,35,35,21,7,1indexedby n = 7.Showthattheidentityholdsforeach sequence a, b, c, d offourconsecutivetermsfromthisrow.
b Choosefourconsecutivetermsfromanyotherrowandshowthattheidentityholds.
c Provetheidentitybyletting a =
and d = nCr+2.Youwillneedtousethe additionproperty,thentheformula nC
5 [Twocombinatoricsproofs]Wehaveseeninquestion2(a)thatsubstituting x = 1and x = 1intothe binomialexpansionproves
Herearecombinatoricsproofsoftheseresults.
a Let S bean n-memberset,andinterpreteach nCr asthenumberof r-membersubsetsof S .Henceprove thefirstidentity(1).
b Toprovethesecondidentity(2),chooseafixedelementAintheset S .Pairupeachsubset U not containingAwiththeuniquesubset U ∪{A} containingA.
i Explainwhytheprocedurearrangesallthesubsetsof S uniquelyintopairs.
ii Explainwhyonememberofeachpairhasanevennumberofmembers,andtheotherhasanodd numberofmembers.
a Provethat 2nCr < 2nCr+1,forallwholenumbers n and r with r < n
b Provethat 2n+1Cr < 2n+1Cr+1,forallwholenumbers n and r with r
DEVELOPMENT
8 [Thehockey-stickidentity]Lookatthecolumnindexedby r = 2inPascal’striangle:
Thegeneralformofthiswell-known hockey-stickidentity is
where n and r arewholenumberswith0 ≤ r ≤ n.Hereareproofsofthisidentityusingtheaddition property,andusingacombinatorialproof.
a [Aproofusingtheadditionproperty]
i Toprovetheparticularresult(∗),startwiththeright-handsideandwrite
thenkeepexpandingthetermwith r = 3.Tocompletetheproof,youwillneedtousethefactthat 3C3 = 2C2 = 1.
ii Generalisethistoaproofoftheidentity(∗∗).
b [Acombinatoricsproof]
i Thenumber 7C3 isthenumberof3-membersubsetsofa7-memberset S .Tochoosea3-member subset U of S = {1,2,3,4,5,6,7},makethechoiceinthefollowingway:
• Firstchoosefrom S thegreatestnumber k thatwillbeinthesubset U.Thismustbeoneofthe numbers3,4,5,6or7,because U istohavethreemembers,soitwillhavetwonumberssmaller than k.
• Thenchoosetheremainingtwonumbersin U fromthe k 1possiblenumbers1,2,..., k 1.