


This textbook advance is provided as a sample for course preparation, planning and for use by teachers until the final products is available.
It should not be:
• made available in any other form
• uploaded to any website not affiliated to or authorised by Cambridge University Press & Assessment
• sold, reproduced or otherwise exploited for financial gain
• used in whole or in part to create a derivative work
• edited in any way (this includes the removal or modification of any branding, photographs or illustrations)
These advanced chapters have been provided for use by your school prior to publication of the textbook. The PDF supplied and all downloaded or printed excerpts must be destroyed once the textbook has been released.
For questions related to these instructions, please email copyright@cambridge.org
ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom
OneLibertyPlaza,20thFloor,NewYork,NY10006,USA
477WilliamstownRoad,PortMelbourne,VIC3207,Australia
314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India
103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467
CambridgeUniversityPress&AssessmentisadepartmentoftheUniversityofCambridge.
WesharetheUniversity’smissiontocontributetosocietythroughthepursuitofeducation,learningandresearch atthehighestinternationallevelsofexcellence. www.cambridge.org
©DavidGreenwood,SaraWoolley,JennyGoodmanandJenniferVaughan2021,2025
Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionsofrelevantcollective licensingagreements,noreproductionofanypartmaytakeplacewithoutthewrittenpermissionof CambridgeUniversityPress&Assessment.
Firstpublished2021 SecondEdition2025 2019181716151413121110987654321
CoverandtextdesignedbySardineDesign TypesetbydiacriTech PrintedinChinabyC&COffsetPrintingCo.,Ltd.
AcataloguerecordforthisbookisavailablefromtheNationalLibraryofAustraliaat www.nla.gov.au
ISBN978-1-009-593-861
Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO
ReproductionandCommunicationforeducationalpurposes
TheAustralian CopyrightAct1968 (theAct)allowsamaximumofonechapteror10% ofthepagesofthispublication,whicheveristhe greater,tobereproducedand/orcommunicatedbyanyeducationalinstitutionforitseducationalpurposesprovidedthattheeducational institution(orthebodythatadministersit)hasgivenaremunerationnoticetoCopyrightAgencyLimited(CAL)undertheAct.
FordetailsoftheCALlicenceforeducationalinstitutionscontact:
CopyrightAgencyLimited Level12,66GoulburnStreet
SydneyNSW2000
Telephone:(02)93947600
Facsimile:(02)93947601
Email:memberservices@copyright.com.au
ReproductionandCommunicationforotherpurposes
ExceptaspermittedundertheAct(forexampleafairdealingforthepurposesofstudy,research,criticismorreview)nopart ofthispublicationmaybereproduced,storedinaretrievalsystem,communicatedortransmittedinanyformorbyanymeans withoutpriorwrittenpermission.Allinquiriesshouldbemadetothepublisherattheaddressabove.
CambridgeUniversityPress&AssessmenthasnoresponsibilityforthepersistenceoraccuracyofURLSforexternalorthird-party internetwebsitesreferredtointhispublicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain,accurateor appropriate.Informationregardingprices,traveltimetablesandotherfactualinformationgiveninthisworkiscorrectatthetimeoffirst printingbutCambridgeUniversityPress&Assessmentdoesnotguaranteetheaccuracyofsuchinformationthereafter.
PleasebeawarethatthispublicationmaycontainimagesofAboriginalandTorresStraitIslanderpeoplewhoarenowdeceased.Several variationsofAboriginalandTorresStraitIslandertermsandspellingsmayalsoappear;nodisrespectisintended.Pleasenotethattheterms ‘IndigenousAustralians’and‘AboriginalandTorresStraitIslanderpeoples’maybeusedinterchangeablyinthispublication.
CambridgeUniversityPress&AssessmentacknowledgestheAboriginalandTorresStraitIslanderpeoplesofthisnation.Weacknowledgethe traditionalcustodiansofthelandsonwhichourcompanyislocatedandwhereweconductourbusiness.Wepayourrespectstoancestors andElders,pastandpresent.CambridgeUniversityPress&AssessmentiscommittedtohonouringAboriginalandTorresStraitIslander peoples’uniqueculturalandspiritualrelationshipstotheland,watersandseasandtheirrichcontributiontosociety.
5A Collectingdata
5B Frequencytables,columngraphsand histograms CONSOLIDATING
5C Dotplotsandstem-and-leafplots CONSOLIDATING
5D Rangeandmeasuresofcentre
5E Quartilesandoutliers
5F Boxplots 330 Progressquiz
5G Time-seriesdata
5H Bivariatedataandscatterplots
5I Lineofbestfitbyeye 349 Maths@Work:Projectmanageronabuildingsite
6A Interpretationofstraight-linegraphs CONSOLIDATING 382
6B Distance–timegraphs
6C Plottingstraightlines CONSOLIDATING 396
6D Midpointandlengthofalinesegment 403
6E Exploringgradient
6F Ratesfromgraphs
6G y = mx + c andspeciallines
6H Parallelandperpendicularlines
6I Sketchingwith x-and y-intercepts 442
6J Linearmodelling 448
6K Solvingsimultaneousequationsgraphically 456
6L RegionsontheCartesianplane 462
6M Directproportion 468
6N Inverseproportion 477 Maths@Work:Accountantorsmallbusinessowner 482
7 Geometryandnetworks 500
Warm-upquiz 502
7A Parallellines CONSOLIDATING 504
7B Triangles CONSOLIDATING 509
7C Quadrilaterals 515
7D Polygons 520
7E Congruenttriangles 525
7F Similartriangles 532
7G Applyingsimilartriangles 538 Progressquiz 543
7H Applicationsofsimilarityinmeasurement 545
7I Introductiontonetworks 551
7J Isomorphicandplanargraphs 557
7K Trails,pathandEuleriancircuits 564
7L Shortestpathproblems 572
Maths@Work:Poolbuilder 577
Modelling 579
Technologyandcomputationalthinking 581
Puzzlesandgames 583
Chaptersummaryandchecklist 584
8 Indices,exponentialsandlogarithms 598
Warm-upquiz 600
8A Indexnotationandindexlawsfor multiplicationanddivision 601
8B Moreindexlawsandthezeroindex 606
8C Negativeindices 612
8D Scientificnotation 617
8E Graphsofexponentials 622 Progressquiz 626
8F Exponentialgrowthanddecay 627
8G Introducinglogarithms 633
8H Logarithmicscales 637
Maths@Work:Electricaltrades 646
Modelling 648
Technologyandcomputationalthinking 650
Puzzlesandgames 652
Chaptersummaryandchecklist 653
Chapterreview 656
9 Pythagoras’theoremandtrigonometry
9A ReviewingPythagoras’theorem CONSOLIDATING 661
9B Findingthelengthofashorterside 668
9C ApplicationsofPythagoras’theorem 673
9D Trigonometricratios CONSOLIDATING 679
9E Findingsidelengths 685
9F Solvingforthedenominator 690
Progressquiz 696
9G Findingangles 698
9H Anglesofelevationanddepression 704
9I Directionandbearings 713
Warm-upquiz 738 10A Expandingbinomialproducts 739
10B Factorisingadifferenceoftwosquares 745
10C Factorisingtrinomialsoftheform x2 + bx + c 749
10D Solvingequationsoftheform ax2 = c 753
10E Solvingequationsusingthenullfactorlaw 759 Progressquiz 765
10F Solvingequationsbycompletingthesquare 766
10G Applicationsofquadratics 771
10H Exploringparabolas 775
10I Graphsofcirclesandhyperbolas 786
Maths@Work:Drivinginstructor 794 Modelling 796
Technologyandcomputationalthinking 798
DavidGreenwood istheHeadofMathematicsatTrinityGrammarSchoolinMelbourneand has30+ yearsteachingmathematicsfromYear7to12.Heistheleadauthorforthe CambridgeEssentialseriesandhasauthoredmorethan80titlesfortheAustralian Curriculumandforthesyllabusesofthestatesandterritories.Hespecialisesinanalysing curriculumandthesequencingofcoursecontentforschoolmathematicscourses. Healsohasaninterestintheuseoftechnologyfortheteachingofmathematics.
SaraWoolley wasbornandeducatedinTasmania.ShecompletedanHonoursdegreein MathematicsattheUniversityofTasmaniabeforecompletinghereducationtraining attheUniversityofMelbourne.ShehastaughtmathematicsfromYears7to12since 2006andiscurrentlyaHeadofMathematics.Shespecialisesinlessondesignand creatingresourcesthatdevelopandbuildunderstandingofmathematicsforallstudents.
JenniferVaughan hastaughtsecondarymathematicsforover30yearsinNewSouthWales, WesternAustralia,QueenslandandNewZealandandhastutoredandlecturedinmathematics atQueenslandUniversityofTechnology.Sheispassionateaboutprovidingstudentsofallability levelswithopportunitiestounderstandandtohavesuccessinusingmathematics.Shehas hadextensiveexperienceindevelopingresourcesthatmakemathematicalconceptsmore accessible;hence,facilitatingstudentconfidence,achievementandanenjoymentofmaths.
JennyGoodman hastaughtinschoolsforover28yearsandiscurrentlyteachingataselective highschoolinSydney.Jennyhasaninterestintheimportanceofliteracyinmathematics education,andinteachingstudentsofdifferingabilitylevels.ShewasawardedtheJonesMedal foreducationatSydneyUniversityandtheBourkePrizeforMathematics.Shehaswritten for CambridgeMATHSNSW andwasinvolvedinthe Spectrum and SpectrumGold series.
StuartPalmer wasbornandeducatedinNewSouthWales.Heisafullyqualifiedhigh schoolmathematicsteacherwithmorethan25years’experienceteachingstudents fromallwalksoflifeinavarietyofschools.HehasbeenHeadofMathematicsintwo schools.Heisverywellknownbyteachersthroughoutthestatefortheprofessional learningworkshopshedelivers.StuartalsoassiststhousandsofYear12studentsevery yearastheypreparefortheirHSCExaminations.AttheUniversityofSydney,Stuart spentmorethanadecaderunningtutorialsforpre-servicemathematicsteachers.
Theauthorandpublisherwishtothankthefollowingsourcesforpermissiontoreproducematerial: Cover: © GettyImages/Westend61.
Images: © GettyImages/HappyKikky,Chapter1Opener/Vevchic86,p.10/CreativeCrop,p.13/alvarez,p.16/shapecharge, p.18/Cecilie Arcurs,p.24/martin-dm,p.25/ThomasBarwick,p.29/SDIProductions,p.30/clubfoto,p.32/Mikolette,p.33/ manusaponkasosod,p.36/djgunner,p.38/JennerImages,p.41/TrevorWilliams,p.42/AlpamayoPhoto,p.47/alicat,p.52/ GuidoMieth,p.56/DEVIMAGES,p.58/OscarWong,p.65/ZU 09,Chapter2Opener/AzmanL,p.71/GlobalP,p.75/ PhotographcopyrightEricMeola,p.81(1)/GlasshouseImages,p.81(2)/Joe Potato,p.82/AndreSchoenherr,p.85/ South agency,p.86/CTAylward,p.88/MartinBarraud,p.91/SergioAmiti,p.97/Opla,p.102/ZoranKolundzija,p.103/ nicolamargaret,p.106/xxmmxx,p.107/SolStock,p.110/PeterCade,p.111/ChuckSchugPhotography,p.112/EyeEmMobile GmbH,p.114/EyeEmMobileGmbH,p.115/IrynaMelnyk,p.127/Nastasic,p.132/MintImages,Chapter3Opener/JoseLuis PelaezInc,p.145/davidf,p.149/cjp,p.155/Matt Brown,p.181/TomMerton,p.190/Boy Anupong,p.199/ pamelasphotopoetry,p.200/Maskot,p.202/dusanpetkovic,p.208/FatCamera,p.215/Hispanolistic,p.233/BorisSV,p.235/ LumiNola,Chapter4Opener/victorass88,p.240/MontyRakusen,p.243/IsabelPavia,p.244/SENLI,p.249/Photo Concepts, p.259(1)/baranozdemir,p.259(2)/wragg,p.260/luoman,p.273/byFrankOlsen,Norway,p.281/AJ Watt,p.282/wepix,p.288 /pidjoe,p.291/MassimilianoFinzi,Chapter5Opener/LiveLifeTraveling,p.298/ti-ja,p.306/97,p.328/fcafotodigital,p.335(1)/ HalfpointImages,p.335(2)/Oleh Slobodeniuk,p.337/HelenAnne,p.342/marcoventuriniautieri,p.354/JohnCrux Photography,p.361/945ontwerp,p.369(1)/97,p.369(2)/AzmanJaka,p.383/HaitongYu,p.386(1)/ZoomPetPhotography, p.386(2)/slobo,p.389(1)/StocktrekImages,p.389(2)/sandrastandbridge,p.393/TJBlackwell,p.395/RalucaHotupan,p.401/ Westend61,p.402/emicristea,p.412/JGI/JamieGrill,p.420/HeritageImages/Contributor,p.433/GaryJohnNorman,p.440/ GraceCary,p.447/EzraBailey,p.454/AnnabelleBreakey,p.460/Henrik5000,p.461/Dhoxax,p.473/RungruedeeMalasri, p.481/RubberBallProductions,p.487/NealPritchardPhotography,Chapter7Opener/StefanoGi,p.504/AleksandrRybalko, p.520/Westend61,p.525/skegbydave,p.551/ROBERTBROOK/SCIENCEPHOTOLIBRARY,p.563/ManfredGottschalk,p.580/ NataliaSokko,p.582/MikeWewerka,p.593/sanjeri,Chapter8Opener/RapidEye,p.608/photovideostock,p.617/MPI/ Stringer,p.621/PepeLaguarda,p.627/AndreasReh,p.631/sengkuiLim/500px,p.645/schlol,p.648/ConstantineJohnny, p.652/Sjo,p.657/AntonPetrus,p.666/Klubovy,p.667/SeanJustice,p.671/Prasitphoto,p.698/GaryJohnNorman,p.717/ NickBrundlePhotography,p.726/ManuelSulzer,Chapter10Opener/Ascent/PKSMediaInc.,p.747/TimRobberts,p.748/ RafaelBen-Ari,p.758/KeiUesugi,p.763/Westend61,p.766/sturti,p.794/JohnerImages,p.805/RosmarieWirz,p.819. Everyefforthasbeenmadetotraceandacknowledgecopyright.Thepublisherapologisesforanyaccidentalinfringement andwelcomesinformationthatwouldredressthissituation.
© AustralianCurriculum,AssessmentandReportingAuthority(ACARA)2009topresent,unlessotherwiseindicated.Thismaterial wasaccessedfromtheACARAwebsite(www.acara.edu.au).ThematerialislicensedunderCCBY4.0(https://creativecommons.org/ licenses/by/4.0/).ACARAdoesnotendorseanyproductthatusesACARAmaterialormakeanyrepresentationsastothequalityof suchproducts.AnyproductthatusesmaterialpublishedonthiswebsiteshouldnotbetakentobeaffiliatedwithACARAorhave thesponsorshiporapprovalofACARA.Itisuptoeachpersontomaketheirownassessmentoftheproduct.
Thesecondeditionof EssentialMathematicsCOREfortheAustralianCurriculum hasbeensignificantlyrevisedandupdatedtosuit theteachingandlearningofVersion9.0oftheAustralianCurriculum.Manyoftheestablishedfeaturesoftheserieshavebeen retained,buttherehavebeensomesubstantialrevisions,improvementsandnewelementsintroducedforthiseditionacrossthe print,digitalandteacherresources.
Newcontenthasbeenaddedatallyearlevels.In Year7,thereisnewcontentonratiosandproportions,volumeoftriangular prisms,netsofsolidsandmeasurementrelatingtocircles.Allgeometrytopicsarenowcontainedinasinglechapter(Chapter7).In Year8,thereisnewcontentonorderofoperations,3D-coordinates,operationswithnegativefractions,areasofsectorsand compositeshapes,Pythagoras’theorem,inequalities,similarfigures,two-stepexperimentsandtreediagrams.For Year9,thereis newcontentonerrorsinmeasurement,inequalities,factorisation,samplingandproportion,quadraticsexpressionsandparabolas. In Year10,thereisnewcontentoncompositesolids,errorsinmeasurement,networksandlogarithmicscales.
Version9.0placesincreasedemphasison investigations and modelling,andthisiscoveredwithrevisedModellingactivitiesat theendofchaptersanddownloadableInvestigations.Therearealsomanynewelaborationscovering FirstNationsPeoples’ perspectives onmathematics,rangingacrossallsixcontentstrandsofthecurriculum.Thesearecoveredinasuiteofspecialised investigationsprovidedintheOnlineTeachingSuite.
• Technologyandcomputationalthinking activitieshavebeenaddedtotheendofeverychaptertoaddressthecurriculum’s increasedfocusontheuseoftechnologyandtheunderstandingandapplicationofalgorithms.
• Targetedskillsheets –downloadableandprintable–havebeenwrittenforeverylessonintheseries,withtheintentionof providingadditionalpracticeforstudentswhoneedsupportatthebasicskillscoveredinthelesson,withquestionslinkedto workedexamplesinthebook.
• EditablePowerPointlessonsummaries arealsoprovidedforeachlessonintheseries,withtheintentionofsavingthetime ofteacherswhowerepreviouslycreatingthesethemselves.
Alsonewforthiseditionisaflexible,comprehensivediagnosticassessmenttool,availablethroughtheOnlineTeachingSuite.This tool,featuringaround 10, 000 newquestions,allowsteacherstosetdiagnosticteststhatarecloselyalignedwiththetextbook content,viewstudentperformanceandgrowthviaarangeofreports,setfollow-upworkwithaviewtohelpingstudents improve,andexportdataasneeded.
EssentialMathematicsCOREfortheAustralianCurriculum9.0 containsworkingprogramsthataresubtlyembeddedinthe exercises.ThesuggestedworkingprogramsprovidetwopathwaysthroughthebooktoallowdifferentiationforBuildingand Progressingstudents.
EachexerciseisstructuredinsubsectionsthatmatchtheAustralianCurriculum9.0proficiencystrands(withProblem-solving andReasoningcombinedintoonesectiontoreduceexerciselength),aswellas‘Goldstar’( ).Thequestions* suggestedforeach pathwayarelistedintwocolumnsatthetopofeachsubsection.
• Theleftcolumn(lightestshade)showsthequestionsintheBuildingworkingprogram.
• Therightcolumn(darkestshade)showsthequestionsintheProgressingworkingprogram.
Theworkingprogramsmakeuseoftwo gradientsthathavebeencarefullyintegrated intotheexercises.Agradientrunsthrough theoverallstructureofeachexercise–where there’sanincreasinglevelofsophistication requiredasastudentprogressesthrough theproficiencystrandsandthenontothe ‘GoldStar’question(s)–butalsowithineach proficiencystrand;thefirstfewquestions inFluencyareeasierthanthelastfew,for example,andthefirstfewProblem-solvingand reasoningquestionsareeasierthanthelastfew.
Questionsintheworkingprogramshavebeenselectedtogivethemostappropriatemixoftypesofquestionsforeachlearning pathway.StudentsgoingthroughtheBuildingpathwayaregivenextrapracticeattheUnderstandingandbasicFluencyquestions andonlytheeasiestProblem-solvingandreasoningquestions.TheProgressingpathway,whilenotchallenging,spendsalittleless timeonbasicUnderstandingquestionsandalittlemoreonFluencyandProblem-solvingandreasoningquestions.TheProgressing pathwayalsoincludesthe‘Goldstar’question(s).
Thereareavarietyofwaysofdeterminingtheappropriatepathwayforstudentsthroughthecourse.Schoolsandindividual teachersshouldfollowthemethodthatworksbestforthem.Ifrequired,theWarm-upquizatthestartofeachchaptercanbe usedasadiagnostictool.Thefollowingarerecommendedguidelines:
• Astudentwhogets 40% orlowershouldheavilyrevisecoreconceptsbeforedoingtheBuildingquestions,andmayrequire furtherassistance.
• Astudentwhogetsbetween 40% and 75% shoulddotheBuildingquestions.
• Astudentwhogets 75% andhighershoulddotheProgressingquestions.
Forschoolsthathaveclassesgroupedaccordingtoability,teachersmaywishtoseteithertheBuildingorProgressingpathwaysas thedefaultpathwayforanentireclassandthenmakeindividualalterationsdependingonstudentneed.Forschoolsthathave mixed-abilityclasses,teachersmaywishtosetanumberofpathwayswithintheoneclass,dependingonpreviousperformance andotherfactors.
* Thenomenclatureusedtolistquestionsisasfollows:
3,4:completeallpartsofquestions3and4
• 1–4:completeallpartsofquestions1,2,3and4
• 10(½):completehalfofthepartsfromquestion 10(a,c,e,.....orb,d,f,.....)
• 2–4(½):completehalfofthepartsofquestions2,3and4
• –:completenoneofthequestionsinthissection.
• 4(½),5:completehalfofthepartsofquestion4 andallpartsofquestion5
•
1 NEW Newlessons: authoritativecoverageofnewtopicsintheAustralianCurriculum9.0intheformofnew,road-tested lessonsthroughouteachbook.
2 AustralianCurriculum9.0: contentstrands,sub-strandsandcontentdescriptionsarelistedatthebeginningofthechapter (seetheteachingprogramformoredetailedcurriculumdocuments)
3 Inthischapter: anoverviewofthechaptercontents
4 NEW Quickreference: Multiplication,primenumber,fractionwallanddivisibilityrulestablesatthebackofthebook
5 Chapterintroduction: setscontextforstudentsabouthowthetopicconnectswiththerealworldandthehistoryof mathematics
6 Warm-upquiz: aquizforstudentsonthepriorknowledgeandessentialskillsrequiredbeforebeginningeachchapter
7 Sectionslabelledtoaidplanning: Allnon-coresectionsarelabelledas‘Consolidating’(indicatingarevisionsection)or withagoldstar(indicatingatopicthatcouldbeconsideredchallenging)tohelpteachersdecideonthemostsuitablewayof approachingthecoursefortheirclassorforindividualstudents.
8 Learningintentions: setsoutwhatastudentwillbeexpectedtolearninthelesson
9 Lessonstarter: anactivity,whichcanoftenbedoneingroups,tostartthelesson
10 Keyideas: summarisestheknowledgeandskillsforthesection
11 Workedexamples: solutionsandexplanationsofeachlineofworking,alongwithadescriptionthatclearlydescribesthe mathematicscoveredbytheexample.Workedexamplesareplacedwithintheexercisesotheycanbereferencedquickly, witheachexamplefollowedbythequestionsthatdirectlyrelatetoit.
12 Nowyoutry: try-it-yourselfquestionsprovidedaftereveryworkedexampleinexactlythesamestyleastheworkedexample togivestudentsimmediatepractice
Workingprograms: differentiatedquestionsetsfortwoabilitylevelsinexercises
14 Puzzlesandgames: ineachchapterprovideproblem-solvingpracticeinthecontextofpuzzlesandgamesconnectedwith thetopic
15 Gentlestarttoexercises: theexercisebeginsatUnderstandingandthenFluency,withthefirstquestionalwayslinkedto thefirstworkedexampleinthelesson
16 Chapterchecklist: achecklistofthelearningintentionsforthechapter,withexamplequestions
17 Chapterreviews: withshort-answer,multiple-choiceandextended-responsequestions;questionsthatare‘GoldStar’are clearlysignposted
18 Maths@Work: asetofextendedquestionsacrosstwopagesthatgivepracticeatapplyingthemathematicsofthechapter toreal-lifecontexts
19 NEW Technologyandcomputationalthinking activityineachchapteraddressesthecurriculum’sincreasedfocusonthe useofdifferentformsoftechnology,andtheunderstandingandimplementationofalgorithms
20 Modellingactivities: anactivityineachchaptergivesstudentstheopportunitytolearnandapplythemathematicalmodelling processtosolverealisticproblems
21 NEW TargetedSkillsheets,oneforeachlesson,focusonasmallsetofrelatedFluency-styleskillsforstudentswhoneed extrasupport,withquestionslinkedtoworkedexamples
22 Workspaces: almosteverytextbookquestion–including allworking-out–canbecompletedinsidetheInteractive Textbookbyusingeitherastylus,akeyboardandsymbol palette,oruploadinganimageofthework
23 Self-assessment: studentscanthenself-assesstheir ownworkandsendalertstotheteacher.Seethe Introductiononpagexformoreinformation
24 Interactivequestiontabs canbeclickedonsothat onlyquestionsincludedinthatworkingprogramare shownonthescreen
25 HOTmathsresources: ahugecateredlibraryofwidgets, HOTsheetsandwalkthroughsseamlesslyblendedwith thedigitaltextbook
26 Desmosgraphingcalculator,scientificcalculatorand geometrytoolarealwaysavailabletoopenwithinevery lesson
27 Scorcher: thepopularcompetitivegame
28 Workedexamplevideos: everyworkedexampleis linkedtoahigh-qualityvideodemonstration,supporting bothin-classlearningandtheflippedclassroom
29 Arevisedsetof differentiatedauto-marked practicequizzes perlessonwithsavedscores
30 Auto-markedmaths literacyactivitiesteststudents ontheirabilitytounderstandandusethekey mathematicallanguageusedinthechapter 29
31 Auto-markedpriorknowledgepre-test (the‘Warm-upquiz’oftheprintbook)fortestingtheknowledgethatstudents willneedbeforestartingthechapter
32 Auto-markedprogressquizzesandchapterreviewquestions inthechapterreviewscanbecompletedonline
33 InadditiontotheInteractiveTextbook,a PDFversionofthetextbook hasbeenretainedfortimeswhenuserscannotgo online.PDFsearchandcommentingtoolsareenabled.
34 NEW DiagnosticAssessmentTool included withtheOnlineTeachingSuiteallowsforflexible diagnostictesting,reportingandrecommendations forfollow-upworktoassistyoutohelpyour studentstoimprove
35 NEW PowerPointlesson summariescontainthe mainelementsofeachlessoninaformthatcanbe annotatedandprojectedinfrontofclass
36 LearningManagementSystem withclass andstudentanalytics,includingreportsand communicationtools
37 Teacherviewofstudents’workand self-assessment allowstheteachertoseetheir class’sworkout,howstudentsintheclassassessed theirownwork,andany‘redflags’thattheclass hassubmittedtotheteacher
38 Powerfultestgenerator withahugebankof levelledquestionsaswellasready-madetests
39 Revampedtaskmanager allowsteachersto incorporatemanyoftheactivitiesandtoolslisted aboveintoteacher-controlledlearningpathways thatcanbebuiltforindividualstudents,groupsof studentsandwholeclasses
40 Worksheets,Skillanddrill,mathsliteracy worksheets,and twodifferentiatedchapter testsineverychapter,providedineditableWord documents
41 Moreprintableresources: allPre-tests andProgressquizzesandApplicationsand problem-solvingtasksareprovidedinprintable worksheetversions
Essentialmathematics:whyskillswithpercentagesand consumerarithmeticareimportant
Masteringmoneymanagementskillsareanessentialfoundationforyoutoachievepersonal financialindependenceandhavesuccessinyourbusinessventures.
Essentialskillsusingpercentagesincludecalculationsofprofits,discounts,costprice,sellingprice andGST.Bycomparingdiscountedsellingprices,thebestdealcanbefound.
Incometaxcalculationshelpworkersandbusinessestobeawareoflegaltaxobligations,keep recordsforeligibledeductions,andnotbefacedwithunexpectedandcostlytaxdebtsattheend ofafinancialyear.
Whenyoujointheworkforceandearnawage,itisimportanttoprepareapersonalbudget.This includesasavingsplantopayfixedandvariablecost-of-livingexpensesandmoneyputasidefor personaluse.
Calculationsusingsimpleandcompoundinterestratesenableapersontocomputeandcompare thefullcostofloans,debtrepayments,andthepotentialfuturevalueofinvestments.
Inthischapter
1AReviewofpercentages (Consolidating)
1BApplicationsofpercentages
1CIncome
1DIncometaxation
1EBudgeting
1FSimpleinterest
1GCompoundinterest
1HInvestmentsandloans
1IComparinginterestusing technology
AustralianCurriculum9.0
Usemathematicalmodellingtosolve appliedproblemsinvolvinggrowthand decay,includingfinancialcontexts; formulateproblems,choosingtoapply linear,quadraticorexponentialmodels; interpretsolutionsintermsofthe situation;evaluateandmodifymodels asnecessaryandreportassumptions, methodsandfindings(AC9M10A04) ©ACARA
Ahostofadditionalonlineresources areincludedaspartofyourInteractive Textbook,includingHOTmathscontent, videodemonstrationsofallworked examples,auto-markedquizzesand muchmore.
1 Findthefollowingtotals.
$87560 ÷ 52 (tothenearestcent) e
2 Expressthefollowingfractionswithdenominatorsof 100.
3 Writeeachofthefollowingfractionsasdecimals.
4 Roundthefollowingdecimalstotwodecimalplaces.
5 Givethevaluesofthepronumeralsinthefollowingtable.
6 Calculatethefollowingannualincomesforeachofthesepeople.Use 52 weeksinayear. Tom: $1256 perweek a Sally: $15600 permonth b Anthony: $1911 perfortnight c Crystal: $17.90 perhour,for 40 hoursperweek,for 50 weeksperyear d
7 Withoutacalculator,find:
8 Findthesimpleinterestonthefollowingamounts.
$400 at 5% p.a.for 1 year a $5000 at 6% p.a.for 1 year b $800 at 4% p.a.for 2 years c
9 Completethefollowingtable,givingthevaluesofthepronumerals.
10 Thefollowingamountsincludethe 10% GST.Bydividingeachoneby 1.1,findtheoriginal costsbeforetheGSTwasaddedtoeach.
$55 a $61.60 b $605 c
Learningintentions
• Tounderstandthatapercentageisanumberoutof 100
• Tobeabletoconvertdecimalsandfractionstopercentagesandviceversa
• Tobeableto ndthepercentageofaquantity
Keyvocabulary: percentage,denominator
Itisimportantthatweareabletoworkwith percentagesinoureverydaylives.Banks,retailers andgovernmentsusepercentageseverydaytowork outfeesandprices.
Lessonstarter:Whichoptionshould Jamiechoose?
Jamiecurrentlyearns $68460 p.a.(peryear)andisgiven achoiceoftwodifferentpayrises.Whichshouldshe chooseandwhy?
ChoiceA:Increaseof $25 perweek
ChoiceB:Increaseof 2% onperannumsalary
Bankswillusepercentagestoworkoutaccountfees andhowmuchinteresttocharge.
A percentage means‘outof 100’.Itcanbewrittenusingthesymbol %,orasafractionor adecimal.
Forexample: 75 percent = 75%= 75 100 or 3 4 or 0.75
Toconvertafractionoradecimaltoapercentage,multiplyby 100
Toconvertapercentagetoafraction,writeitwitha denominator of 100 andsimplify.
15%= 15 100 = 3 20
Toconvertapercentagetoadecimal,divideby 100 15%= 15 ÷ 100 = 0.15
Tofindapercentageofaquantity,writethepercentageasafractionora decimal,thenmultiplybythequantity,i.e. x% of P = x 100 × P
Und er stand ing
1 Completethefollowingusingthewords multiply or divide
a Toconvertadecimaltoapercentage by 100
b Toconvertapercentagetoadecimal by 100
c Toconvertafractiontoapercentage by 100
d Toconvertapercentagetoafraction by 100.
2 Completethefollowingtoexpressasafractioninpart a andadecimalinpart b.
a 7%= 7 i 23%= ii
b 18%= i 5%= ii
3 Completethefollowing
HintforQ3:Cancelanyfractions beforemultiplying.
Example1Convertingtoapercentage
Writeeachofthefollowingasapercentage.
Explanation
Writeusingadenominatorof 100 bymultiplying numeratoranddenominatorby 5 Alternatively,multiplythefractionby 100
Multiplythefractionby 100 Cancelcommonfactors,thensimplify.
c 0.07 ×
So 0.07 = 7%
Nowyoutry
Multiplythedecimalby 100 Movethedecimalpointtwoplacestotheright.
Writeeachofthefollowingasapercentage.
4
Converteachfractiontoapercentage.
HintforQ4:Firstwriteusinga denominatorof 100 or, alternatively,multiplyby 100
5
Writethesedecimalsaspercentages.
HintforQ5:Tomultiplyby 100, movethedecimalpointtwoplaces totheright.
Writeeachofthefollowingpercentagesasasimplifiedfraction.
Solution
a 37%= 37 100
b 58%= 58 100 = 29 50
Explanation
Writethepercentagewithadenominatorof 100
Writethepercentagewithadenominatorof 100
Simplify 58 100 bycancelling,usingtheHCFof 58 and 100, whichis 2
= 29 50 c 6 1 2 %= 6 1 2 100 = 13 200
Writethepercentagewithadenominatorof 100
Doublethenumerator (6 1 2 ) andthedenominator(100) sothatthenumeratorisawholenumber.
Writeeachofthefollowingpercentagesasasimplifiedfraction.
6
Writeeachpercentageasasimplifiedfraction.
HintforQ6:Write withadenominator of 100,thensimplify ifpossible.
Convertthesepercentagestodecimals.
Solution
a 93%= 93 ÷ 100 = 0.93
b 7%= 7 ÷ 100 = 0.07
c 30%= 30 ÷ 100 = 0.3
Nowyoutry
Convertthesepercentagestodecimals.
Explanation
Dividethepercentageby 100.Thisisthesameasmoving thedecimalpointtwoplacestotheleft.
Dividethepercentageby 100
Dividethepercentageby 100 Write 0.30 as 0.3
7 Convertthesepercentagestodecimals.
Find 42% of $1800
Solution
42% of $1800 = 0.42 × 1800 = $756
Explanation
Rememberthat‘of’meanstomultiply.
Write 42% asadecimalorafraction: 42%= 42 100 = 0.42
Thenmultiplybytheamount.
Ifusingacalculator,enter 0.42 × 1800.
Withoutacalculator: 42 ✟✟ 100 1 × 18✚✚ 00 = 42 × 18 = 756
Nowyoutry
Find 36% of $2300
8 Useacalculatortofindthefollowing.
9 A 300 gpiecontains 15 gofsaturatedfat.
a Whatfractionofthepieissaturatedfat?
b Whatpercentageofthepieissaturatedfat?
HintforQ9: 15 goutof 300 g.
10 About 80% ofthemassofahumanbodyiswater.IfHugois 85 kg,howmanykilogramsofwaterare inhisbody?
11 Remaspends 12% ofthe 6.6 hourschooldayinmaths.Howmanyminutesarespentinthe mathsclassroom?
12 Inacricketmatch,Brettspent 35 minutesbowling.
Histeam’stotalfieldingtimewas 3 1 2 hours. Whatpercentageofthefieldingtime,correcttotwo decimalplaces,didBrettspendbowling?
HintforQ12:Firstconvert hourstominutes,andthen writeafractioncomparing times.
13 Malcolmlost 8 kg,andnowweighs 64 kg.Whatpercentageofhisoriginalweightdidhelose?
14 47.9% ofalocalcouncil’sbudgetisspentongarbagecollection.Ifaratepayerpays $107.50 per quarterintotalratecharges,howmuchdotheycontributeinayeartogarbagecollection?
15 BelowisthepreliminarydataonAustralia’spopulationgrowth,asgatheredbytheAustralianBureau ofStatisticsforagivenyear.
a Calculatethepercentagechangeforeachstateandterritoryshown usingthepreviousyear’spopulation,andcompletethetable.
b WhatpercentageofAustralia’soverallpopulation,correctto onedecimalplace,islivingin: NSW? i Vic? ii WA? iii
c Useaspreadsheettodrawapiechart(i.e.sectorgraph) showingthepopulationsoftheeightstatesandterritoriesinthetable.Whatpercentageof thetotalisrepresentedbyeachstate/territory?Roundyouranswertothenearestpercent.
d Inyourpiechartforpart c,whatistheanglesizeofthesectorrepresentingVictoria?
Learningintentions
• Tounderstandwhatapercentageincreaseordecreaseofaquantityrepresents
• Tobeabletoincreaseanddecreaseanamountbyagivenpercentage
• Tobeabletousepercentageincreaseanddecreasetocalculateasellingpriceoradiscountedprice
• Tobeabletodeterminethepro tmadeonanitemandcalculatethisasapercentagepro t
Keyvocabulary: discount,pro t,sellingprice,costprice
Therearemanyapplicationsofpercentages.Pricesare oftenincreasedbyapercentagetocreateaprofitor decreasedbyapercentagewhenonsale.
Whengoodsarepurchasedbyastore,thecost totheowneriscalledthecostprice.Thepriceofthe goodssoldtothecustomeriscalledthesellingprice. Thispricewillvaryaccordingtowhetherthestoreis havingasaleordecidestomakeacertainpercentage profit.
Discussasaclass:
• Whichisbetter: 20% offora $20 discount?
Duringasale,aretailshopwilloftenofferapercentage discount,whereapercentageofthesellingpriceis subtractedtoformanewdiscountedsellingprice.
• Ifadiscountof 20% or $20 resultedinthesameprice,whatwastheoriginalprice?
• Whyarepercentagesusedtoshowdiscounts,ratherthanadollaramount?
Toincreasebyagivenpercentage,multiplybythesumof 100% andthegivenpercentage. Forexample:Toincreaseby 12%,multiplyby 112% or 1.12
Todecreasebyagivenpercentage,multiplyby 100% minusthegivenpercentage. Forexample:Todecreaseby 20%,multiplyby 80% or 0.8.
Profitsanddiscounts:
• Thenormalpriceofthegoodsrecommendedbythemanufactureriscalledtheretailprice.
• Whenthereisasaleandthegoodsarepricedlessthantheretailprice,theyaresaid tobe discounted.
• Profit istheamountofmoneymadebysellinganitemorserviceformorethanitscost.
• Profit = sellingprice costprice,where sellingprice istheamounttheitemissold forand costprice istheoriginalcosttotheseller.
• Percentageprofit = profit costprice × 100
• Percentagediscount = discount costprice × 100
1 Bywhatnumberdoyoumultiplytoincreaseanamountby:
2 Bywhatnumberdoyoumultiplytodecreaseanamountby:
3 Usethewords sellingprice or costprice tocompletethefollowing.
a Aprofitismadewhenthe ismorethanthe
b Adiscountinastorereducesthe
c Profit =
4 Decidehowmuchprofitorlossismadeineachofthefollowingsituations.
5
a sellingprice = $20
costprice = $15
costprice = $17.50
b sellingprice = $20
costprice = $250
c sellingprice = $234
Example5Increasingbyagivenpercentage
Increase $370 by 8%
Solution
$370 × 1.08 = $399.60
Nowyoutry
Increase $650 by 12%
Increase $90 by 5% a
b
c
Increase $400 by 10%
Increase $55 by 20%
Increase $490 by 8%. d
Increase $50 by 12% e
Increase $7000 by 3% f
Increase $49.50 by 14% g
Increase $1.50 by 140% h
Explanation
100%+ 8%= 108%
Write 108% asadecimal(orfraction)andmultiply bytheamount.
Showtwodecimalplacestorepresentthecents.
Example6Decreasingbyagivenpercentage
Decrease $8900 by 7%.
Solution
$8900 × 0.93 = $8277.00
Explanation
100% −7%= 93%
Write 93% asadecimal(orfraction)andmultiplyby theamount.
Remembertoputtheunitsinyouranswer.
Nowyoutry
Decrease $2700 by 18%
Decrease $1500 by 5%
Decrease $400 by 10%
6 HintforQ6:Todecreaseby
Decrease $470 by 20%. c Decrease $80 by 15%.
Decrease $550 by 25%
Decrease $119.50 by 15%
Decrease $49.50 by 5%
Decrease $47.10 by 24% h
Example7Calculatingprofitandpercentageprofit
Thecostpriceforanewcaris $24780 anditissoldfor $27600 Calculatetheprofit. a Calculatethepercentageprofit,totwodecimalplaces.
b
Solution
Explanation
a Profit = sellingprice costprice Writetherule. = $27600−$24780
Substitutethevaluesandevaluate. = $2820
b Percentageprofit = profit costprice × 100 Writetherule. = 2820 24780 × 100
Substitutethevaluesandevaluate. = 11.38% Roundyouranswerasinstructed.
Nowyoutry
Thecostpriceforanewrefrigeratoris $888 anditissoldfor $997 Calculatetheprofit. a Calculatethepercentageprofit,totwodecimalplaces. b
7 Copyandcompletethetableonprofitsandpercentageprofit.
Costprice Sellingprice Profit Percentageprofit
a $10 $16
b $240 $300
c $15 $18
d $250 $257.50
e $3100 $5425
f $5.50 $6.49
HintforQ7: Percentageprofit = profit costprice × 100
Aretailerbuyssomecalicomaterialfor $43.60 aroll.Hewishestomakea 35% profit.
Whatwillbethesellingpriceperroll?
a Ifhesells 13 rolls,whatprofitwillhemake? b
Solution
a Sellingprice = 135% of $43.60
= 1.35 × $43.60
= $58.86 perroll
b Profitperroll = $58.86−$43.60
Explanation
Fora 35% profittheunitpriceis 135%
Write 135% asadecimal (1.35) andevaluate.
Sellingprice costprice = $15.26
Totalprofit = $15.26 × 13
Thereare 13 rollsat $15.26 profitperroll. = $198.38
Aretailerbuysswimsuitsfor $32 persuit.Shewishestomakea 30% profit.
Whatwillbethesellingpriceofeachswimsuit? a Ifshesells 20 swimsuits,whatprofitwillshemake? b
8 Aretailerbuyssomechristmassnowglobesfor $41.80 each. Shewishestomakea 25% profit.
a Whatwillbethesellingpricepersnowglobe?
b Ifshesellsaboxof 25 snowglobes,whatprofitwill shemake?
9 Asecond-handcardealerboughtatrade-incarfor $1200 andwishestoresellitfora 28% profit.What istheresaleprice?
Example9Findingthediscountedprice
Ashirtworth $25 isdiscountedby 15%. Whatisthesellingprice? a Howmuchisthesaving? b
Solution
Explanation
a Sellingprice = 85% of $2515% discountmeanstheremustbe 85% left (100% −15%) = 0.85 × $25 Convert 85% to 0.85 andmultiplybytheamount. = $21.25
b Saving = 15% of $25
Yousave 15% oftheoriginalprice. = 0.15 × $25
Convert 15% to 0.15 andmultiplybytheoriginal price. = $3.75
orsaving = $25−$21.25 = $3.75
Nowyoutry
Saving = originalprice discountedprice
Asuitcaseworth $220 isdiscountedby 35%. Whatisthesellingprice? a Howmuchisthesaving? b
10 Samanthabuysawetsuitfromthesportsstorewheresheworks.Itsoriginalpricewas $79.95 Employeesreceivea 15% discount. Whatisthesellingprice? a HowmuchwillSamanthasave? b
11 Atravelagentoffersa 12.5% discountonairfaresifyoutravel duringMayorJune. ThenormalfaretoLondon(return trip)is $2446 a Whatisthesellingprice? b Howmuchisthesaving?
12 Astoresellssecond-handgoodsat 40% offtherecommendedretail price.Alawnmowerisvalued at $369
Whatisthesellingprice? a Howmuchwouldyousave? b
13–1615–18
13 Skijacketsaredeliveredtoashopinpacksof 50 for $3500.Theshopownerwishestomakea 35% profit.
a Whatwillbethetotalprofitmadeonapack?
b Whatistheprofitoneachjacket?
14 Apairofsportsshoesisdiscountedby 47%.Therecommendedpricewas $179
a Whatistheamountofthediscount?
b Whatwillbethediscountedprice?
15 JeansarepricedataMaysalefor $89.Ifthisisasavingof 15% offthesellingprice,whatdothejeansnormallysellfor?
16 Discountedtyresarereducedinpriceby 35%.Theynowsellfor $69 each.Determine:
a thenormalpriceofonetyre
b thesavingifyoubuyonetyre.
17 Thelocalshoppurchasesacartonofcontainersfor $54.Eachcontainerissoldfor $4 Ifthecartonhad 30 containers,determine: theprofitpercontainer a thepercentageprofitpercontainer,totwodecimalplaces b theoverallprofitpercarton
d
c theoverallpercentageprofit,totwodecimalplaces.
18 Aretailerbuysabookfor $50 andwantstosellitfora 26% profit.The 10% GSTmustthenbeaddedontothecostofthebook.
a Calculatetheprofitonthebook.
b HowmuchGSTisaddedtothecostofthebook?
c Whatistheadvertisedpriceofthebook,includingtheGST?
d Findtheoverallpercentageincreaseofthefinalsellingprice comparedtothe $50 costprice.
Buildingagazebo — 19
19 Christopherdesignsagazeboforanewhouse.Hebuysthetimberfromaretailer,whosourcesitat wholesalepriceandthenmarksitupbeforesellingtoChristopheratretailprice.Thetablebelow showsthewholesalepricesaswellasthemark-upforeachtypeoftimber.
DetermineChristopher’soverallcostforthematerial,includingthemark-up. a Determinetheprofitmadebytheretailer. b Determinetheretailer’soverallpercentageprofit,totwodecimalplaces. c Iftheretailerpays 27% ofhisprofitsintax,howmuchtaxdoeshepayonthissale? d
Learningintentions
• Tounderstandarangeofdifferentwaysinwhichemployeescanbepaid
• Toknowhownetincomeiscalculatedfromgrossincomeanddeductions
• Tobeabletocalculatewagesforovertimeandshiftwork
• Tobeabletocalculatecommission
Keyvocabulary: wages,commission,salary,fees,grossincome,overtime,deductions,netincome,timeandahalf, doubletime,deductions
Youmayhaveearnedmoneyforbaby-sittingor deliveringnewspapersorhaveapart-timejob.As youmoveintotheworkforceitisimportantthatyou understandhowyouarepaid.
Lessonstarter:Whoearnswhat?
Asaclass,discussthedifferenttypesofjobsheldby differentmembersofeachperson’sfamily,anddiscuss howtheyarepaid.
• Whatarethedifferentwaysthatpeoplecanbe paid?
• Whatdoesitmeanwhenyouworkfewerthan full-timehours?
• Whatdoesitmeanwhenyouworklongerthan full-timehours?
Whatothertypesofincomecanpeopleintheclassthinkof?
Methodsofpayment
Employeescanbepaidindifferentways,according totheirtypeofwork.Forexample,employeescanbe paidanhourlyrate,asalary,acommission,orafee.
Hourly wages:Youarepaidacertainamountperhourworked.
Commission:Youarepaidapercentageofthetotalamountofsales.
Salary:Youarepaidasetamountperyear,regardlessofhowmanyhoursyouwork.
Fees:Youarepaidaccordingtothechargesyouset,e.g.doctors,lawyers,contractors.
Sometermsyoushouldbefamiliarwithinclude:
• Grossincome:thetotalamountofmoneyyouearnbeforetaxesandotherdeductions
• Deductions:moneytakenfromyourincomebeforeyouarepaid,e.g.taxation,union fees,superannuation
• Netincome:theamountofmoneyyouactuallyreceiveafterthedeductionsaretaken fromyourgrossincome
Netincome = grossincome deductions
Paymentsbyhourlyrate
Ifyouarepaidbythehouryouwillbepaidanamountperhourforyournormalworkingtime. Ifyouwork overtime (hoursbeyondthenormalworkinghours),theratesmaybedifferent.
Usually,normalworkingtimeis 38 hoursperweek.
Normal: 1.0 × normalrate
Timeandahalf: 1.5 × normalrate
Doubletime: 2.0 × normalrate
Ifyouworkshiftworkthehourlyratesmaydifferfromshifttoshift.
Forexample:
6 a.m.– 2 p.m.
2 p.m.– 10 p.m.
10 p.m.– 6 a.m.
Und er stand ing
$24.00/hour (regularrate)
$27.30/hour (afternoonshiftrate)
$36.80/hour (nightshiftrate)
1 Matchthejobdescriptionontheleftwiththemethodofpayment ontheright.
Jennieispaid $85600 peryear a hourlywage A
Danielleearns 3% ofallthesalesshemakes b fee B
Jettearns $18.90 perhourworked c commission C
Stuartcharges $450 foraconsultation d salary D
2 Callumearns $1090 aweekandhasannualdeductionsof $19838
HintforQ2: Net = total deductions WhatisCallum’snetincomefortheyear?Assume 52 weeks inayear.
3 IfTaoearns $15.20 perhour,calculatehis:
time-and-a-halfrate a double-timerate b
Example10Findinggrossandnetincome(includingovertime)
Paulineispaid $13.20 perhouratthelocalstockyardtomuckoutthestalls.Hernormalhoursof workare 38 hoursperweek.Shereceivestimeandahalfforthenext 4 hoursworkedanddouble timeafterthat.
Whatwillbehergrossincomeifsheworks 50 hours? a Ifshepays $220 perweekintaxationand $4.75 inunionfees,whatwillbeherweekly netincome?
b Solution
a Grossincome = 38 × $13.20 + 4 × 1.5 × $13.20 + 8 × 2 × $13.20 = $792
b Netincome = $792− ($220 + $4.75) = $567.25
Nowyoutry
Explanation
Normal 38 hours
Overtimeratefornext 4 hours:timeanda half = 1.5 × normal
Overtimeratefornext 8 hours:double time = 2 × normal
Netincome = grossincome deductions
Tobyispaid $17.50 perhourathissupermarketjob.Hisnormalhoursofworkare 38 hoursperweek. Hereceivestimeandahalfforthenext 6 hoursworkedanddoubletimeafterthat.
Whatwillbehisgrossincomeifheworks 48 hoursinaweek? a
b
Ifhepays $240 perweekintaxationand $6.50 inunionfees,whatwillbehisweeklynetincome?
4 Jackispaid $14.70 perhour.Hisnormalhoursofworkare 38 hoursperweek.Hereceivestimeand ahalfforthenext 2 hoursworkedanddoubletimeafterthat.
a Whatwillbehisgrossincomeifheworks 43 hours?
b Ifhehas $207.20 ofdeductions,whatwillbehisweeklynetincome?
5 Copyandcompletethistable.
Michaelisashiftworkerandispaid $31.80 perhourforthemorningshift, $37.02 perhourforthe afternoonshiftand $50.34 perhourforthenightshift.Eachshiftis 8 hours.Inagivenfortnighthe worksfourmorning,twoafternoonandthreenightshifts.Calculatehisgrossincome.
Solution Explanation
Grossincome = 4 × 31.80 × 84 morningshiftsat $31.80 perhourfor 8 hours
+ 2 × 37.02 × 82 afternoonshiftsat $37.02 perhourfor 8 hours
+ 3 × 50.34 × 83 nightshiftsat $50.34 perhourfor 8 hours
= $2818.08
Grossincomebecausetaxhasnotbeenpaid.
Kateisashiftworkerandispaid $26.20 perhourforthemorningshift, $32.40 perhourforthe afternoonshiftand $54.25 perhourforthenightshift.Eachshiftis 8 hours.Inagivenfortnightshe worksfivemorning,threeafternoonandtwonightshifts.Calculatehergrossincome.
6 Gregworksshiftsataprocessingplant.Inagivenrostered fortnightheworks:
• 3 dayshifts($31.80 perhour)
• 4 afternoonshifts($37.02 perhour)
• 4 nightshifts($50.34 perhour).
a Ifeachshiftis 8 hourslong,determineGreg’sgross incomeforthefortnight.
b Iftheanswertopart a isGreg’saveragefortnightly income,whatwillbehisgrossincomefora year(i.e. 52 weeks)?
HintforQ6: Afortnight = 2 weeks
Jeffsellsmembershipstoagymandreceives $225 perweekplus 5.5% commissiononhissales. Calculatehisgrossincomeaftera 5-dayweek.
Solution
Totalsales = $4630
Commission = 5.5% of $4630 = 0.055 × $4630 = $254.65
Grossincome = $225 + $254.65 = $479.65
Explanation
Determinethetotalsales: 680 + 450 + 925 + 1200 + 1375
Determinethecommissiononthetotalsalesat 5.5% by multiplying 0.055 bythetotalsales.
Grossincomeis $225 pluscommission.
Jinsellsvacuumcleanersandreceives $250 perweekplus 4.3% commissiononhersales.
Calculatehergrossincomeaftera 5-dayweek.
7 Acarsalesmanearns $5000 amonthplus 3.5% commissiononallsales.InthemonthofJanuary hissalestotalwas $56000.Calculate: hiscommissionforJanuary a hisgrossincomeforJanuary b
8 Arealestateagentreceives 2.75% commissiononthesaleofahousevaluedat $1250000 Findthecommissionearned.
9 Sarahearnsanannualsalaryof $77000 plus 2% commissiononallsales.Find: a herweeklybasesalarybeforesales
b hercommissionforaweekwhenhersalestotalled $7500
c hergrossweeklyincomefortheweekinpart b
d herannualgrossincomeifovertheyearhersalestotalled $571250
10 IfSimonereceives $10000 onthesaleofapropertyworth $800000,calculateherrateofcommission.
11 Jonahearnsacommissiononhissalesoffashionitems.Forgoods tothevalueof $2000 hereceives 6% andforsalesover $2000 he receives 9% ontheamountinexcessof $2000.Inagivenweek hesold $4730 worthofgoods.Findthecommissionearned.
12 Williamearns 1.75% commissiononallsalesattheelectrical goodsstorewhereheworks.IfWilliamearns $35 incommission onthesaleofonetelevision,howmuchdidtheTVsellfor?
13 Refertothepayslipbelowtoanswerthefollowingquestions.
EmployeeID: 75403A
Name:ElmoRodriguez
PayMethod:EFT
Bankaccountname:E.Rodriguez
Bank:MathsvilleCreditUnion
BSB: 102-196 AccountNo: 00754031
Page: 1
PayPeriod: 21/05/2016
TaxStatus:GenExempt
a WhichcompanydoesElmoworkfor?
b WhatisthenameofElmo’sbankandwhatishisaccountnumber?
c HowmuchgrosspaydoesElmoearnin 1 year?
d HowoftendoesElmogetpaid?
e Howmuch,peryear,doesElmosalarysacrifice?
f HowmuchisElmo’shealthfundcontributioneachweek?
g Calculate 1 year’sunionfees.
h Usingtheinformationonthispayslip,calculateElmo’sannualtaxandalsohisannualnetincome.
i IfElmoworksMondaytoFridayfrom 9 a.m.to 5 p.m.eachdayforanentireyear,calculatehis effectivehourlyrateofpay.UseElmo’sfortnightlypaymentasastartingpoint.
Learningintentions
• TounderstandhowthekeycomponentsoftheAustraliantaxationsystemwork
• Tobeabletocalculateaperson’staxableincome
• Tobeabletocalculateaperson’staxpayableusingAustraliantaxbrackets Keyvocabulary: taxation,employer,employee,taxreturn,taxableincome,taxbracket,levy,deductions, p.a.(perannum)
Ithasbeensaidthatthereareonlytwo surethingsinlife:deathandtaxes!The AustralianTaxationOffice(ATO)collects taxesonbehalfofthegovernmenttopay foreducation,hospitals,roads,railways, airportsandservices,suchasthepolice andfirebrigades.
InAustralia,thefinancialyearruns fromJuly 1 toJune 30 thefollowingyear. Peopleengagedinpaidemploymentare normallypaidweeklyorfortnightly.Most ofthempaysomeincometaxeverytime theyarepaidfortheirwork.Thisis knownasthePay-As-You-Gosystem (PAYG).
Attheendofthefinancialyear (June 30),peoplewhoearnedanincome
Theamountofincometaxanemployeemustpayeachfinancialyear willdependonsettaxratesestablishedbytheATO.
completeanincometaxreturntodetermineiftheyhavepaidthecorrectamountofincometaxduring theyear.
Iftheypaidtoomuch,theywillreceivearefund.Iftheydidnotpayenough,theywillberequiredto paymore.
TheAustraliantaxsystemisverycomplexandthelawschangefrequently.Thissectioncoversthemain aspectsonly.
TheAustralianTaxationOfficewebsitehassomeincometaxcalculators.Useonetofindouthowmuch incometaxyouwouldneedtopayifyourtaxableincomeis:
$10400 perannum(i.e. $200 perweek)
$20800 perannum(i.e. $400 perweek)
$31200 perannum(i.e. $600 perweek)
$41600 perannum(i.e. $800 perweek)
Doesapersonearning $1000 perweekpaytwiceasmuchtaxasapersonearning $500 perweek?
Doesapersonearning $2000 perweekpaytwiceasmuchtaxasapersonearning $1000 perweek?
The Employee You (the employee and taxpayer)
The Employer
The boss (your employer)
ThePAYGtaxsystemworksinthefollowingway.
The ATO
The Australian Taxation Office
• Theemployeeworksforandgetspaidbytheemployereveryweek,fortnightormonth.
• Theemployercalculatesthetaxthattheemployeeshouldpayfortheamountearned bytheemployee.
• TheemployersendsthattaxtotheATOeverytimetheemployeegetspaid.
• TheATOpassestheincometaxtothefederalgovernment.
• OnJune 30,theemployergivestheemployeeapaymentsummarytoconfirmtheamount oftaxthathasbeenpaidtotheATOonbehalfoftheemployee.
• BetweenJuly 1 andOctober 31,theemployeecompletesa taxreturn andsendsittothe ATO.Somepeoplepayaregisteredtaxagenttodothisreturnforthem.
• Onthistaxreturn,theemployeeliststhefollowing.
– All formsofincome,includinginterestfrominvestments.
– Legitimatedeductionsshownonreceiptsandinvoices,suchaswork-relatedexpenses anddonations.
• Taxableincome iscalculatedusingtheformula: Taxableincome = grossincome deductions
• TherearetablesandcalculatorsontheATOwebsite,suchasthefollowing. Taxableincome
0−$18200 Nil
$18201−$45000 16cforeach $1 over $18200
$45001−$135000
$135001−$190000
$190001 andover
$4288 plus 30cforeach $1 over $45000
$31288 plus 37cforeach $1 over $135000
$51638 plus 45cforeach $1 over $190000
Thistablecanbeusedtocalculatetheamountoftaxyou shouldhave paid(i.e.thetax payable),asopposedtothetaxyou did payduringtheyear(i.e.thetaxwithheld).Each rowinthetableiscalleda taxbracket
• YoumayalsoneedtopaytheMedicare levy.ThisisaschemeinwhichallAustralian taxpayersshareinthecostofrunningthemedicalsystem.Formanypeoplethisiscurrently 2% oftheirtaxableincome.
• Itispossiblethatyoumayhavepaidtoomuchtaxduringtheyearandwillreceivea taxrefund.
• ItisalsopossiblethatyoumayhavepaidtoolittletaxandwillreceivealetterfromtheATO askingforthetaxliabilitytobepaid.
Note:Thequestionsinthisexerciserelatetothetaxtablegiveninthe Keyideas,unlessstatedotherwise.
1 Completethisstatement:Taxableincome = incomeminus
2 Basedonthetableinthe Keyideas,determineifthefollowingstatementsaretrueorfalse?
a Ataxableincomeof $10400 requiresnotaxtobepaid.
b ThehighestincomeearnersinAustraliapay 45 centstaxforeverydollartheyearn.
3 Inthe2024/2025financialyear,Ann’staxableincomewas $135000,whichputsherattheverytopof themiddletaxbracketinthetaxtable.Ben’staxableincomewas $190000,whichputshiminahigher taxbracket.IgnoringtheMedicarelevy,howmuchextrataxdidBenpaycomparedtoAnn?
Example13Calculatingincometaxpayable
Duringthe2024/2025financialyear,Richardearned $1050 perweek($54600 perannum)fromhis employerandothersources,suchasinterestoninvestments.Hehasreceiptsfor $375 for work-relatedexpensesanddonations.
b
CalculateRichard’staxableincome. a UsethistaxtabletocalculateRichard’staxpayableamount.
Taxableincome
0−$18200 Nil
Taxonthisincome
$18201−$45000 16cforeach $1 over $18200
$45001−$135000
$135001−$190000
c
$4288 plus 30cforeach $1 over $45000
$31288 plus 37cforeach $1 over $135000
$190001 andover $51638 plus 45cforeach $1 over $190000
RichardmustalsopaytheMedicarelevyof 2% ofhistaxableincome.Howmuchisthe Medicarelevy?
AddthetaxpayableandtheMedicarelevyamounts. d Expressthetotaltaxinpart d asapercentageofRichard’staxableincome,toonedecimalplace. e Duringthefinancialyear,Richard’semployersentatotalof $6000 intaxtotheATO.HasRichard paidtoomuchtaxornotenough?Calculatehisrefundorliability.
f Solution
a Grossincome = $54600
Deductions = $375
Taxableincome = $54225
b Taxpayable:
$4288 + 0.3 × ($54225−$45000)
= $7055.50
Taxableincome = grossincome deductions
Richardisinthemiddletaxbracketinthetable, inwhichitsays:
$4288 plus 30cforeach $1 over $45000
Note: 30 centsis $0.30. Continuedonnextpage
c 2 100 × 54225 = $1084.50
d $7055.50 + $1084.50 = $8140
e 8140 54225 × 100 = 15.0% (to 1 d.p.)
f Richardpaid $6000 intaxduringtheyear. Heshouldhavepaid $8140.Richardhas notpaidenoughtax.Hemustpayanother $2140 intax.
Medicarelevyis 2% ofthetaxableincome.
ThisisthetotalamountoftaxthatRichard shouldhavepaid.
ThisimpliesthatRichardpaidapproximately 15.0% taxoneverydollar.Thisissometimes readas‘15 centsinthedollar’.
Thisisknownasashortfalloraliability.He willreceivealetterfromtheATOrequesting paymentofthedifference.
$8140−$6000 = $2140
Duringthe2024/2025financialyear,Francescaearned $82300 perannumfromheremployerand othersources,suchasinterestoninvestments.Shehasreceiptsfor $530 forwork-relatedexpenses anddonations.
CalculateFrancesca’staxableincome. a Usethetaxtablefromthe Keyideas tocalculateFrancesca’staxpayableamount.
b FrancescamustalsopaytheMedicarelevyof 2% ofhertaxableincome.Howmuchisthe Medicarelevy?
e
c AddthetaxpayableandtheMedicarelevyamounts. d Expressthetotaltaxinpart d asapercentageofFrancesca’staxableincome,toonedecimal place.
Duringthefinancialyear,Francesca’semployersentatotalof $15000 intaxtotheATO. HasFrancescapaidtoomuchtaxornotenough?Calculateherrefundorliability.
f 4 Duringthe2024/2025financialyear,Liamearned $94220 perannumfromhisemployerandother sources,suchasinterestoninvestments.Hehasreceiptsfor $615 forwork-relatedexpensesanddonations. CalculateLiam’staxableincome. a Usethetaxtablefromthe Keyideas tocalculateLiam’staxpayableamount. b LiammustalsopaytheMedicarelevyof 2% ofhistaxableincome.HowmuchistheMedicare levy?
c
AddthetaxpayableandtheMedicarelevyamounts. d
e Expressthetotaltaxinpart d asapercentageof Liam’staxableincome,toonedecimalplace.
f Duringthefinancialyear,Liam’semployersenta totalof $21000 intaxtotheATO.HasLiampaid toomuchtaxornotenough?Calculatehisrefund orliability.
5 Usethetaxtableinthe Keyideas tocalculatetheincometaxpayableonthesetaxableincomes. $30000 a $60000 b $150000 c $200000 d
6 Leehascometotheendofherfirstfinancialyearemployedasawebsitedeveloper. OnJune 30 shemadethefollowingnotesaboutthefinancialyear.
Grossincomefromemployer
Grossincomefromcasualjob
Interestoninvestments
Donations
Work-relatedexpenses
$58725
$7500
$75
$250
$425
Taxpaidduringthefinancialyear $11000
HintforQ6:Taxableincome = allincomes deductions
CalculateLee’staxableincome. a Usethetaxtableshowninthe Keyideas tocalculateLee’staxpayableamount. b LeemustalsopaytheMedicarelevyof 2% ofhertaxableincome.HowmuchistheMedicarelevy?
c AddthetaxpayableandtheMedicarelevy. d Expressthetotaltaxinpart d asapercentageofLee’staxableincome,toonedecimalplace. e HasLeepaidtoomuchtaxornotenough?Calculateherrefundorliability. f
7,8,10,117,9,11–13
7 Alec’sMedicarelevyis $1750.Thisis 2% ofhistaxableincome.WhatisAlec’staxableincome?
8
9
Taraissavingforanoverseastrip.Hertaxableincomeis usuallyabout $20000.Sheestimatesthatshewillneed $5000 forthetrip,sosheisgoingtodosomeextrawork toraisethemoney.HowmuchextrawillTaraneedtoearn inordertosavetheextra $5000 aftertax?
HintforQ8:Usethetaxtableinthe Keyideas toconsiderhowmuch extrataxshewillpay.
WhenSaledusedthetaxtabletocalculatehisincome taxpayable,itturnedouttobe $19288.Whatis histaxableincome?
10 Explainthedifferencebetweenataxrefundandataxliability.
HintforQ9:Usethetaxtablegiven inthe Keyideas todeterminein whichtaxbracketSaledfalls.
11 Gordanalookedatthelastrowofthetaxtableandsaid,‘Itissounfairthatpeopleinthattaxbracket mustpay 45 centsineverydollarintax.’ExplainwhyGordanaisincorrect.
12 Themostrecentsignificantchangeto Australianincometaxrateswasfirst appliedinthe2024/2025financial year.Considerthetaxtablesfor thetwoconsecutivefinancialyears 2023/2024and2024/2025.Notethat theamountslistedfirstineachtable areoftencalledthetax-freethreshold (i.e.theamountthatapersoncan earnbeforetheymustpaytax).
a Therearesomesignificantchanges betweenthefinancialyears 2023/2024and2024/2025. Describethreeofthem.
Taxableincome
0−$18200 Nil
2023/2024
Taxonthisincome
$18201−$37000 19cforeach $1 over $18200
$37001−$80000
$80001−$180000
$180001 andover
Taxableincome
$3572 plus 32.5cforeach $1 over $37000
$17547 plus 37cforeach $1 over $80000
$54547 plus 45cforeach $1 over $180000 2024/2025
Taxonthisincome
0−$18200 Nil
$18201−$45000 16cforeach $1 over $18200
$45001−$135000
$4288 plus 30cforeach $1 over $45000
$135001−$190000 $31288 plus 37cforeach $1 over $135000
$190001 andover
$51638 plus 45cforeach $1 over $190000
b Thefollowingpeoplehadthesametaxableincomeduringbothfinancialyears.Findthe differenceintheirtaxpayableamountsandstatewhethertheywereadvantagedor disadvantagedbythechanges,ornotaffectedatall?
Ali:Taxableincome = $5000 i
Charlotte:Taxableincome = $50000 iii
Xi:Taxableincome = $25000 ii
Diego:Taxableincome = $80000 iv
13 BelowisthetaxtableforpeoplewhoarenotresidentsofAustraliabutareworkinginAustralia.
Taxableincome
Taxonthisincome
$0−$135000 30cforeach $1
$135001−$190000 $40500 plus 37cforeach $1 over $135000
$190001 andover $60850 plus 45cforeach $1 over $190000
ComparethistabletotheoneintheexampleforAustralianresidents. Whatdifferencewoulditmaketotheamountoftaxpaidbythesepeopleiftheywerenon-residents ratherthanresidents?
Bill:Taxableincome = $5000 a
Jen:Taxableincome = $25000 b
Scott:Taxableincome = $100000 c
Melinda:Taxableincome = $200000 d
14a Chooseanoccupationorcareerinwhichyouareinterested.Imaginethatyouareworkinginthat job.Duringtheyearyouwillneedtokeepreceiptsforitemsyouhaveboughtthatarelegitimate work-relatedexpenses.Dosomeresearchontheinternetandwritedownsomeofthethingsthat youwillbeabletoclaimaswork-relatedexpensesinyourchosenoccupation.
bi Imagineyourtaxableincomeis $80000.Whatisyourtaxpayableamount?
ii Youjustfoundareceiptfora $100 donationtoaregisteredcharity.Thisdecreasesyourtaxable incomeby $100.Byhowmuchdoesitdecreaseyourtaxpayableamount?
Learningintentions
• Toknowthetypesofexpensesthatareincludedinabudget
• Tounderstandhowabudgetisaffectedby xedandvariableexpenses
• Tobeabletocalculatesavingsandotherexpensesbasedontheinformationinabudget
• Tobeabletocalculatethebestbuy(cheapestdeal)fromarangeofoptions
Keyvocabulary: budget, xedexpenses,variableexpenses
Oncepeoplehavebeenpaidtheirincomefortheweek,fortnightormonth,theymustplanhowto spendit.Mostfamiliesworkonabudget,allocatingmoneyforfixedexpensessuchasthemortgageor rentandthevarying(i.e.changing)expensesofpetrol,foodandclothing.
Writedowneverythingthatyouthinkyourfamilywouldspendmoneyonfortheweekandthemonth, andestimatehowmuchthosethingsmightcostfortheentireyear.Wheredoyouthinksavingscouldbe made?Whatwouldbesomeadditionalannualexpenses?
A budget isanestimateofincomeandexpensesforaperiodoftime.
Managingmoneyforanindividualissimilartooperatingasmallbusiness.Expensescanbe dividedintotwoareas:
• Fixedexpenses (thesedonotchangeduringatimeperiod):paymentofloans,mortgages, regularbillsetc.
• Variableexpenses (thesecostschangeoveratimeperiod):clothing,entertainment,food etc.(theseareestimates)
Whenyourbudgetiscompletedyoushouldalwayscheckthatyourfiguresare reasonableestimates.
Bylookingatthebudgetyoushouldbeabletoseehowmuchmoneyisremaining;thiscanbe usedassavingsortobuynon-essentialitems.
1 Classifyeachexpenselistedbelowasmostlikelyafixedexpenseoravariableexpense.
a monthlyrent
b monthlyphonebillpaymentplan
c takeawayfood
d stationerysuppliesforwork
2 Binhhasanincomeof $956 aweek.Hisexpenses,bothfixedandvariable,total $831.72 ofhis income.HowmuchmoneycanBinhsaveeachweek?
3 Roslynhasthefollowingmonthlyexpenses.Mortgage = $1458,mobilephone = $49,internet = $60, councilrates = $350,water = $55,electricity = $190.WhatisthetotalofRoslyn’smonthlyexpenses?
Fionahasanetannualincomeof $36000 afterdeductions.Sheallocatesherbudgetona percentagebasis. Mortgage
a HowmuchshouldFionasave?
Determinetheamountoffixedexpenses,includingthemortgage,carloanandeducation.
b Istheamountallocatedforfoodreasonable?
c
Solution
Explanation
a Fixedexpenses = 55% of $36000 Themortgage,carloanandeducationare 55% intotal.
= 0.55 × $36000 Change 55% toadecimalandmultiplybythenetincome.
= $19800
b Savings = 10% of $36000
Savingsare 10% ofthebudget.
= 0.1 × $36000 Change 10% toadecimalandmultiplybythenetincome.
= $3600
c Food = 25% of $36000
Foodis 25% ofthebudget.
= 0.25 × $36000 Change 25% toadecimalandcalculate.
= $9000 peryear,or
Dividetheyearlyexpenditureby 52 tomakea $173 perweek decisiononthereasonablenessofyouranswer. Thisseemsreasonable.
Nowyoutry
Kylehasanetannualincomeof $64200 afterdeductions.Heallocateshisbudgetonapercentage basis.
Determinetheamountoffixedexpensesincludingtherentandbills. a HowmuchshouldKylesave? b Istheamountallocatedfortransportreasonable? c
4 Paulhasanannualincomeof $75000 afterdeductions.Heallocateshisbudgetonapercentagebasis.
a Determinetheamountoffixedexpenses,includingthemortgageandloans.
b HowmuchshouldPaulhaveleftoverafterpayingforhismortgage,carloanandpersonalloan?
c Istheamountallocatedforfoodreasonable?
5 Lachlanhasanincomeof $2120 permonth.Ifhe budgets 5% forclothes,howmuchwillheactually havetospendonclotheseachmonth?
Runningacertaintypeofcarinvolvesyearly,monthlyandweeklyexpenditure.Considerthefollowing vehicle’scosts.
lease
• $210 permonth
registration
• $475 peryear
insurance
• $145 perquarter
servicing
• $1800 peryear
• $37 perweek
a
b
petrol
Determinetheoverallcosttorunthiscarforayear.
Whatpercentageofa $70000 salarywouldthisbe,correcttoonedecimalplace?
Solution
a Overallcost = 210 × 12
+ 475
+ 145 × 4
+ 1800
+ 37 × 52
= $7299
Theoverallcosttorunthecaris $7299
b % ofsalary = 7299 70000 × 100
= 10.4% (to 1 d.p.)
Nowyoutry
Explanation
Leasingcost: 12 monthsinayear
Registrationcost
Insurancecost: 4 quartersinayear
Servicingcost
Petrolcost: 52 weeksinayear
Theoverallcostisfoundbyaddingthe individualtotals.
Percentage = carcost totalsalary × 100 Roundasrequired.
Runningaboatinvolvesyearly,monthlyandweeklyexpenditure.Considerthefollowing boat’scosts.
registration
• $342 peryear
insurance
• $120 perquarter
servicing
• $360 peryear
fuel
• $300 permonth
• $2400 peryear
a
b
storingboat
Determinetheoverallcosttorunthisboatforayear.
Whatpercentageofa $82000 salarywouldthisbe,correcttoonedecimalplace?
6 Elianaisastudentandhasthefollowingexpensesinherbudget.
• rent $270 perweek
• electricity $550 perquarter
• phoneandinternet $109 permonth
• car $90 perweek
• food $170 perweek
• insurance $2000 ayear
DetermineEliana’scostsforayear. a
HintforQ6:Use 52 weeksina year, 12 monthsinayearand 4 quartersinayear.
WhatpercentageofEliana’snetannualsalaryof $45000 wouldthisbe,correctto onedecimalplace? b
7 ThecostsofsendingastudenttoModkinPrivate Collegeareasfollows.
• feesperterm(4 terms) $1270
• subjectleviesperyear $489
• buildingfundperweek $35
• uniformsandbooksperyear $367
b
Determinetheoverallcostperyear. a Iftheschoolbillstwiceayear,coveringallthe itemsabove,whatwouldbetheamountof eachpayment?
c
Howmuchshouldbesavedperweektomake thebiannualpayments?
8 Asmallbusinessownerhasthefollowingexpensestobudgetfor.
• rent $1400 amonth
• phoneline $59 amonth
• wages $1200 aweek
• electricity $430 aquarter
• water $120 aquarter
• insurance $50 amonth
Whatistheannualbudgetforthesmallbusiness? a
c
Howmuchdoesthebusinessownerneedtomakeeachweekjusttobreakeven? b Ifthebusinessearns $5000 aweek,whatpercentageofthisneedstobespentonwages?
9 Francine’spetrolbudgetis $47 fromherweeklyincomeof $350 Whatpercentageofherbudgetisthis?Giveyouranswertotwodecimalplaces. a Ifpetrolcosts $1.59 perlitre,howmanylitresofpetrol,correcttotwodecimalplaces,isFrancine budgetingforinaweek?
b
10 Grantworksa 34-hourweekat $15.50 perhour.Hisnetincomeis 65% ofhisgrossincome. Determinehisnetweeklyincome. a IfGrantspends 12% ofhisnetincomeonentertainment,determinetheamountheactuallyspends peryearonentertainment.
c
b Grantsaves $40 perweek.Whatpercentageofhisnetincomeisthis(totwodecimalplaces)?
11 Darioearns $432 perfortnightatatake-awaypizzashop.Hebudgets 20% forfood, 10% forrecreation, 13% fortransport, 20% forsavings, 25% fortaxationand 12% forclothing. Determinetheactualamountbudgetedforeachcategoryeveryfortnight.
Dario’swageincreasesby 30%
a Determinehowmuchhewouldnowsaveeachweek. b Whatpercentageincreaseistheanswertopart b ontheoriginalamountsaved?
c DeterminetheextraamountofmoneyDariosavesperyearafterhiswageincrease.
e
d Iftransportisafixedexpense,itspercentageofDario’sbudgetwillchange.Determinethenew percentage.
Softdrinkissoldinthreeconvenientpacksatthelocalstore.
• cartonof 36 (375 mL) cansat $22.50
• asix-packof (375 mL) cansat $5.00
• 2-litrebottlesat $2.80
Determinethecheapestwaytobuythesoftdrink.
Solution Explanation
Buyingbythecarton:
Cost = $22.50 ÷ (36 × 375)
TotalmL = 36 × 375 = $0.0017 permL
DividetoworkoutthecostpermL.
Buyingbythesix-pack:
Cost = $5 ÷ (6 × 375)
TotalmL = 6 × 375 = $0.0022 permL
Buyingbythebottle:
Cost = $2.80 ÷ 2000
= $0.0014 permL
 Thecheapestwaytobuythe softdrinkistobuythe 2-litrebottle.
Nowyoutry
TotalmL = 2 × 1000,since 1 L = 1000 mL.
ComparethethreecostspermL.
Abrandoftoiletrollsaresoldinthreepacktypesatthesupermarket.
• apackof 18 rollsfor $8.82
• apackof 6 rollsfor $3.30
• apackof 4 doublelengthrollsfor $3.68
Determinethecheapestwaytobuythetoiletrolls.
12
Teabagscanbepurchasedfromthesupermarketinthreeforms.
• 25 teabagsat $2.36
• 50 bagsat $4.80
• 200 bagsat $15.00 Whatisthecheapestwaytobuyteabags?
HintforQ12:Calculatethecost perteabagineachcase.
13 Aweeklytrainconcessionticketcosts $16.Adayticketcosts $3.60.Ifyouaregoingtoschoolonly 4 daysnextweek,isitcheapertobuyoneticketperdayoraweeklyticket?
14 Aholidaycaravanparkoffersitscabinsatthefollowingrates.
$87 pernight • (Sunday–Thursday)
$187 foraweekend • (FridayandSaturday)
$500 perweek •
a Determinethenightlyrateineachcase.
b Whichpriceisthebestvalue?
15 Tomatosauceispricedat:
200 mLbottle $2.35 • 500 mLbottle $5.24 •
a FindthecostpermLofthetomatosauceineachcase.
b Whichisthecheapestwaytobuytomatosauce?
c Whatwouldbethecostof 200 mLatthe 500 mLrate?
d Howmuchwouldbesavedbybuyingthe 200 mLbottleatthisrate?
e Suggestwhythe 200 mLbottleisnotsoldatthisprice.
16 Safeservehasasaleontennisballsforonemonth. Whenyoubuy:
• 1 container,itcosts $5
• 6 containers,itcosts $28
• 12 containers,itcosts $40
• 24 containers,itcosts $60
Youneed 90 containersforyourclubtohaveenoughforaseason.
a Determinetheminimumcostifyoubuyexactly 90 containers.
b Determinetheoverallminimumcost,andthenumberofextracontainersyouwillhaveinthis situation.
Learningintentions
• Tounderstandhowsimpleinterestiscalculated
• Tobeabletocalculateinterestusingthesimpleinterestformula
• Tobeabletodeterminetherateofinterestbasedontheinterestearned
• Tobeabletocalculatetheamountowingonaloanandcalculaterepayments
Keyvocabulary: principal,rateofinterest,simpleinterest,annual,invest,borrow
Borrowedorinvestedmoneyusuallyhasanassociatedinterestrate.Theconsumerneedstoestablishthe typeofinteresttheyarepayingandtheeffectsithasontheamountborrowedorinvestedovertime. Someloansorinvestmentsdeliverthefullamountofinterestusingonlytheinitialloanorinvestment amountintheinterestcalculations.Thesetypesaresaidtousesimpleinterest.
Whenchoosingahome loan,youneedto considerthetypeand amountofinterestyou willbepaying.
MarcusandBrittneyeachhave $200 intheirbankaccounts.Marcusearns $10 ayearininterest.Brittney earns 10% p.a.simpleinterest.
Forhowlongmusteachoftheminvesttheirmoneyforittodoubleinvalue?
Simpleinterest isatypeofinterestthatiscalculatedontheamount invested or borrowed.
Thetermsneededtounderstandsimpleinterestare:
• Principal(P):theamountofmoneyborrowedorinvested
• Rateofinterest(r):the annual (yearly)percentagerateofinterest(e.g. 3% p.a.)
• Time (t):thenumberofyearsforwhichtheprincipalisborrowedorinvested
• Interest (I ):theamountofinterestaccruedoveragiventime.
Theformulaforcalculatingsimpleinterestis:
I = principal × rate × time
I = Prt 100 (Sincetherateisapercentage)
Totalrepaid = amountborrowed + interest
Und er stand ing
1 Intheformula I = Prt 100:
I isthe a P isthe b r isthe c t isthe d
2 Calculateinterestearned (I ) if: P = 1000, r = 4, t = 5
Usethesimpleinterestformula, I = Prt 100,tofind:
theinterest (I ) when $600 isinvestedat 8% p.a.for 18 months a theannualinterestrate (r) when $5000 earns $150 interestin 2 years. b
Solution
a P = 600
r = 8
t = 18 months = 18 12 = 1.5 years I = Prt 100
= 600 × 8 × 1.5 100
Explanation
Writeouttheinformationthatyouknowandthe formula.
Substituteintotheformulausingyearsfor t = 72
Theinterestis $72 in 18 months.
b P = 5000 I = 150 t = 2 years
I = Prt 100
150 = 5000 × r × 2 100
150 = 100 × r r = 1.5
Writetheformulaandtheinformationknown. Substitutethevaluesintotheformulaandsolve theequationtofind r.
Dividebothsidesby 100.
Thesimpleinterestrateis 1.5% peryear.Writetherateasapercentage.
Usethesimpleinterestformula, I = Prt 100,tofind:
theinterest (I ) when $450 isinvestedat 5% p.a.for 30 months a theannualinterestrate (r) when $3500 earns $210 interestin 3 years b
3 Usethesimpleinterestformula, I = Prt 100,tofind:
a theinterest (I ) when $500 isinvestedat 6% p.a.for 24 months
b theannualinterestrate (r) when $3000 earns $270 interestin 3 years
4 Copyandcompletethistableofvaluesfor I , P, r and t.
a $700 5% p.a. 4 years
b $2000 7% p.a. 3 years
c $3500 3% p.a. 22 months
d $750 2 1 2 % p.a. 30 months
e $22500 3 years
f $1770 5 years
HintforQ4:Use I = Prt 100
$2025
$354
Example18Calculatingrepaymentswithsimpleinterest
$3000 isborrowedat 12% p.a.simpleinterestfor 2 years.
Whatisthetotalamountowedoverthe 2 years? a Ifrepaymentsoftheloanaremademonthly,howmuchwouldeachpaymentneedtobe? b
Solution Explanation
a P = $3000, r = 12, t = 2 I = Prt 100 = 3000 × 12 × 2 100 = $720
Totalamount = $3000 + $720 = $3720
Listtheinformationyouknow. Writetheformula.
Substitutethevaluesandevaluate.
Totalamountistheoriginalamount plus theinterest.
b Amountofeachpayment = $3720 ÷ 24 2 years = 24 months = $155 permonth Thereare 24 paymentstobemade. Dividethetotalby 24.
Nowyoutry
$5400 isborrowedat 9% p.a.simpleinterestfor 4 years. Whatisthetotalamountowedoverthe 4 years? a
b
Ifrepaymentsoftheloanaremademonthly,howmuchwouldeachpaymentneedtobe?
5 $5000 isborrowedat 11% p.a.simpleinterestfor 3 years.
a Whatisthetotalamountowedoverthe 3 years?
b Ifrepaymentsoftheloanaremademonthly,howmuchwould eachpaymentneedtobe?
HintforQ5:Calculatetheinterest first.
6 Underhirepurchase,Johnboughtasecond-handcarfor $11500.Hepaidnodepositanddecidedto paytheloanoffin 7 years.Ifthesimpleinterestis 6.45%,determine: thetotalinterestpaid a thetotalamountoftherepayment b thepaymentspermonth. c
7 $10000 isborrowedtobuyasecond-handBMW.Theinterestiscalculatedatasimpleinterestrateof 19% p.a.over 4 years.
Whatisthetotalinterestontheloan? a Howmuchistoberepaid? b Whatisthemonthlyrepaymentonthisloan? c
8 HowmuchinterestwillGiorgioreceiveifheinvests $7000 instocksat 3.6% p.a.simpleinterestfor 4 years?
9 Rebeccainvests $4000 for 3 yearsat 5.7% p.a.simpleinterestpaid yearly.
Howmuchinterestwillshereceiveinthefirstyear? a
WhatisthetotalamountofinterestRebeccawillreceiveoverthe 3 years? b
HowmuchmoneywillRebeccahaveafterthe 3-yearinvestment? c
10
Hint:Substituteintothe formula I = Prt 100 andsolve theresultingequation. Aninvestmentof $15000 receivesaninterestpaymentover 3 yearsof $7200.Whatwastherateofsimpleinterest perannum?
11 Jonathonwishestoinvest $3000 at 8% perannum.How longwillheneedtoinvestforhistotalinvestmenttodouble?
12 Ivanwishestoinvestsomemoneyfor 5 yearsat 4.5% p.a.paidyearly.Ifhewishestoreceive $3000 ininterestpaymentsperyear,howmuchshouldheinvest?Roundyouranswertothenearest dollar.
13 Gretta’sinterestpaymentonherloantotalled $1875.Iftheinterestratewas 5% p.a.andtheloanhad alifeof 5 years,whatamountdidsheborrow?
14 Ashedmanufactureroffersfinancewitharateof 3.5% p.a.paidattheendof 5 yearswithadeposit of 10%,orarateof 6.4% repaidover 3 yearswithadepositof 20%. Melaniedecidestopurchaseafullyerectedfour-squareshedfor $12500 Howmuchdepositwillsheneedtopayineachcase? a Whatisthetotalinterestshewillincurineachcase? b Ifshedecidedtopaypermonth,whatwouldbethemonthlyrepayment? c Discussthebenefitsofthedifferenttypesofpurchasingmethods. d
2 1A Ginaputs 36% ofher $6000 monthlysalaryinasavingsaccount.Howmuchdoesshe haveleftover? 3 1B Completethefollowing.
5 1B Anillegalscalperbuysaconcertticketfor $150 andsellsitfor $210.Whatisthepercentage profit?
6 1C Findthegrossincomeforaparticularweekinthefollowingworksituations. Pippaisadoor-to-doorsalesrepresentativeforanairconditioningcompany.Sheearns $300 perweekplus 8% commissiononhersales.Inaparticularweekshemakes $8200 worthofsales.
b
a Ariispaid $15.70 perhourinhisjobasashopassistant.Thefirst 36 hoursheworksinaweek arepaidatthenormalhourlyrate,thenext 4 hoursattimeandahalfandthen doubletimeafterthat.Ariworks 42 hoursinaparticularweek.
7 1D Duringthe2024/2025financial year,Cameronearned $76300 per annum.Hehadreceiptsfor $425 fordonationsandwork-related expenses.
a
c
CalculateCameron’staxable income.
$45001−$135000
$190001 andover $51638 plus 45cforeach $1 over $190000
UsethistaxtabletocalculateCameron’staxpayableamount,tothenearestcent. b CameronalsomustpaytheMedicarelevyof 2% ofhistaxableincome.Howmuchisthelevy, tothenearestcent?
d
Duringthefinancialyear,Cameron’semployersentatotalof $14500 intaxtotheATOonhis behalf.Byaddingtogetheryouranswersfromparts b and c,calculatetheamountCameron mustpayorwillberefundedonhistaxreturn.
8 1E Charlihasthefollowingexpensesinherhouseholdbudget.
b
rent $320 perweek
• phoneandinternet $119 permonth
• electricity $72 perquarter
• carregistration $700 peryear
• othercarcosts $120 permonth
• food $110 perweek
•
• clothing $260 permonth
• medicalandotherinsurance $160 per month
Determinetheoverallcostforrunningthehouseholdfortheyear.(Use 52 weeksinayear.) a Whatpercentageofan $82000 annualsalarydoesyouranswertopart a represent?Round youranswertoonedecimalplace.
9 1F Usethesimpleinterestformula I = Prt 100 tofind: theamountowedwhen $4000 isborrowedat 6% p.a.for 3 years
b
a theinvestmentperiod,inyears,ifaninvestmentof $2500 at 4% p.a.earns $450 ininterest
Learningintentions
• Tounderstandhowcompoundinterestiscalculated
• Tobeabletoapplythecompoundinterestformulatocalculatethetotalamount
• Tobeabletousethecompoundinterestformulawithdifferenttimeperiodssuchasmonths
Keyvocabulary: compoundinterest,principal,rateofinterest
Forsimpleinterest,theinterestisalwayscalculatedontheprincipal amount.Sometimes,however,interestiscalculatedontheactual amountpresentinanaccountateachtimeperiodthatinterestis calculated.Thismeansthattheinterestisaddedtotheamount, thenthenextlotofinterestiscalculatedagainusingthisnew amount.Thisprocessiscalledcompoundinterest.
Compoundinterestcanbecalculatedusingupdatedapplications ofthesimpleinterestformulaorbyusingthecompoundinterest formula.
Compoundinterestiscalculatedby addinginteresttotheinitialprincipal, thencalculatingthenextinterest amountbasedonthenewtotal,and repeatingthisprocess.
Considerinvesting $400 at 12% perannum.Whatisthebalanceat theendof 4 yearsifinterestisaddedtotheamountattheendofeachyear? Copyandcompletethetabletofindout.
Time Amount(A
1
2
3rdyear
4thyear
Asyoucansee,theamountfromwhichinterestiscalculatediscontinuallychanging.
Compoundinterest isatypeofinterestthatispaidonaloanorearnedonaninvestment,which iscalculatednotonlyontheinitialprincipalbutalsoontheinterestaccumulatedduring theloan/investmentperiod.
Compoundinterestcanbefoundbyusingupdatedapplicationsofthesimpleinterestformula. Forexample, $100 compoundedat 10% p.a.for 2 years.
Year 1: 100 + 10% of 100 = $110
Year 2: 110 + 10% of 110 = $121,socompoundinterest = $21.
Thetotalamountinanaccountusingcompoundinterestforagivennumberoftimeperiods isgivenby:
A = P(1 + r 100)n ,where:
• Principal (P) = theamountofmoneyborrowedorinvested
• Rateofinterest (r) = thepercentageappliedtotheprincipalperperiodofinvestment
• Periods (n) = thenumberoftimeperiodstheprincipalisinvested
• Amount (A) = thetotalamountofyourinvestment
Interest = amount (A) principal (P)
Und er stand ing
1 Consider $500 investedat 10% p.a.compoundedannually.
a
b
d
Howmuchinterestisearnedinthefirstyear?
Whatisthebalanceoftheaccountoncethefirstyear’s interestisadded?
c Whatisthebalanceoftheaccountattheendof thesecondyear?
Howmuchinterestisearnedinthesecondyear?
HintforQ1:Forthesecond year,youneedtouse $500 plustheinterestfromthefirst year.
2 $1200 isinvestedat 4% p.a.compoundedannuallyfor 3 years.Completethefollowing.
a Thevalueoftheprincipal P is b 4% isthe , r
c Thenumberoftimeperiodsthemoneyisinvestedis
3 Fillinthemissingnumbers.
a $700 investedat 8% p.a.compoundedannuallyfor 2 years.
A = (1.08)
b $1000 investedat 15% p.a.compoundedannually for 6 years.
A = 1000 ( )6
c $850 investedat 6% p.a.compoundedannuallyfor 4 years.
A = 850 ( )
Fluency
HintforQ3:Forcompound interest, A = P(1 + r 100 )n
Determinetheamountafter 5 yearswhen $4000 iscompoundedannuallyat 8%
Solution
Explanation
P = 4000, n = 5, r = 8 Listthevaluesforthetermsyouknow.
A = P(1 + r 100 )n Writetheformula.
= 4000(1 + 8 100 )5 Substitutethevalues.
= 4000(1.08)5
Simplifyandevaluate.
= $5877.31 Writeyouranswertotwodecimalplaces, (nearestcent).
Nowyoutry
Determinetheamountafter 4 yearswhen $3000 iscompoundedannuallyat 6%
4 Determinetheamountafter 5 yearswhen:
$4000 iscompoundedannuallyat 5% a
$8000 iscompoundedannuallyat 8.35% b
$6500 iscompoundedannuallyat 16% c
$6500 iscompoundedannuallyat 8% d
HintforQ4: A = P(1 + r 100 )n
5 Determinetheamountwhen $100000 iscompoundedannuallyat 6% for: 1 year a 2 years b 3 years c 5 years d 10 years e 15 years f
Calculatethenumberofperiodsandtheratesofinterestofferedperperiodforeachof thefollowing.
6% p.a.over 4 yearspaidmonthly a 18% p.a.over 3 yearspaidquarterly b
Solution
a n = 4 × 12 = 48 r = 6 ÷ 12 = 0.5
Explanation
4 yearsisthesameas 48 months, as 12 months = 1 year.
6% p.a. = 6% inoneyear. Divideby 12 tofindthemonthlyrate.
b n = 3 × 4 = 12 r = 18 ÷ 4
Therearefourquartersin 1 year. = 4.5
Calculatethenumberofperiodsandtheratesofinterestofferedperperiodforeach ofthefollowing.
3% p.a.over 2 yearspaidmonthly a 7% p.a.over 4 yearspaidbi-annually(twiceyearly) b
6 Calculatethenumberofperiods (n) andtheratesofinterest (r) offeredperperiodforthefollowing. (Roundtheinterestratetothreedecimalplaceswherenecessary.)
6% p.a.over 3 yearspaidbiannually a 12% p.a.over 5 yearspaidmonthly b
4.5% p.a.over 2 yearspaidfortnightly c
10.5% p.a.over 3.5 yearspaidquarterly d 15% p.a.over 8 yearspaidquarterly e 9.6% p.a.over 10 yearspaidmonthly f
HintforQ6:‘Bi-annually’ means‘twiceayear’. 26 fortnights = 1 year
Tony’sinvestmentof $4000 iscompoundedat 8.4% p.a.over 5 years.Determinetheamounthewill haveafter 5 yearsiftheinterestispaidmonthly.
Solution Explanation
P = 4000
n = 5 × 12
= 60
r = 8.4 ÷ 12
Listthevaluesofthetermsyouknow.
Convertthetimeinyearstothenumberofperiods(inthis question,months),i.e. 60 months = 5 years.
Converttherateperyeartotherateperperiod(i.e.months) bydividingby 12 = 0.7
A = P(1 + r 100 )n Writetheformula.
= 4000(1 + 0.007)60
Substitutethevalues 0.7 ÷ 100 = 0.007
= 4000(1.007)60 Simplifyandevaluate.
= $6078.95
Sally’sinvestmentof $6000 iscompoundedat 4.8% p.a.over 4 years.Determinetheamountshewill haveafter 4 yearsiftheinterestispaidmonthly.
7 Aninvestmentof $8000 iscompoundedat 12% p.a.over 3 years.Determinetheamounttheinvestor willhaveafter 3 yearsiftheinterestiscompoundedmonthly.
8 Calculatethevalueofthefollowinginvestmentsifinterestiscompoundedmonthly.
a $2000 at 6% p.a.for 2 years
b $34000 at 24% p.a.for 4 years
c $350 at 18% p.a.for 8 years
d $670 at 6.6% p.a.for 2 1 2 years
e $250 at 7.2% p.a.for 12 years
HintforQ8:Convertyearsto monthsandtheannualrate tothemonthlyrate.
9 Shafiqinvests $5000 compoundedmonthlyat 18% p.a.Determinethevalueoftheinvestmentafter:
10a Calculatetheamountofcompoundinterestpaidon $8000 attheendof 3 yearsforeachratebelow.
12% compoundedannually i
12% compoundedbiannually(twiceayear) ii
12% compoundedmonthly iii
12% compoundedweekly iv
12% compoundeddaily v
HintforQ10: 1 year = 12 months
1 year = 52 weeks
1 year = 365 days
b Whatisthedifferenceintheinterestpaidbetweenannualanddailycompoundinginthiscase?
11 Thefollowingareexpressionsrelatingtocompoundinterestcalculations.Determine theprincipal (P),numberofperiods (n),rateofinterestperperiod (r),annualrateofinterest (R) andtheoveralltime (t)
300(1.07)12,biannually a 5000(1.025)24,monthly b
1000(1.00036)65,fortnightly c
3500(1.000053)30,daily d 10000(1.078)10,annually e
HintforQ11:For 12 time periodswithinterestpaid twiceayear,thisis 6 years.
12 Ellenneedstodecidewhethertoinvesther $13500 for 6 yearsat 4.2% p.a.compoundedmonthlyor 5.3% compoundedbiannually.DecidewhichinvestmentwouldbethebestforEllen.
13 Youhave $100000 toinvestandwishtodoublethatamount.Usetrialanderrorinthefollowing.
a Determine,tothenearestwholenumberofyears,thelengthoftimeitwilltaketodothisusingthe compoundinterestformulaatratesof:
b Iftheamountofinvestmentis $200000 andyouwishtodoubleit,determinethetimeitwilltake usingthesameinterestratesasabove.
c Arethelengthsoftimetodoubleyourinvestmentthesameinpart a andpart b?
Learningintentions
• Tounderstandthataloancanberepaidininstalmentsthatincludeinterest
• Tobeabletocalculatethetotalpaymentforapurchaseorloaninvolvingrepayments
• Tobeabletocalculatebankinterestusingtheminimummonthlybalance
Keyvocabulary: investment,loan,repayment,interest,deposit,debit
Whenyouborrowmoney,interestischarged,andwhenyou investmoney,interestisearned.Whenyouinvestmoney,the institutioninwhichyouinvest(e.g.bankorcreditunion)pays youinterest.However,whenyouborrowmoney,theinstitution fromwhichyouborrowchargesyouinterest,sothatyoumust paybackthemoneyyouinitiallyborrowed,plustheinterest.
RefertoAllan’screditcardstatementbelow.
a Howmanydaysweretherebetweentheclosingbalanceand theduedate?
b Whatistheminimumpaymentdue?
Ifyouareapprovedforabankloan,you willneedtorepaytheborrowedamount plusanyinterestchargedbythebank.
c IfAllanpaysonlytheminimum,onwhatbalanceistheinterestcharged?
d HowmuchinterestischargedifAllanpays $475.23 on 25/5?
Interestratesareassociatedwithmanyloanandsavingsaccounts.
Bankaccounts:
• accrueinteresteachmonthontheminimummonthlybalance
• mayincuraccount-keepingfeeseachmonth
Investments areamountsputintoabankaccountorsimilarwiththeaimofearninginterest onthemoney.
Loans (moneyborrowed)haveinterestchargedtothemontheamountleftowing(i.e. thebalance).
Repayments areamountspaidtothebank,usuallyeachmonth,torepayaloanplusinterest withinanagreedtimeperiod.
1 Stateifthefollowingareexamplesofinvestments,loansorrepayments.
a Karapays $160 permonthtopayoffherholidayloan.
b Samdepositsa $2000 prizeinanaccountwith 3% p.a.interest.
c Georgiaborrows $6500 fromthebanktofinancesettinguphersmallbusiness.
2 Donnacanaffordtorepay $220 amonth.Howmuchcansherepayover: 1 year? a 18 months? b 5 years? c
3 Sarafinabuysanewbedona‘buynow,paylater’offer.Nointerestischargedifshepaysforthebed in 2 years.Sarafina’sbedcosts $2490 andshepaysitbackoveraperiodof 20 monthsin 20 equal instalments.Howmuchiseachinstalment?
Wendytakesoutapersonalloanof $7000 tofundhertriptoSouthAfrica.Repaymentsaremade monthlyfor 3 yearsat $275 amonth.Find: thetotalcostofWendy’strip a theinterestchargedontheloan. b
Solution
a Totalcost = $275 × 36 = $9900
Explanation
3 years = 3 × 12 = 36 months
Cost = 36 lotsof $275
b Interest = $9900−$7000 = $2900 Interest = totalpaid amountborrowed
Jacobtakesoutapersonalloanof $13000 tobuyacar.Hemakesrepaymentsmonthlyfor 2 yearsat $680 amonth.Find: thetotalcostofthecar a theinterestchargedontheloan. b
4 Jasonhasapersonalloanof $10000.Heisrepayingtheloanover 5 years.Themonthlyrepaymentis $310
CalculatethetotalamountJasonrepaysoverthe 5 yearloan. a Howmuchinterestishecharged? b
5 Robertborrows $5500 tobuyasecond-handmotorbike.Herepays theloanin 36 equalmonthlyinstalmentsof $155. Calculatethetotalcostoftheloan. a HowmuchinterestdoesRobertpay? b
HintforQ4:Howmanymonthly repaymentsin 5 years?
6 Almaborrows $250000 tobuyahouse.Therepaymentsare $1736 amonthfor 30 years.
HowmanyrepaymentsdoesAlmamake? a WhatisthetotalamountAlmapaysforthehouse? b Howmuchinterestispaidoverthe 30 years? c
Harrybuysanew $2100 computeronthefollowingterms: 20% deposit
•
• monthlyrepaymentsof $90 for 2 years.
Find:
thedepositpaid a thetotalpaidforthecomputer b theinterestcharged.
c
a Deposit = 0.2 × 2100 = $420
b Repayments = $90 × 24 = $2160
Totalpaid = $2160 + $420 = $2580
Find 20% of 2100
2 years = 24 months Repay 24 lotsof $90 Repay = deposit + repayments
c Interest = $2580−$2100 Interest = totalpaid originalprice = $480
Nowyoutry
Sophiepays $3180 foraholidayapartmentrentalonthefollowingterms: 30% deposit
•
• monthlyrepaymentsof $195 for 1 year.
Find: thedepositpaid a thetotalpaidfortheapartment b theinterestcharged. c
7 Georgebuysacarfor $12750 onthefollowingterms: 20% depositandmonthlyrepayments of $295 for 3 years.
Calculatethedeposit. a Findthetotalofalltherepayments. b Findthecostofbuyingthecarontheseterms. c FindtheinterestGeorgepaysontheseterms. d
Anaccounthasaminimummonthlybalanceof $200 andinterestiscreditedmonthlyonthisamount at 1.5%
Determinetheamountofinteresttobecreditedattheendofthemonth. a Ifthebankchargesafixedadministrationfeeof $5 permonthandotherfeestotalling $1.07, whatwillbethenetamountcreditedordebitedtotheaccountattheendofthemonth?
b Solution
Explanation
a Interest = 1.5% of $200 = 0.015 × $200 = $3 Interestis 1.5% permonth. Change 1.5% toadecimalandcalculate.
b Netamount = 3− (5 + 1.07) = −3.07
$3.07 willbedebitedfromtheaccount.
Subtractthedeductionsfromtheinterest.
Anegativeamountiscalledadebit.
Anaccounthasaminimummonthlybalanceof $180 andinterestiscreditedmonthlyonthisamount at 2.2%
Determinetheamountofinteresttobecreditedattheendofthemonth. a Ifthebankchargesafixedadministrationfeeof $4.50 permonthandotherfeestotalling $1.18, whatwillbethenetamountcreditedordebitedtotheaccountattheendofthemonth?
b 8 Abankaccounthasaminimummonthly balanceof $300 andinterestiscredited monthlyat 1.5%
Determinetheamountofinteresttobe creditedeachmonth. a
b
Ifthebankchargesafixedadministration feeof $3 permonthandfeesof $0.24, whatwillbethenetamountcreditedto theaccountattheendofthemonth?
9 Anaccounthasnoadministrationfee.The monthlybalancesforMay–Octoberareinthe tablebelow.Iftheinterestpayableonthe minimummonthlybalanceis 1%,howmuch interestwillbeadded: foreachseparatemonth? a overthe 6-monthperiod? b
10 Supersoundoffersthefollowingtwodealsonasoundsystemworth $7500
DealA:nodeposit,interestfreeandnothingtopayfor 18 months.
DealB: 15% offforcash.
a NickchoosesdealA.Find: thedeposithemustpay i theinterestcharged ii thetotalcostifNickpaysthesystemoffwithin 18 months. iii
b PhilchoosesdealB.WhatdoesPhilpayforthesamesound system?
c HowmuchdoesPhilsavebypayingcash?
11 CamdenFinanceCompanycharges 35% flatinterestonallloans.
a Meiborrows $15000 fromCamdenFinanceover 6 years. Calculatetheinterestontheloan. i Whatisthetotalrepaid (i.e.loan + interest)? ii Whatisthevalueofeachmonthlyrepayment? iii
b Lancelleborrows $24000 fromthesamecompanyover 10 years. Calculatetheinterestonherloan. i Whatisthetotalrepaid? ii Whatisthevalueofeachmonthlyinstalment? iii
HintforQ10: 15% offis 85% oftheoriginalamount.
12
a
AlistoftransactionsthatEmmamadeovera 1-monthperiodisshown.Thebankcalculatesinterest daily at 0.01% andaddsthetotaltotheaccountbalanceattheendofthisperiod.Ithasan administrativefeeof $7 permonthandotherfeesoverthistimetotal $0.35. Copyandcompletethebalancecolumnofthetable.
HintforQ12:Inpart b, interestiscalculatedonthe end-of-the-daybalance.
Determinetheamountofinterestaddedoverthismonth. b Determinethefinalbalanceafterallcalculationshavebeenmade.
c Suggestwhattheregulardepositsmightbefor. d
13 Thetablebelowshowstheinterestandmonthlyrepaymentsonloanswhenthesimpleinterestrateis 8.5% p.a.
a Usethetabletofindthemonthlyrepaymentsforaloanof:
$1500 over 2 years i $2000 over 3 years ii $1200 over 18 months. iii
b DamienandLisacanaffordmonthlyrepaymentsof $60.Whatisthemosttheycanborrow andonwhatterms?
14 Partofacreditcardstatementisshownhere.
Understanding your account
CLOSING BALANCE
MINIMUM PAYMENT DUE
PAYABLE TO MINIMISE FURTHER INTEREST CHARGES
Whatistheclosingbalance?
CLOSING BALANCE
This is the amount you owe at the end of the statement period
MINIMUM PAYMENT DUE
This is the minimum payment that must be made towards this account
PAYABLE TO MINIMISE FURTHER INTEREST CHARGES
This amount you must pay to minimise interest charges for the next statement period
Whatisdueonthecardifonlytheminimumpaymentismadeontheduedate?
Thiscardcharges 21.9% p.a.interestcalculateddailyontheunpaidbalance.Tofindthedailyinterest amount,thecompanymultipliesthisbalanceby 0.0006.Whatdoesitcostininterestperdayifonly theminimumpaymentismade? c
15 Whenyoutakeoutaloanfromalendinginstitutionyouwillbeaskedtomakeregularpayments(usually monthly)foracertainperiodoftimetorepaytheloancompletely.Thelargertherepayment,theshorter thetermoftheloan.
Loansworkmostlyonareducingbalanceandyoucanfindouthowmuchbalanceisowingat theendofeachmonthfromastatement,whichisissuedonaregularbasis.
Let’slookatanexampleofhowthebalanceisreducing.
Ifyouborrow $15000 at 17% p.a.andmakerepaymentsof $260 permonth,attheendofthefirst monthyourstatementwouldbecalculatedasshown.
Interestdue = 15000 × 0.17 12
= $212.50
Repayment = $260
Amountowing = $15000 + $212.50−$260
= $14952.50
Thisprocesswouldberepeatedforthenextmonth:
Interestdue = 14952.50 × 0.17 12
= $211.83
Repayment = $260
Amountowing = $14952.50 + $211.83−$260
= $14904.33
Asyoucansee,theamountowing isdecreasingandsoistheinterest owedeachmonth.Meanwhile,more ofyourrepaymentisactuallyreducing thebalanceoftheloan.
Astatementmightlooklikethis:
Checktoseethatallthecalculationsarecorrectonthestatementabove.
Asthisprocessisrepetitive,thecalculationsarebestdonebymeansofaspreadsheet.Tocreatea spreadsheetfortheprocess,copythefollowing,extendingyoursheettocover 5 years.
Learningintentions
• Tounderstandhowtechnologycanbeusedtoef cientlycompareinterestcalculations
• Tobeabletousetechnologytocalculateinterestand nalamountsandcompareinterestplans
Keyvocabulary: simpleinterest,compoundinterest
Bothcompoundinterestandsimpleinterestcalculations involveformulas.TechnologyincludingscientificandCAS calculators,spreadsheetsorevencomputerprograms canbeusedtomakesimpleandcompoundinterest calculations.
Theseallowforquick,repeatedcalculationswhere valuescanbeadjustedandtheinterestfromdifferent accountscompared.
Lessonstarter:Whoearnsthe most?
• Ceannainvests $500 at 8% p.a.compoundedmonthly over 3 years.
Theuseoftechnologycanhelpperformrepeated compoundinterestandsimpleinterestcalculations quickly.
• Huxleyinvests $500 at 10% p.a.compoundedannuallyover 3 years.
• Loreliinvests $500 at 15% p.a.simpleinterestover 3 years.
– Howmuchdoeseachpersonhaveattheendofthe 3 years?
– Whoearnedthemost?
Keyideas
Youcancalculatethetotalamountofyourinvestmentforeitherformofinterestusingtechnology. Usingformulasincalculators
• Simpleinterest I = Prt 100
• Compoundinterest A = P(1 + r 100 )n
Simplecode
Tocreateprogramsforthetwotypesofinterest, enterthedatashownatright.
Thiswillallowyoutocalculatebothtypesofinterest foragiventimeperiod.Ifyouinvest $100000 at 8% p.a.paidmonthlyfor 2 years,youwillbeaskedfor P, R = r 100, t or n andthecalculatorwilldotheworkfor you.
Note: SomemodificationsmaybeneededfortheCAS orothercalculatorsorothertechnology.
Thespreadsheetsshownbelowcanbecompletedtocompileasimpleinterestandcompound interestsheet.
FillintheprincipalinB3 andtherateperperiodinD3.Forexample,for $4000 invested at 5.4% monthly,B3 willbe 4000 andD3 willbe 0.054 12 .
Und er stand ing
1 Writedownthevaluesof P, r and n foraninvestmentof $750 at 7.5% p.a.,compoundedannually for 5 years.
2 Writedownthevaluesof P, r and t foraninvestment of $300 at 3% p.a.simpleinterestover 300 months.
3 Whichisbetteronaninvestmentof $100 for 2 years: HintforQ3:Forsimpleinterest
A simpleinterestcalculatedat 20% p.a.? B compoundinterestcalculatedat 20% p.a.and paidannually?
Findthetotalamountofthefollowinginvestments,usingtechnology. $5000 at 5% p.a.compoundedannuallyfor 3 years. a $5000 at 5% p.a.simpleinterestfor 3 years. b
Solution
a $5788.13
Explanation
Use A = P(1 + r 100 )n oraspreadsheet(see Keyideas).
b $5750 Use I = Prt 100 withyourchosentechnology.
Findthetotalamountofthefollowinginvestments,usingtechnology. $6000 at 4% p.a.compoundedannuallyfor 5 years. a $6000 at 4% p.a.simpleinterestfor 5 years. b
4 a Findthetotalamountofthefollowinginvestments,usingtechnology.
$6000 at 6% p.a.compoundedannuallyfor 3 years. i
$6000 at 3% p.a.compoundedannuallyfor 5 years. ii
$6000 at 3.4% p.a.compoundedannuallyfor 4 years. iii
$6000 at 10% p.a.compoundedannuallyfor 2 years. iv
$6000 at 5.7% p.a.compoundedannuallyfor 5 years. v
b Whichoftheaboveyieldsthemostinterest?
5 a Findthetotalamountofthefollowinginvestments,using technologywherepossible.
$6000 at 6% p.a.simpleinterestfor 3 years. i
$6000 at 3% p.a.simpleinterestfor 6 years. ii
$6000 at 3.4% p.a.simpleinterestfor 7 years. iii
$6000 at 10% p.a.simpleinterestfor 2 years. iv
$6000 at 5.7% p.a.simpleinterestfor 5 years. v
b Whichoftheaboveyieldsthemostinterest?
6 a Determinethetotalsimpleandcompoundinterestaccumulated onthefollowing.
i $4000 at 6% p.a.payableannuallyfor: 1 year
ii $4000 at 6% p.a.payablebiannuallyfor: 1 year I 2 years II 5 years III 10 years IV
iii $4000 at 6% p.a.payablemonthlyfor: 1 year I 2 years II 5 years III 10 years IV
b Wouldyoupreferthesamerateofcompoundinterestor simpleinterestifyouwereinvestingmoneyandpayingofftheloanininstalments?
c Wouldyoupreferthesamerateofcompoundinterestorsimpleinterestifyouwere borrowingmoney?
7 a Copyandcompletethefollowingtableifsimpleinterestisapplied.
$18000 8% 2 years
b Explaintheeffectontheinterestwhenwedoublethe: rate i period ii overalltime. iii
8 Copyandcompletethefollowingtableifcompoundinterestisapplied.Youmayneedtouseacalculator andtrialanderrortofindsomeofthemissingvalues.
9 Ifyouinvest $5000,determinetheinterestrateperannum(totwodecimalplaces)ifthetotalamount isapproximately $7500 after 5 yearsandifinterestis: compoundedannually a compoundedquarterly b compoundedweekly.
c Commentontheeffectofchangingtheperiodforeachpaymentontherateneededtoachieve thesametotalamountinagiventime.
10 a Determine,toonedecimalplace,theequivalentsimpleinterestrateforthefollowinginvestments over 3 years.
$8000 at 4% compoundedannually. i
$8000 at 8% compoundedannually. ii
b Ifyoudoubleortriplethecompoundinterestrate,howisthesimpleinterestrateaffected?
Abookkeeperandanaccountsmanagerare bothoccupationsthatdealwithnumbersand budgets.Theyrequireemployeestohavegood communicationandmathematicalskills.
Employeesalsoneedacommitmenttodetail andtobehonest,astheydealwithother people’smoney.
Excellentnumberskillsareessentialinthese fields.Bookkeepersneedtoworkwith spreadsheets,percentages,taxsystemsand businessplans.
Completethesequestionsthatafinancemanager mayfaceintheirday-to-dayjob.
1 Considertheinformationsuppliedina sectionofabusinessbudgetfora 3-month period.
a
Roundallanswerstotwodecimalplaces. Calculatethetotalincomeforthemonth ofJuly.
(with 25% reduction)
b Calculatethetotalincomeforthemonth ofSeptember.
Calculatethetotalincomeforthemonth ofAugust.
c Whichmonthhadthehighestincome andbyhowmuch?
d Whatcontributedtothisincreasein income?
e Whatpercentageofthetotalincome forthe 3 monthsshowncamefroma fixedfee?
g
f Whatwasthemonthlyfixedfeebefore the 25% reductionoccurred?
2 Theofficeexpensesforthesamecompanyforthesame 3-monthperiodaregiveninthetable.
a Calculatethepercentage ofthetotaloffice expensesforJulyspent onrent.
b Whatisthecostof electricityshowninthe table,andinwhatmonth isitshown?
c Whydoestheelectricity notappearintheother twomonths?
d Whatistheprojectedcostofelectricityfortheyear?
3 TheemploymentexpensesforthethreemonthsofOctober,NovemberandDecemberareshown.
a Calculatethetotalemploymentexpensesforthemonthof December.
b WhatisthewholenumberpercentageincreaseofNovember’s totalemploymentexpensesfromNovembertoDecember? Whatwasthecauseofthisincrease?
c Thecompanyhas 11 full-timeemployees.Whatisan employee’saverage: salarypermonth? i annualsalary? ii
d ThecompanyhastotalexpensesforthemonthofNovemberof $92117.Whatpercentageofthe totalexpensesforNovembercomesfromtheemploymentexpenses?
4 Atruckingbusinesshasinvestedinanewprimemoverforhaulingcattlebyroadtrain.Ithasabank loanof $230000 at 9% perannumchargedmonthly.ThebusinessrequiresanExcelspreadsheetto showtheprogressofthedebtrepayment.
a DevelopthefollowingtableinanExcelspreadsheetbyenteringformulasintotheyellowshaded cellstocalculatetheirvalues.Usethenotesbelowtohelpyou.
Notes:
HintforQ4:Afterentering yourformulas,checkspecific resultswithacalculator.
• Theinterestduepermonthis 1 12 of 9% ofthestartingbalanceforthatmonth.
• Theprincipal(i.e.debt)paidwillbethescheduledpaymentminustheinterestdue.
• Theendingbalanceswillequalthestartingbalanceminustheprincipalpaid.
• Thenextmonth’sstartingbalanceequalsthepreviousmonth’sendingbalance.
b Extendthetablefor 12 paymentsandanswerthefollowingquestions. WhatistheamountofdebtremainingonJuly 1? i WhatistheinterestpaidinOctober? ii UseanExcelformulatofindthedifferencebetweentheprincipalpaidinDecemberandthe principalpaidinJanuary. iii Enter‘sum’formulastodeterminethetotalinterestpaidintheyearandthetotalprincipalpaid offintheyear. iv
Matildaisakeenartinvestorandhastheopportunitytopurchaseanewworkfromanauctionhouse. Theauctioneerissayingthattheestimatedvalueofthepaintingis $10000.Matilda’smaininvestment goalisforeachofherinvestmentstoatleastdoubleinvalueevery 10 years. Presentareportforthefollowingtasksandensurethatyoushowclearmathematicalworkings, explanationsanddiagramswhereappropriate.
a IfMatildapurchasesthepaintingfor $10000 andassumesagrowthrateof 5% p.a.,calculate thevalueoftheinvestmentafter: 1 year i 2 years ii 3 years. iii
b Theruleconnectingthevalueofthe $10000 investment($A)growingat 5% p.a.after t years
isgivenby A = 10000 1 + 5 100 t
i
Checkyouranswerstopart a bysubstituting t = 1, t = 2 and t = 3 intothegivenrule andevaluatingthevalueof A usingyourcalculator,oraspreadsheet.
Constructasimilarruleforaninvestmentvalueof $12000 andagrowthrateof 3% ii
Constructasimilarruleforaninvestmentvalueof $8000 andagrowthrateof 8% iii
c Using A = 10000 1 + 5 100 t findthevalueofa $10000 investmentat 5% p.a.after 10 years.
i.e.Calculatethevalueof A if t = 10
TheproblemistodetermineaninvestmentgrowthratethatdeliversatleastadoublingofMatilda’s initialinvestmentamountafter 10 years.
a Writedownalltherelevantinformationthatwillhelpsolvethisproblem.Whatformulaneedsto beappliedinthistask?
b Explainwhatthenumbers 10000 and 5 meanintherule A = 10000 1 + 5 100 t inrelationto Matilda’sinvestment.
c Usetherule A = 10000 1 + r 100 t todeterminethevalueofMatilda’s $10000 investmentafter 10 yearsforthefollowinggrowthrates(r%).
r = 4 i r = 7 ii
r = 10 iii
d Chooseyourownvaluesof r usingonedecimalplaceaccuracyanddeterminethegrowthrate forwhichtheinvestmentdoublesinvalueafter 10 years.
e Byconsideringvaluesof r eithersideofyourchosenvaluefoundinpart d demonstratethatyour answeriscorrecttoonedecimalplace.
f Refineyouranswersothatitiscorrecttotwodecimalplaces.
g Summariseyourfindingsanddescribeanykeyfindings.Youmightliketoshowyourresultsina spreadsheetsimilartotheonebelow.
a Decideifchangingtheinitialinvestmentvaluechangesthetotalpercentageincreaseinvalue afterthesamenumberofyears.Justifyyouranswer.
b IfMatildaonlypaid $8000 fortheartworkbutstillwantedittobevaluedat $20000 after 10 years,determinethegrowthratethatshewillneedtheworktohave?Roundtotwodecimal places.
Formulate
Evaluate and verify
Communicate
Keytechnology:Graphingandspreadsheets
Intheworldoffinance,itisimportanttoknowthe differencebetweensimpleandcompoundinterest. Thedifferencesinthevalueofinvestmentsandloans canbeverysignificantoverthelongterm.
Youwillrecalltheserulesfortheamount A:
• Simpleinterest: A = P
• Compoundinterest: A = P 1
Imagineinvesting $100000
a Calculatethetotalvalueoftheinvestmentusingthefollowingsimpleinterestterms. 4% p.a.for 5 years. i 5% p.a.for 10 years. ii
b Calculatethetotalvalueoftheinvestmentusingthefollowingcompoundinterestterms. 4% p.a.for 5 years. i 5% p.a.for 10 years. ii
c Compareyouranswersfromparts a and b aboveanddescribewhatyounotice.Canyouexplain whythecompoundinterestreturnsarehigherthansimpleinterestreturns?
Twopeopleinvest $100000 inthefollowingways:
• A:Simpleinterestat r1% for t years
• B:Compoundinterestat r2% for t years
a UsegraphingsoftwarelikeDesmostoconstructagraphofthetotalvalueoftheinvestments A and B onthesamesetofaxes.Useslidersfor r1 and r2 asshown.
b Noteinthepreviousexamplethat r1 iscurrently 6 and r2 iscurrently 5.Dragthesliderstochange thevalueoftheinterestratesandnotethechangesinthegraphs.
c Chooseacombinationof r1 and r2 sothatthevaluesoftheinvestmentsareroughlyequalnear thefollowingnumberofyears.
5 i 10 ii
d Setthecompoundinterestrate r2 at 4%.Dragthe r1 slidertofindasimpleinterestratesothatthe valuesoftheinvestmentsareapproximatelyequalafter 10 years.
Asimpleinterestratewhichisequivalenttoacompoundinterest ratecanbefoundusinganalgorithmicapproachinsidea spreadsheet.
a Considerthisflowchartwhichfindsthevalueofasimple interestinvestmentover t years.Bychoosing t = 4, runthroughthealgorithmandcompletethistablefor eachpass. n A 0 100000 1
= 100000, A = 100000, r = 5, n = 0
b Writeasimilarflowchartbutthistimeforthe compoundingcase.
c Applythesealgorithmsbysettingupaspreadsheetlike thefollowingtocomparethetotalvalueofasimpleand compoundinterestinvestmentof $100000 over t years.
d Afterfillingdownfromcellsinrow 6 comparethevaluesoftheinvestmentsovera 12-yearperiod. Experimentwiththenumbersinrow 2 changingtheinitialinvestmentamountandtheinterest rates.
e Usinga $100000 investmentandacompoundinterestrateof 5%,useyourspreadsheettofindan equivalentsimpleinterestratethatdeliversanequalinvestmentvalueafter 10 years.
1 Findanddefinethe 10 termsrelatedtoconsumerarithmeticandpercentageshiddeninthis wordfind.
2 Howdoyoustopabullchargingyou?Answerthefollowingproblemsandmatchtheletterstothe answersbelowtofindout.
3 Howmanyyearsdoesittake $1000 todoubleifitisinvestedat 10% p.a.compoundedannually?
4 ThechanceofJaydenwinningagameofcardsissaidtobe 5%.Howmanyconsecutivegames shouldJaydenplaytobe 95% certainhehaswonatleastoneofthegamesplayed?
Percentages
Simple (flat rate) interest
I = simple interest
P = principal ($ invested)
r = rate per year, as a percentage
t = number of years
Compound interest
A = final balance
P = principal ($ invested)
r = rate per time period, as a percentage
n = number of time periods money is invested for
Spreadsheets can be used to manage money or compare loans.
Increase 20 by 8% = or 0.15 × 459 = 20 × 108%
= 20 × 1.08
Decrease 20 by 8%
= 20 × 92%
= 20 × 0.92 15
Income
Hourly rate = $/h
Time and a half = 1 × hourly rate 1 2
Double time = 2 × hourly rate
Commissionis % of total sales
Gross income = total of all money earned
Net income = gross income deductions
Deciding how income is spent on fixed and variable expenses.
Money given from wages (income tax) to the government (Refer to the income tax table on page 22.)
Loans
Balance owing = amount left to repay
Repayment = money given each month to repay the loan amount and the interest
AversionofthischecklistthatyoucanprintoutandcompletecanbedownloadedfromyourInteractiveTextbook.
1A 1
Icanconverttoapercentage.
e.g.Writeeachofthefollowingasapercentage.
a 7 40 b 0.24
1A 2
Icanwritepercentagesassimplifiedfractionsanddecimals.
e.g.Writeeachofthefollowingpercentagesasbothasimplifiedfractionandadecimal. a 53% b 4% c 10.5%
1A 3
1B 4
1B 5
Icanfindthepercentageofaquantity.
e.g.Find 64% of $1400.
Icanincreaseanddecreasebyagivenpercentage.
e.g.Fortheamountof $800: a increase $800 by 6% b decrease $800 by 15%
Icancalculatepercentageprofit.
e.g.Jimmybuysasecond-handdeskfor $145 andrestoresittoagoodcondition.Ifhesellsiffor $210, calculatehisprofitandthepercentageprofit,correcttoonedecimalplace.
1B 6
Icanfindthesellingprice.
e.g.Jobuyst-shirtsfor $24 eachandwishestomakea 28% profitonthepurchase.Whatshouldbeher sellingpriceandwhatwillbetheprofitonthesaleof 20 t-shirts?
1B 7
1C 8
Icancalculateadiscount.
e.g.A $849 televisionisdiscountedby 18%.Whatisthesellingpriceofthetelevision?
Icanfindgrossandnetincomeinvolvingovertime.
e.g.Anikaearns $21.40 perhourandhasnormalworkinghoursof 38 hoursperweek.Sheearnstime andahalfforthenext 4 hoursworkedanddoubletimeafterthat.Shepays $190 perweekintaxand otherdeductions.
Calculatehergrossandnetincomeforaweekinwhichsheworks 45 hours.
1C 9 Icancalculateincomeinvolvingcommission.
e.g.Tiaearns $300 perweekplusacommissionof 6% onhersalesofsolarpanels.Ifshesells $8200 worthofsolarpanelsinaweek,whatishergrossincomefortheweek?
1D 10
Icancalculateincometaxpayable.
e.g.Noahearns $78406 peryear,includinginterestoninvestments.Hehasreceiptsfordonationsand workrelatedexpensesof $445
a CalculateNoah’staxableincome.
b UsethetaxtableintheKeyideasonpage 22 tocalculateNoah’staxpayableamount,tothenearest cent.
c IfNoahalsohastopay $1559 fortheMedicarelevy,calculatehistaxrefundifhisemployersent $16000 totheATO.
1E 11 Icanbudgetusingpercentages.
e.g.Ashhasanetannualincomeof $54800 afterdeductions.Sheallocatesherbudgetonapercentage basis.
) 25
a Determinetheamountoffixedexpenses(rentandtheloan).
b Determinehowmuchshebudgetstosaveeachmonth.
1E 12 Icanbudgetfromfixedvalues.
e.g.Runningacertaintypeofmotorbikeinvolvesthefollowingcosts:
• registration $520 peryear
• insurance $120 perquarter
• servicing $310 peryear
• petrol $64 permonth
Determinetheoverallcosttorunthebikeforayearandwhatpercentageofan $80000 salarythis wouldbe,correcttoonedecimalplace.
1E 13 Icancalculateabestbuy.
e.g.Packetsofchipscanbeboughtinthefollowingwaysatthestore:
• 20 packs(20 gramseach)for $5.50
• 6 packs(20 gramseach)for $3.35
• 2 sharebags(60 gramseach)for $4
Determinethecheapestwaytobuythechips.
1F 14 Icanusethesimpleinterestformulatofindinterest.
e.g.Usethesimpleinterestformulatocalculatetheinterestwhen $800 isinvestedat 5% p.a.for 3 years.
1F 15 Icancalculaterepaymentsusingsimpleinterest.
e.g.Ifasimpleinterestloanof $4000 isborrowedfor 2 yearsatasimpleinterestrateof 4% p.a.,what isthetotalamountowedoverthe 2 yearsandifrepaymentsaremademonthly,howmuchwouldeach paymentneedtobe?
1F 16 Icanusethesimpleinterestformulatofindtherateofinterest.
e.g.Usethesimpleinterestformulatocalculatetherateofinterestwhen $2800 earns $294 interestin 3 years.
1G 17 Icanusethecompoundinterestformula.
e.g.Determinetheamountafter 6 yearswhen $8000 iscompoundedannuallyat 3%
1G 18 Icanusecompoundinterestwithdifferenttimeperiods.
e.g.Aninvestmentof $5500 iscompoundedat 6% p.a.over 4 years.Determinetheamounthewillhave after 4 yearsifinterestispaidmonthly.
1H 19 Icanworkwithrepaymentstocalculateapurchasecost.
e.g.Vanessapaysfora $8600 travelpackagewithatravelagentwitha 30% depositandmonthly repaymentsof $300 for 2 years.
Calculate: a thedepositpaid, b thetotalamountpaidforthetravelpackageandhencetheinterestpaid.
1H 20 Icancalculateinterestearnedonanaccount.
e.g.Anaccounthasaminimummonthlybalanceof $140 andinterestiscreditedmonthlyonthis amountat 1.8%.Determinetheamountofinteresttobecreditedattheendofthemonthandthetotal amountcreditedordebitedifthebankcharges $5 permonthinaccountkeepingfees.
1I 21 Icanusetechnologytocalculateinterestandfinalamounts. e.g.Usetechnologytofindthetotalamountonthefollowinginvestments.
a $7000 at 4% p.a.compoundedannuallyfor 5 years.
b $7000 at 4% p.a.simpleinterestfor 5 years.
1 1A Convertthefollowing: 11 20 toapercentage a 0.12 toapercentage b 36% toasimplifiedfraction c 3.5% toadecimal. d
2 1A Find 16% of $9000 3 1B Increase $968 by 12%
Decrease $4900 by 7%
4 1B Thecostpriceofanitemis $7.60.Ifthisisincreasedby 50%,determine: theretailprice a theprofitmade. b
5 1B Anairfareof $7000 isdiscounted 40% ifyouflyoff-peak. Whatwouldbethediscountedprice?
6 1E Josephinebudgets 20% ofherincomefor entertainment.Ifheryearlyincomeis $37000, howmuchcouldbespentonentertainmentin: ayear? a amonth? b aweek(taking 52 weeksinayear)? c
7 1C
Mariahworksa 34-hourweekat $25.43 perhour.Hernetincomeis 62% ofherwage. Workoutherweeklynetincome. a If 15% isspentonclothing,determinetheamountshecanspendeachweek. b Ifshesaves $100,whatpercentage(totwodecimalplaces)ofhergrossweeklyincome isthis? c
8 1E Frankhasthefollowingexpensestorunhiscar: hirepurchasepayment
• $350 permonth registration
• $885 peryear insurance
• $315 perquarter servicing
• $90 perweek
• $1700 peryear petrol
a Findthetotalcostofrunninghisvehiclefor 1 year.
b Whatpercentage(tothenearestpercentage)oftheoverallcosttorunthecaristhecostofthe petrol?
9 1D Ronanworks 36 hoursinaweekat $39.20 perhour.Hepays $310 intaxand $20.50 in superannuationintheweek.Determine: hisgrosswageinaweek a hisnetpayinaweek. b
10 1D Lilreceivesanannualtaxableincomeof $90000. Usingthetaxtableshown,calculatetheamountoftaxshepaysovertheyear.
0−$18200 Nil
$18201−$45000 16cforeach $1 over $18200
$45001−$135000 $4288 plus 30cforeach $1 over $45000
$135001−$190000 $31288 plus 37cforeach $1 over $135000
$190001 andover $51638 plus 45cforeach $1 over $190000
IfLilpaysthe 2% Medicarelevyonhertaxableincome,findthisamount. b
11 1C Zanereceives 4.5% commissiononsalesof $790.Determinetheamountofhiscommission.
12 1F Findtheinterestpaidona $5000 loanunderthefollowingconditions.
8% p.a.simpleinterestover 4 years a 7% p.a.simpleinterestover 3 yearsand 4 months b
13 1G Findtheinterestpaidona $5000 loanunderthefollowingconditions. 4% p.a.compoundedannuallyover 3 years a 9.75% p.a.compoundedannuallyover 2 years b 6% p.a.compoundedmonthlyover 2 years c
1H Avehicleworth $7000 ispurchasedonafinancepackage.Thepurchaserpays 15% deposit and $250 permonthover 4 years. Howmuchdepositispaid? a Whatarethetotalrepayments? b
Howmuchinterestispaidoverthetermoftheloan? c
5 1C IfSimonreceives $2874 onthesaleofapropertyworth $195800,hisrateofcommission, toonedecimalplace,is:
6 1C Inagivenrosteredfortnight,Bilalworksthefollowingnumberof 8-hourshifts:
• threedayshifts($10.60 perhour)
• threeafternoonshifts($12.34 perhour)
• fivenightshifts($16.78 perhour).
Histotalincomeforthefortnightis:
Acomputertabletisdiscountedby 26%.Whatisthepriceifitwasoriginally $329?
8 1H A $5000 loanisrepaidbymonthlyinstalmentsof $200 for 5 years.Theamountofinterest chargedis:
1 $5000 isinvestedat 4% p.a.compoundingannuallyfor 3 years. Whatisthevalueoftheinvestmentafterthe 3 years? a Howmuchinterestisearnedinthe 3 years? b Using r = 100I Pt ,whatsimpleinterestrateresultsinthesameamount? c Howmuchinterestisearnedontheinvestmentifitiscompoundedmonthlyat 4% p.a.forthe 3 years? d
2 YourbankaccounthasanopeningJulymonthlybalanceof $217.63.Youhavethefollowing transactionsoverthemonth.
Designastatementofyourrecordsif $0.51 istakenoutasafeeon 15 July. a Findtheminimumbalance. b Ifinterestiscreditedmonthlyontheminimumbalanceat 0.05%,determinetheinterestforJuly, roundedtothenearestcent. c
Essentialmathematics:whymeasurementskillsare important
Accuratemeasurementskillsandcalculationsareessentialforyourhomeimprovementprojects andalsoforsafeindustrialoperationsandastablebuiltenvironment.
Spatialdesignersrelyonaccuratemeasurements.Forexample,interiordesignersplanfurniture layoutandlightingselections;digitalgamedesignerscreateimmersiveenvironmentswith proportionalaccuracy;farmersoptimizecroplayoutsandirrigationsystems;andeventplanners arrangeseating,staging,lightingandsoundsystems.
HVACtechniciansdesigneffectiveheatingandcoolingsystemsandcalculateperimeters,surface areas,andvolumesofairinroomsandducts,includinginoffices,restaurants,kitchens,hospitals, schoolsandmovietheatres.
Windturbinesrequireprecisemeasurementssothateachblade’scylindricaljoining-piececonnects perfectlytothehubandthentothecylindricalshaftandcirculargearsthatdrivetheelectric generator.Windpower P iscalculatedusingtheformula P = 1 2 qAv3 where q isairdensity, A isthe sweptcircularareaoftheblades,and v thewindspeed.
2AConversionofunits (Consolidating)
2BPerimeter (Consolidating)
2CCircumference (Consolidating)
2DArea
2EAreaofcirclesandsectors
2FMeasurementerrorsandaccuracy
2GSurfaceareaofprisms
2HSurfaceareaofacylinder
2IVolumeofsolids
2JFurtherproblemsinvolvingprisms andcylinders
AustralianCurriculum9.0
Solveproblemsinvolvingthesurfaceareaand volumeofcompositeobjectsusing appropriateunits(AC9M10M01)
SolvepracticalproblemsapplyingPythagoras’ theoremandtrigonometryofright-angled triangles,includingproblemsinvolving directionandanglesofelevationand depression(AC9M10M03)
Identifytheimpactofmeasurementerrorson theaccuracyofresultsinpracticalcontexts (AC9M10M04)
Usemathematicalmodellingtosolvepractical problemsinvolvingproportionandscalingof objects;formulateproblemsandinterpret solutionsintermsofthesituation;evaluate andmodifymodelsasnecessary,andreport assumptions,methodsandfindings (AC9M10M05)
Recognisetheeffectofusingapproximations ofrealnumbersinrepeatedcalculationsand comparetheresultswhenusingexact representations(AC9M10N01)
©ACARA
Onlineresources
Ahostofadditionalonlineresourcesare includedaspartofyourInteractiveTextbook, includingHOTmathscontent,video demonstrationsofallworkedexamples, auto-markedquizzesandmuchmore.
1 Nametheseshapes.Choosefromthewords trapezium, triangle, circle, rectangle, square, semicircle, parallelogram and rhombus a b c d e f g h
2 Writethemissingnumber.
3 Findtheperimeteroftheseshapes.
4 Findtheareaoftheseshapes.
5 Findtheareaofthesetrianglesusing A = 1 2 bh
6 Use C =p d and A =p r2 tofindthecircumferenceandareaofthiscircle.Roundyouranswerto twodecimalplaces.
Learningintentions
• Toreviewthemetricunitsofmeasurement
• Tobeabletoconvertbetweenmetricunitsforlength,areaandvolume
Keyvocabulary: unit,length,area,volume
Toworkwithlength,areaorvolumemeasurements,itis importanttobeabletoconvertbetweendifferentunits. Forexample,timberiswidelyusedinbuildingsforframes, rooftrussesandwindows,thereforeitisimportantto orderthecorrectamountsothatthecostofthehouse isminimised.Althoughplansgivemeasurementsin millimetresandcentimetres,timberisorderedinmetres (oftenreferredtoaslinealmetres),sowehavetoconvertall ourmeasurementstometres.
Buildingahousealsoinvolvesmanyareaandvolume calculationsandunitconversions.
Beingabletocovertbetweenunitsof measurementisanimportantskillforabuilder.
Allhomesstartfromaplan,whichisusuallydesignedbyanarchitectandshowsmostofthebasic featuresandmeasurementsthatareneededtobuildthehouse.Measurementsaregiveninmillimetres.
• Howmanybedroomsarethere?
• Whatarethedimensionsofthemasterbedroom(i.e.BED 1)?
• Whatarethedimensionsofthemasterbedroom,inmetres?
• Willtherumpusroomfitapooltablethatmeasures 2.5 m × 1.2 m,andstillhaveroomtoplay?
• Howmanycarsdoyouthinkwillfitinthegarage?
Toconvertunits,drawanappropriatediagramanduseittofindtheconversionfactor.
Forexample:
Conversions:
Area
Tomultiplyby 10, 100, 1000 etc.move thedecimalpointoneplacetotherightfor eachzero, e.g. 3.425 × 100 = 342.5
Todivideby 10, 100, 1000 etc.movethe decimalpointoneplacetotheleft foreachzero, e.g. 4.10 ÷ 1000 = 0.0041
3 = 100 × 100 × 100 = 1000000 10003 = 1000 × 1000 × 1000 = 1000000000
1 Writethemissingnumbersinthesesentencesinvolvinglength.
a Thereare min 1 km.
b Thereare mmin 1 cm.
c Thereare cmin 1 m.
2 Writethemissingnumbersinthesesentencesinvolvingareaunits.
a Thereare mm2 in 1 cm2
b Thereare cm2 in 1 m2
c Thereare m2 in 1 km2 .
3 Writethemissingnumbersinthesesentencesinvolvingvolumeunits.
a Thereare mm3 in 1 cm3
b Thereare m3 in 1 km3
c Thereare cm3 in 1 m3
Example1Convertinglengthmeasurements
Converttheselengthmeasurementstotheunitsshowninthebrackets.
Explanation
a
Multiplywhenconvertingtoasmallerunit.
b 45 mm = 45 ÷ 10 = 4.5 cm
Nowyoutry
Dividewhenconvertingtoalargerunit.
Converttheselengthmeasurementstotheunitsshowninthebrackets. 4.6
4 Convertthefollowingmeasurementsoflengthtotheunitsgivenin thebrackets.
HintforQ4:Whenconverting toasmallerunit,multiply. Otherwise,divide.
Example2Convertingareameasurements
Converttheseareameasurementstotheunitsshowninthebrackets.
Explanation
Whendividingby 10000,movethedecimalpoint 4 placestotheleft. Continuedonnextpage
b 0.4 cm2 = 0.4 × 102 = 0.4 × 100 = 40 mm2
Nowyoutry
Converttheseareameasurementstotheunitsshowninthebrackets. 320 mm2 (cm2) a
mm2
km2 (m2) b
5 Convertthefollowingareameasurementstotheunitsgiveninthe brackets.
cm2 (mm2)
m2 (cm2) b 5 km2 (m2) c 2980000 mm2 (cm2) d 537 cm2 (mm2) e 0.023 m2 (cm2) f
Convertthesevolumemeasurementstotheunitsshowninthebrackets. 3.72 cm3 (mm3) a
) b
Solution Explanation a 3.72 cm3 = 3.72 × 103 = 3.72 × 1000 = 3720 mm3
b 4300 cm3 = 4300 ÷ 1003 = 4300 ÷ 1000000 = 0.0043 m3
Nowyoutry
Convertthesevolumemeasurementstotheunitsshowninthebrackets.
0.21 m3 (cm3) a 94000 mm3 (cm3) b
6 Convertthesevolumemeasurementstotheunitsgiveninthe brackets.
2 cm3 (mm3) a 0.2 m3 (cm3) b 5700 mm3 (cm3) c 0.015 km3 (m3) d
28300000 m3 (km3) e 762000 cm3 (m3) f
7 Anathletehascompleteda 5.5 kmrun.Howmanymetresdidtheathleterun?
8 Determinethemetresoftimberneededtoconstructthefollowingframes.
9 Findthetotalsumofthemeasurementsgiven,expressingyour answerintheunitsgiveninthebrackets.
10 cm, 18 mm (mm)
HintforQ9:Converttotheunitsin brackets.Adduptofindthesum. a 1.2 m, 19 cm, 83 mm (cm) b
km, 258 m (km) c
10 Asnailismovingatarateof 43 mmeveryminute.Howmanycentimetres willthesnailmovein 5 minutes?
11 Whydoyouthinkthatbuildersmeasuremanyoftheirlengthsusingonly millimetres,eventheirlonglengths? Specialunits
12 Manyunitsofmeasurementapartfromthoserelatingtomm,cm,mandkmareusedinoursociety. Someofthesearedescribedhere.
(ha)
(
Convertthesespecialmeasurementstotheunitsgiveninthebrackets.Usetheconversion informationgivenabovetohelp.
Learningintentions
• Tobeabletocalculatetheperimeterofashape
• Tobeableto ndanunknownlengthgiventheperimeter
Keyvocabulary: perimeter
Perimeterisameasureoflengtharoundtheoutsideofashape.Wecalculateperimeterwhenordering ceilingcornicesforaroomormaterialsforfencingapaddockorwhendesigningahouse.
Farmersneedtomeasuretheperimeterofpaddockswhenbuildinga fencesotheyorderthecorrectamountofmaterials.
TheL-shapedfigureontherightincludesonlyright (90°) angles.Onlytwo measurementsaregiven.
• Canyoufigureoutanyothersidelengths?
• Isitpossibletofinditsperimeter?Why?
Perimeter isthedistancearoundtheoutsideofatwo-dimensionalshape.
• Tofindtheperimeter,weaddallthelengthsofthesidesinthesameunits.
• Whentwosidesofashapearethesamelengththeyarelabelledwiththesamemarkings.
Und er stand ing 1,2 2
1 Writethemissingword:Thedistancearoundtheoutsideofashapeiscalledthe
2 Writedownthevalueof x fortheseshapes.
Fluency
Example4Findingperimetersofbasicshapes
Findtheperimeteroftheseshapes.
Solution
a Perimeter = 3 + 2 + 4 + 3.5 = 12.5 cm
b Perimeter = 5 + 5.2 + 3 × 3 = 19.2 m
Nowyoutry
Findtheperimeteroftheseshapes.
Explanation
Addallthelengthsofthesidestogether.
Threelengthshavethesamemarkingsand thereforearethesamelength.
3 Findtheperimeteroftheseshapes.
HintforQ3c–f:Sideswiththe samemarkingsarethesame length.
4 Findtheperimeteroftheseshapes.
Example5Findingamissingsidelength
Findthevalueof x forthisshapewiththegivenperimeter.
5–7 6–10
Solution
4.5 + 2.1 + 3.4 + x = 11.9 10 + x = 11.9 x = 1.9
Nowyoutry
Explanation
Allthesidesaddto 11.9 inlength. Simplify.
Subtract 10 frombothsidestofindthevalueof x
Findthevalueof x forthisshapewiththegivenperimeter.
5 Findthevalueof x fortheseshapeswiththegivenperimeters.
6 Findthevalueof x fortheseshapeswiththegivenperimeters.
HintforQ5:Addupallthesides andthendeterminethevalueof x tosuitthegivenperimeters.
= 17 m
= 22.9 cm
= 0.8 mm
Aconcreteslabhasthemeasurementsshown.Allanglesare 90° Drawanewdiagram,showingallthemeasurementsinmetres. a Determinethelinealmetresoftimberneededtosurroundit. b
Solution
b Perimeter = 18.5 + 16.8 + 3.5 + 2.7 + 15 + 14.1 = 70.6 m
Thelinealmetresoftimberneededis 70.6 m.
Explanation
Convertyourmeasurementsand placethemallonthediagram.
1 m = 100 × 10 = 1000 mm
Addorsubtracttofindthemissing measurements.
Addallthemeasurements.
Writeyouranswerinwords.
Aconcreteslabhasthemeasurementsshown.Allanglesare 90° Drawanewdiagramshowingallthemeasurementsinmetres. a Determinethelinealmetresoftimberneededtosurroundit. b
7 Sixconcreteslabsareshownbelow.Allanglesare 90° i Drawanewdiagramforeachwiththemeasurementsinmetres. ii Determinethelinealmetresoftimberneededforeachtosurroundit.
8 Arectangularpaddockhasperimeter 100 m.
Findthewidthofthepaddockifitslength is 30 m.
9 Theequilateraltriangleshownhasperimeter 45 cm.Finditssidelength. x cm
10 Writeformulasfortheperimeteroftheseshapes,usingthepronumeralsgiven.
HintforQ10:Aformulafor perimetercouldbe P = l + 2w or P = a + b + c
Howmanydifferenttables? 11,12
11 Alargediningtableisadvertisedwithaperimeterof 12 m.Thelengthandwidthareawholenumberof metres(e.g. 1 m, 2 m, ).Howmanydifferent-sized tablesarepossible?
12 Howmanyrectangles(usingwholenumbermetrelengths)haveperimetersbetween 16 mand 20 m, inclusive?
Learningintentions
• Toknowtheformulaforthecircumferenceofacircle
• Tobeableto ndthecircumferenceofacircle
• Tobeableto ndthecircumferenceofcircleportionsandsimplecompositeshapes
Keyvocabulary: circumference,pi,radius,diameter,circle
Tofindthedistancearoundtheoutsideofacircle–thecircumference–weusethespecialnumbercalled pi (p ).Piprovidesadirectlinkbetweenthediameter ofacircleandthecircumferenceofthatcircle.
Thewheelisoneofthemostusefulcomponentsin manyformsofmachineryanditsshape,ofcourse,is acircle.Onerevolutionofavehicle’swheelmovesthe vehicleadistanceequaltothewheel’scircumference.
Thecircumferenceofawheel,tellsyouhowfaravehicle movesforwardafteronefullrevolution.
Lessonstarter:Whencircumference = height
Hereisanexampleofacylinder.
• Trydrawingyourowncylindersothatitsheightisequaltothecircumferenceof thecirculartop.
• Howwouldyoucheckthatyouhavedrawnacylinderwiththecorrect dimensions?Discuss. height
Keyideas
The radius(r) isthedistancefromthecentreofa circle toapointonthecircle.
The diameter(d) isthedistanceacrossacirclethroughitscentre.
– Radius = 1 2 diameterordiameter = 2 × radius
Circumference(C) isthedistancearoundacircle.
– C = 2p× radius = 2p r or C =p× diameter =p d
– p (pi) isaspecialnumberandcanbefoundonyourcalculator. Itcanbeapproximatedby p¥ 3.142 C r d
Und er stand ing 1–3 3
1a Thedistancefromthecentreofacircletoitsoutsideedgeiscalledthe b Thedistanceacrossacircle,throughitscentreiscalledthe c Thedistancearoundacircleiscalledthe
2 Writetheformulaforthecircumferenceofacircleusing: d fordiameter a r forradius. b
3 Whatfractionofacircleisshownhere?
Fluency
Example7Findingthecircumferenceofacircle
Findthecircumferenceofthesecirclestotwodecimalplaces. 2 cm a 2.65 mm b
Solution
a C = 2p r
= 2p (2)
= 12.57 cm (to 2 d.p.)
b C =p d
=p (2.65)
= 8.33 mm (to 2 d.p.)
Nowyoutry
Explanation
Writetheformulainvolvingtheradius, r Substitute r = 2
Roundyouranswertotwodecimalplaces.
Writetheformulainvolvingdiameter. Substitute d = 2.65
Roundyouranswertotwodecimalplaces.
Findthecircumferenceofthesecirclestotwodecimalplaces. 5 m a 4.85cm b
4 Findthecircumferenceofthesecircles,totwodecimalplaces.
Example8Findingperimetersofcompositeshapes
Findtheperimeterofthiscompositeshape,totwodecimalplaces. 3
HintforQ4:Use C = 2p r or C =p d.
5
Solution
P = 3 + 5 + 1 2 × 2p (2)
Explanation
= 8 + 2p Simplify.
= 14.28 m (to 2 d.p.) Roundyouranswerasinstructed. Addallthesides,includinghalfacircle.
Nowyoutry
Findtheperimeterofthiscompositeshape,totwodecimalplaces. 3 cm
Findtheperimeterofthesecompositeshapes,correcttotwodecimalplaces.
HintforQ5:Don’tforgettoaddthe straightsidestothefraction ( 1 4 , 1 2 or 3 4 ) ofthecircumference.
6 Davidwishestobuildacircularfishpond.Thediameterofthepondistobe 3 m.
a Howmanylinealmetresofbricksareneededtosurroundit?Roundyouranswertotwo decimalplaces.
b Whatisthecostifthebricksare $45 permetre?(Useyouranswerfrompart a.)
7
Thewheelsofabikehaveadiameterof 1 m.
a Howmanymetreswillthebiketravel(totwodecimalplaces)after: onefullturnofthewheels? i 15 fullturnsofthewheels? ii
HintforQ7:Foronerevolution, use C =p d
b Howmanykilometreswillthebiketravelafter 1000 fullturns ofthewheels?(Giveyouranswercorrecttotwodecimalplaces.)
8 Whatistheminimumnumberoftimesawheelofdiameter 1 mneedstospintocoveradistance of 1 km?Youwillneedtofindthecircumferenceofthewheelfirst.Giveyouranswerasa wholenumber.
9
Findtheperimeterofthesecompositeshapes,correcttotwodecimalplaces.
HintforQ9:Makesureyouknowthe radiusordiameterofthecircle(s) youareworkingwith.
10a Rearrangetheformulaforthecircumferenceofacircle, C = 2p r,towrite r intermsof C.
b Find,totwodecimalplaces,theradiusofacirclewiththegivencircumference.
35 cm i 1.85 m ii 0.27 km iii Targetpractice
11 Atargetismadeupofthreerings,asshown.
a Findtheradiusofthesmallestring.
b Find,totwodecimalplaces,thecircumferenceofthe: smallestring i middlering ii outsidering. iii
HintforQ10:Towrite r interms of C dividebothsidesby 2p
c Ifthecircumferenceofadifferentringis 80 cm,whatwouldbeits radius,correcttotwodecimalplaces?
Learningintentions
• Toknowtheformulasfortheareasofsimpleshapes
• Tobeableto ndtheareaofsimpleshapes
Keyvocabulary: area,square,rectangle,triangle,rhombus,parallelogram,trapezium,perpendicular
Inthissimplediagram,arectangle,withsidelengths 2 mand 3 m,hasan areaof 6 squaremetresor 6 m2.Thisiscalculatedbycountingthenumber ofsquares(eachmeasuringasquaremetre)thatmakeuptherectangle.
Weuseformulastohelpusquicklycountthenumberofsquareunits containedwithinashape.Forthisrectangle,forexample,theformula A = lw simplytellsustomultiplythelengthbythewidthtofindthearea.
Lessonstarter:Howdoes
Lookatthistriangle,includingitsrectangularreddashedlines.
• Howdoestheshapeofthetrianglerelatetotheshapeofthe outsiderectangle?
• Howcanyouusetheformulaforarectangletohelpfindtheareaofthe triangle(orpartsofthetriangle)?
• Whyistherulefortheareaofatrianglegivenby A = 1 2 bh?
The area ofatwo-dimensionalshapeisthenumberofsquareunitscontainedwithinitsboundaries. Someofthecommonareaformulasareasfollows.
The‘height’inatriangle,parallelogramortrapeziumshouldbe perpendicular (at 90°)to thebase.
Und er stand ing
1 Matcheachshape(a–f)withitsareaformula(A–F).
2 Theseshapesshowthebaseandaheightlength.Writedownthegivenheightofeachshape.
3
Example9Usingareaformulas
Findtheareaofthesebasicshapes.
Solution
a Area = lw
= 7 × 3
Explanation
Writetheformulafortheareaofarectangle.
Substitutethelengths l = 7 and w = 3 = 21 cm2
b Area = 1 2 (a + b)h
= 1 2 (3 + 5) × 2
Simplifyandincludetheunits.
Writetheformulafortheareaofatrapezium.
Substitutethelengths a = 3, b = 5 and h = 2 = 8 cm2
c Area = 1 2 bh
= 1 2 × 5.8 × 3.3
Simplifyandincludetheunits.
Writetheformulafortheareaofatriangle.
Substitutethelengths b = 5.8 and h = 3.3 = 9.57 m2
Nowyoutry
Findtheareaofthesebasicshapes.
Findtheareaofthesebasicshapes.
Simplifyandincludetheunits.
HintforQ3:First,choosethe correctformulaandsubstitute foreachpronumeral(letter).
4 Findtheareaofthesebasicshapes.
5
Problem-solving and reasoning
Arectangulartabletopis 1.2 mlongand 80 cmwide. Findtheareaofthetabletopusing: squaremetres (m2) a squarecentimetres (cm2) b
6 Twotriangularsailshavesidelengthsasshown.Findthetotalarea ofthetwosails.
Christinedecidestousecarpettocoverthefloorofherrectangular bedroom,shownatright.Determine:
theareaoffloortobecovered a thetotalcostifthecarpetcosts $32 persquaremetre. b
HintforQ5:Firstconverttothe unitsthatyouwanttoworkwith.
a Areaoffloor = l × w = 3.5 × 2.6 = 9.1 m2
b Costofcarpet = 9.1 × 32 = $291.20
Nowyoutry
Theroomisarectangle,souse A = l × w tocalculatethe totalfloorspace.
Everysquaremetreofcarpetcosts $32
Richodecidestolaylawnonhistriangularbackyard,shownatright. Determine:
theareaoflawntobelaid a thetotalcostiflawncosts $11 persquaremetre. b
7 Jack’sshedistohaveaflatrectangularroof,whichhedecidestocover withmetalsheets.
a Determinethetotalareaoftheroof.
b Ifthemetalroofingcosts $11 asquaremetre,howmuchwillitcost intotal?
8 Aslidingdoorhastwoglasspanels.Eachoftheseis 2.1 mhighand 1.8 mwide.
a Howmanysquaremetresofglassareneeded?
b Whatisthetotalcostoftheglassifthepriceis $65 per squaremetre?
9 Arectangularwindowhasawholenumbermeasurementforitslengthandwidthanditsareais 24 m2 Writedownthepossiblelengthsandwidthsforthewindow.
10
Determinetheareaofthehousesshown(ifallanglesarerightangles),insquaremetres(correcttotwo decimalplaces).
Findthevalueofthepronumeralintheseshapes,roundingyouranswertotwodecimalplaces eachtime.
HintforQ11:First,writethe appropriateformulaandsubstitute fortheareaandlengthpronumerals. Thensolvefortheunknown.
12 Findtheareaofthistrapeziumusingeachofthesuggestedmethods.
Learningintentions
• Toknowtheformulafortheareaofacircle
• Tobeabletocalculatewhatfractionofacircleisrepresentedbyasector
• Tobeableto ndtheareaofcirclesandsectors
Keyvocabulary: sector,circle,radius,diameter,pi
Likeitscircumference,acircle’sareaislinkedtothespecialnumberpi (p ).Theareaistheproductofpi andthesquareoftheradius,so A =p r2
Knowingtheformulafortheareaofacirclehelpsusbuildcircularobjects,planwatersprinklersystems andestimatethedamagecausedbyanoilslickfromashipincalmseas.
Lessonstarter:Whatfractionisthat?
Whenfindingareasofsectors,wefirstneedtodecidewhatfractionofacircleweare dealingwith.Thissector,forexample,hasaradiusof 4 cmanda 45° angle.
• Whatfractionofafullcircleisshowninthissector?
• Howcanyouusethisfractiontohelpfindtheareaofthissector?
• Howwouldyousetoutyourworkingtofinditsarea?
Theformulaforfindingthearea (A) ofacircleofradius r isgivenbythe equation: A =p r2
Whenthediameter (d) ofthecircleisgiven,determinetheradiusbefore calculatingtheareaofthecircle: r = d ÷ 2.
A sector isaportionofacircleincludingtworadii.
Theangleofasectorofacircledeterminesthefractionofthecircle.Afullcircleis 360° .
• Thissectoris h 360 ofacircle.
• Theareaofasectorisgivenby A = h 360 ×p r2
1 Whichisthecorrectworkingstepfortheareaofthiscircle?
2 Whichisthecorrectworkingstepfortheareaofthiscircle?
=p (10)2 A A = (p 10)2 B
=p (5)2 C
= 5p E
3 Whatfractionofacircleisshownbythesesectors?Simplifyyourfraction.
Findtheareaofthesecircles,correcttotwodecimalplaces.
3 m a 1.06 km b
Solution
a A =p r 2
=p (3)2
=p× 9
= 28.27 m2 (to 2 d.p.)
b Radius r = 1.06 ÷ 2 = 0.53 km
A =p r 2
=p (0.53)2
= 0.88 km2 (to 2 d.p.)
Nowyoutry
Explanation
Writetheformula.
Substitute r = 3
Evaluate 32 = 9 andthenmultiplyby p
Findtheradius,giventhediameterof 1.06
Writetheformula.
Substitute r = 0.53
Writeyouranswertotwodecimalplaces withunits.
Findtheareaofthesecircles,correcttotwodecimalplaces.
5 m a 3.92cm b
4
Findtheareaofthesecircles,correcttotwodecimalplaces.
Example12Findingareasofsectors
Findtheareaofthissector,correcttotwodecimalplaces.
HintforQ4: r = d ÷ 2
5
Solution
Fractionofcircle = 60 360 = 1 6
Area = 1 6 ×p r 2
Explanation
Thesectoruses 60° outofthe 360° ina wholecircle.
Writetheformula,includingthefraction. = 1 6 ×p (10)2
Substitute r = 10 = 52.36 m2 (to 2 d.p.)
Writeyouranswertotwodecimalplaces.
Nowyoutry
Findtheareaofthissector,correcttotwodecimalplaces.
Findtheareaofthesesectors,correcttotwodecimalplaces.
HintforQ5:Firstdetermine thefractionofafullcircle thatyouareworkingwith.
6–87,8,9(½)
6 Apizzawith 40 cmdiameterisdividedintoeightequalparts.Findtheareaofeachportion,correctto onedecimalplace.
Findtheareaofthiscompositeshape,correcttotwodecimalplaces.
7
Solution
Explanation
Theshapeismadeupofasemicircleandatriangle.Writethe formulasforbothshapes.
Substitute
= 1.5707...
= 3.57 cm2 (to 2 d.p.) Writeyouranswertotwodecimalplaceswithunits.
Nowyoutry
Findtheareaofthiscompositeshape,correcttotwodecimalplaces.
Findtheareaofthesecompositeshapes,correcttotwo decimalplaces.
HintforQ7:ForQuestion 7,findthe areaofeachshapethatmakesup thelargershape,thenaddthem. Forexample,triangle + semicircle.
8 Thelawnareainabackyardismadeupofasemicircularregionwithdiameter 6.5 manda right-angledtriangularregionoflength 8.2 m,asshown.Findthetotalareaoflawninthebackyard, correcttotwodecimalplaces.
9 Findtheareaofthesecompositeshapes,correcttoonedecimalplace.
d
HintforQ9:Useadditionor subtraction,depending ontheshapegiven.
10 Arectangularpieceofpastryisusedtocreatesmallcircular pastrydiscsforthebaseofChristmastarts.Therectangularpiece ofpastryis 30 cmlongand 24 cmwide,andeachcircularpiece hasadiameterof 6 cm.
a
b
d
Howmanycircularpiecesofpastrycanberemovedfromthe rectangleinthisarrangement?
Findthetotalarearemovedfromtheoriginalrectangle, correcttotwodecimalplaces.
Findthetotalareaofpastryremaining,correcttotwodecimalplaces.
c Iftheremainingpastrywascollectedandre-rolledtothesamethickness,howmanycircularpieces couldbecut?(Assumethatthepastrycanbere-rolledandcutmanytimes.)
Learningintentions
• Tounderstandthedif cultyinobtainingexactmeasurements
• Toknowhowto ndtheupperandlowerboundaries(limitsofaccuracy)forthetruemeasurement
• Tounderstandthatroundingoffinintermediatecalculationsleadstoanaccumulatederror Keyvocabulary: accuracy,precision,rounding,accumulatederror,limitsofaccuracy
Humansandmachinesmeasuremanydifferentthings, suchasthetimetakentoswimarace,thelength oftimberneededforabuildingandthevolume ofcementneededtolayaconcretepatharound aswimmingpool.Thedegreeorlevelofaccuracy requiredusuallydependsontheintendedpurposeof themeasurement.
Allmeasurementsareapproximate.Errorscan happenasaresultoftheequipmentbeingusedorthe personusingthemeasuringdevice.
Accuracyisameasureofhowclosearecorded measurementistotheexactmeasurement.Precision istheabilitytoobtainthesameresultoverandover again.
millisecondandroundedtohundredths.Anelectronic beephasreplacedthepistolsoundthattook 0.15 secondstoreachthefarthestathlete.Acamera scansthefinishline 2000 times/secondandsignalsthe timerasathletesfinish.
• Apieceoftimberismeasuredtobe 86 cm,correcttothenearestcentimetre. Whatisthesmallestmeasurementpossiblethatroundsto 86 cmwhenroundedtothenearestcm?
a Whatisthelargestmeasurementpossiblethatroundsto 86 cmwhenroundedtothenearestcm? b
• Ameasurementisrecordedas 6.0 cm,correcttothenearestmillimetre. Whatunitswereusedwhenmeasuring? a Whatisthesmallestdecimalthatcouldberoundedtothisvalue? b Whatisthelargestdecimalthatwouldhaveresultedin 6.0 cm? c
• Considerasquarewithsidelength 7.8941 cm.Whatistheperimeterofthesquareifthesidelengthis: usedwiththefourdecimalplaces? a roundedtoonedecimalplace? b truncatedatonedecimalplace(i.e. 7.8)? c
The limitsofaccuracy tellyouwhattheupperandlowerboundariesareforthetrue measurement.
• Usually,itis ± 0.5 × thesmallestunitofmeasurement. Forexample,whenmeasuringtothenearestcentimetre, 86 cmhaslimitsfrom 85.5 cmupto (butnotincluding) 86.5 cm.
• Whenmeasuringtothenearestmillimetre,thelimitsofaccuracyfor
86.05 cm.
Errorscanalsooccurinmeasurementcalculationsthatinvolveanumberofsteps.
• Itisimportanttouseexactvaluesoralargenumberofdecimalplacesthroughoutcalculations toavoidanaccumulatederror.
1 Stateadecimalthatgives 3.4 whenroundedfromtwo decimalplaces.
2 Stateameasurementof 3467 mm,correcttothenearest: centimetre a metre b
3 Whatisthesmallestdecimalthatcouldresultinananswerof 6.7 whenroundedtoonedecimalplace?
4 Completethesecalculations.
a 8.7 × 3.56 roundedtoonedecimalplace i Takeyourroundedanswerfrompart ai,multiplyitby 1.8 androundtoonedecimalplace. ii
b 8.7 × 3.56 answeringwiththreedecimalplaces i Takeyourexactanswerfrompart bi,multiplyitby 1.8 androundtoonedecimalplace. ii
c Compareyouranswersfromparts aii and bii.Whatdoyounotice?Whichanswerismoreaccurate?
Example14Avoidingaccumulatederrors
Considertheshapeshown.
a Findtheareaofthesemicircle,roundingtoonedecimalplace.
b Findtheareaofthetriangleintheshape,roundingtoonedecimalplace.
c Hence,findthetotalareausingyouranswertoparts a and b
d Nowrecalculatethetotalareabyretainingmorepreciseanswersforthe calculationstoparts a and b above.Roundyourfinalanswercorrecttoone decimalplace.
e Compareyouranswerstoparts c and d above.Howcanyouexplainthe difference?
Continuedonnextpage
a Areasemicircle = 1 2 ×p× 12.49 2 2 = 61.261 = 61.3 m2 (to 1 d.p.)
b Areatriangle = 1 2 × 12.49 × 7.84 = 49.0 m2 (to 1 d.p.)
c Totalarea = 61.3 + 49.0 = 110.3 m2
d Areasemicircle = 61.2610 m2 Areatriangle = 48.9608 m2
Totalarea = 61.2610…+ 48.9608 = 110.2218 m2
Totalareais 110.2 m2 (to 1 d.p.)
e Theanswersdifferby 0.1 m2 whenrounded toonedecimalplace.
Theerrorresultsinpart c fromtherounding inintermediatestepsinparts a and b
Nowyoutry
Considertheshapeshown.
Areaofasemicircle = 1 2 p r2 where r isthe diameter ÷ 2
Roundtoonedecimalplace.
Trianglearea = 1 2 bh
Combineroundedareasofsemicircleand triangle.
Retainanumberofdecimalplacesforboththe semicircleandtriangleareas.
Combinetheareastocalculatethetotalarea.
Roundfinalanswertoonedecimalplace.
Compare 110.3 m2 and 110.2 m2
Roundingerrorshaveaccumulatedtogivea differenceof 0.1 m2 .
Findtheareaofthesemicircle,roundingtoonedecimalplace. a
Findtheareaofthetriangleintheshape,roundingtoonedecimalplace. b Hence,findthetotalareausingyouranswertoparts a and b. c
10.82 m 6.24m
Nowrecalculatethetotalareabyretainingmorepreciseanswersforthe calculationstoparts a and b above.Roundyourfinalanswercorrectto onedecimalplace.
d Compareyouranswerstoparts c and d above.Howcanyouexplainthe difference? e
5 Considertheshapeshown.
Findtheareaofthesemicircle,roundingtoonedecimalplace. a Findtheareaofthetriangleintheshape,roundingtoonedecimalplace. b
d
Hence,findthetotalareausingyouranswertoparts a and b c Nowrecalculatethetotalareabyretainingmorepreciseanswersforthe calculationstoparts a and b above.Roundyourfinalanswercorrecttoone decimalplace.
Compareyouranswerstoparts c and d above.Howcanyouexplainthe difference?
6 Considertheshapeshown.
Findtheareaofthequartercircle,roundingtoonedecimalplace. a
d
Findtheareaofthetriangleintheshape,roundingtoonedecimalplace. b Hence,findthetotalareausingyouranswertoparts a and b c Nowrecalculatethetotalareabyretainingmorepreciseanswersforthe calculationstoparts a and b above.Roundyourfinalanswercorrectto onedecimalplace.
Compareyouranswerstoparts c and d above.Howcanyouexplainthe difference?
Givethelimitsofaccuracyforthesemeasurements.
72 cm a 86.6 mm b
Solution
a 72 ± 0.5 × 1 cm
= 72−0.5 cmto 72 + 0.5 cm
= 71.5 cmto 72.5 cm
b 86.6 ± 0.5 × 0.1 mm
= 86.6 ± 0.05 mm
= 86.6−0.05 mmto 86.6 + 0.05 mm
= 86.55 mmto 86.65 mm
Explanation
Smallestunitofmeasurementisonewholecm.
Error = 0.5 × 1 cm
Thiserrorissubtractedandaddedtothegiven measurementtofindthelimitsofaccuracy.
Smallestunitofmeasurementis 0.1 mm.
Error = 0.5 × 0.1 mm = 0.05 mm
Thiserrorissubtractedandaddedtothegiven measurementtofindthelimitsofaccuracy.
Givethelimitsofaccuracyforthesemeasurements.
45 cm a 15.7 mm b
7 Foreachofthefollowing:
Givethesmallestunitofmeasurement(e.g. 0.1 cmisthesmallestunitin 43.4 cm). i Givethelimitsofaccuracy. ii
HintforQ7:Use ± 0.5 × smallestunitofmeasurement. l
8 Whatarethelimitsofaccuracyfortheamount$4500 whenitiswritten:
HintforQ8:Forsignificantfigures startcountingfromthefirst non-zerodigit. totwosignificantfigures? a tothreesignificantfigures? b tofoursignificantfigures? c
9 Writethefollowingasameasurement,giventhatthelowerandupperlimitsofthese measurementsareasfollows.
29.5
HintforQ9:Findthemiddleof theseintervals. f
10 Marthawritesdownthelengthofherfabricas 150 cm.AsMarthadoesnotgiveherlevelofaccuracy, givethelimitsofaccuracyofherfabricifitwasmeasuredcorrecttothenearest: centimetre a 10 centimetres b millimetre. c
11 Alengthofcopperpipeisgivenas 25 cm,correcttothenearestcentimetre.
a Whatarethelimitsofaccuracyforthismeasurement?
b If 10 piecesofcopper,eachwithagivenlengthof 25 cm,arejoinedendtoend,whatistheminimum lengththatitcouldbe?
c Whatisthemaximumlengthforthe 10 piecesofpipeinpart b?
Janismeasureseachsideofasquareas 6 cm.Find:
a theupperandlowerlimitsforthesidesofthesquare
b theupperandlowerlimitsfortheperimeterofthesquare
c theupperandlowerlimitsforthesquare’sarea.
Solution
a 6 ± 0.5 × 1 cm
= 6−0.5 cmto 6 + 0.5 cm
= 5.5 cmto 6.5 cm
b Lowerlimit P = 4 × 5.5 = 22 cm
Upperlimit P = 4 × 6.5 = 26 cm
c Lowerlimit A = 5.52 = 30.25 cm2
Upperlimit A = 6.52 = 42.25 cm2
Explanation
Smallestunitofmeasurementisonewholecm.
Error = 0.5 × 1 cm
Thelowerlimitfortheperimeterusesthelower limitforthemeasurementtakenandtheupper limitfortheperimeterusestheupperlimit of 6.5 cm.
Thelowerlimitfortheareais 5.52,whereasthe upperlimitwillbe 6.52
Janismeasureseachsideofasquareas 9 cm.Find: theupperandlowerlimitsforthesidesofthesquare a theupperandlowerlimitsfortheperimeterofthesquare b theupperandlowerlimitsforthesquare’sarea.
c
12 Thesideofasquareisrecordedas 9.2 cm,correcttotwosignificantfigures. Whatistheminimumlengththatthesideofthissquarecouldbe? a Whatisthemaximumlengththatthesideofthissquarecouldbe?
b Findtheupperandlowerlimitsforthissquare’sperimeter.
d
c Findtheupperandlowerlimitsfortheareaofthissquare.
HintforQ12:Use theminimumand maximumlengths forparts c and d
13 Thesideofasquareisrecordedas 9.20 cm,correcttothreesignificantfigures. Whatistheminimumlengththatthesideofthissquarecouldbe? a Whatisthemaximumlengththatthesideofthissquarecouldbe? b
c
Findtheupperandlowerlimitsforthissquare’sperimeter.
Findtheupperandlowerlimitsfortheareaofthissquare. d
Howhaschangingthelevelofaccuracyfrom 9.2 cm(seeQuestion 12)to 9.20 cmaffectedthe calculationofthesquare’sperimeterandarea?
14 Codymeasuresthemassofababytobe 6 kg.Jacintasaysthesamebabyis 5.8 kgandLukegiveshis answeras 5.85 kg.
a Explainhowallthreepeoplecouldhavedifferentanswersforthesamemeasurement.
b Writedownthelevelofaccuracybeingusedbyeachperson.
c Arealltheiranswerscorrect?Discuss.
Percentageerror
15 Tocalculatethepercentageerrorofanymeasurement,theerror(i.e. ± thesmallestunitofmeasurement) iscomparedtothegivenorrecordedmeasurementandthenconvertedtoapercentage.
Forexample: 5.6 cm
Error =± 0.5 × 0.1 =± 0.05
Percentageerror = ± 0.05 5.6 × 100% =± 0.89%(totwosignificantfigures)
Findthepercentageerrorforeachofthefollowing.Roundtotwosignificantfigures.
28 m a 9 km b
8.9 km c 8.90 km d
178 mm e $8.96 f
$4.25 g 701 mL h
1 2A Convertthegivenmeasurementstotheunitsshowninbrackets.
2 2B Findtheperimeteroftheseshapes.
3 2B Aconcreteslabisshownbelow.Allanglesare 90°
a Drawanewdiagram,showingallthemeasurementsinmetres.
b Determinethelinealmetresoftimberneededtosurroundit.
4 2C/E Findthecircumference (C) andarea (A) ofthesecircles,correcttotwodecimalplaces.
5 2D/E Findtheareaoftheseshapes.Roundyouranswertoonedecimalplaceinpart d
6 2D Arectangularkitchenflooristobereplacedwithwoodenfloorboards.Ifthefloorboards cost $46 persquaremetre,determinethecosttocoverthekitchenfloorifits dimensionsare 4.4 mby 3 m.
7 2C/E Findthearea (A) andperimeter (P) ofthecompositeshapeshown.Roundeachanswerto onedecimalplace.
8 2F Thesidelengthofasquareismeasuredtobe 9 cm.
c
Givethelimitsofaccuracyforthismeasurement. a Calculatetheareaofthesquareusingthe 9 cmmeasurement. b Amoreprecisesidelengthofthesquareis 8.5 cm.Calculatethedifferenceintheareaof thesquarecalculationusingasidelengthof 8.5 cmcomparedto 9 cm.
Learningintentions
• Toknowthatthesurfaceareaofasolidcanberepresentedusinganet
• Tobeabletocalculatethesurfaceareaofaprism
Keyvocabulary: surfacearea,prism,net,cross-section
Thesurfaceareaofathree-dimensional objectcanbefoundbyfindingthe sumoftheareasofeachoftheshapes thatmakeupthesurfaceoftheobject.
Theminimum amountofwrapping paperrequiredto completelycovera giftisequaltothe surfacearea.
Lessonstarter:Whichnet?
Thesolidbelowisatriangularprismwitharight-angledtriangleasitscross-section.
• Howmanydifferenttypesofshapesmakeupitsoutsidesurface?
• Whatisapossiblenetforthesolid?Istheremorethanone?
• Howwouldyoufindthesurfacearea?
A prism isasolidwithaconstant cross-section shape.
Tocalculatethe surfacearea ofasolidorprism:
• Drawa net (i.e.atwo-dimensionaldrawingthatincludesallthesurfaces).
• Determinetheareaofeachshapeinsidethenet.
• Addtheareasofeachshapetogether.
Solid Net
Und er stand ing
1 Atwo-dimensionaldrawingofallthefacesofasolidiscalleda
2 Forarectangularprism,answerthefollowing.
a Howmanyfacesdoestheprismhave?
b Howmany different rectanglesformthesurfaceoftheprism?
3 Forthistriangularprism,answerthefollowing.
a Whatistheareaofthelargestsurfacerectangle?
b Whatistheareaofthesmallestsurfacerectangle?
c Whatisthecombinedareaofthetwotriangles?
d Whatisthetotalsurfacearea?
Example17Findingthesurfaceareaofarectangularprism
Findthesurfaceareaofthisrectangularprismbyfirstdrawingitsnet.
Drawthenetofthesolid, labellingthelengthsandshapes ofequalareas.
A = 2 × areaofA + 2 × areaofB + 2 × areaofC = 2 × (8 × 3) + 2 × (5 × 3) + 2 × (8 × 5)
Substitutethecorrectlengths. = 158 cm2 Simplifyandincludeunits. Describeeacharea.
Nowyoutry
Findthesurfaceareaofthisrectangularprismbyfirstdrawingitsnet.
4 Findthesurfaceareaoftheserectangularprismsbyfirstdrawingtheirnets.
Example18Findingthesurfaceareaofatriangularprism
Findthesurfaceareaofthetriangularprismshown.
Solution
Surfacearea
= 2 × area A + area B + area C + area D
Explanation
Drawanetoftheobjectwithallthe measurementsandlabelthesectionsto becalculated.
Therearetwotriangleswiththesame areaandthreedifferentrectangles.
= 2 × ( 1 2 × 3 × 4) + (3 × 10) + (4 × 10) + (5 × 10) Substitutethecorrectlengths.
= 12 + 30 + 40 + 50
Calculatetheareaofeachshape. = 132 m2 Addtheareastogether.
Nowyoutry
Findthesurfaceareaofthetriangularprismshown.
5
Findthesurfaceareaofthefollowingprisms.
6 Findthesurfaceareaoftheseobjectsbyfirstdrawinganet.
HintforQ5:Triangularprismshave threerectanglesandtwoidentical triangles.
7 Acubewithsidelengthsof 8 cmistobepaintedalloverwithbrightredpaint.Whatisthetotal surfaceareathatistobepainted?
8 Whatistheminimumamountofpaperrequiredtowrapa boxwithdimensions 25 cmwide, 32 cmlongand 20 cmhigh?
9
Anopen-toppedboxistobecoveredinsideandoutwithaspecial material.Iftheboxis 40 cmlong, 20 cmwideand 8 cmhigh,find theminimumamountofmaterialrequiredtocoverthebox.
10 Davidwantstopainthisbedroom.Theceilingandwallsaretobe thesamecolour.Iftheroommeasures 3.3 m × 4 mandtheceilingis 2.6 mhigh,findtheamountofpaintneededif: a eachlitrecovers 10 squaremetres b eachlitrecovers 5 squaremetres.
HintforQ9:Countbothinside andoutsidebutdonotinclude thetop.
11 AskirampintheshapeofatriangularprismneedstobepaintedbeforetheMoombaClassic waterskiingcompetitioninMelbourneisheld.Thebaseandsidesoftheramprequireafully waterproofpaint,whichcovers 2.5 squaremetresperlitre.Thetopneedsspecialsmoothpaint,which coversonly 0.7 squaremetresperlitre.
a Determinetheamountofeachtypeofpaintrequired.Roundyouranswerstotwodecimalplaces wherenecessary.
b Ifthewaterproofpaintis $7 perlitreandthespecialsmoothpaintis $20 perlitre,calculatethe totalcostofpaintingtheramp,tothenearestcent.(Usetheexactanswersfrompart a tohelp.)
12
Findthetotalsurfaceareaoftheserightsquare-basedpyramids.
13 Ihave 6 litresofpaintandon thetinitsaysthatthecoverage is 5.5 m2 perlitre.Iwishto paintthefouroutsidewalls ofashedandtheroof,which hasfouridenticaltriangular sections.WillIhaveenough painttocompletethejob?
HintforQ12:Squarepyramidshave onesquareandfouridentical triangles.
Learningintentions
• Tounderstandhowthenetofacylindercanbedrawntoshowthesurfacearea
• Toknowtheformulaforthesurfaceareaofacylinder
• Tobeabletocalculatethesurfaceareaofacylinder
Keyvocabulary: cylinder,area,prism,circumference,net,cross-section
Likeaprism,acylinderhasauniform cross-sectionwithidenticalcirclesas itstwoends.Thecurvedsurfaceofa cylindercanberolledouttoforma rectanglethathasalengthequaltothe circumferenceofthecircle.
Acanisagoodexampleofa cylinder.Weneedtoknowtheareaof theendsandthecurvedsurfacearea inordertocutsectionsfromasheetof aluminiumtomanufacturethecan.
Tinnedfoodmanufacturersusethesurfaceareaofacylindertoworkout howmuchmaterialisneeded.
Wecanseefromthenetofacylinder(seethediagrambelowin Keyideas)thatthetotalareaofthetwo circularendsis 2 ×p r2 or 2p r2.Forthecurvedpart,though,considerthefollowing.
• Whycanitbedrawnasarectangle?Canyouexplainthisusingapieceofpaper?
• Whyarethedimensionsofthisrectangle h and 2p r?
• Wheredoestheformula A = 2p r2 + 2p rh comefrom?
A cylinder isasolidwithacircular cross-section
• Thenetcontainstwoequalcirclesandarectangle.The rectanglehasonesidelengthequaltothecircumference ofthecircle.
• A = 2 circles + 1 rectangle
= 2p r 2 + 2p rh
• Anotherwayofwriting 2p r2 + 2p rh is 2p r(r + h)
Und er stand ing
1 Writethemissingword/expression.
a Theshapeofthecross-sectionofacylinderisa
b Thesurfaceareaofacylinderis A = 2p r2 +
2 Acylinderanditsnetareshownhere.
a Whatisthevalueof: r? ii h? i
b Findthevalueof 2p r,correcttotwodecimalplaces.
c Use A = 2p r2 + 2p rh tofindthesurfacearea,correcttotwo decimalplaces.
Example19Findingthesurfaceareaofacylinder
Byfirstdrawinganet,findthesurfaceareaofthiscylinder,correcttotwo decimalplaces.
Solution
Explanation
Drawthenetandlabeltheappropriatelengths.
A = 2 circles + 1 rectangle
= 2p r 2 + 2p rh
= 2p (1.7)2 + 2p (1.7)(5.3)
= 74.77 m2 (to 2 d.p.)
Nowyoutry
Writewhatyouneedtocalculate.
Writetheformula.
Substitutethecorrectvalues: r = 1.7 and h = 5.3
Roundyouranswertotwodecimalplaces.
Byfirstdrawinganet,findthesurfaceareaofthiscylinder,correctto twodecimalplaces.
3
Byfirstdrawinganet,findthesurfaceareaofthesecylinders,totwodecimalplaces.
HintforQ3:Rememberthat radius = diameter ÷ 2
4 Usetheformula A = 2p r2 + 2p rh tofindthesurfaceareaofthesecylinders,to onedecimalplace.
5
Findtheareaofonlythecurvedsurfaceofthesecylinders, toonedecimalplace.
HintforQ5:Findonlytherectangular partofthenet,souse A = 2p rh. Becarefulwiththeunitsinpart b!
Problem-solving and reasoning 6,7
6 Findtheoutsidesurfaceareaofapipeofradius 85 cmandlength 4.5 m,toonedecimalplace. Giveyouranswerinm2
7 Thebaseandsidesofacircularcaketinaretobelinedontheinsidewithbakingpaper.Thetinhasa basediameterof 20 cmandis 5 cmhigh.Whatistheminimumamountofbakingpaper required,toonedecimalplace?
8
Theinsideandoutsideofanopen-toppedcylindricalconcretetank istobecoatedwithaspecialwaterproofingpaint.Thetankhas diameter 4 mandheight 2 m.Findthetotalareatobecoated withthepaint.Roundyouranswertoonedecimalplace.
Findthesurfaceareaofthesecylindricalportions,toonedecimalplace.
HintforQ8:Includethebase butnotthetop.
HintforQ9:Carefullyconsiderthe fractionofacirclemadeupbythe ends,andthefractionofafull cylindermadeupbythecurvedpart.
10 Asteamrollerhasalarge,heavycylindricalbarrelthatis 4 mwideandhasadiameterof 2 m.
a Findtheareaofthecurvedsurfaceofthebarrel,totwodecimalplaces.
b After 10 completeturnsofthebarrel,howmuchgroundwouldbecovered,totwodecimalplaces?
c Findthecircumferenceofoneendofthebarrel,totwodecimalplaces.
d Howmanytimeswouldthebarrelturnafter 1 kmofdistance,totwodecimalplaces?
e Whatareaofgroundwouldbecoveredifthesteamrollertravels 1 km?
Learningintentions
• Tounderstandhowthevolumeofsolidsrelatestoitsconstantcross-sectionandheight
• Toknowthecommonunitsforcapacity
• Toknowtheformulaforthevolumeofasolidwithauniformcross-section
• Tobeabletocalculatethevolumeofasolidwithauniformcross-section
Keyvocabulary: solid,volume,cross-section,uniform,prism,cylinder,perpendicular,capacity
Thevolumeofasolidistheamountofspaceitoccupies withinitsoutsidesurface.Itismeasuredincubicunits.
Forsolidswithauniformcross-section,theareaofthe cross-sectionmultipliedbytheperpendicularheightgives thevolume.Considertherectangularprismbelow.
4 6 3
Numberofcubicunits(base) = 4 × 6 = 24
Area(base) = 4 × 6 = 24 units2
Volume = area(base) × 3 = 24 × 3 = 72 units3
Knowinghowtocalculatethevolumeofa containerortoolboxisusefulforunderstanding howmuchitcanstore.
Thisprismhasatriangularcross-section.
• Whatistheareaofthecross-section?
• Whatisthe‘height’oftheprism?
• Howcan V = A × h beappliedtothisprism, where A istheareaofthecross-section?
Volume istheamountofthree-dimensionalspacewithinanobject.
Thevolumeofasolidwithauniformcross-sectionisgivenby V = A × h,where:
• A istheareaofthecross-section.
• h istheperpendicular(at 90°)height.
Rectangularprism Cylinder l w h V = lwh r h V =p r2h
Capacity isthevolumeofagivenobjectmeasuredinlitresormillilitres.
Unitsforcapacityinclude:
Und er stand ing
1 Matchthesolid(a–c)withthevolumeformula(A–C). cylinder a V = lwh A rectangularprism b V = 1 2 bh × length B triangularprism c V =p r2h C
2 Writethemissingnumber.
a Thereare mLin 1 L.
b Thereare cm3 in 1 L.
3 Theareaofthecross-sectionofthissolidisgiven.Findthe solid’svolume,using V = A × h
Example20Findingthevolumeofarectangularprism
Findthevolumeofthisrectangularprism. 4 m 5 m 6 m
Solution
Explanation
V = A × h Writethegeneralformula.
= l × w × h l = 6, w = 5 and h = 4. = 6 × 5 × 4 Simplifyandincludeunits. = 120 m3
Nowyoutry
Findthevolumeofthisrectangularprism.
4 Findthevolumeoftheserectangularprisms. HintforQ4:Use V = lwh
Example21Findingthevolumeofacylinder
Findthevolumeofthiscylinder,correcttotwodecimalplaces.
Solution
Explanation
V = A × h Writethegeneralformula.
=p r 2 × h Thecross-sectionisacircle.
=p (2)2 × 6
Substitute r = 2 and h = 6
= 75.40 cm3 (to 2 d.p.) Simplifyandwriteyouranswerasrequired,withunits.
Nowyoutry
Findthevolumeofthiscylinder,correcttotwodecimalplaces. 9 m 3 m
5 Findthevolumeofthesecylinders,correcttotwodecimalplaces.
HintforQ5:Foracylinder: V
6 Atrianglewithbase 8 cmandheight 5 cmformsthebaseofaprism,as shown.Iftheprismstands 4.5 cmhigh,find: a theareaofthetriangularbase b thevolumeoftheprism. 4.5 cm
7 Findthevolumeofthesetriangularprisms.
HintforQ7:Use V = A × h, where A isthearea ofatriangle.
Problem-solving and reasoning
8 Acylindricaldrumstandsononeendwithadiameterof 25 cmandwaterisfilledtoaheightof 12 cm. Findthevolumeofwaterinthedrum,incm3,correcttotwodecimalplaces.
Example22Workingwithcapacity
Findthenumberoflitresofwaterthatthiscontainercanhold.
9
Solution
Explanation
V = 30 × 40 × 20 Firstworkoutthevolumeincm3 = 24000 cm3 Thendivideby 1000 toconverttolitres,since 1 cm3 = 1 mL = 24 L andthereare 1000 mLin 1 litre.
Nowyoutry
Findthenumberoflitresofwaterthatthiscontainercanhold.
Findthenumberoflitresofwaterthatthesecontainerscanhold.
10 Findthevolumeofthesesolids,roundingyouranswerstotwodecimalplaces wherenecessary.
HintforQ10:Find theareaofthe cross-sectionfirst.
11 100 cm3 ofwateristobepouredintothiscontainer.
a Findtheareaofthebaseofthecontainer.
b Findthedepthofwaterinthecontainer.
12 Inascientificexperiment,solidcylindersoficeareremovedfroma solidblockcarvedoutofaglacier.Theicecylindershavediameter 7 cm andlength 10 cm.Thedimensionsofthesolidblockareshown inthediagram.
a Findthevolumeoficeintheoriginaliceblock.
b Findthevolumeoficeinoneicecylinder,totwodecimalplaces.
c Findthenumberoficecylindersthatcanberemovedfromtheice block,usingtheconfigurationshown.
d Findthevolumeoficeremainingaftertheicecylindersareremoved fromtheblock,totwodecimalplaces.
13 Thevolumeofapyramidorconeisexactlyone-thirdthevolumeoftheprismwiththesamebase areaandheight,i.e. V = 1 3 × A × h
Findthevolumeofthesepyramidsandcones.Roundyouranswertoonedecimalplacewhere necessary.
Learningintentions
• Tobeabletocalculatethesurfaceareaandvolumeofacompositesolid
• Tobeabletosolveproblemsinvolvingcompositesolids
Keyvocabulary: compositesolid,prism,cylinder,net,Pythagoras’theorem,capacity
Recallthatwhenworkingwithcompositeshapeswecan findperimetersandareasbyconsideringthecombination ofthemorebasicshapesthat,together,formthecomposite shape.Similarly,wecanworkwithcompositesolidsby lookingatthecombinationofmorebasicsolids,likeprisms andcylinders.Thisleadstofindingsurfaceareas,volumes andcapacityofsolids.
Thewell-knownEuropeanartistsChristoand Jeanne-Claudehadtheirhandsfullwithcomposite objectswhentheywrappedtheReichstag(Parliament building),Berlinin1995.Theyusedmorethan 100000 squaremetresoffabricand 15 kmofrope.
Lookatthesecompositesolids.
• Whatarethebasicsolidsthatmakeupeachcompositesolid?
• Explainamethodforfindingthevolumeofeachsolid.
• Explainamethodforfindingthesurfaceareaofeachsolid.
• Isthereenoughinformationprovidedineachdiagramtofindthevolumeandsurfacearea?Discuss.
Compositesolidsaremadeupofmorethanonebasicsolid.
Volumesandsurfaceareasofcompositesolidscanbefoundbyconsideringthevolumesand surfaceareas(orpartthere-of)ofthebasicsolidscontainedwithin.
Pythagoras’theoremmaybeusedtohelpfindparticularlengths,providedthataright-angled triangleisgiven.
Recallthesecommonunitconversionsforcapacity.
1 Namethetwobasicsolidsthatmakeupeachofthesecompositeshapes.
2 UsePythagoras’theoremtofindthelengthofthehypotenuseintheseright-angledtriangles.
Example23UsingPythagoras’theoremtohelpfindthesurfaceareaofa triangularprism
Findthesurfaceareaofthistriangularprism.
Solution
c2 = a2 + b2
= 62 + 82
= 100
c = √100 = 10
Surfacearea = 2 × 1 2 × 8 × 6 + (8 × 12)
+ (6 × 12) + (10 × 12)
= 48 + 96 + 72 + 120 = 336 m2
Nowyoutry
Findthesurfaceareaofthistriangularprism.
Explanation
UsePythagoras’theoremtofindthe lengthoftheslantingedge. 8 m 6 m c m
Thesurfaceareaismadeupoftwo congruenttriangularendsandthree differentrectangles.
3 UsePythagoras’theoremtohelpfindthesurfaceareaofthesetriangularprisms.
Example24Findingthesurfaceareaandvolumeofacompositesolid
Findthesurfaceareaandvolumeofthiscompositesolid,correcttotwodecimalplaces.
Solution
Surfacearea = 6 × 22 + 2p (1)(3) = 24 + 6p = 42.85 cm2 (to 2 d p )
Explanation
Thesurfaceareaismadeupof 5 squarefacesplusone more,whichismadeupoftheremainingpartoftheright sidefaceandtheendofthecylinder.
Thecurvedsurfaceofthecylinder (2p rh) isalsoincluded. Theradiusishalfthediameter,i.e. r = 1
Continuedonnextpage
Volume = 23 +p (1)2(3) = 8 + 3p = 17.42 cm3 (to 2 d.p.)
Nowyoutry
Thevolumeconsistsofthesumofacube(l3) andacylinder(p r2h).
Findthesurfaceareaandvolumeofthissolid,correcttotwodecimal places.
4 Forthesecompositesolids,find: thesurfacearea i thevolume. ii Giveyouranswercorrecttotwodecimalplaces.
HintforQ4:Includeonlyexposed surfacesinthesurfacearea.
5 Findthecapacityofthesecompositesolids,inlitres.Roundyouranswertotwodecimalplaces wherenecessary. HintforQ5:Recall:
6 Hereisthedesignofaglasstennistrophy.Thebaseandthe cylindricalpartarebothmadeofglass.
a
Findthesurfaceareaofthetrophy,tothe nearestsquarecentimetre.
Findthevolumeofglass,tothenearestcubiccentimetre, requiredtomakethetrophy.
7 Whensolidsarepainted,theoutersurfaceareaneedstobeconsideredtohelpfindtheamountof paintrequiredforthejob.Assumethat 1 Lofpaintcovers 10 m2 Completeforeachoftheseobjects.
i Findthesurfaceareainsquaremetres,roundingyouranswertotwodecimalplaces wherenecessary.
ii Findtheamountofpaintthatmustbepurchased,assumingthatyoucanbuyonlyawhole numberoflitres.
8 Whensolidsarehollow,theinsidesurfaceareasareexposedtotheair.Findthesurfacearea(i.e.inner andoutercombined)ofapipeofdiameter 0.3 mandlength 3 m.Assumethattheinnerandouter diametersarethesame.(Roundyouranswertoonedecimalplace.)
9 Thisnutisasquare-basedprismwithacylindricalholeremovedfrom thecentre.Theholehasadiameterof 1 cm.Thenutiscoatedwith anti-rustpaint.Whatareaispainted,includingtheinnercylindrical surface?(Roundyouranswertoonedecimalplace.)
10 Thesesolidshaveapproximatelythesamevolume.
Whichhasthelargersurfacearea?Dosomecalculationstofindout.
11 Acompanywishestodesignacontainerforpackagingandsellinglollies.Thetwodesignsare shownhere.
a Completesomecalculationstoshowthatthetwocontainershaveapproximatelythesamevolume.
b Whichdesignhastheleastsurfacearea?Justifyyouranswer.
12 Imaginethatacompanyasksyoutomakeatrayoutofasquarepieceofcard,measuring 10 cmby 10 cm,bycuttingoutfourcornersquaresandfoldingthemtoformatray,asshown. 10 cm 10 cm
a Whatwillbethevolumeofthetrayifthesidelengthofthesquarecut-outsis: 1 cm? i 2 cm? ii 3 cm? iii The 2 cmcut-outsareshownbelow. 2 cm 6 cm
b Whichsquarecut-outfrompart a givesthelargesttrayvolume?
c Canyoufindanothersizedcut-outthatgivesalargervolumethananyofthoseinpart a?
d Whatsizedcut-outgivesthemaximumvolume?
Abricklayerhasaphysicallychallengingjob thatrequiresstaminaandstrengthandalso goodcommunicationskills,astheyoftenwork aspartofateam.
Bricklayersmusthaveasolidunderstandingof howtheconstructionprocessworksandthe abilitytoreadplansandblueprints.
Mathematicalskillsareessentialinthistrade.
Bricklayersmustunderstandratiosformixing mortarandcement.Goodmeasurementskills arealsoimportant,asbricklayersmustbeable toworkoutthenumberofbricksrequiredfor ajob,convertbetweendifferentunitsandtake accuratemeasurementsattheworksite,using themostappropriatetool.Anunderstanding ofgeometryandtrigonometryisalsorequired.
Completethesequestionsthatabricklayermayfaceintheirday-to-dayjob.
1 Astandardhousebrickhasdimensions l × w × h = 230 mm × 76 mm × 110 mm andthestandardthicknessofmortarwhenlayingbricksis 10 mm. Thebricksarelaidsothat l × h istheouterface.
a Whatisthelengthandheightofeachbrickincentimetres andmetres?
b Determinetheareaincm2 andm2 oftheouterfaceofonebrick.
c Determinethevolumeincubiccentimetresofeachbrick.
d Calculatethelength,inmetres(totwodecimalplaces), whenlayingthefollowingnumberofbricksinaline withmortarbetweeneachjoin. 10 bricks i 100 bricks ii
HintforQ1d:For 10 bricks,there wouldbe 9 mortarjoins.
e Calculatetheheight,inmillimetres,ofawallof 25 rowsofstandardhousebricks. Remembertoconsiderthethicknessofthemortar.
f Estimatehowmanystandardhousebricksareneededtobuildawall 4 mby 1.5 m,bydividing theareaofthewallbytheareaofabrick’sface.
2 Ready-mixmortarcomesin 20 kgbagsthatcost $7.95 perbag.Onebagofmortarisusedtolay 20 standardhousebricks.
Usingstandardhousebricks(seedimensiondetailsinQuestion 1),abrickwallistobebuiltthathasa finishedlengthof 8630 mm,aheightof 2750 mmandisonebrickdeep.
a Calculatetheexactnumberofstandardhousebricksneededtobuildthiswall.Rememberto considerthethicknessofthemortar.
b HowmanyReady-mixmortarbagsmustbepurchasedforthiswall?
c Ifeachhousebrickcosts 60 cents,findthetotalcost,tothenearestdollar,ofthematerialsneeded forthiswall.
3 Atypeoflargebrickischosenforanoutsideretainingwall.These bricksaresoldonlyinwholepacksandeachpackcovers 12.5 square metreswhenlaid.Howmanywholepacksofthesebricksmust beboughttobuildawallwithdimensions:
a 6 mby 1.5 m?
b 9 mby 2 m?
HintforQ3:Youcan’tbuyhalf apack,sorounduptothe nextwholenumber.
4 Fastwallhousebricksarelargerandlighterthanstandardbricksandcanbeusedforsingle-storey constructions.Theyaresoldinpalletsof 1000 for $1258.21,includingdeliveryandGST.EachFastwall brickhasdimensions l × w × h = 305 mm × 90 mm × 162 mmandthestandardthicknessofmortar is 10 mm.
a Ifapallethas 125 bricksperlayer,howmanylayersdoeseachpallethave?
b Ifthewoodenbaseofthepallethasaheightof 30 cm,whatisthetotalheightofthepallet, incm,whenloadedwithbricks?
c Findtheexactnumberofbricksneededtobuildawallthatis 20.15 mlongand 6.87 mhigh. Remembertoconsiderthethicknessofthemortar.
d Determinethecostofthebricks,tothenearestdollar,requiredtobeboughtforbuildingthewall inpart c
5 Copythefollowingtableintoaspreadsheet.Thenenter formulasintotheshadedcellsand,hence,determinethe missingvalues.
HintforQ5:ForE5theformula wouldbe = G5 × A5 + (G5−1) × D5 ForG6theformulawould be = (
+
6 Copythefollowingtableintoyourspreadsheetunderneaththetable fromQuestion 5.Entertheformulasintotheshadedcellsand,hence, determinethemissingvalues.Assumethereare 1000 bricksper palletandthatonebagofmortarisusedper 20 brickslaid.
)
HintforQ6:Copythetotal numberofbricksused fromthefirsttable.
IncellB13 enter = ROUNDUP(B12, 0),whichwillroundthenumberfromcellB12 uptothenearest wholenumber;e.g. 1.3 willberoundedupto 2
7 Useyourspreadsheettablestofindthetotalcostofmaterialsforthefollowingbrickwallsmadefrom Fastwallbricks.(SeeQuestion 4 forFastwallbrickdimensions.)Thespreadsheetformulaswillnotneed tobechanged.
a Awallof 44 bricksperlayer(row)and 30 layers(rows)ifpalletscost $1258.36,includingGST,and mortaris $7.55 perbag.
b Awall 20.15 mlongby 8.59 mhighifpalletscost $1364.32,includingGST,andmortaris $9.25 perbag.
Agroupofhighschoolstudentshaveraisedsomemoneyforavolunteercommunityserviceproject. Thestudentsdecidetoaskthecounciliftheycanimprovethechildren’splaygroundequipmentinthe localpark.
Presentareportforthefollowingtasksandensurethatyoushowclearmathematicalworkings, explanationsanddiagramswhereappropriate.
Calculatethefollowingareas,roundingtheanswerstoonedecimalplace.
a Calculatetheareaofacirclewithdiameter 3.5 m.
b Determinetheareaofthefollowingtriangles.Inpart ii youwillneedtoapplyPythagoras’ theoremtocalculatethetriangle’sheight.
c Determinethetotalsurfaceareaincm2 andm2 ofacylindricalbalancingbeamwithradius 12 cmandlength 3 m.
Formulate Youaretoprepareaproposalfortwoimprovementstothepark’splaygroundequipment: constructingasetoflowconcretecylindersthatchildrencanuseassteps,and
•
• therepaintingofanoldplaygroundroundabout.
Theproblemistodeterminethevolumeofconcreteandpaintneededandtofindoutifthecostof theprojectiswithinabudgetof $200.
a Withtheaidofdiagrams,writedownalltherelevantmathematicalformulasthatareneeded tocalculate:
thevolumeandsurfaceareaofacylinder i theareaofanisoscelestriangle. ii
b Nineconcretecylindersofradius 20 cmare tobeconstructedhavingabove-ground heightsof:
15 cm, 30 cm, 45 cm, 60 cm, 75 cm, 60 cm, 45 cm, 30 cm, 15 cm.
Eachcylinderalsoextends 30 cmbelow groundforstability.
Copythefollowingtableintoanexcelspreadsheetandenterformulasintotheshadedcells. FormatcellstoNumber/onedecimalplace.Usepi()forentering p
ExtendtheExceltabletoincludeallninecylindersandthetotalsurfaceareaandvolumeusingunits ofcmandm.
Theoldroundabouthasanoctagonshapedtopwith 8 isoscelestriangles;eachtrianglehasa 1 m baseandtwoequalsidesof 130 cm.Theroundabout’srectangularverticalsidesareeach 50 cmhigh and 1 minlength.
Determinetheareaofoneisoscelestriangleandonerectangleincm2.Youwillneedtoapply Pythagoras’theoremtocalculatethetriangle’sheight.
d
c Determinetheroundabout’ssurfacearea,includingthetopandsides,inm2 toonedecimalplace.
Thecouncilhasofferedtopourtheconcretecylinderssothestudentvolunteerswillonlybe responsibleforthepaintingjobs,includingthecylindersandtheroundabout.Onlythepaintingwill beincludedinthebudget.
e
f
g
Ifonlyonecolourisusedand 3 coatsareapplied,findthetotalareatobepainted.
Ifnon-slippaintcovers 8 m2/litredeterminethevolumeofpaintrequired.
Ifnon-slippaintcomesin 2 Lcansat $75 eachand 4 Lcansat $110 each,calculatetheminimum costofpaint,assumingthreecoatsarerequired,anddetermineiftheprojectiswithinbudget.
h Summariseyourfindingsstating:
thevolumeofconcreteneededforthecylinders i theoverallareatobepainted ii thedetailsofwhatcansofpainttobuyandthecost. iii
a Inadifferentplaygroundthestepsarehalfcylinderswithradius 30 cmandallareofheight 50 cm.Theystandupwithoneverticalflatside,acurvedsideandasemicirculartop.The octagonalroundaboutismadeupof 8 isoscelestriangles,eachwithbaselength 1.4 mandtwo equalsidesof 1.83 m.Theroundabout’sverticalsidesarestill 50 cmhigh.Findthesurfaceareas andvolumesoftheplaygroundobjectsandcalculatethecostofpaintforthisplaygroundusing thesamecostsasinpart g
Evaluate and verify
Communicate
Whenworkingwithsolidslikeprismsandcylinders, youmightbeinterestedineitherofthefollowing:
• minimisingthesurfaceareaforafixedvolume
• maximisingthevolumeforafixedsurfacearea.
Youwillrecalltheserulesforthesurface areaandvolumeofcylinders.
Acompanyismakingdrumstoholdchemicalsandrequireseachcylindricaldrumtobe 50 litresin volumewhichis 50000 cm3 .
a Usethevolumeformulaforacylindertoshowthat h = 50000 p r2
b Findtheheightofthecylindercorrecttotwodecimalplacesiftheradiusis: 20 cm i 10 cm ii
c Findthesurfaceareaofthecylindercorrecttotwodecimalplacesiftheradiusis: 20 cm i 10 cm ii
d Findaradiusthatgivesasmallersurfaceareacomparedtotheexamplesinpart c above.
a Constructaspreadsheettofindtheheightandsurfaceareaforacylinderwithfixedvolume 50000 cm3.Usearadiusof 1 cmtostartandincreaseby 1 cmeachtimeasshown.
b Filldownfromcells A5, B4 and C4 tofindtheheightsandsurfaceareasforcylindricaldrumsof volume 50000 cm3.Locatetheintegerradiusvaluewhichprovidestheminimumsurfacearea.
c Doyouthinkthattheintegervalueoftheradiusgivesthetrueminimumvalueofthesurface area?Givereasons.
Wewillnowsystematicallyaltertheincrementmadetotheradiusvalueinourspreadsheettofinda moreaccuratesolution.
a Applythisalgorithmtoyourspreadsheetandcontinueuntilyouaresatisfiedthatyouhavefound theradiusvaluethatminimisesthesurfaceareacorrecttotwodecimalplaces.
• Step 1:Altertheformulaincell A5 sothattheincrementissmaller.e.g. 0.1 ratherthan 1
• Step 2:Filldownuntilyouhavelocatedtheradiusvaluethatminimisesthesurfacearea.
• Step 3:Adjustcell A4 toahighervaluesoyoudon’tneedtoscrollthroughsomanycells.
• Step 4:RepeatfromStep 1 butusesmallerandsmallerincrements(0.01 and 0.001)untilyou havefoundtheradiusvaluewhichminimisesthesurfaceareacorrecttotwodecimalplaces.
b Writedownthevaluefor r, h and A correcttotwodecimalplaceswhichgivestheminimum surfaceareaofacylindricaldrum.
c Nowalterthefixedvolumeofthecylinderandrepeattheabovealgorithm.
d Whatdoyounoticeabouttherelationshipbetween r and h atthepointwherethereisaminimum surfacearea?Experimentwithdifferentvolumestoconfirmyourconjecture.
1 ‘Iamthesameshapeallthewaythrough.WhatamI?’Findtheareaofeachshape. Matchtheletterstotheanswersbelowtosolvetheriddle.
2 Onelitreofwaterispouredintoacontainerintheshapeofarectangularprism.The dimensionsoftheprismare 8 cmby 12 cmby 11 cm.Willthewateroverflow?
3 Acircularpieceofpastryisremovedfromasquaresheetwithsidelength 30 cm. Whatpercentageofpastryremains?
4 Howmanydifferentnetsarethereforacube?Donotcountreflectionsorrotationsof thesamenet.Hereisoneexample.
5 Givetheradiusofacirclewhosevalueforthecircumferenceisequaltothevaluefor thearea.
6 Findtheareaofthisspecialshape.
7 Acube’ssurfaceareais 54 cm2.Whatisitsvolume?
Conversion of units
Surface area
Perimeter
The distance around the outside of a shape.
Draw a net and add the surface areas.
Triangular prism
Cylinder
= 2 r 2 + 2 rh
2 endscurved part 4 m 3 m A = 2 ×× 4 × 3 + 6 × 4 + 6 × 3 + 6 × 5 = 84 m2
2
Circumference
The distance around the outside of a circle.
Area of basic shapes
Square: A = l 2
Rectangle: A = lw
Triangle: A = bh1 2
The volume and surface area of composite solids (made up of more than one solid) can be found by combining the volume and surface area (or parts of) the individual solids.
Composite solids associated with the measuring instruments and how they are used.
Accuracy depends on any error
Limits of accuracy are usually
Parallelogram: A = bh
Trapezium: A = (a + b)h
Rhombus: A = xy1 2 1 2
For any prism, V = Ah where A is the area of the cross-section. ± 0.5 × the smallest unit. Area of a circle
It is important to use exact values or a large number of decimal places to avoid accumulating errors in calculations.
AversionofthischecklistthatyoucanprintoutandcompletecanbedownloadedfromyourInteractiveTextbook.
2A 1
Icanconvertbetweenmetricunitsoflength. e.g.Convertthesemeasurementstotheunitsshowninthebrackets. a 2.3 m(cm) b 270000 cm(km)
2A 2 Icanconvertbetweenmetricunitsofarea. e.g.Convertthesemeasurementstotheunitsshowninthebrackets. a 32000 m2 (km2) b 7.12 cm2 (mm2)
2A 3 Icanconvertbetweenmetricunitsofvolume. e.g.Convertthesemeasurementstotheunitsshowninthebrackets. a 3.7 cm3 (mm3) b 5900000 cm3 (m3)
2B 4 Icanfindtheperimeterofbasicshapes. e.g.Findtheperimeterofthisshape.
2B 5 Icanfindamissingsidelengthgiventheperimeter. e.g.Findthevalueof x forthisshapewiththegivenperimeter.
2C 6 Icanfindthecircumferenceofacircle.
e.g.Findthecircumferenceofacirclewithadiameterof 5 m,correcttotwodecimalplaces.
2C 7 Icanfindtheperimeterofsimplecomposite shapes.
e.g.Findtheperimeterofthiscompositeshape,correctto twodecimalplaces.
2D 8 Icanfindtheareaofsquares,rectanglesand triangles.
e.g.Findtheareaofthistriangle.
2D 9 Icanfindtheareaofrhombuses,parallelogramsand trapeziums.
e.g.Findtheareaofthistrapezium.
2E 10 Icanfindtheareaofacircle.
e.g.Findtheareaofthiscircle,correcttotwodecimalplaces.
2E 11 Icanfindtheareaofasector.
e.g.Findtheareaofthissector,correcttotwodecimalplaces.
2E 12 Icanfindtheareaofsimplecomposite shapesinvolvingsectors.
e.g.Findtheareaofthiscompositeshape,correctto twodecimalplaces.
2F 13 Icanunderstandandavoidaccumulatingerrors. e.g.Findthetotalareaofthisshapebyfindingtheareaofthesemicircle andtriangleeachtoonedecimalplacethenaddingandthenbyusingno intermediaterounding.Explainwhichanswerismoreaccurate.
2F 14 Icanstatethesmallestunitforagivenmeasurement.
e.g.Writedownthesmallestunitofmeasurementfor 27.3 cm.
2F 15 Icanfindthelimitsofaccuracyforagivenmeasurement. e.g.Givethelimitsofaccuracyforthemeasurement 65.3 m.
2G 16 Icanfindthesurfaceareaofarectangular prismusinganet.
e.g.Findthesurfaceareaofthisrectangularprism.
2G 17 Icanfindthesurfaceareaofatriangular prismusinganet.
e.g.Findthesurfaceareaofthistriangularprism.
2H 18 Icanfindthesurfaceareaofacylinder.
e.g.Findthesurfaceareaofthiscylinder,correcttotwodecimal places.
2I 19 Icanfindthevolumeofaprism. e.g.Findthevolumeofthistriangularprism.
2I 20 Icanfindthevolumeofacylinder.
e.g.Findthevolumeofthiscylinder,correcttotwodecimalplaces.
2I 21 Icanfindthevolumeofaprism,givingananswer inLormL.
e.g.Findthevolumeofthisrectangularprisminlitres.
2J 22 Icanfindthesurfaceareaandvolumeofacomposite solid.
e.g.Findthesurfaceareaandvolumeofthiscompositesolidcorrectto twodecimalplaces.
1 2A Convertthesemeasurementstotheunitsshowninthebrackets. 5.3 km (m) a 27000 cm2 (m2) b 0.04 cm3 (mm3) c
2 2B Findtheperimeteroftheseshapes.
3 1C/E Forthecircleshown,find,totwodecimalplaces: thecircumference a thearea b
4 2E Forthesecompositeshapes,find,totwodecimalplaces: theperimeter i thearea ii
5 2D Findtheareaoftheseshapes.
2G Findthesurfaceareaoftheseprisms.
7 2H Determinethesurfaceareaofthiscylinder,totwodecimal places.
8 2I Findthevolumeofthesesolids,totwodecimalplaceswherenecessary.
9 2F Givethelimitsofaccuracyforthesemeasurements.
10 2J Findthesurfaceareaandvolumeofthiscompositesolid correcttotwodecimalplaces.
1 2A
Thenumberofcentimetresinakilometreis:
2 2B Theperimeterofasquarewithsidelengths 2 cmis:
3 2B Theperimeteroftheshapeshownisgivenbytheformula:
4 2C Acorrectexpressionfordeterminingthecircumferenceofacirclewithdiameter 6 cmis:
5 2D Theareaofarectanglewithsidelengths 3 cmand 4 cmis:
6 2D Thecorrectexpressionforcalculatingtheareaofthistrapeziumis:
7 2E Asector’scentreanglemeasures 90°.Thisisequivalentto:
2I Thevolumeofacubeofsidelength 3 cmis:
10 2H Thecurvedsurfaceareaforthiscylinderisclosestto:
1 Anewplaygroundisbeingbuiltwiththeshapeanddimensionsas shown.
a Theplaygroundwillbesurroundedbywoodenplanks. Determinetheperimeteroftheplaygroundcorrecttotwo decimalplaces. i Ifthewoodtobeusedcosts $16.50/m,whatwillbethecostof surroundingtheplayareatothenearestdollar? ii
b Theplaygroundareaistobecoveredwithalayerofwoodchips. Findtheareaoftheplaygroundcorrecttoonedecimalplace.
c Ifabagofwoodchipsfromthehardwarestorecovers 7.5 m2,how manybagswouldberequiredtocovertheplaygroundarea?
d Arectangularsandpitistobeincludedasshown.Ifsandistobe spreadflatandfilledtoaheightof 40 cm,determinethevolume ofsandrequiredinm3
2 Acylindricaltankhasdiameter 8 mandheight 2 m.
a Findthetotalvolumeofthetank,totwodecimalplaces.
b Findthetotalvolumeofthetankinlitres,totwodecimalplaces. Note:Thereare 1000 litresin 1 m3
c Findthesurfaceareaofthecurvedpartofthetank,totwodecimalplaces.
d Findthesurfacearea,includingthetopandthebase,totwodecimalplaces.
Essentialmathematics:whyskillswithalgebraand equationsareimportant
Byknowinghowtousealgebraicformulas,solveequationsandmanageExcelspreadsheet formulasyouwillhaveimportantskillswidelyusedinbusinesses,tradesandprofessions.
Nursesfinddriprate R = V t where V isvolumeinmland t ishours.Amechaniccalculatesengine pistonvolume V = p D2S 4 where D isborediameterand S isstrokelength.
Boatbuildersusemanyalgebraicformulasincludingtocalculateweightandbuoyancy,centreof gravity(G),andthemetacentre(M),whichisthepivotheightofatiltedboat.Boatswithagreater distancebetweenMandGaremorestable.
Tradeworkerssolveequationsforcostofmaterials,jobtimesandprofit;businessessolve equationstodetermineaffordablestockandstafflevels.
Simultaneousequationscansolveyourpersonalfinancequestionssuchas:findingthebestdeal forbuyingandmaintainingacar;identifyingthejobwiththebestearningsovertime;and discoveringthebestinvestmentaccount.
3AAlgebraicexpressions (Consolidating)
3BSimplifyingalgebraicexpressions
3CExpandingalgebraicexpressions
3DFactorisingalgebraicexpressions
3EMultiplyinganddividingalgebraicfractions
3FAddingandsubtractingalgebraicfractions
3GSolvinglinearequations (Consolidating)
3HSolvingmoredifficultlinearequations
3IUsingformulas
3JLinearinequalities
3KSolvingsimultaneousequationsusing substitution
3LSolvingsimultaneousequationsusing elimination
Expand,factoriseandsimplifyexpressionsandsolve equationsalgebraically,applyingexponentlawsinvolving products,quotientsandpowersofvariables,andthe distributiveproperty(AC9M10A01)
Solvelinearinequalitiesandsimultaneouslinearequations in2variables;interpretsolutionsgraphicallyand communicatesolutionsintermsofthesituation (AC9M10A02)
Usemathematicalmodellingtosolveappliedproblems involvinggrowthanddecay,includingfinancialcontexts; formulateproblems,choosingtoapplylinear,quadraticor exponentialmodels;interpretsolutionsintermsofthe situation;evaluateandmodifymodelsasnecessaryand reportassumptions,methodsandfindings(AC9M10A04)
©ACARA
Ahostofadditionalonlineresourcesareincludedaspart ofyourInteractiveTextbook,includingHOTmathscontent, videodemonstrationsofallworkedexamples, auto-markedquizzesandmuchmore.
1 Writealgebraicexpressionsforthefollowing.
3 lotsof x a onemorethan a b 5 lessthan 2m c 4 timesthesumof x and y d
2 Findthevalueofthefollowingwhen x = 4 and y = 7
5x a 2y + 3 b xy −5 c 2(x + y) d
3 Decidewhetherthefollowingpairsoftermsareliketerms.
6x and 8 a 3a and 7a b 4xy and 2yx c 3x2 and 10x d
4 Simplify: 3m + 5m a
b 4x + 3y + 2x + 5y c 2 × 4 × x d 5 × a × 3 × b e 6y ÷ 2 f
5 Expand:
2(x + 5) a 3(y −2) b 4(2x −3) c x(3x + 1) d
6 FindtheHCF(highestcommonfactor)ofthesepairsofterms.
8, 12 a 18, 30 b 7a, 14a c 2xy and 8xz d 5x and 8x2 e 7x2y and 21xy2 f
7 Simplify: 3 8 + 2 5 a 6 7 1 3 b 5
8 Statetrue(T)orfalse(F)forwhetherthefollowingareequations.
9 Completethefollowing.
10 Writeanexpressionforeachofthefollowing. thesumof x and 3 a sixmorethan n b double w c halfof x d sixmorethandouble x e sevenlessthan x f threemorethan x andthendoubled g onemorethantriple x h
11 Solvethefollowingsimpleequations.
12 Answertrue(T)orfalse(F)tothefollowing.
Learningintentions
• Toknowthenamesofthepartsofanalgebraicexpression
• Tobeabletoformalgebraicexpressionsfromsimplewordproblems
• Tobeabletoevaluateexpressionsbysubstitutinggivenvalues
Keyvocabulary: expression,pronumeral,variable,term,constantterm,coef cient,substitute,evaluate
Algebrainvolvestheuseofpronumerals(alsocalledvariables), whicharelettersthatrepresentnumbers.Numbersandpronumerals connectedbymultiplicationordivisionform terms,and expressions areoneormoretermsconnectedbyadditionorsubtraction.
Ifatickettoanartgallerycosts $12,thenthecostfor y visitorsis theexpression 12 × y = 12y.Bysubstitutingvaluesfor y wecanfind thecostsfordifferentnumbersofvisitors.Forexample,ifthereare fivevisitors,then y = 5 and 12y = 12 × 5 = 60.Sototalcost = $60
It’sfreetovisitTheNationalGallery ofAustraliabutsomespecial exhibitionsrequirepaidentry.Using algebra,youcancalculatethecost ofmultipletickets.
Ben,AleaandVictoriaarevisitingtheartgallery.Thethreeofthemcombinedhave $c betweenthem.Drinks cost $d andBenhasbought x postcardsinthegiftshop. Writeexpressionsforthefollowing.
• Thecostoftwodrinks.
• Theamountofmoneyeachpersonhasifthemoneyissharedequally.
• ThenumberofpostcardsAleaandVictoriaboughtifAleaboughtthreemorethanBenandVictoria boughtfivelessthantwicethenumberBenbought.
A pronumeral (or variable)isaletterusedtorepresentanunknownnumber.
Algebraic expressions aremadeupofoneormoretermsconnectedbyadditionorsubtraction, e.g. 3a + 7b, x 2 + 3y, 3x −4
• A term isagroupofnumbersandpronumeralsconnectedbymultiplicationanddivision, e.g. 2x, y 4, 5x2
• A constantterm isanumberwithnoattachedpronumerals,e.g. 7, −3
• The coefficient isthenumbermultipliedbythepronumeralsintheterm; e.g. 3 isthecoefficientof y in 2x + 3y.
−4 isthecoefficientof x in 5−4x.
1 isthecoefficientof x2 in 2x + x 2
Thisexpressionhas 3 terms: 3x, 2y and 4 3x 2y + 4
3 is the coefficient of x
2 is the coefficient of y 4 is the constant term
Operationsinalgebraicexpressions.
• Theoperationsforadditionandsubtractionarewrittenwith‘+’and‘ ’.
• Multiplicationiswrittenwithoutthesign,e.g. 3 × y = 3y
• Divisioniswrittenasafraction,e.g. y ÷ 4 = y 4 or 1 4 y
Tofindthevalueofanexpression(orto evaluate), substitute avalueforeachpronumeral.The orderofoperations(BODMAS)isfollowed.Forexample,if x = 2 and y = 3: 4xy y 2 = 4 × 2 × 3−32 = 24−9 = 15
Und er stand ing 1–3 1
1 Fillinthemissingword(s)inthesentences,usingthewords expression,term,constantterm or coefficient
a Analgebraic ismadeupofoneormoretermsconnectedbyaddition andsubtraction.
b Atermwithoutapronumeralpartisa
c Anumbermultipliedbythepronumeralsinatermisa
d Numbersandpronumeralsconnectedbymultiplicationanddivisionforma
2 Expressthefollowinginsimplifiedmathematicalform.
x plus 3 a 5 × y b a ÷
3 Substitutethevalue 3 forthepronumeral x inthefollowingandevaluate.
Example1Namingpartsofanexpression
Considertheexpression xy 2 −4x + 3y2 −2.Determine: thenumberofterms a theconstantterm b thecoefficientof: c y2 i x ii
SolutionExplanation
a 4 Therearefourtermswithdifferentcombinationsofpronumeralsand numbers,separatedby + or
b −2 Thetermwithnopronumeralsis −2.Thenegativeisincluded.
ci 3 ii −4
Thenumbermultipliedby y2 in 3y2 is 3
Thenumbermultipliedby x in −4x is −4.Thenegativesignbelongstothe termthatfollows.
Nowyoutry
Considertheexpression 4y x 3 −2x2 + 1.Determine:
thenumberofterms a theconstantterm. b thecoefficientof: c
y i x2 ii
4 Forthesealgebraicexpressions,determine:
thenumberofterms i theconstantterm ii thecoefficientof y iii
4xy + 5y + 8 a
2xy + 1 2 y2 −3y + 2 b
2x2 −4 + y c
Example2Writingalgebraicexpressions
Writealgebraicexpressionsforthefollowing.
threemorethan x a
HintforQ4:Thecoefficientisthe numbermultipliedbythe pronumeralsineachterm.The constanttermhasnopronumerals.
4 lessthan 5 times y b thesumof c and d isdividedby 3 c theproductof a andthesquareof b d
Solution
a x + 3
b 5y −4
c c + d 3
d ab2
Nowyoutry
Explanation
Morethanmeansadd (+).
Timesmeansmultiply (5 × y = 5y) andlessthanmeanssubtract ( )
Add c and d first (+),thendivideby 3 (÷) Divisioniswrittenasafraction.
‘Product’means‘multiply’.Thesquareof b is b2 (i.e. b × b) a × b2 = ab2
Writealgebraicexpressionsforthefollowing.
fivemorethan y a 7 lessthan 3 times x b thesumof a and b isdividedby 5 c theproductof x andthesquareof y d
5 Writeanexpressionforthefollowing.
twomorethan x a fourlessthan y b thesumof ab and y
HintforQ5:Quotientmeans ÷ Productmeans × 1 3 y = y 3 c threelessthan 2 lotsof x d theproductof x and 5 e twice m f threetimesthevalueof r g halfof x h three-quartersof m i thequotientof x and y j thesumof a and b is dividedby 4 k theproductofthesquareof x and y l
Findthevalueoftheseexpressionswhen x = 2, y = 3 and z = −5 xy + 3y a y2 8 x b 2x yz c
Solution
a xy + 3y = 2 × 3 + 3 × 3 = 6 + 9 = 15
b y 2 8 x = 32 8 2 = 9−4 = 5
c 2x yz = 2 × 2−3 × (−5) = 4− (−15) = 4 + 15 = 19
Explanation
Substituteforeachpronumeral: x = 2 and y = 3
Recallthat xy = x × y and 3y = 3 × y
Simplify,followingorderofoperations,bymultiplyingfirst.
Substitute y = 3 and x = 2 32 = 3 × 3 and 8 2 = 8 ÷ 2
Dosubtractionlast.
Substituteforeachpronumeral.
3 × (−5) = −15
Tosubtractanegativenumber,additsopposite.
Findthevalueoftheseexpressionswhen x =
+
, y = −2 and
6 Findthevalueoftheseexpressionswhen a = 4, b =
=
HintforQ6: 12 + (−2) = 12−2
Problem-solving and reasoning 7–9 8–11
7 Writeanexpressionforthefollowing.
a Thecostof 5 pencilsat x centseach.
b Thecostof y applesat 35 centseach.
c Oneperson’ssharewhen $500 isdividedamong n people.
d Thecostofapizza ($11) equallysharedbetween m people.
e Parvinda’sagein x years’timeifheis 11 yearsoldnow.
HintforQ7:Considerwhatyou woulddoifanumberwasin placeofthepronumeral.
8 AtaxiinSydneyhasapick-upcharge(i.e.flagfall)of $3.40 andcharges $2 perkm.
a Writeanexpressionforthetaxifareforatripof d kilometres.
b Useyourexpressioninpart a tofindthecostofatripthatis: 10 km i 22 km ii
HintforQ8:Thetaxifarehas initialcost + costperkm × numberofkm.
9 a Yethinksofanumber,whichwewillcall x Nowwriteanexpressionforeachofthefollowingstages. Hedoublesthenumber. i Hedecreasestheresultby 3 ii Hemultipliestheresultby 3 iii
b If x = 5,useyouranswertopart aiii tofindthefinalnumber.
10 Asquarewithsidelength x ischangedtoarectanglebyincreasing thelengthby 1 anddecreasingthewidthby 1
x
a Writeanexpressionforthenewlengthandwidthof therectangle.
b Isthereanychangeintheperimeteroftheshape?
HintforQ10:Perimeteristhe sumofthesidelengths. Areaformulas:
c Writeanexpressionfortheareaoftherectangle. i Usetrialanderrortodeterminewhethertheareaoftherectangleismoreorlessthantheoriginal square.Byhowmuch? ii
11 Theareaofatriangleisgivenby A = 1 2 bh h
b
a If b = 6 and h = 7,whatisthearea?
b Iftheareais 9,whatarethepossiblewholenumbervaluesfor b if h isalsoawholenumber?
Areaandperimeter 12
12 Fortheshapesshown,writeanexpressionfor: theperimeter i thearea. ii
Learningintentions
• Tobeabletoidentifyliketerms
• Toknowthatonlyliketermscanbecombinedunderadditionandsubtraction
• Tobeabletosimplifyalgebraicexpressionsusingthefouroperations: +, , × and ÷
Keyvocabulary: liketerms,pronumeral
Manyareasoffinanceandindustryinvolvecomplexalgebraic expressions.Oftentheseexpressionscanbemadesimplerby applyingtherulesofaddition,subtraction,multiplicationand division.
Justaswewouldwrite 3 + 3 + 3 + 3 as 4 × 3,wewrite
x + x + x + x as 4 × x or 4x.Similarly, 3x + 2x = 5x and 3x −2x = 1x (1x iswrittenas x).
Wealsoknowthat 2 ×
3 × 4 × 2 etc.,so 2
and (
.Bywritingadivision asafractionwecanalsocancelcommonfactors.Forexample, 9x ÷ 3 = 9x 3 = 3x
Lessonstarter:Equivalentexpressions
Alotoftheappsusedbysitemanagers havealgebraicexpressionsrunninginthe background.
Splittheseexpressionsintotwogroupsthatareequivalentbysimplifyingthemfirst.
3x +
Liketerms havetheexactsamepronumeralfactors,includingpowers;e.g. 3x and 7x,and 4x2y and −3x2y
• Since x × y = y × x, 3xy and 2yx areliketerms.
Additionandsubtractionapplytoliketermsonly.
Forexample, 5x + 7x = 12x 7ab −6ab = 1ab = ab 3x + 2y cannotbesimplified
Multiplicationanddivisionapplytoallterms.
• Inmultiplication,dealwithnumeralsandpronumeralsseparately: 2 × 8a = 2 × 8 × a = 16a
6x × 3y = 6 × 3 × x × y = 18xy
Whendividing,writeasafractionandcancelcommonfactors: ✁ 84x ✁ 21 = 4x
6x2 ÷ (3x) = 6x2 3x = ✁ 62 × ✚ x 1 × x ✁ 31 × ✚ x 1 = 2x
Und er stand ing
1 Arethefollowingsetsoftermsliketerms?Answeryes(Y)orno(N).
2 Simplifythefollowing.
8g + 2g
3 Simplifythefollowing.
4 Simplifythesefractionsbycancelling. 4 8 a 12 3
1–4 4
HintforQ2:Addorsubtractthe pronumeralsinliketerms.
HintforQ4:Choosethehighest
Fluency
Example4Identifyingliketerms
Writedowntheliketermsinthefollowinglists.
Solution
a 6a and 3a
5xa and 2ax
b 3x2a and −5x2a
Nowyoutry
Writedowntheliketermsinthefollowinglists.
5 Writedowntheliketermsinthefollowinglists.
Explanation
Bothtermscontain a
Bothtermscontain ax: x × a = a × x
Bothtermscontain x2a
HintforQ5:Liketermshave thesamepronumeralfactors.
and 5yx areliketerms.
Example5Collectingliketerms
Simplifythefollowing.
4a + 5a + 3 a
3x + 2y + 5x −3y b
5xy + 2xy2 −2xy + xy2 c
Solution
a 4a + 5a + 3 = 9a + 3
b 3x + 2y + 5x −3y = 3x + 5x + 2y −3y = 8x y
c 5xy + 2xy 2 −2xy + xy 2
= 5xy −2xy + 2xy 2 + xy 2
= 3xy + 3xy 2
Nowyoutry
Simplifythefollowing.
7x + 3x + 2 a
2a + 4b + 3a −2b b
4mn + 3m2n mn + 2m2n c
6 Simplifythefollowingbycollectingliketerms.
Explanation
Collectliketerms (4a and 5a) andadd coefficients.
Collectliketermsin x (3 + 5 = 8) and y (2−3 = −1).Note: −1y iswrittenas y
Collectliketerms.In xy,thenegativebelongs to 2xy.In xy2,recallthat xy2 is 1xy2 .
4t + 3t + 10 a 5g g + 1 b
3x −5 + 4x c 4m + 2−3m d
2x + 3y + x e 3x + 4y x + 2y f
8a + 4b −3a −6b g 2m −3n −5m + n h
3de + 3de2 + 2de + 4de2 i 6kl −4k2l −6k2l −3kl j 3x2y + 2xy2 xy2 + 4x2
Example6Multiplyingalgebraicterms
Simplifythefollowing.
2a × 7d a −3m × 8mn b
Solution
a 2a × 7d = 2 × 7 × a × d = 14ad
b −3m × 8mn = −3 × 8 × m × m × n = −24m 2 n
Nowyoutry
Simplifythefollowing.
4x × 5w a
−2a × 6ac b
Explanation
Multiplycoefficientsandcollectthepronumerals: 2 × a × 7 × d = 2 × 7 × a × d Multiplicationcanbedoneinanyorder.
Multiplycoefficients (−3 × 8 = −24) and pronumerals.Recall: m × m canbewrittenas m2
7 Simplifythefollowing.
HintforQ7:Multiplythe numeralsandcollectthe pronumerals. a × b = ab
Example7Dividingalgebraicterms
Simplifythefollowing.
Solution Explanation a
Cancelhighestcommonfactorofnumerals, i.e. 6
Writedivisionasafraction.
Cancelthehighestcommonfactorof 12 and 8 andcancelan a and b
Nowyoutry
Simplifythefollowing.
8 Simplifybycancellingcommonfactors.
HintforQ8:Write eachdivisionasa fractionfirstwhere necessary.
9 Arectangle’slengthisthreetimesitswidth, x.Writea simplifiedexpressionfor: therectangle’sperimeter a therectangle’sarea.
HintforQ9:Drawarectangle andlabelthewidth x and thelength 3 × x = 3x. b
10 Fillinthemissingtermtomakethefollowingtrue.
8x + 4− = 3x + 4 a
3x + 2y + 4y = 3x −2y b
3b × = 12ab c
4xy × ( ) = −24x2y d
12xy ÷ ( ) = 6y e ÷ (15ab) = 2a 3 f
11 Findexpressionsinsimplestformfortheperimeter (P) andarea (A) oftheseshapes.
HintforQ11:Perimeteristhesumof allthesides. Area = l × w l w c
12 Arectangulargardenbedhaslengthgivenby 6x andarea 18x2 Whatisthewidthofthegardenbed? A = 18x2 6x
HintforQ12:Theopposite of × is ÷
Orderofoperations 13
13 Simplifythefollowingexpressions,usingorderofoperations.
Learningintentions
• Tounderstandthedistributivelawforexpandingbrackets
• Tobeabletoexpandexpressionsinvolvingbrackets
Keyvocabulary: distributivelaw,expand
Whenanexpressionismultipliedbyaterm,eachtermintheexpressionmustbemultipliedbytheterm. Bracketsareusedtoshowthis.Forexample,todouble 4 + 3 wewrite 2 × (4 + 3),andeachtermwithinthe brackets(both 4 and 3)mustbedoubled.Theexpandedversionofthisexpressionis 2 × 4 + 2 × 3 Similarly,todoubletheexpression x + 1,wewrite 2(x + 1) = 2 × x + 2 × 1.Thisexpansionofbracketsuses thedistributivelaw.
Inthisdiagram, 7 blueblocksaredoubledingroupsof 4 and 3
Considerthediagramshown.
• Writeanexpressionfortherectanglearea A1
• Writeanexpressionfortherectanglearea A2
• Addyourresultsfor A1 and A2 togivetheareaoftherectangle.
• Writeanexpressionforthetotallengthoftherectangle.
• Usingthetotallength,writeanexpressionfortheareaofthe rectangle.
• Combineyourresultstocompletethisstatement: 4(x + 2) =
The distributivelaw isusedto expand andremovebrackets: • Thetermsinsidethebracketsaremultipliedbythetermoutsidethebrackets.
(b c) = ab ac a(b + c) = ab + ac
Forexample, 2(x + 4) = 2 × x + 2 × 4 = 2x + 8
Und er stand ing 1,2 2
1 Thedistributivelawsaysthateachterminsidethe ismultipliedbytheterm thebrackets.
2 Completethefollowing.
3(x + 4) = 3 × + 3 × = 3x + a 2(x −5) = 2 × + × (−5) = −10 b 2(4x + 3) = 2 × + × 3 = + 6 c
Example8Expandingexpressionswithbrackets
Expandthefollowing.
2(x + 5) a 3(2x −3) b 3y(2x + 4y) c
Solution
a 2(x + 5) = 2 × x + 2 × 5 = 2x + 10
Explanation
Multiplyeachterminsidethebracketsby 2 b 3(2x 3) = 3 × 2x + 3 × ( 3) = 6x 9
c 3y(2x + 4y) = 3y × 2x + 3y × 4y = 6xy + 12y2
Nowyoutry
Multiply 2x and −3 by 3 3 × 2x = 3 × 2 × x = 6x.
Multiply 2x and 4y by 3y 3y × 2x = 3 × 2 × x × y and 3y × 4y = 3 × 4 × y × y
Recall: y × y iswrittenas y2
Expandthefollowing. 3(x + 4) a 5(3x −2) b
3 Expandthefollowing.
2(x + 4) a 3(x + 7) b
4(y −3) c 5(y −2) d
2(3x + 2) e 4(2x + 5) f
3(3a −4) g 7(2y −5) h
5(2a + b) i 3(4a −3b) j
2x(x + 5) k 3x(x −4) l
2a(3a + 2b) m 2y(3x −4y) n
3b(2a −5b) o 4m(3m n) p
a(2a + 5b) c
HintforQ3:Usethedistributive law:
a(b + c) = a × b + a × c = ab + ac
a(b c) = a × b + a × ( c) = ab ac
Example9Expandingexpressionswithanegativeoutthefront
Expandthefollowing.
−3(x −4) a −2x(3x −2y) b
Solution
a 3(x 4) = 3 × x + ( 3) × ( 4) = 3x + 12
b 2x(3x 2y) = 2x × 3x + ( 2x) × ( 2y) = 6x2 + 4xy
Nowyoutry
Expandthefollowing.
Explanation
Multiplyeachterminsidethebracketsby −3
−3 × (−4) =+12 Ifthereisanegativesignoutsidethebracket,the signofeachterminsidethebracketsischanged whenexpanded.
−2x × 3x = −2 × 3 × x × x and −2x × (−2y) = −2 × (−2) × x × y
−4(x −5) a −3y(2x −4y) b
4 Expandthefollowing.
−2(x + 3) a −5(m + 2) b
−3(w + 4) c −4(x −3) d
−2(m −7) e −7(w −5) f
(x + y) g (x y)
−2x(3x + 4) i
−3x(2x + 5) j
Note: (x + y) = −1(x + y) h
HintforQ4:Anegativeoutthefrontwill changethesignofeachterminthebrackets whenexpanded. −2(x −3) = −2x + 6
−4x(2x −2) k −3y(2y −9) l
−2x(3x −5y) m −3x(3x + 2y) n
−6y(2x + 3y) o
Example10Simplifyingexpressionsbyremovingbrackets
Expandandsimplifythefollowing.
8 + 3(2x −3) a 3(2x + 2) −4(x + 4) b
Solution
a 8 + 3(2x 3) = 8 + 6x 9 = 6x 1
Explanation
Expandthebracketsfirst: 3 × 2x + 3 × (−3) = 6x −9
Collectliketerms: 8−9 = −1 b 3(2x + 2) − 4(x + 4) = 6x + 6 − 4x 16 = 2x 10
Expandthebracketsfirst.Notethat
−4(x + 4) = −4 × x + (−4) × 4 = −4x −16
Collectliketerms: 6x −4x = 2x and 6−16 = −10
Nowyoutry
Expandandsimplifythefollowing.
5 + 2(4a −3) a
5(y + 3) −2(2y + 5) b
5 Expandandsimplifythefollowing.
HintforQ5:Expand first,thencollect liketerms.
Problem-solving and reasoning
6 Fillinthemissingterm/numbertomakeeachstatementtrue.
7 Fourrectangularroomsinahousehavefloorsidelengthslistedbelow. Findanexpressionfortheareaofeachfloorinexpandedform.
HintforQ7: Areaofarectangle = l × w andremembertousebrackets.
8 Thedeckonahouseisconstructedintheshapeshown.Findtheareaofthedeckinexpandedform. (Alllinesmeetat 90°.)
9 Viratearns $x butdoesnothavetopaytaxonthefirst $18200
a WriteanexpressionfortheamountofmoneyViratistaxedon.
b Viratistaxed 10% ofhisearningsinpart a.Writeanexpanded expressionforhowmuchtaxhepays.
Expandingbinomialproducts
HintforQ9:Tofind 10% of anamount,multiplyby 10 100 = 0.1
10 Arectanglehasdimensions (x + 2) by (x + 3),asshown.Theareacanbefoundby summingtheindividualareas:
(x + 2)(x + 3) =
Thiscanalsobedoneusingthedistributivelaw: (x + 2)(x + 3) = x(x + 3) + 2(x + 3) = x 2 + 3x + 2x + 6
= x 2 + 5x + 6
Expandandsimplifythesebinomialproductsusingthismethod.
Learningintentions
• Tobeabletoidentifythehighestcommonfactorofterms
• Toknowtheformofafactorisedexpression
• Tounderstandthatfactorisingandexpandingarereverseprocesses
• Tobeabletofactorisealgebraicexpressionsinvolvingacommonfactor
Keyvocabulary: highestcommonfactor,factorise,term
Factorisingisanimportantstepinsolvingmanytypesofequationsandinsimplifyingalgebraicexpressions. Justas 15 canbeexpandedandwrittenas 3 × 5,wecanfactorisetowriteanalgebraicexpressionasthe productofitsfactors.Factorisingisthereforetheoppositeofexpanding.
• Expandtheproduct 6(2x + 4)
Therearesome commonformulas thatcanbeappliedto quicklyexpandbrackets, suchasthedifferenceof squaresrule.
• Writeasmanyproductsasyoucan(usingwholenumbers)thatgivethesameresultas 6(2x + 4) when expanded.
• Whichofyourproductshasthehighestnumberinfrontofthebrackets?Whatisthisnumber?
• Howdoesthisnumberrelatetothetwotermsintheexpandedform?
• Writeaproductoffactorsthatexpandto 18x + 24,usingthehighestcommonfactor.
Factorising involveswritinganexpressionasaproduct.
Factorisationistheoppositeprocessofexpansion.
Tofactoriseanexpression,takeoutthe highestcommonfactor (HCF) ofeachoftheterms.The highestcommonfactoristhelargestnumber,pronumeralorproductofthesethatdividesinto eachterm.
• DivideeachtermbytheHCFandleavetheexpressioninthebrackets.
• Afactorisedexpressioncanbecheckedbyexpandingtogettheoriginalexpression.
• IftheHCFhasbeenremoved,thetermsinthebracketsshouldhavenocommonfactors;e.g. 2(x + 3) isfullyfactorised,but 2(4x + 6) isnotbecause 2 canstillbedividedintoboth 4 and 6 withinthebrackets.
Forexample: 3x + 12 = 3(x + 4) HCF: 3 2x 2 + 8x = 2x(x + 4) HCF: 2x
1 Writedownthehighestcommonfactor (HCF) ofthesepairofnumbers. 10 and 16 a 9 and 27 b 14 and 35 c 36 and 48 d
1–3 3
2 Statetrue(T)orfalse(F)ifthefirstexpressionisthefactorisedformofthesecondexpression.Confirm byexpanding.
3(x + 2), 3x + 6 a −2(x −4), −2x −8 b
3 Considertheexpression 4x2 + 8x
a WhichofthefollowingfactorisedformsusestheHCF?
2(2x2 + 4x) A 4(x2 + 8x) B 4x(x + 2) C 2x(2x + 4) D
b WhatcanbesaidaboutthetermsinsidethebracketsoncetheHCFisremoved,whichisnotthe casefortheotherforms?
Example11Findingthehighestcommonfactor(HCF)
DeterminetheHCFofthefollowing.
8a and 20 a 3x and 6x b 10a2 and 15ab c
Solution
a HCFof 8a and 20 is 4
Explanation
Comparenumeralsandpronumeralsseparately. Thehighestcommonfactor (HCF) of 8 and 20 is 4 a isnotacommonfactor.
b HCFof 3x and 6x is 3x.HCFof 3 and 6 is 3 x isalsoacommonfactor.
c HCFof 10a2 and 15ab is 5a.HCFof 10 and 15 is 5 HCFof a2 and ab is a.
Nowyoutry
DeterminetheHCFofthefollowing.
10x and 25 a 7x and 14x b
4 DeterminetheHCFofthefollowing.
6x and 12 a 10 and 15y
8a and 12b c 9x and 18y d
5a and 20a e 10m and 22m f
14x and 21x g 8a and 40ab h
3a2 and 9ab i 4x2 and 10x j
HintforQ4:Findthe HCFofthenumeral andvariablefactors. b
16y and 24xy k 15x2y and 25xy l
Example12Factorisingsimpleexpressions
Factorisethefollowing.
4x + 20 a 6a −15b b
Solution
a 4x + 20 = 4(x + 5)
b 6a −15b = 3(2a −5b)
Nowyoutry
Factorisethefollowing.
Explanation
HCFof 4x and 20 is 4.Place 4 infrontofthe bracketsanddivideeachtermby 4
Expandtocheck: 4(x + 5) = 4x + 20
HCFof 6a and 15b is 3.Place 3 infrontofthe bracketsanddivideeachtermby 3
3x + 15 a 12m −18n b
5 Factorisethefollowing.
3x + 9 a 4x −8 b 10y −20 c
6a + 30 d 5x + 5y e 12a + 4b f
18m −27n g 36x −48y h 8x + 44y i 24a −18b j 121m + 55n k 14k −63l
HintforQ5:Checkyour answerbyexpanding. 3(x + 3) = 3x + 9 l
Example13Factorisingexpressionswithpronumeralcommonfactors
Factorisethefollowing.
8y + 12xy a 4x2 −10x b
Solution
Explanation
a 8y + 12xy = 4y(2 + 3x) HCFof 8 and 12 is 4,HCFof y and xy is y Place 4y infrontofthebracketsanddivideeachtermby 4y
Checkthat 4y(2 + 3x) = 8y + 12xy
b 4x2 −10x = 2x(2x −5) HCFof 4x2 and 10x is 2x.Place 2x infrontofthe bracketsanddivideeachtermby 2x
Recall: x2 = x × x
Nowyoutry
Factorisethefollowing.
9a + 24ab a 15x2 −35x b
6 Factorisethefollowing. 14x + 21xy a 6ab −15b b 32y −40xy c
5x2 −5x d x2 + 7x
HintforQ6:PlacetheHCFin frontofthebracketsand divideeachtermbytheHCF: 14x + 21xy = 7x( + ) e 2a2 + 8a f 12a2 + 42ab g 9y2 −63y h 6x2 + 14x i 9x2 −6x j 16y2 + 40y k 10m −40m2 l
Example14Factorisingexpressionsbyremovingacommonnegative
Factorise −10x2 −18x
Solution
−10x2 −18x = −2x(5x + 9)
Explanation
TheHCFof −10x2 and −18x is −2x,including thecommonnegative.Place −2x infrontof thebracketsanddivideeachtermby −2x Dividingbyanegativechangesthesignof eachterm.
Factorise −8y2 −36y
7 Factorisethefollowing,includingthecommonnegative.
x −6 a −4a −8
Problem-solving
8 Factorisethesemixedexpressions.
9 Givetheperimeteroftheseshapesinfactorisedform.
HintforQ7:Dividing byanegative changesthesign oftheterm.
8,98(½),9–11
HintforQ8:Besuretofindthe highestcommonfactorfirst.
HintforQ9:Findtheperimeter first,thenfactorise.
10 Asquaresandpithasperimeter (4x + 12) metres.Whatisthesidelengthofthesquare?
11 Commonfactorsfromexpressionsinvolvingmorethantwotermscanberemoved inasimilarway.FactorisethesebytakingouttheHCF.
2x
Takingoutabinomialfactor
12 Acommonfactormaybeabinomialterm,suchas (x + 1) Forexample, 3(x + 1) + x(x + 1) hasHCF = (x + 1),so 3(x + 1) + x(
,where (3 +
) is whatremainswhen 3(x + 1) and x(x + 1) aredividedby (x + 1) Usethemethodabovetofactorisethefollowing.
Learningintentions
• Toknowthatexpressionsmustbefactorisedbeforecommonfactorscanbecancelled
• Tobeabletosimplifyalgebraicfractionsbycancellingcommonfactors
• Tobeabletomultiplyanddividealgebraicfractions
Keyvocabulary: algebraicfraction,commonfactor,factorise,numerator,denominator,reciprocal
Sincepronumeralsrepresentnumbers,therulesforalgebraicfractionsarethesameasthoseforsimple numericalfractions.Thisincludesprocessessuchascancellingcommonfactorstosimplifythecalculation anddividingbymultiplyingbythereciprocalofafraction.
Theprocessofcancellingrequirescancellingoffactors,forexample:
Foralgebraicfractions,youneedtofactorisetheexpressionstoidentifyandcancelcommonfactors.
• Factorisetheseexpressionstowritethemasaproductoftheirfactors.Fillintheblanksandsimplify.
• Describetheerrorsmadeinthesefactorisations. 1
An algebraicfraction isafractioncontainingpronumeralsaswellasnumbers.
Simplifyalgebraicfractionsbycancellingcommonfactorsinfactorisedform.
Forexample, 4x + 6
Tomultiplyalgebraicfractions:
• Factoriseexpressionsifpossible.
• Cancelcommonfactorsbetweenanynumeratorand denominator.
• Multiplyremainingnumeratorsanddenominators together.
Todividealgebraicfractions:
• Multiplybythe reciprocal ofthefractionfollowingthedivision sign e.g.thereciprocalof 6 is 1 6,thereciprocalof a b is b a .
• Followtherulesformultiplication.
Und er stand
1 Writethesefractionsinsimplestformbycancellingcommonfactors.
21 a 9 12
2 Writethereciprocalofthesefractions. 3
3 Followtherulesformultiplicationanddivisiontosimplifythese numericfractions.Cancelcommonfactorsbeforemultiplying.
HintforQ2:The reciprocalof a b is b a
Example15Cancellingcommonfactors
Simplifybycancellingcommonfactors.
Solution Explanation
Cancelthehighestcommonfactorof 8 and 12 (i.e. 4) andcancelthe x
Nowyoutry
Simplifybycancellingcommonfactors. 18
Cancelthehighestcommonfactors: 3 and (x + 2)
4 Simplifybycancellingcommonfactors.
HintforQ4:Cancel theHCFofthe numeralsand pronumerals. g
4(x + 1) 8
Simplifythesefractionsbyfactorisingfirst.
Explanation
Factorisetheexpressioninthenumerator, whichhasHCF = 3.Thencancelthecommon factorof 3
4 istheHCFinthenumerator. Afterfactorising, (x + 2) canbeseenasa commonfactorandcanbecancelled.
Nowyoutry
Simplifythesefractionsbyfactorisingfirst.
16x −8 8 a
3x −6 x −2
b 5 Simplifythesefractionsbyfactorisingfirst. 4x + 8 4 a 6a −30 6 b 8y −12 4 c 14b −21 7 d 3x + 9 x + 3 e
x −20 x −5 f 6x + 9 2x + 3 g
x
m
HintforQ5:Cancelafteryou havefactorisedthenumerator.
Example17Multiplyingalgebraicfractions
Simplifytheseproducts.
12 5x × 10x 9 a
3(x −1) 10 × 15 x −1 b Solution
Explanation a
12 4
Cancelcommonfactorsbetweennumeratorsand denominators: 5x and 3 Thenmultiplythenumeratorsandthedenominators. b 3
x −1 1 = 9 2 ( = 4 1 2 )
Nowyoutry Simplifytheseproducts. 20 3x × 6x 25 a
b
6 Simplifytheseproducts.
Cancelthecommonfactors,whichare (x −1) and 5 Multiplynumeratorsanddenominators.
HintforQ6:Cancelany commonfactorsbetween numeratorsanddenominators beforemultiplying.
Simplifythefollowing.
Solution
Nowyoutry
Simplifythefollowing.
7 Simplifythefollowing.
Explanation
Multiplybythereciprocalofthesecond fraction.
Thereciprocalof 9x 4 is 4 9x
Cancelcommonfactors: 3x and 4
Note: 3x2 9x =
31 × x × ✚ x 1 3 ✁ 9 × ✚ x 1 Multiplythenumeratorsandthedenominators.
Thereciprocalof x −2 6 is 6 x −2
Cancelthecommonfactors (x −2) and 3,and multiply.Recall: 4 1 = 4
HintforQ7:Todivide,multiplybythe reciprocalofthefractionfollowing thedivisionsign. x 5 ÷ x 15 = x 5 × 15 x
8 Findtheerrorinthesimplifyingofthesefractionsandcorrectit.
HintforQ8:Rememberthat commonfactorscanbeeasily identifiedwhenexpressionsarein factorisedform.
9 Simplifythesealgebraicfractionsbyfactorisingexpressionsfirstinthenumeratorand/ordenominator.
10 Byremovinganegativefactor,furthersimplifyingissometimespossible.
Forexample, −2x −4 x + 2 = −2✘✘✘✘
Usethisideatosimplifythefollowing.
2 −4x x + 4
HintforQ10:Takingouta negativefactorchangesthe signofeachterminsidethe brackets. c
Cancellingofpowers 11
11 Justas x✁ 21 ✚ x 1 = x, (x + 1)✁ 21 ✘✘✘ x + 1 1 = x + 1.Usethisideatosimplifythesealgebraicfractions.
Somewillneedfactorisingfirst.
(x −3)2 9x × 3x 4x −12 e
Learningintentions
• Toknowthatthestepsforaddingandsubtractingalgebraicfractionsarethesameasfornumericalfractions
• Tobeableto ndthelowestcommondenominatoroffractions
• Tobeabletoaddandsubtractalgebraicfractions
Keyvocabulary: lowestcommondenominator,equivalentfraction,algebraicfraction,numerator,denominator
Aswithmultiplyinganddividing,thestepsforaddingandsubtractingnumericalfractionscanbe appliedtoalgebraicfractions.Alowestcommondenominatorisrequiredbeforethefractionscanbe combined.
• Writeoutthelistofstepsyouwouldgivetosomeonetoshowthemhowtoadd 3 5 and 2 7
• Followyourstepstoaddthefractions 3x 5 and 2x 7
• Whatisdifferentwhenthesestepsareappliedto x + 2 5 and x 7 ?
Toaddorsubtract algebraicfractions:
• Determinethe lowestcommondenominator(LCD) –thesmallestcommonmultipleofthe denominators.
Forexample,theLCDof 3 and 5 is 15 andtheLCDof 4 and 12 is 12
• Writeeachfractionasanequivalentfractionbymultiplyingthedenominator(s)toequalthe LCD.Whendenominatorsaremultiplied,numeratorsshouldalsobemultiplied.
Forexample, x 3 + 2x 5 (LCDof 3 and 5 is 15.)
= x(× 5) 3(× 5) + 2x(× 3) 5(× 3)
= 5x 15 + 6x 15 and 2x 4 x 12 (LCDof 4 and 12 is 12.)
= 2x(× 3) 4(× 3) x 12
= 6x 12 x 12
• Addorsubtractthenumerators.
Forexample, 5x 15 + 6x 15 = 11x 15 and 6x 12 x 12 = 5x 12
Toexpress x + 1 3 withadenominatorof 12,boththenumeratoranddenominatormustbemultiplied by 4 withbracketsrequiredtomultiplythenumerator:
(x + 1)(× 4) 3(× 4) = 4x + 4 12
Und er stand ing
1 Writedownthelowestcommondenominator (LCD) for thesepairsoffractions. 2x 5 , x 4
2 Completetheseequivalentfractionsbygivingthe missingterm.
x 4 = 12 a 2x 5 = 15
3 Completethefollowingbyfillingintheboxes.
x 4 + x
=
1–3 3
HintforQ1:TheLCDisnotalways thetwodenominatorsmultiplied together;e.g. 3 × 6 = 18 butthe LCDof 3 and 6 is 6
HintforQ2:Forequivalentfractions, whateverthedenominatoris multipliedby,thenumeratormust bemultipliedbythesameamount. b x −1 4 = (x −1) 20 c
Example19Addingandsubtractingalgebraicfractions
Simplifythefollowing.
x 2 + x 3 a 4x 5 x 2 b x 2 5 6 c
Solution
a x(× 3)
2(× 3) + x(× 2) 3(× 2) = 3x 6 + 2x 6 = 5x 6
b 4x(× 2) 5(× 2) x(× 5) 2(× 5) = 8x 10 5x 10 = 3x 10
c x(× 3) 2(× 3) 5 6 = 3x 6 5 6 = 3x −5 6
Explanation
TheLCDof 2 and 3 is 6 Expresseachfractionwithadenominatorof 6 andaddnumerators.
TheLCDof 5 and 2 is 10. Expresseachfractionwithadenominatorof 10 andsubtract 5x from 8x
TheLCDof 2 and 6 is 6.Multiplythenumerator anddenominatorof x 2 by 3 toexpresswitha denominatorof 6 Writeasasinglefraction; 3x −5 cannotbe simplified.
Nowyoutry
Simplifythefollowing.
x 4 + x 5 a 3x 2 x 7 b x 3 + 7 9 c
4 Simplifythefollowing.
x 3 + x 4 a x 5 + x 2
HintforQ4:Expresseachfraction withacommondenominatorusing theLCD,thenaddorsubtract numerators. b x 3 x 9
5 Simplifythefollowing.
Simplifythefollowingalgebraicexpressions.
Solution
b (x + 3)(× 7) 3(× 7) + (x −4)(× 3)
Explanation
TheLCDof 4 and 6 is 12. Expresseachfractionwithadenominator of 12
Whenmultiplying (x + 2) by 3,bracketsare required.
Expandthebracketsandcollecttheterms: 3x + 6−2x = 3x −2x + 6
TheLCDof 3 and 7 is 21 Expresseachfractionwithadenominator of 21
Expandeachpairofbracketsfirstandaddby collectingliketerms.
Simplifythefollowingalgebraicexpressions.
6 Simplifythesealgebraicexpressions.
Problem-solving and reasoning
7 Findtheerrorineachofthefollowingandthencorrectit. 2
8 Recallthattheexpansionof −5(x −2) is −5x + 10, so 6(x + 1) −5(x −2) = 6x + 6−5x + 10 = x + 16
Usethismethodtosimplifythesesubtractions.
9 TheLCDofthefractions 4 x + 2 3 is 3 × x = 3x
UsethistofindtheLCDandsimplifythesefractions.
4 x + 2 3
Pronumeralsinthedenominator 10
10 AsseeninQuestion 9,pronumeralsmayformpartoftheLCD. Thefractions 5 2x and 3 4 wouldhaveaLCDof 4x,whereasthefractions 3 x and 5 x2 wouldhaveaLCD of x2
ByfirstfindingtheLCD,simplifythesealgebraicfractions. 3 4 + 5 2x a
4 x + 1 x2 e
3 2x + 2 x2 g
Learningintentions
• Toknowwhatasolutiontoanequationmeans
• Tobeabletosolveasimplelinearequation
• Tobeabletoverifyasolutiontoanequation
Keyvocabulary: equation,linearequation,solve,variable,pronumeral,backtracking,verify,substitute,solution
Acricketbatsmanwillputonsocks,thencricketshoesand,finally,padsinthatorder.Whenthegameis over,theseitemsareremovedinreverseorder:firstthepads,thentheshoesandfinallythesocks.Nobody takestheirsocksoffbeforetheirshoes.Asimilarreversaloccurswhensolvingequations.
Wecanundotheoperationsaround x bydoingtheoppositeoperationinthereverseordertohowthey havebeenappliedto x.Tokeepeachequationbalanced,wealwaysapplythesameoperationtobothsides ofanequation.
Forexample:
Applyingoperationsto x = 7 Undoingtheoperationsaround x
Thiscricketerhasputonhiswhitesfirst,followedbyhis protectivepads.Attheendofhisinnings,hewillneedto removethepadsbeforetakingoffhiswhites,reversingthe orderinwhichheputthemon.
Threeweighingscalesareeachbalancedwithvariousweightsontheleftandrightpans.
Whatweighthasbeenremovedfromeachsideofscales 1 togettoscales 2?
• Whathasbeendonetoboththeleftandrightsidesofscales 2 togettoscales 3?
• Whatequationsarerepresentedineachofthebalancedscalesshownabove?
• Whatmethodscanyourecallforsolvingequations? •
An equation isamathematicalstatementthatincludesanequalssign.Theequationwillbe trueonlyforcertainvalue(s)ofthepronumeral(s)thatmaketheleft-handsideequaltothe right-handside.
Forexample: 5x 6 = −2, 3p + 2t = 6 areequations; 6x −13 isnotanequation.
A linearequation containsavariable(e.g. x)tothepowerof 1 andnootherpowers.
Forexample: 3x −5 = 7, 4(m −3) = m + 6 arelinearequations; x2 = 49 isnotlinear.
To solve anequation,undotheoperationsbuiltaround x bydoingtheoppositeoperationin thereverseorder.
• Alwaysperformthesameoperationtobothsidesofanequationsoitremainsbalanced.
Forexample:
For 5x + 2 = 17,weobserveoperationsthathavebeenappliedto x: x 5x 5x + 2 × 5 + 2
Sowesolvetheequationby‘undoing’theminreverseorderonbothsidesoftheequation: 5x + 25x x 2 ÷ 5 and 17153 2 ÷ 5
Thisgivesthesolution:
• Alternatively,asolutionneednotshowtheoperationsappliedtoeachside.Thesecanbe donementally.Forexample: 5x + 2 = 17 5x = 15 x = 3
Aflowchartcanbeusedtosolveequations.First,theequationisbuiltupfollowingtheorder ofoperationsappliedto x andthenthesolutionfor x isfoundbyundoingtheseoperations inthereverseorder.
Forexample,hereisaflowchartsolutionto 5x + 2 = 17
Solution x = 3
• Backtracking istheprocessofundoingtheoperationsappliedto x
To verify ananswermeanstocheckthatthesolutioniscorrectbysubstitutingtheanswerto seeifitmakestheequationtrue.
e.g.Verifythat x = 3 isasolutionto 5x + 2 = 17
LHS = 5x + 2 RHS = 17
= 5(3) + 2
= 17 Â x = 3 isasolution.
Solvetheequation 5x −4 3 = 12.
UsingtheTI-Nspire:
Ina Calculator pageuse menu >Algebra>Solve andtypetheequation asshown.
Hint: usethefractiontemplate( ctrl ÷ )
UsingtheClassPad:
Tap solve(,then andtypetheequationas shown.
Und er stand ing 1–3 3
1 Statethemissingwordornumber.
a Anequationisastatementthatcontainsan sign.
b Alinearequationcontainsavariabletothepowerof
2 Considertheequation 2x + 3 = 7
a Completethistablebyevaluating 2x + 3 forthegivenvaluesof x x 0 1 2 3
2x + 3
b Bylookingatyourtableofvalues,whichvalueof x isthesolutionto 2x + 3 = 7?
3 Decidewhether x = 2 isasolutiontotheseequations.
x + 3 = 5 a 2x = 7 b
x −1 = 4
c 2x −1 = 10 d 3x + 2 = 8 e 2− x = 0 f
HintforQ3:Substitute x = 2 to seewhetherLHS = RHS.
Example21Solvingone-stepequations
Solve: x + 7 = 12 a x −9 = 3 b 3x = 12 c x 4 = 20 d
Solution
a x + 7 = 12
x = 5
Verify:LHS = 5 + 7 RHS = 12 = 12
b x −9 = 3
x = 12
Verify:LHS = 12−9 RHS = 3 = 3
c 3x = 12
x = 4
Verify:LHS = 3 × 4 RHS = 12 = 12
d x 4 = 20
x = 80
Nowyoutry
Verify:LHS = 80 4 RHS = 20 = 20
Solve:
=
4 Solvethefollowing.
Explanation
Writetheequation.Theoppositeof + 7 is −7. Subtract 7 frombothsides. Checkthatyouransweriscorrect.
Writetheequation.Theoppositeof −9 is + 9 Add 9 tobothsides. Checkthatyouransweriscorrect.
Writetheequation.Theoppositeof × 3 is ÷ 3
Dividebothsidesby 3. Checkthatyouransweriscorrect.
Writetheequation.Theoppositeof ÷ 4 is × 4
Multiplybothsidesby 4
Checkthatyouransweriscorrect.
HintforQ4: 8 + x = 14 isthesameas x + 8 = 14 16 = m + 1 isthesameas m + 1 = 16
5 Solvethefollowing.
3 × 1 2 = 3 1 × 1 2 = 3 2 c 15p = 15 d 6m = −42 e −10 = 20p f x 5 = 10 g m 3 = 7 h a 6 = −2 i
6 Solvethefollowingequations.
x + 9 = 12 a x + 3 = 12 b x + 15 = 4 c
x −7 = 3 d x −2 = 12
3x = 9 g 4x = 16 h 2x = 100 i
x 5 = 4 j x 3 = 7 k x 7 = 1 l
HintforQ6:Carry outthe‘opposite’ operationtosolve for x e x −5 = 5 f
Example22Solvingtwo-stepequations
Solve 4x + 5 = 17
Solution
4x + 5 = 17
4x = 12 x = 12 4 x = 3
Verify:LHS = 4(3) + 5 RHS = 17 = 17
Nowyoutry
Solve 5x −1 = 19
7 Solvethefollowingequations.
Explanation
Writetheequation. Subtract 5 frombothsidesfirst.
Dividebothsidesby 4 Simplify.
Checkyouranswer.
2x + 5 = 7 a 3x + 2 = 11 b 4x −3 = 9 c 6x + 13 = 1 d 8x + 16 = 8
HintforQ7:Firstchooseto addorsubtractanumberfrom bothsidesandthendivideby thecoefficientof x e 10x + 92 = 2 f 3x −4 = 8 g 2x −7 = 9 h 5x −4 = 36 i 2x −6 = −10 j 7x −3 = −24 k 6x −3 = 27 l
Example23Solvingtwo-stepequationsinvolvingsimplefractions
Solve x 5 −3 = 4
Solution
x 5 −3 = 4
x 5 = 7 x = 35
Verify:LHS = 35 5 −3 RHS = 4 = 4
Explanation
Writetheequation.
Add 3 tobothsides.
Multiplybothsidesby 5.
Checkthatyouransweriscorrect.
Nowyoutry
Solve x 7 + 2 = 6
8 Solvethefollowingequations.
x 3 + 2 = 5 a x 6 + 3 = 3 b x 7 + 4 = 12 c
x 4 −3 = 2
=
Example24Solvingmoretwo-stepequations
Solve x + 4 2 = 6
Solution
x + 4 2 = 6 x + 4 = 12 x = 8
Verify:LHS = 8 + 4 2 RHS = 6 = 6
Nowyoutry
Solve x −3 4 = 1. 9 Solvethefollowingequations. m + 1 2 = 3 a
= 3 c x + 5 3 = 2 d n −4 5 = 1
Explanation
HintforQ8:Whensolving equations,theorderof stepsisimportant.For x 3 −5,undothe −5 first, thenundothe ÷3
Writetheequation. In x + 4 2 wefirstadd 4 andthendivideby 2.Sotoundowe firstmultiplybothsidesby 2 Thensubtract 4 frombothsides.
Checkthatyouransweriscorrect.
HintforQ9:Whensolvingequations,the orderofstepsisimportant.For x + 7 3 , undothe ÷3 first,thenundothe +7 Nevercancelanumberjoinedby + or toan x.In x + 8 4 ,youcannot cancelthe 4 intothe 8.
Foreachofthefollowingstatements,writeanequationandsolveforthepronumeral.
When 7 issubtractedfrom x,theresultis 12 a
When x isdividedby 5 andthen 6 isadded,theresultis 10 b
When 4 issubtractedfrom x andthatanswerisdividedby 2,theresultis 9 c
Solution
a x −7 = 12
x = 19
b x 5 + 6 = 10 x 5 = 4 x = 20
c x −4 2 = 9 x −4 = 18 x = 22
Explanation
Subtract 7 from x meanstostartwith x andthensubtract 7 ‘Theresult’means‘=’. Remembertocheckyouranswer.
Divide x by 5,thenadd 6 andmakeitequalto 10 Solvetheequationbysubtracting 6 frombothsidesfirst.
Subtracting 4 from x gives x −4,anddividethatanswerby 2. Undo ÷ 2 bymultiplyingbothsidesby 2,thenadd 4 tobothsides.
Foreachofthefollowingstatements,writeanequationandsolveforthepronumeral.
When 3 isaddedto x,theresultis 9 a
When x isdividedby 3 then 7 issubtracted,theresultis 0. b
When 6 issubtractedfrom x andthatanswerisdividedby 3,theresultis 10 c
10 Foreachofthefollowingstatements,writeanequationandsolveforthepronumeral.
When 4 isaddedto x,theresultis 6 a
When x isaddedto 12,theresultis 8 b
When 5 issubtractedfrom x,theresultis 5
When x isdividedby 3 andthen 2 isadded,theresultis 8. d
HintforQ10: 5 subtracted from x is x −5 c
Twicethevalueof x isaddedto 3 andtheresultis 9 e
(x −3) isdividedby 5 andtheresultis 6 f
3 times x plus 4 isequalto 16 g
11 Writeanequationandsolveitforeachofthesequestions. Theperimeterofasquareis 52 cm.Determinethelengthoftheside.
P = 52 cm a
HintforQ11:Drawadiagramand chooseapronumeraltorepresent theunknownside.Thenwritean equationandsolveit. ? cm
b
Theperimeterofanisoscelestriangleis 32 mm.Iftheequalsidesareboth 10 mm,determinethe lengthoftheotherside.
P = 32 mm 10 mm
12 Convertthefollowingintoequations,thensolvethemfor theunknownnumber.
n ismultipliedby 2,then 5 isadded.Theresultis 11
b
a Fourtimesacertainnumberisaddedto 9 andtheresult is 29.Whatisthenumber?
c Anumberplus 6 hasbeendividedby 4.Theresultis 12 Whatisthenumber?
e
Halfofanumberless 2 equals 12.Whatisthenumber?
d 12 issubtractedfromacertainnumberandtheresult isdividedby 5.Iftheansweris 14,whatisthenumber?
13 Writeanequationandsolveitforeachofthesequestions. Thesumoftwoconsecutivewholenumbersis 23 Whatarethenumbers?
a
c
b Threelessthanfivetimesanumberis 12.Whatis thenumber?
e
IfIadd 5 totwiceanumber,theresultis 17.Whatis thenumber?
HintforQ12:Chooseapronumeralto representtheunknownnumber,then writeanequationusingthepronumeral. 1 2 of x canbewrittenas x 2.
HintforQ13:Consecutivewhole numbersareonenumberapart; e.g. 3, 4, 5, 6 etc.Thenextconsecutivenumberafter x is x + 1
Onepersonis 19 yearsolderthananotherperson.Theiragesumis 69.Whataretheirages?
d Andrewthrewtheshot-put 3 mmorethantwicethedistanceBarrythrewit.IfAndrewthrewthe shot-put 19 m,howfardidBarrythrowit?
14 Aservicetechniciancharges $40 upfrontand $60 foreachhoursheworks. Findalinearequationforthetotalcharge, $C,ofanyjobfor h hoursworked. a Whatwilla 4-hourjobcost? b Ifthetechnicianworksonajobfor 3 daysandaverages 6 hoursperday,whatwillbethe overallcost?
d
c Ifacustomerischarged $400,howlongdidthejobtake?
15 Apetroltankholds 71 litresoffuel.Itoriginallycontained 5 litres.Ifapetrolpumpfillsitat 6 litres perminute,find: alinearequationfortheamountoffuel(V litres)inthetankattime t minutes a howlongitwilltaketofillthetankto 23 litres b howlongitwilltaketofillthetank. c
1 3A Fortheexpression 2x + y 2 −3x2 + 5,determine: a thenumberofterms b theconstantterm c thecoefficientof: x2 i y ii
2 3A Findthevalueofthefollowingexpressionsif a = 2, b = −5 and c = 8.
3 3B Simplifythefollowingbycollectingliketerms.
4 3B Simplifythefollowing.
5 3C Expandthefollowing.
6 3C Expandandsimplifythefollowing.
7 3D Factorisethefollowingbyfirstidentifyingthehighestcommonfactor.(Include anycommonnegatives.)
8 3E Simplifybycancellingcommonfactors.Youwillneedtofactorisefirstinparts b and c
9 3E Simplifythefollowingalgebraicfractions.
8
10 3F Simplifythefollowingalgebraicfractions.
11 3F Simplify
12 3G Solvethefollowingequations
13 3G Fourmorethantwolotsofanumberis 22.Writeanequationandsolveittofindthenumber.
Learningintentions
• Tobeabletoexpandbracketsandcollectliketermswhensolvingalinearequation
• Tobeabletocollectpronumeralstoonesideinordertosolvealinearequation
• Tobeabletosolveasimplewordproblembysettingupandsolvingalinearequation
Keyvocabulary: expand,liketerms,product,equivalent
Morecomplexlinearequationsmayhavevariablesonbothsidesoftheequationand/orbrackets.Examples are 6x = 2x −8 or 5(x + 3) = 12x + 4.
Bracketscanberemovedbyexpanding.Equationswithvariablesonbothsidescanbesolvedbycollecting variablestooneside,usingadditionorsubtractionofaterm.
Morecomplexlinearequationsofthistypeareusedwhenconstructingbuildingsandinscience andengineering.
Thestepstosolve 8(x + 2) = 2(3x + 12) arelistedhereintheincorrectorder.
8(x + 2) = 2(3x + 12) x = 4
2x + 16 = 24
8x + 16 = 6x + 24 2x = 8
Arrangetheminthecorrectorder,workingfromtheproblemtothesolution.
•
• Byconsideringallthestepsinthecorrectorder,writewhathashappenedineachstep.
Whensolvingcomplicatedlinearequations:
1 First, expand anybrackets. Inthisexample,multiplythe 3 intothefirstbracketandthe −2 intothesecondbracket.
3(2x − 1) − 2(x 2) = 22 6x − 3 − 2x + 4 = 22
2 Collectany liketerms ontheLHSandanyliketermsontheRHS. Collectingliketermsoneachsideofthisexample: 2x − 13 = 3x + 5
5x − 4 − 3x 9 = x − 5 + 2x + 10
5x −3x = 2x, −4−9 = −13, x + 2x = 3x and −5 + 10 = 5
3 Ifanequationhasvariablesonbothsides,collecttoonesidebyaddingorsubtractingoneof theterms.
Forexample,whensolvingtheequation 12x + 7 = 5x + 19,firstsubtract 5x frombothsides: LHS: 12x + 7−5x = 7x + 7,RHS: 5x + 19−5x = 19: 12x + 7 = 5x + 19
7x + 7 = 19 5x 5x
4 Starttoperformtheoppositeoperationtobothsidesoftheequation.
5 RepeatStep 4 untiltheequationissolved.
6 Verifythattheansweriscorrect.
Tosolveawordproblemusingalgebra:
• Readtheproblemandfindoutwhatthequestionisaskingfor.
• Defineapronumeralandwriteastatementsuchas:‘Let x bethenumberof …’.The pronumeralisoftenwhatyouhavebeenaskedtofindinthequestion.
• Writeanequationusingyourdefinedpronumeral.
• Solvetheequation.
• Answerthequestioninwords.
Und er stand ing
1 Choosefromthewords collect, expand and one tocompletethefollowingwhensolvinglinear equations.
First anybrackets. a anyliketerms. b
Ifvariablesareonbothsides,collectto side. c
2 When −2(x −1) isexpanded,theresultis: HintforQ2:takecarewith
x −2 A
x + 2 D
3 When 2x issubtractedfrombothsides, 5x + 1 = 2x −3 becomes: 3x −1 = 3 A 7x + 1 = −3 B 7
+
=
Example26Solvingequationswithbrackets
Solve 4(x −1) = 16
Solution
4(x −1) = 16
Explanation
Expandthebrackets: 4 × x and 4 × (−1). 4x −4 = 16 Add 4 tobothsides.
4x = 20 Dividebothsidesby 4 x = 5 Alternatively,since 4 isafactorof 16,youcoulddivideboth sidesby 4 first.
Nowyoutry
Solve 3(x + 1) = 15
4 Solveeachofthefollowingequationsbyfirstexpandingthebrackets.
3(x + 2) = 9 a 4(x −1) = 16 b
3(x + 5) = 12 c 4(a −2) = 12 d
5(a + 1) = 10 e 2(x −10) = 10 f
6(m −3) = 6 g 3(d + 4) = 15 h
7(a −8) = 14 i 10(a + 2) = 20 j
5(3 + x) = 15 k 2(a −3) = 0 l
Example27Solvingequationswithtwosetsofbrackets
Solve 3(2x + 4) + 2(3x −2) = 20
Solution
3(2x + 4) + 2(3x 2) = 20
6x + 12 + 6x −4 = 20
12x + 8 = 20
Explanation
Usethedistributivelawtoexpandeachsetof brackets.
CollectliketermsontheLHS. 12x = 12
Subtract 8 frombothsides. x = 1
Dividebothsidesby 12
Solve 2(3x −1) −3(x −4) = 16
5 Solvethefollowingequations.
3(2x + 3) + 2(x + 4) = 25
2(2x + 3) + 3(4x −1) = 51 c 3(2x −2) + 5(x + 4) = 36 d
4(2x −3) + 2(x −4) = 10 e 2(3x −1) + 3(2x −3) = 13 f 2(x −4) + 3(x −1) = −21 g 4(2x −1) + 2(2x −3) = −22 h
HintforQ5:Expandeachpairof bracketsandcollectliketerms beforesolving. a 2(2x + 3) + 4(3x + 1) = 42 b
6 Solvethefollowingequations.
3(2x + 4) −4(x + 2) = 6
8(x −1) −2(3x −2) = 2 e 5(2x −3) −2(3x −1) = −9 f 5(2x + 1) −3(x −3) = 35 g 4(2x −3) −2(3x −1) = −14 h
HintforQ6: −4(x + 2) = −4x −8 −4(x −2) = −4x + 8 a 2(5x + 4) −3(2x + 1) = 9 b 2(3x −2) −3(x + 1) = −7 c 2(x + 1) −3(x −2) = 8 d
Example28Solvingequationswithvariablesonbothsides
Solve 7x + 9 = 2x −11 for x
Solution
7x + 9 = 2x −11
5x + 9 = −11
5x = −20
Explanation
Subtract 2x frombothsides.
Subtract 9 frombothsides. x = −4
Dividebothsidesby 5.
Nowyoutry
Solve 10x + 3 = 8x −1 for x
7 Findthevalueof x inthefollowing.
7x = 2x + 10 a 10x = 9x + 12 b
8x = 4x −12 c 6x = 2x + 80 d
2x = 12− x
e 2x = 8 + x f
3x + 4 = x + 12 g 4x + 9 = x −3 h
2x −9 = x −10 i 6x −10 = 12 + 4x j
9x = 10− x k 1− x = x + 3 l
HintforQ7:Removetheterm containing x ontheRHS.Forparts e, k and l,youwillneedtoadd x to bothsides.
Example29Solvingequationswithfractions
Solve 2x + 3 4 = 2 for x
Solution
2x + 3 4 = 2
2x + 3 = 8
2x = 5
x = 2.5
Nowyoutry
Solve 4x −3 2 = 4
8 Solvethefollowingequations.
Explanation
Multiplybothsidesby 4
Subtract 3 frombothsides.
Dividebothsidesby 2
Example30Solvingequationswithmoredifficultfractions
Solve 3x 2 −4 = 2 for x.
Solution
3x 2 −4 = 2
3x 2 = 6
3x = 12
Explanation
Add 4 tobothsides.
Multiplybothsidesby 2 x = 4
Nowyoutry
Solve 5x 3 + 1 = 6 for x
9 Solvethefollowingequations.
x 3 + 1 = 5 a x 3 + 1 = 7
Dividebothsidesby 3
HintforQ8:Firstmultiplyby thedenominator.
HintforQ9:Firstaddorsubtract anumberfrombothsides.
10 Foreachofthesequestions,writeanequationandsolveitfor x (x + 3) cm
+ 4)
10–1311–14
= 52 cm
= 22 cm
11 Solvethefollowingequationsusingtrialanderror(guess,checkand refine).Substituteyourchosenvaluesof x untilyouhavefoundavalue thatmakestheequationtrue.
x + 22 3 = 4x a
5(3− x) = 2(x + 7.5) b 2x −1 4 = 2− x c
Findthevalueof x iftheareaofrectangle ABCD shownis 24 cm2
Solution
A = l × w
24 = (x + 3) × 4
24 = 4x + 12
HintforQ10:ForQuestion 10c, verticallyoppositeanglesare equal.
Explanation
Writeanequationforarea.
Substitute: l = (x + 3), w = 4, A = 24
Expandthebrackets: (x + 3) × 4 = 4(x + 3)
12 = 4x Subtract 12 frombothsides.
3 = x Dividebothsidesby 4 x = 3 Writetheanswer.
Nowyoutry
Findthevalueof x iftheareaofrectangle ABCD shownis 40 m2
12
a
Findthevalueof x iftheareais 35 cm2 5 cm (x + 4) cm
Findthevalueof x iftheareais 42 cm2
6 cm (x + 4) cm
Findthevalueof x 2x + 3 3x 4 e
Findthevalueof x iftheareais 27 cm2 3 cm (2x 1) cm
Verticallyoppositeangles areequal.Findthevalue of x
13 Using x fortheunknownnumber,writedownanequation andthensolveittofindthenumber.
Theproductof 5 and 1 morethananumberis 40 a Theproductof 5 and 6 lessthananumberis −15 b When 6 lessthan 3 lotsofanumberisdoubled, theresultis 18 c
d
When 8 morethan 2 lotsofanumberistripled, theresultis 36
10 morethan 4 lotsofanumberisequivalentto 6 lotsofthenumber. e
f
5 morethan 4 timesanumberisequivalentto 1 lessthan 5 timesthenumber.
6 morethanadoublednumberisequivalentto 5 lessthan 3 lotsofthenumber. g
HintforQ12:Formthearea equationfirst.
HintforQ13:
• ‘Product’means‘to multiply’
• Theproductof 5 and 1 morethananumber means 5(x + 1)
• ‘6 lessthan 3 lotsofa numberisdoubled’will requirebrackets.
• ‘Tripled’meansthree timesanumber.
• ‘Equivalent’means ‘equalto’.
14 ValentinaandHarrisonareplanningtohireacarfortheirweddingday.‘VehiclesForYou’havethe followingdeal: $850 hiringfeeplusachargeof $156 perhour.
a
b
c
Writeanequationforthecost ($C) ofhiringacarfor h hours.
IfValentinaandHarrisonhavebudgetedforthecartocostamaximumof $2000,findthemaximum numberoffullhourstheycanhirethecar.
Ifthecarpicksupthebrideat 1:15 p.m.,atwhattimemusttheeventfinishifthecostistoremain withinbudget?
Morethanonefraction — 15
15 Consider:
4x −2 3 = 3x −1 2
2 ✁ 6(4x −2) ✁ 31 = 3 ✁ 6(3x −1) ✁ 21 (Multiplybothsidesby 6 (LCMof 2 and 3)togetridofthefractions.)
2(4x −2) = 3(3x −1) (Simplify.)
8x −4 = 9x −3 (Expandbothsides.)
−4 = x −3 (Subtract 8x frombothsides.)
−1 = x (Add 3 tobothsides.)
 x = −1
Solvethefollowingequationsusingthemethodshownabove.
Usingtechnology3H:Solvinglinearequations
ThisactivityisavailableonthecompanionwebsiteasaprintablePDF.
Learningintentions
• Tounderstandthatarelationshipbetweenvariablescanbedescribedusingformulas
• Tobeabletosubstituteintoaformulaandevaluate
• Tobeabletosolveanequationaftersubstitutionintoaformula
Keyvocabulary: subject,formula,variable,substitute,evaluate
Aformula(orrule)isanequationthatrelatestwo ormorevariables.Youcanfindthevalueofoneof thevariablesifyouaregiventhevalueofallother unknowns.
Youwillalreadybefamiliarwithmanyformulas. Forexample, C = 2p r istheformulaforfindingthe circumference, C,ofacirclewhengivenitsradius, r
F = 9 5 C + 32 istheformulaforconvertingdegrees Celsius, C,todegreesFahrenheit, F
s = d t istheformulaforfindingthespeed, s,when giventhedistance, d,andtime, t
ThisthermometerdisplaysbothdegreesCelsiusand degreesFahrenheit.Itshows 14°Candapproximately 57°F,accuratelyreflectingtheconversionformula.
C, F and s aresaidtobethesubjectsoftheformulasgivenabove.
Lessonstarter:Jumbledsolution
Problem:Theformulafortheareaofatrapeziumcanbewrittenas A = h 2 (a + b)
Xavierwasaskedtofind a,giventhat A = 126, b = 10 and h = 14,andtowritetheexplanationbeside eachstepofthesolution.
Xavier’ssolutionandexplanationarebelow.Hissolutioniscorrectbuthehasjumbledupthesteps intheexplanation.CopyXavier’ssolutionandwritethecorrectinstruction(s)besideeachstep. Example1
Solution Jumbledexplanation
A = h 2 (a + b)
126 = 14 2 (a + 10)
126 = 7(a + 10)
126 = 7a + 70
56 = 7a
a = 8
Subtract 70 frombothsides. Dividebothsidesby 7 Substitutethegivenvalues. Copytheformula.
Simplify 14 2 . Expandthebrackets.
A formula isanequationthatrelatestwoormorevariables.
The subject ofaformulaisavariablethatusuallysitsonitsownontheleft-handside.Forexample, the C in C = 2p r isthesubjectoftheformula.
Avariableinaformulacanbeevaluatedbysubstitutingnumbersforallothervariables.
Aformulacanberearrangedtomakeanothervariablethesubject. C = 2p r canberearranged togive r = C 2p Notethat
Und er stand ing
1 Statetheletterthatisthesubjectintheseformulas.
I = Prt 100
2 Substitutethegivenvaluesintoeachofthefollowingformulas tofindthevalueofeachsubject.Roundtheanswerto onedecimalplacewhereappropriate.
m = F a ,when F = 180 and a = 3
HintforQ1:Thesubjectofa formulaistheletteronits own,ontheleft-handside.
HintforQ2:Copyeach formula,substitutethegiven valuesandthencalculate theanswer. a A = lw,when l = 6 and w = 8 b A = 1 2 (
Fluency
Example32Substitutingvaluesandsolvingequations
If v = u + at,find t when v = 16, u = 4 and a = 3
Solution
v = u + at
16 = 4 + 3t
12 = 3t
4 = t
t = 4
Nowyoutry
Explanation
Substituteeachvalueintotheformula. v = 16, u = 4, a = 3
Anequationnowexists.Solvethisequationfor t
Subtract 4 frombothsides.
Dividebothsidesby 3
Answerwiththepronumeralontheleft-handside.
If A = 1 2 xy,find y when A = 12 and x = 4
3 If v = u + at,find t when:
v = 16, u = 8 and a = 2 a v = 20, u = 8 and a = 3 b
v = 100, u = 10 and a = 9 c v = 84, u = 4 and a = 10 d
4 If P = 2(l + 2b),find b when:
P = 60 and l = 10
a P = 48 and l = 6 b
P = 96 and l = 14 c P = 12.4 and l = 3.6 d
5 If V = lwh,find h when:
V = 100, l = 5 and w = 4 a V = 144, l = 3 and w = 4 b
V = 108, l = 3 and w = 12 c V = 280, l = 8 and w = 5 d
6 If A = 1 2 bh,find b when:
HintforQ3:Firstcopythe formula.Thensubstitutethe givenvalues.Thensolve theequation.
A = 90 and h = 12
a A = 72 and h = 9 b
A = 108 and h = 18 c A = 96 and h = 6 d
7 If A = h 2 (a + b),find h when:
a A = 20, a = 4 and b = 1
b A = 48, a = 5 and b = 7
c A = 108, a = 9 and b = 9
d A = 196, a = 9 and b = 5
8 E = mc2.Find m when:
E = 100 and c = 5
a E = 4000 and c = 10 b E = 72 and c = 1 c E = 144 and c = 6 d
9 If V =p r2h,find h (toonedecimalplace)when:
V = 160 and r = 3
a V = 400 and r = 5 b V = 1460 and r = 9 c V = 314 and r = 2.5 d
10 Theformula F = 9C 5 + 32 isusedtoconverttemperaturefrom degreesCelsius (°C) (whichisusedinAustralia)todegrees Fahrenheit (°F ) (whichisusedintheUSA).
a Whenitis 30°C inSydney,whatisthetemperature inFahrenheit?
HintforQ6:For 90 = 1 2 × b × 12, 1 2 × b × 12 = 1 2 × 12 × b = 6b
So, 90 = 6b Solvefor b
HintforQ7:Whensolvingthe equationfirstundothedivisionby 2 bymultiplyingbothsidesby 2
HintforQ8:Squarethe c value beforesolvingtheequation.
HintforQ9:For 160 = 9p h,dividebothsidesby 9p tofind h: h = 160 9p
Thenevaluateona calculator.
10–1210,12–14
b HowmanydegreesCelsiusis 30° Fahrenheit?Answertoonedecimal place.
c Waterboilsat 100°C.WhatisthistemperatureindegreesFahrenheit?
d Whatis 0°F indegreesCelsius?Answertoonedecimalplace.
HintforQ10:When finding C,youwill haveanequation tosolve.
11 Thecost,indollars,ofataxiis C = 3 + 1.45d,where d isthedistancetravelled,inkilometres.
a Whatisthecostofa 20 kmtrip?
b Howmanykilometrescanbetravelledfor $90?
12 I = Prt 100 calculatesinterestonaninvestment.Find:
a P when I = 60, r = 8 and t = 1
b t when I = 125, r = 5 and P = 800
c r when I = 337.50, P = 1500 and t = 3
13 Thenumberoftabletsanursemustgiveapatientisfoundusingtheformula: Tablets = strengthrequired tabletstrength
a 750 milligramsofadrugmustbeadministeredtoapatient.Howmany 500 milligramtabletsshould thenursegivethepatient?
b Ifthenurseadministers 2.5 ofthesetabletstoanotherpatient,howmuchofthedrugdidthe patienttake?
14 Adripisawayofpumpingaliquiddrugintoapatient’sblood.Theflowrateofthepump,inmillilitres perhour,iscalculatedusingtheformula:Rate = volume(mL) time(h)
a Apatientneeds 300 mLofthedrugadministeredover 4 hours.Calculatetherate,inmL/h,which needstobedeliveredbythepump.
b Apatientwasadministered 100 mLofthedrugatarateof 300 mL/h.Howlongwasthe pumprunning?
Calculationchallenges
15–17
15 Ataxagentcharges $680 foran 8-hourday.Theagentusestheformula F = 680x 8 tocalculateafeeto aclient,indollars.
a Whatdoesthe x represent?
b Ifthefeechargedtoaclientis $637.50,howmanyhours,toonedecimalplace,didtheagentspend workingontheclient’sbehalf?
16
Findtheareaandperimeteroftriangle ABC,shown.
x) cm
x) cm
HintforQ16:UsePythagoras’ theoremtofind x
17 Iqrais 10 yearsolderthanUrek.In 3 years’time,shewillbetwiceasoldasUrek.Howoldare theynow?
Learningintentions
• Toknowthefourinequalitysymbolsandwhattheymean: <, >, ≤, ≥
• Tobeabletoillustrateaninequalityusinganumberline
• Toknowwhentoreverseaninequalitysymbol
Keyvocabulary: inequality,inequalitysymbol,linearinequality
Therearemanysituationsinwhichasolutiontothe problemisbestdescribedusingoneofthesymbols <, Ä, > or Å.Forexample,amedicalcompanywillpublishthe lowestandhighestamountsforasafedoseofaparticular medicine;e.g. 20 mg/day Ä dose Ä 55 mg/day,meaning thatthedoseshouldbebetween 20 and 55 mg/day. Aninequalityisamathematicalstatementthatuses an‘islessthan’ (<),an‘islessthanorequalto’ (Ä),an ‘isgreaterthan’ (>) oran‘isgreaterthanorequalto’ (Å) symbol.Inequalitiesmayresultinaninfinitenumberof solutions.Thesecanbeillustratedusinganumberline. Youcansolveinequalitiesinasimilarwaytosolving equations.
Lessonstarter:Whatdoesitmeanfor x ?
Apharmacistwillexplainthesaferangeoftablets youcantakeeachdaytoensureyougetthe benefitwithoutharm.
Thefollowinginequalitiesprovidesomeinformationaboutthenumber
• Canyoudescribethepossiblevaluesfor x thatsatisfyeachinequality?
• Testsomevaluestocheck.
• Howwouldyouwritethesolutionfor x?Illustrateeachonanumberline.
Thefour inequalitysymbols are <, Ä, > and Å
• x > a means x isgreaterthan a
• x Å a means x isgreaterthanorequalto a
• x < a means x islessthan a
• x Ä a means x islessthanorequalto a
Onthenumberline,aclosedcircle(•)indicatesthatthenumberisincluded.Anopencircle(°) indicatesthatthenumberisnotincluded.
Solving linearinequalities followsthesamerulesassolvinglinearequations,except:
• Wereverseaninequalitysymbolifwemultiplyordividebyanegativenumber.
Forexample, −5 < −3 and 5 > 3,andif −2x < 4 then x > −2
• Wereversetheinequalitysymbolifthesidesareswitched. Forexample,if 2 Å x,then x Ä 2.
Solvetheinequality 5 < 3−2x 3 .
UsingtheTI-Nspire:
Ina Calculator pageuse menu >Algebra>Solve andtypetheinequalityas shown.
Hint: theinequalitysymbols(e.g. <)are accessedusing ctrl =
Hint: usethefractiontemplate( ctrl ÷ )
UsingtheClassPad:
Tap solve(,andtypetheinequalityasshown.
1 Matcheachinequalitygivenwiththecorrectnumberline.
HintforQ1:Lookbackatthe Keyideas. Thedirectionofthe arrowheadisthesameasthe directionoftheinequalitysymbol.
2 Matcheachinequalitywiththecorrectdescription.
x < 2 a x isgreaterthan 2 A x Å 2 b x islessthanorequalto 2 B x Ä 2 c x islessthan 2 C
x > 2 d x isgreaterthanorequalto 2 D
Example33Writinginequalitiesfromnumberlines
Writeeachnumberlineasaninequality.
Solution
a x > 2
b x Ä −1
Nowyoutry
Explanation
Anopencirclemeans 2 isnotincluded.
Aclosedcirclemeans −1 isincluded.
Writeeachnumberlineasaninequality. x 2 1 3 4 a 78910 x b
3 Writeeachgraphasaninequality. 012 3 x
4 Showeachofthefollowingonseparatenumberlines. x Å 7 a x > 1 b x < 1
HintforQ3:Theinequality symbolwillhavethesame directionasthearrow.
HintforQ4:For x Å 7,drawanumber lineshowingsomenumbersaround 7 x 6897
Useaclosedcircle(•)for Å and Ä
Useanopencircle(°)for > and <.
5 Writeaninequalitytodescribewhatisshownoneachofthefollowingnumberlines.
HintforQ5:Thepronumeralis attheendofthenumberline. b 6 a 4 2 0 2 4 c
Writeeachofthefollowingasaninequalityandthenshoweachsolutiononanumberline. x islessthanorequalto 3 a x isgreaterthan 1 b x islessthan 0 c x isgreaterthanorequalto −2 d
Solution
a x Ä 3
b x > 1
c x < 0
d x Å −2
Explanation
Lessthanorequalto, Ä,closedcircle
Greaterthan, >,opencircle
Lessthan, <,opencircle
Greaterthanorequalto, Å,closedcircle
Nowyoutry
Writeeachofthefollowingasaninequalityandthenshoweachsolutiononanumberline. x isgreaterthan −4 a x islessthanorequalto 6 b
6 Writeeachofthefollowingasaninequalityandthenshoweachsolutiononanumberline. x islessthanorequalto 6 a x isgreaterthan 4 b x islessthan 2 c x isgreaterthanorequalto 5 d
7 Writeeachofthefollowingasaninequality,usingthepronumeral n.
ThenumberofpeoplewhovisittheSydneyOperaHouse eachyearismorethan 100000 a
Thenumberoflolliesinabagshouldbeatleast 50. b Afactoryworkermustpackmorethanthree boxesaminute. c
d
HintforQ7:‘Atleast 50’means ‘50 ormore’.
Morethan 100 penguinstakepartinthenightlyparadeonPhillipIsland.
Theweightofasuitcaseis 30 kgorless. e
8 Writeeachofthefollowingstatementsasaninequality anddeterminewhichofthenumbersbelowmakeeach inequalitytrue.
−6, −2, 1 2 , 0, 2, 5, 7, 10, 15, 24
HintforQ8:Writethe inequality,thenlistthegiven numbersthatmakeittrue.
a x isgreaterthan 10 b
x islessthanzero
x isgreaterthanorequalto 10
c x islessthanorequaltozero d
x isgreaterthanorequalto −1 e x islessthan 10 f
Problem-solving and reasoning
Example35Solvingandgraphinginequalities
Solvethefollowingandshowyoursolutiononanumberline.
2x −1 > 17 a x 3 Ä −2 b
Solution
a 2x −1 > 17
Explanation
Add 1 tobothsides. 2x > 18
Dividebothsidesby 2 x > 9 1112 x 10 89 7 > usesanopencircle.
b x 3 Ä −2
Multiplybothsidesby 3. x Ä −6
6 5 x 7 9 8 10
Ä usesaclosedcircle.
Nowyoutry
Solvethefollowingandshowyoursolutiononanumberline.
9 Solveeachofthefollowinginequalitiesandshowyoursolutiononanumberline. 2
HintforQ9:Keeptheinequalitysymbol thesamewhen:
• addingorsubtractinganumberfrom bothsides
• multiplyingordividingbothsidesby apositivenumber.
10 Solvethefollowing. 2
11 Givethesolutionsetforeachofthefollowing.
3 + 7 > 2
HintforQ11:For x + 2 4 Ä 1, firstmultiplybothsides by 4.For x 4 −1 Å 6,first add 1 tobothsides.
12 Foreachofthefollowing,writeaninequalityandsolveittofindthepossiblevaluesof x Whenanumber, x,ismultipliedby 3,theresultislessthan 9. a Whenanumber, x,ismultipliedby 3 andtheresultdividedby 4,itcreatesananswerlessthan 6 b Whenanumber, x,isdoubledandthen 15 isadded,theresultisgreaterthan 20 c Thuongis x yearsoldandGaryis 4 yearsolder.Thesumoftheiragesislessthan 24 d Kaitlynhas x ridesontheFerriswheelat $4 arideandspends $7 onfood.Thetotalamountshe spendsislessthanorequalto $27.
Example36Solvinginequalitieswhenthepronumeralhasanegativecoefficient
Solve 4− x Å 6
Solution
4− x Å 6
x Å 2
x Ä −2
Alternativesolution:
4− x Å 6
4 Å 6 + x
−2 Å x
x Ä −2
Nowyoutry
Solve 5−2x < 17
Explanation
Subtract 4 frombothsides.
Dividebothsidesby −1.
Whenwedividebothsidesbya negative number,theinequality symbolisreversed.
Addthe x tobothsidessothatitispositive.
Subtract 6 frombothsides.
Switchthesidestohavethe x ontheleft-handside.
Reversetheinequalitysymbol.Notethattheinequalitysymbolstill ‘points’tothe x
13 Choosean appropriatestrategy tosolvethefollowing.
x <
HintforQ13:Rememberto reversetheinequalitysymbol whenmultiplyingordividing byanegativenumber. e.g.
Investigatinginequalities 14
14a Letusstartwiththenumbers 4 and 6 andthetruerelationship 4 < 6.Copyandcompletethe followingtable. Trueorfalse?
Multiplyby 2
Divideby 2 Multiplyby −2
b Copyandcompletethefollowing. Whensolvinganinequality,youcanaddor anumberfrombothsidesandtheinequality remainstrue.Youcanmultiplyor bya numberandthe alsoremainstrue. However,ifyou or byanegative theinequalitysymbolmustbereversed fortheinequalitytoremain
Learningintentions
• Tounderstandthatasolutiontoapairofsimultaneousequationscanbefoundalgebraically
• Tobeabletousethemethodofsubstitutionto ndasolutiontoapairofsimultaneousequations
• Tobeabletoapplythemethodofsubstitutiontosolvesimultaneousequationsinarealcontext
Keyvocabulary: substitute,subject,de ne
Apairofsimultaneousequationsisformedwhentherearetwounknownquantities(i.e.variables)and twopiecesofinformationrelatingthesequantities.Thesolutiontothesesimultaneousequationsgivesthe variablevaluesthatmakebothequationstrue.
Anexampleoftwovariablesisthecostofaweddingreceptionandthenumberofinvitedguests.Two simultaneousequationscouldbemadefromtwodifferentcateringcompanies.Thesolutionwillbethe numberofgueststhatmakethecostsequalforthetwocompanies.Usingequationshelpstoaccurately comparethetwodeals.
Knowingtheaverage costofcateringper personhelpsyou determinehowmany peopleyoucanaffordto invitetoyourevent.
Albertis 11 yearsolderthanJennyandthesumoftheiragesis 69.WhataretheagesofAlbertandJenny? Herearethestepstosolvethisproblembuttheyareinthewrongorder.Decideonthecorrectorder.
A x + (x + 11) = 69
2x + 11 = 69
2x = 58 x = 29
B Let x = Jenny’sage Let y = Albert’sage
C Jennyis 29 yearsold. Albertis 40 yearsold.
D x + y = 69
y = x + 11
Thealgebraicmethodof substitution isgenerallyusedwhenatleastoneofthelinearequations has x or y asthesubject; e.g. y = 3x + 4 and 3x + y = 2 or y = −2x + 6 and y = x −1 or x = 2 and 2x y = 5
Themethodinvolves:
• substitutingoneequationintotheother
• solvingfortheremainingvariable
• substitutingtofindthevalueofthesecondvariable.
Whenproblem-solvingwithsimultaneouslinearequations,followthesesteps.
• Define/describetwounknownsusingpronumerals.
• Writedowntwoequationsusingyourpronumerals.
• Solvetheequationsusingthemethodofsubstitution.
• Answertheoriginalquestioninwords.
Solve y = 3x −1 and y = 2− x simultaneously.
UsingtheTI-Nspire: UsingtheClassPad:
Theequationscanbesolvedsimultaneously. Select menu >Algebra>SolveSystemof Equations>SolveSystemofEquations Enterthenumberofequationsandthe variables,thentypetheequationsasshown.
Und er stand ing 1,2 2
1 Writethemissingwordstocompleteeachstatement.Choosefrom substituted, simultaneous and substitution.
a equationsinvolveatleasttwoequationsandtwovariables.
b If x (or y)isreplacedwithanumber,thenwehave thatnumberfor x
c If x (or y)isreplacedwithanalgebraicexpression,thenwehave thatexpressionfor x (or y).
d Whenwealgebraicallysubstituteoneequationintoanother,thisiscalledsolving simultaneousequationsbythemethodof .
2 Choosethecorrectoption.
a When y = x −1 issubstitutedinto 2x + y = 6,theresultis:
2x + (x −1) = 6 A
2x −1 = 6 B
x −1 = 6 C
2x x + 1 = 6 D
3x = 6 E
b When y = 2x + 3 issubstitutedinto x −3y = 1,theresultis:
x + 3(2x + 3) = 1 A 3(2x + 3) = 1 B
x −3(2x + 3) = 1 C x (2x + 3) = 1 D
2x −3 = 1 E Fluency
HintforQ1:Inpart a,replace y in 2x + y = 6 with x + 1
Example37Usingthesubstitutionmethodtosolvesimultaneousequations
Solvethepairofsimultaneousequations y = 5x and y = 2x + 6
Solution
y = 5x [1]
y = 2x + 6 [2]
Substitute[1]into[2]:
5x = 2x + 6
3x = 6
x = 2
Substitute x = 2 into[1]:
y = 5(2)
y = 10
Solutionis x = 2, y = 10
Check: 10 = 2(2) + 6
Nowyoutry
Explanation
Labelthetwoequations.
Explainhowyouaresubstitutingtheequations. Replace y inthesecondequationwith 5x Subtract 2x frombothsides. Dividebothsidesby 3.
Alternatively,substituteintoequation[2].
Replace x withthenumber 2. Simplify.
Writethesolution.
Substituteyoursolutionintotheotherequationto check.
Solvethepairofsimultaneousequations y = 7x and y = 2x + 5
3 Solvethefollowingpairsofsimultaneousequations
y = 5x y = 3x + 4
= 4x
= −3x + 7
HintforQ3: y = 5x y = 3x + 4 ∴ 5x = 3x + 4
Example38Solvingsimultaneousequationswiththesubstitutionmethod
Solvethesesimultaneousequationsusingthesubstitutionmethod.
2x + y = −7 and y = x + 2 a y = x + 3 and 2x + 3y = 19 b
Solution
a 2x + y = −7 [1]
y = x + 2 [2]
Substituteequation[2]intoequation[1].
2x + (x + 2) = −7
3x + 2 = −7
3x = −9 x = −3
Substitute x = −3 intoequation[2].
y = (−3) + 2 = −1
Solutionis x = −3, y = −1
b y = x + 3 [1]
2x + 3y = 19 [2]
Substitute[1]into[2]:
2x + 3(x + 3) = 19
2x + 3x + 9 = 19
5x + 9 = 19
5x = 10 x = 2
Substitute x = 2 into[1]:
y = (2) + 3 y = 5
Thesolutionis x = 2, y = 5
Check: 2(2) + 3(5) = 19
Explanation
Labelthetwoequations.
Substituteequation[2]intoequation[1]since equation[2]hasapronumeralasthesubject.
Solvetheresultingequationfor x
Substitutetofind y
Explainhowyouaresubstitutingtheequations.
Replace y inthesecondequationwith (x + 3) Expandthebrackets.
Simplify.
Subtract 9 frombothsides.
Dividebothsidesby 5.
Alternatively,substituteintoequation(2).
Replace x withthenumber 2
Simplify.
Writethesolution.
Substituteyoursolutionintotheotherequation tocheck.
Nowyoutry
Solvethesesimultaneousequationsusingthesubstitutionmethod.
3x + y = 4 and y = x −4 a y = x −1 and 3x + 2y = −12 b
4 Solvethefollowingpairsofsimultaneousequationsusing thesubstitutionmethod.
y = x + 2 and 3x + y = 6 a
b
y = x + 3 and 2x + y = 18
y = x −1 and 3x + y = 11 c
y = x −1 and 3x + 5y = 27 d
y = x + 2 and 2x + 3y = −19 e
y = x + 5 and 5x y = −1 f
y = x −3 and 5x −2y = 18 g
y = x −4 and 3x y = 2 h
5 Solvethefollowingpairsofsimultaneousequations.
y = 2
y = 2x + 4
y = 4
2x + 3y = 20 c
= −1 y = 2x −7
HintforQ4:Inpart d, replace y inthesecond equationwith (x −1).Itisimportant tousebrackets.
3x + 5 y = 27
Remember that
y = x – 1 5(x – 1) = 5x – 5
HintforQ5:Replace y inthesecondequation with 2 y = 2 y = 2x + 4
6 Solvethefollowingpairsofsimultaneousequations.
x = 2
3x + 2y = 14
x = 7
4x −3y = 31 c
Rememberthat 3x means 3 × x a x = −3 y = −2x −4 b
HintforQ6:Replace x inthe secondequationwith 2. x = 2
3 x + 2y = 14
7 Solvethefollowingpairsofsimultaneousequations usingthesubstitutionmethod.
y = 2x + 3
11x −5y = −14
y = 3x −5
3x + 5y = 11 c y = 4x + 1 2x −3y = −23 d
HintforQ7:Becareful withsignswhen expandingbrackets.
5 × (+ 3) = −15
11x − 5(2x + 3) = 11x − 10x 15
Whenmultiplying numberswithdifferent signs,theansweris negative. a y = 3x −2 7x −2y = 8 b
8,9 8,10,11
Example39Solvingwordproblemswithsimultaneousequations(substitution)
Jadeis 5 yearsolderthanMarian.Iftheircombinedageis 33,findtheirages.
Solution
Let j beJade’sageand m be Marian’sage.
j = m + 5 [1]
j + m = 33 [2]
(m + 5) + m = 33
2m + 5 = 33
2m = 28
m = 14
j = m + 5 [1]
j = 14 + 5
j = 19
Jadeis 19 yearsoldandMarian is 14 yearsold.
Nowyoutry
Explanation
Definetwopronumeralsusingwords.
ThefirstpieceofinformationisthatJadeis 5 yearsolder thanMarian.
Thesecondpieceofinformationisthattheircombined ageis 33
Substitute m + 5 for j inthesecondequation.
Collectanyliketerms,so m + m = 2m
Subtract 5 frombothsides.
Dividebothsidesby 2.
Usethefirstequation, j = m + 5,tofind j
Answertheoriginalquestioninwords.
Arectangle’slengthis 3 cmmorethanitswidth.Ifitsperimeteris 32 cm,determineitsdimensions.
8 Kyeis 5 yearsolderthanViviana.Iftheircombinedage is 81,determinetheirages.
9 Thelengthofarectangleisthreetimesthewidth.Ifthe perimeteroftherectangleis 48 cm,determineitsdimensions.
10 Avanillathickshakeis $2 morethanafruitytwirl.Ifthree vanillathickshakesandfivefruitytwirlscost $30,determine theirindividualprices.
11 Carlosis 3 morethantwiceElla’sage.Ifthesumoftheirages is 54 years,determinetheirages.
HintforQ8:FirstdefineapronumeralforKye’sageandanother pronumeralforViviana’sage.Then writetwoequationsbeforesolving.
HintforQ9:Drawadiagramto helpformtheperimeterequation.
HintforQ10:Ifafruitytwirl costs $x,then 5 willcost $5x
12 ThegivengraphrepresentstherentalcostofanewcarfromtwocarrentalfirmscalledPaul’sMotor MartandJoe’sCarRental.
Joe’s (1000, 260)
Paul’s (1000, 250)
driven (km)
a Determine: theinitialrentalcostfromeachcompany i thecostperkilometrewhenrentingfromeachcompany ii thelinearequationsforthetotalcostfromeachcompany iii thenumberofkilometresatwhichthetotalcostisthesameforbothrentalfirms,usingthe methodofsubstitution.
iv
b DescribewhenyouwoulduseJoe’sorPaul’srentalfirm.
Learningintentions
• Tobeabletousethemethodofeliminationto ndasolutiontoapairofsimultaneousequations
• Tobeabletoapplythemethodofeliminationtosolvesimultaneousequationsinarealcontext
Keyvocabulary: elimination,simultaneous,multiple
Asecondmethodforsolvingsimultaneousequations,called elimination,cansometimesbemoreefficient,dependingonhowthe equationsarestructuredinthefirstplace.
Whensettingupequationsforrealsituations,weshoulddefinethe unknownquantitiesusingpronumerals.Whensolvingsimultaneous linearequationsthereshouldbeonlytwounknownquantitiesfortwo equationsformedfromthegiveninformation.
Forexample,tworelatedvariablesarethecostofowningacarand thenumberofkilometresdriven.Fortwodifferentcars,twoequations couldbemaderelatingthesevariables.Thesimultaneoussolution givesthenumberofkilometresthatmakesthetotalrunningcostsof eachcarequal.Solvingsimultaneousequationsprovidesinformation foranaccuratecomparisonofcostsbetweentwovehicles.
Simultaneousequationscanbeused tocomparecarinsuranceproviders bysolvingforvariableslikepremium costsandcoveragelimits.
Onestepintheeliminationmethodinvolvesaddingorsubtractingtwoequationsinordertoeliminateone ofthevariables.Whenadding,wewrite [1]+[2];whensubtracting,wewrite [1] [2] Astudenthaseitheraddedorsubtractedpairsofequations,buthasmanyincorrectanswers.
•
• Determinewhichanswersareincorrectandwritethecorrectanswerforthese.(Note:Donotsolve theequationsfor x or y.)
5x + 3y = 34 [1]
7x −3y = 26 [2]
[1]+[2] gives:
12x + 0 = 60
2x −2y = 8 [1]
4x −2y = 24 [2]
[1] [2] gives:
2x −4y = 16
5x + 3y = 31 [1]
5x −3y = 19 [2]
[1]+[2] gives:
0 + 0 = 12
3x + 2y = 18 [1] 2x −2y = 2 [2] [1]+[2] gives:
x −4y = 20
x + 3y = 16 [1]
x + 2y = 3 [2] [1]+[2] gives:
+ y = 19
x + 3y = 15 [1]
+ 2y = 12 [2]
1] [2] gives:
x + y = 3
x −3y = 9 [1] 2x −3y = 4 [2] [1] [2] gives: 5x + 0 = 5
3x + 2y = 25 [1] 2x + 2y = 18 [2]
[1] [2] gives: x + 0 = 43
x y = 5 [1] 3x y = −2 [2] [1] [2] gives: 4x = 3 I
Elimination isgenerallyusedtosolvesimultaneousequationswhenbothequationsare intheform ax + by = d
e.g. 2x y = 6 and 3x + y = 10 or −5x + y = −2 and 6x + 3y = 5
Addingorsubtractingmultiplesofthesetwoequationsallowsoneofthevariablesto beeliminated.
• Add x y = 10 and 3x + y = 34 toeliminate y
• Subtract 5x + 2y = 7 and 5x + y = 6 toeliminatethe x
• Formamatchingpairbymultiplyingbyachosenfactor.
Forexample, 2
Whenproblem-solvingwithsimultaneouslinearequations,followthesesteps.
• Define/describetwovariablesusingletters.
• Writedowntwoequationsusingyourvariables.
• Solvetheequationsusingthemethodofelimination.
• Answertheoriginalquestioninwords.
1 Whatoperation (i.e. + or ) willmaketheseequationstrue?
2 Multiplybothsidesoftheequation 3x −2y = −1 bythefollowingnumbers.Writethenewequations. 2 a 3 b 4 c
3 Choosethecorrectoption.
a When 2x + y = 3 isaddedto 5x y = 11 theresultis: 7x = 11 A 7x = 14 B 3x = 14 C
b When x + y = 5 issubtractedfrom 3x + y = 7 theresultis:
Fluency
(½)
Example40Eliminatingavariablebyadditionofequationsthensolving
Addequation[1]toequation[2]andthensolvefor x and y
x + 2y = 10 [1]
x −2y = 2 [2]
Solution
x + 2y = 10 [1]
x −2y = 2 [2]
[1]+[2] gives:
2x + 0 = 12
2x = 12
x = 6
Explanation
Copyequationswiththelabels [1] and [2].
Writetheinstructiontoadd: [1]+[2]
Addthe x column: x + x = 2x
Addthe y column: 2y + (−2y) = 0.
AddtheRHS: 10 + 2 = 12 andthendividebothsidesby 2
(½)
Substitute x = 6 into [1]:
6 + 2y = 10
2y = 4 y = 2
Inequation [1],replace x with 6.Equation [2] couldalso havebeenused.
Subtract 6 frombothsides. Dividebothsidesby 2
Solutionis x = 6, y = 2. Writethesolution.
Check: [2] 6−2 × (2) = 2,true
Nowyoutry
Checkthatthesolutionsatisfiesequation [2].
Addequation[1]toequation[2]thensolvefor x and y
3x + y = 11 [1]
x y = 5 [2]
4 Copyeachpairofequations,addequation [1] to [2], thensolvefor x and y
x + y = 7 [1]
x y = 5 [2]
[1]+[2]
3x + 2y = 20 [1]
−3x + y = 1 [2]
[1]+[2]
+ 2y = 11 [1] x −2y = −5 [2] [1]+[2]
5 Copyeachpairofequations,subtractequation [2] from equation [1] andthensolvefor x and y,showingallsteps.
2x + y = 16 [1]
x + y = 9 [2]
[1] [2]
3x + 5y = 49 [1]
3x + 2y = 25 [2]
[1] [2]
[1] [2] c
5x −4y = 16 [1]
2x −4y = 4 [2]
6 Determinethesolutionofthefollowingsimultaneous equationsusingtheeliminationmethod.
a x + y = 7 and 5x y = 5
b x + y = 5 and 3x y = 3
c x y = 2 and 2x + y = 10
d x y = 0 and 4x + y = 10
HintforQ5: [1] [2] 5x 4y 2x 4y 16 4 4y (−4y) =−4y + 4
HintforQ6:Labelthetwoequations,one undertheother,anddecidewhetherto eliminate x or y;i.e.eliminatewhichever variablehasthesamenumberineach equation.Rememberthat +y + ( y) = 0.
7 Solvethefollowingpairsofsimultaneousequations,usingthe eliminationmethod.Youwillneedtosubtracttheequationsto eliminateoneofthevariables.
3x + 4y = 7
2x + 4y = 6
HintforQ7:Alwayslabel theequationsandwritethe instruction;e.g. [1] [2] or [2] [1]
Determinethesolutionofthesimultaneousequations x + y = 6 and 3x + 2y = 14,usingthe eliminationmethod.
Solution
x + y = 6 [1]
3x + 2y = 14 [2]
[1]× 2 : 2x + 2y = 12 [3]
[2] : 3x + 2y = 14 [2]
[2] [3]: x = 2
Substitute x = 2 into [1]:
2 + y = 6 y = 4
Solutionis x = 2, y = 4
Check: 3(2) + 2(4) = 14 true
Explanation
Labelthetwoequationsanddecidehowtoforma matchingpair.
Create 2y ineachequationbymultiplying[1]by 2
Subtractthetwoequationsbecause 2y −2y = 0, 3x −2x = x and 14−12 = 2
Alternatively,substituteintoequation [2]
Replace x withthenumber 2
Subtract 2 frombothsides.
Writethesolution.
Checkthatthesolutionsatisfiestheotherequation.
Determinethesolutionofthesimultaneousequations x + y = 4 and 5x + 2y = 11,usingthe eliminationmethod.
8 Solvethesesimultaneousequationsbyfirstforminga matchingpair.
−3y = 1 2x + y = 9
+ 2y = 10
+
HintforQ8:Multiplyone equationbyanumberto formamatchingpair.
Solvethesimultaneousequations 3x + 2y = 6 and 5x + 3y = 11,usingtheeliminationmethod.
Solution Explanation 3x + 2y = 6 [1] 5x + 3y = 11 [2] [1]× 3 : 9x + 6y = 18 [3] [2]× 2 : 10x + 6
[4] [3] : x = 4
Labelthetwoequationsanddecidewhetherto eliminate x or y
Multiplyingthefirstequationby 3 andthe secondby 2 resultsinamatchingpair 6y ineach equation.
Subtracttheequationssince 6y −6y = 0.
Substitute x = 4 into [1]:
3(4) + 2y = 6
2y = −6 y = −3
Solutionis x = 4, y = −3
Check: 5(4) + 3(−3) = 11
Nowyoutry
Alternatively,substituteintoequation [2]
Replace x withthenumber 4
Subtract 12 frombothsides,since 3 × 4 = 12
Dividebothsidesby 2.
Writethesolution.
Checkthesolutionwiththeotherequation.
Solvethesimultaneousequations 5x + 3y = 1 and 2x + 5y = 8,usingtheeliminationmethod.
9 Solvethefollowingpairsofsimultaneousequations, usingtheeliminationmethod.
3x + 2y = 6 and 5x + 3y = 11
3x + 2y = 5 and 2x + 3y = 5 b
2x + y = 4 and 5x + 2y = 10 c
2x + 5y = 7 and x + 3y = 4 d
HintforQ9:Whenmultiplyinganequation byanumber,multiplyeverytermonthe LHSandRHSbythatnumber.Always writetheinstructionformultiplying, e.g. [2]× 4. a
10 Solvethefollowingpairsofsimultaneousequations, usingtheeliminationmethod.
3x + 5y = 8 x −2y = −1
4x −3y = 0
3x + 4y = 25 c
HintforQ10:Choosetoeliminate x or y. Thecoefficientsneedtobethesame size(with + or );e.g. −4x and 4x or −5y and 5y.Choosetoaddorsubtract theequationstoeliminateonevariable. a 2x + y = 10 3x −2y = 8 b
11 Solvethefollowingpairsofsimultaneousequations.
5x + 3y = 18 and 3y x = 0 a 3x y = 13 and x + y = −9 b
2x + 7y = −25 and 5x + 7y = −31 c 2x + 6y = 6 and 3x −2y = −2 d 4x −5y = −14 and 7x + y = −5 e 7x −3y = 41 and 3x y = 17 f
Problem-solving and reasoning
12–1512,13,16–18
Example43Solvingwordproblemswithsimultaneousequations(elimination) KathyisolderthanBlake.Thesumoftheiragesis 17 yearsandthedifferenceis 5 years.FindKathy andBlake’sages.
Solution
Explanation
Let k beKathy’sageand b beBlake’sage.Definetwovariables.
k + b = 17 [1]
k b = 5 [2]
Thefirstpieceofinformationis‘thesumoftheir agesis 17’.
Thesecondis‘thedifferenceis 5 andKathyis olderthanBlake’.
Continuedonnextpage
[1]+[2]: 2k = 22 k = 11
Substitute k = 11 into [1]: 11 + b = 17 b = 6
Addthetwoequationstoeliminate b or, alternatively,subtracttoeliminate k
Alternatively,substituteinto [2] Subtract 11 frombothsides. Kathyis 11 yearsoldandBlakeis 6 Answertheoriginalquestioninwords.
Nowyoutry
Thesumoftwonumbersis 97 andtheirdifferenceis 13.Findthetwonumbers.
12 AydenisolderthanTamara.Thesumoftheiragesis 56 yearsandthedifferenceis 16 years. UsesimultaneousequationstofindAydenandTamara’sages.
Reesepurchasesthreedaffodilsandfivepetuniasfromthelocalnurseryandthecostis $25 Giulianabuysfourdaffodilsandthreepetuniasandthecostis $26 Determinethecostofeachtypeofflower.
Solution
Let $d bethecostofadaffodiland $p bethecostofapetunia.
3d + 5p = 25 [1]
4d + 3p = 26 [2]
[1]× 4 : 12d + 20p = 100 [3]
[2]× 3 : 12d + 9p = 78 [4]
[3] [4] : 11p = 22 p = 2
Substitute p = 2 into [1]:
3d + 5(2) = 25
3d + 10 = 25 3d = 15 d = 5
Check: 4(5) + 3(2) = 26 true
Daffodilscost $5 andpetuniascost $2 each.
Nowyoutry
Explanation
Defineyourvariables.
Threedaffodilsandfivepetuniasfromthelocal nurserycost $25 Fourdaffodilsandthreepetuniascost $26
Multiply [1] by 4 and [2] by 3 toobtaina matchingpair(12d and 12d).
Subtracttheequationstoeliminate d. Dividebothsidesby 2
Alternatively,substituteinto [2] Replace p withthenumber 2. Simplify.
Subtract 10 frombothsides. Dividebothsidesby 3
Checkyoursolutionsbysubstitutingintothe secondequation.
Answerthequestioninwords.
Jesspurchases 4 bucketsofchipsand 3 drinksfor $23.50,whileNigelpurchases 3 bucketsofchipsand 4 drinksfor $22.Findthepriceofabucketofchipsandadrink.
13 Amarketstallsellstwofruitpacks:
Pack 1 : 10 applesand 5 mangoes ($12.50)
Pack 2 : 15 applesand 4 mangoes ($13.50)
Definetwopronumeralsandsetupapairoflinear equationstoeventuallyfindthecostofeachfruit.
a Solvethetwosimultaneousequationstodeterminethe individualpricesofeachpieceoffruit.
14
15
c
b Determinethecostofoneappleandfivemangoes.
Ticketstoabasketballgamecost $3 forchildrenand $7 foradults.If 5000 peopleattendedthegameandthe
totaltakingsatthedoorwas $25000,determinethe numberofchildrenandadultswhoattendedthegame.
HintforQ14:Whatyouare beingaskedtofindisoften howyoudefineyourvariables.
AMathstestcontainsmultiple-choicequestionsworth 2 markseachand short-answerquestionsworth 3 markseach.Thetestisoutof 50 marks andthereare 22 questions.
a Definetwopronumeralstorepresentthenumberofeachquestiontype.
b Setuptwolinearequations.
c Solvethetwoequationssimultaneouslytodeterminethe numberofmultiple-choicequestions.
HintforQ15:Totalmarksis 50 Numberofquestionsis 22.
16 Let x and y betwonumbersthatsatisfythefollowingstatements.Setuptwolinear equationsaccordingtotheinformationandsolvethemsimultaneouslyto determinethenumbersineachcase.
a Theirsumis 16 buttheirdifferenceis 2
b Theirsumis 30 buttheirdifferenceis 10
c Twicethelargernumberplusthesmalleris 12 andtheirsumis 7
17 Findthevalueof x and y inthefollowingrectangles.Youwillneedtowritetwo equationsandsolveusingtheeliminationmethod.
3 5 x + 2y x + y
10 6 4x y 2x + 3y b
HintforQ17:Oppositesides ofrectanglesareequal.
18 Gordoniscurrently 31 yearsolderthanhisdaughter.In 30 years’timehewillbetwicehis daughter’sage.Using g forGordon’scurrentageand d forGordon’sdaughter’scurrentage, completethefollowing.
a Writedownexpressionsfor:
Gordon’sagein 30 years’time. i Gordon’sdaughter’sagein 30 years’time. ii
b Writedowntwolinearequations,usingtheinformationatthestart.
c SolvetheequationstofindthecurrentagesofGordonandhisdaughter.
19 Usetechnologytosolvethesesimultaneousequations.
3x + 2y = 6 and 5x + 3y = 11 a
3x + 2y = 5 and 2x + 3y = 5 b
4x −3y = 0 and 3x + 4y = 25 c
2x + 3y = 10 and 3x −4y = −2 d
−2y −4x = 0 and 3y + 2x = −2 e
−7x + 3y = 22 and 3x −6y = −11 f
Nursingisacareerthatisbothchallengingand rewarding.Itrequiresapersontobecaring andempathetic.Goodcommunicationskills,as wellasanunderstandingofmathematicsand science,arealsoimportant.
Nursesneedtobecompetentinmany mathematicalareas,includingfractions, ratios,convertingunitsofmeasurementand equations.Theymustbeabletocalculate medicaldosages,substituteintoequationsand alsoknowhowtoprogramthecorrectflow rateforintravenous(IV)drips.
Completethesequestionsthataretypicalofanurse’sjobadministeringmedication.
1 Usetheseformulastoanswereachofthefollowingquestions.
Volumerequired = strengthneeded strengthinstock × volumeofstocksolution
Numberoftablets = strengthrequired strengthpertabletinstock
a
Whatvolume,inmL,ofPethidineshouldbegivenifthepatientisprescribed
existingstockcontains 100 mgin 2 mL?
c
b Pethidine 50 mghasbeenorderedtoalleviateapatient’spain.Thestockstrengthis 75 mg/ 1.5 mL.HowmuchPethidineshouldbegiven?
d
e
Calculatethevolume,inmL,ofinsulinthatisrequiredforapatientwhohasbeenprescribed 60 unitsofthedrug,ifthestockis 100 units/1 mL.
Howmanytabletsdoesanurseneedtogiveforaprescriptionof 500 mgofamoxicillinperday, ifthestockavailableinthewardis 250 mgpercapsule?
Howmanytabletsareneededforadosageof 125 mg,ifthestockavailableislabelled 25 mg pertablet?
2 Paediatricsisabranchofmedicinedealingwithyoung children.Differentformulasareusedtocalculatethe dosessuitableforchildren.Applytherulesgivenbelow tocompletethefollowingcalculationsandstateeach answertothenearestmg.
Clarke’sbodyweightrule:
Child’sdose = weightofchild (kg) averageadultweight (70 kg) × adultdose
Clarke’sbodysurfacearearule:
Child’sdose = surfaceareaofchild (m2) averageadultsurfacearea (1.7 m2) × adultdose
Fried’srule(usedforinfantsunder 1 yearold):
Child’sdose = ageinmonths 150 × adultdose
Young’srule(usedforchildrenaged 2 to 12 years):
Child’sdose = ageinyears age + 12 × adultdose
a
b
c
d
UseYoung’sruletocalculatetheAmoxildoseneededfora 10-year-oldboy,iftheadultdoseofthe drugAmoxilis 250 mg.
UseClarke’sbodyweightruletofindachild’sdoseforthedrugAmpicillin,giventhechild’sweight is 15 kgandanadult’sdoseis 500 mg.
UseFried’sruletocalculatethedoserequiredforan 8-month-oldbabygirlfor thedrugamoxicillan,giventhatanadult’sdoseis 500 mg.
UseClarke’sbodysurfaceareaformulatofindthe doseofpenicillin,inmg,requiredforachildwhosesurface areais 8000 cm2,giventhattheadultdoseis 1 gram.
Hintforpart d: Recall 1 m2 = 10000 cm2
3 Drugsthataregivenwithanintravenous(IV)dripuseadifferentsetofequationstocalculatethetime neededorthedroprateperminute.
Time(inminutes) = volume(mL) flowrate(drops/min) × dripfactor
Flowrate(drops/minute) = volume(mL) time(mins) × dripfactor
UsetheequationsabovetoanswerthesequestionsaboutIVdrugdosage.Thedripfactorisin drops/mL.Stateallanswersroundedtoonedecimalplace.
Findtheflowrate,indropsperminute,whena 1 2 litre
bagofsalinesolutionisrunover 4 hourswiththeIVmachine setatadripfactorof 20 dropspermL.
Hintforpart a:Recall 1 L = 1000 mL
a AnIVdripofsalinesolutionstartedat 4:15 p.m.Tuesday.Themachinehas 700 mLtorunandisset at 40 drops/minwithadripfactorof 18 dropspermL.AtwhattimewilltheIVbefinished?
c
b Howlongwillittake 180 mLofzeronegativebloodtoflowthroughanIVat 36 drops/minute whenthebloodsupplymachineissetatadripfactorof 15 drops/mL?
4 SetupthisExcelworksheettocalculatetheendingtimesofintravenousdripsforvariouspatients.You willneedtocopythegivendataandenterformulasintotheshadedcells.
HintforQ4:
• Formatstartingandendingtimesas Number Category:Custom,Type:h:mmAM/PM
• Tocalculatetimeinhoursandminutes,divide thetimeinminutesbythenumberofminutes in 24 hours,andformatcellsas NumberCategory: CustomandType:h:mm
Asmallboutiquemovietheatreisopeningsoonandwillbepublishingadultandchildticketpriceson itswebsite.Aftersomeanalysis,theownerdecidestomakethefollowingassumptions:
• Thesumofthecostofachildticketandanadultticketwillbe $30
• 40 childrenand 25 adultsareexpectedtoattendeachevening. Presentareportforthefollowingtasksandensurethatyoushowclearmathematicalworkings, explanationsanddiagramswhereappropriate.
a Ifthecostofachildmovieticketis $6,findthecostofanadultticket.
b Findtherevenue(totalamountearned)forthemovietheatreononeparticulareveningusing theassumptionthat 40 childrenand 25 adultsattendandachildticketis $6
c Solvethefollowingsimultaneousequations.
Usetheeliminationmethod,orrewritethefirstequationandusethesubstitutionmethod.
Formulate Theproblemistodetermineasuitablepricefortheadultandchildticketstoachievearevenueofat least $1000
a Writedownalltherelevantinformationthatwillhelpsolvethisproblem.
b Using $a forthecostofanadultticketand $c forthecostofachildticket.Determinethe equationsfor,
Thesumofthecostofachildticketandanadultticketwillbe $30 i Therevenue($R)if 40 childrenand 25 adultsattendononeparticularevening. ii Ifthetotalrevenue, R,fortheeveningis $900,substitutethisintotheequationaboveto formanewequation,relating a and c iii
c Solvethetwosimultaneousequationsinpart b tofindthecostofoneadultticketandone childticket.
d Bychangingthevalueof R intheequationforrevenueinpart bii,solvetwosimultaneous equations,and,findthecostofanadultticketandachildticketiftherevenueis:
$825 i $960 ii $984 iii $1086 iv
e Explorethefollowingspecialcasesforthetotalrevenueearnedanddecideiftheyrepresent reasonablepricingstructures.Writeasentencedetailingifyouthinkthateachrevenueresults inagoodpricingstructure.
$975 i $765 ii
Evaluate and verify
f Explorethepossibilityoftherevenuebeing $1200 basedontheassumptionsmadebythe company.Explainwhyyoureachedyourconclusion
g Isitreasonableforthecompanytoassumetheycanearnover $1000 eacheveningwiththeir otherassumptions?
h Summariseyourresultsbycompletingatablesuchastheonebelow.
Equation 1 Equation 2
a Considerusinganonlinegraphingtool,suchasDesmosorGeogebra,toshowhowgraphscan beusedtosolvetheproblemreplacingthe a with x andthe c with y
b Ifthesumofthecostofachildticketandanadultticketischangedto $40,doyouthinkitwould bereasonabletoexpectthatmorethan $1000 revenuecanbeearnedeachevening?Explainyour choicesandcalculationstojustifyyouranswer.
Weknowthatwecanusealgebraictechniquestosolve linear,quadraticandevenexponentialequations;however, inmanysituationssuchtechniquesdonotworkorare toocumbersometodealwith.Insuchcasesanumerical techniquecanbeusedwherewerepeatedlymovecloser andclosertothesolutionuntiladesiredlevelofaccuracy isreached.Technologycanhelpusachievethesenumerical stepsandfindaccuratesolutions.
Wewillstartbylookingatthesolutiontothelinearequation 7(2x −1) −5 = 0.Byhand,wecould solvethisbyexpandingandusingthebalancemethod;however,inthiscasewewilluseanumerical approachby‘zoomingin’tothesolution.
a Findthevalueof 7(2x −1) −5 forthefollowingvaluesof x x = 0 i x = 0.5 ii
b Whichvalueof x frompart a givesavalueof 7(2x −1) −5 whichisclosestto 0?
c Tryothervaluesof x between 0 and 1 andtrytofindasolutiontotheequation 7(2x −1) −5 = 0 correcttoonedecimalplace.
d Tryothervaluesof x between 0 and 1 andtrytofindasolutiontotheequation 7(2x −1) −5 = 0 correcttotwodecimalplaces.
a Constructaspreadsheetwhichevaluates 7(2x −1) −5 forvariousvaluesof x.Useincrementsof 0.1 as shown.
b FilldownfromthecellsA4 andB3.Forwhichvalueof x is 7(2x −1) −5 closesttozero?
c Anothermethodforzoomingin onasolutionistouseagraphof y = 7(2x −1) −5 andlookatwhere y = 0.Usegraphingsoftwarelike Desmostosetupagraphwhich focusesonthepointswhere y = 0
d Placepointsattheplacewhere y = 0 Bylookingatthegraphyoucan seethatthesolutionisbetween 0.8 and 0.9
Toobtainevenmoreaccuratesolutionstothepreviouslinearequationwecanzoomincloserusingthe spreadsheetorgraph.
a Usethisalgorithmwithyourspreadsheettofindthesolutionofthelinearequation.
• Step 1:AltertheformulaincellA4 sothattheincrementissmaller.e.g. 0.01 ratherthan 0.1
• Step 2:Filldownuntilyouhavelocatedthevalueof x forwhich 7(2x −1) −5 isclosesttozero.
• Step 3:AdjustcellA3 toadifferentvaluesoyoudon’tneedtoscrollthroughsomanycells.
• Step 4:RepeatfromStep 1 butusesmallerandsmallerincrements(0.001 and 0.0001)untilyou havefoundthevalueof x forwhich 7(2x −1) −5 isclosesttozero,correcttothreedecimal places.
b Usethefunctionsofyourgraphingsoftwaretozoomintothepoint where y = 0.Usethescaletohelpfindthesolutiontotheequation. Keepzoominginuntilyouaresatisfiedthatyoursolutioniscorrect tothreedecimalplaces.
0.8570.858
1 Inthismagicsquare,eachrowandcolumnaddstoasumthatisanalgebraicexpression.Complete thesquaretofindthesum.
2 Theanswerstotheseequationswillformamagicsquare,whereeachrow,columnanddiagonal willaddtothesamenumber.Drawa 4 by 4 squareforyouranswersandcheckthattheydomake amagicsquare.
3 Writeanequationandsolveittohelpyoufindeachunknownnumberinthesepuzzles.
a Three-quartersofanumberplus 16 isequalto 64
b Anumberisincreasedby 6,thenthatanswerisdoubledandtheresultisfourmorethantriple thenumber.
c Theaverageofanumberanditstripleisequalto 58.6
d In 4 years’time,Ahmed’sagewillbedoubletheagehewas 7 yearsago.Howoldis Ahmednow?
4 Byapplyingatleasttwooperationsto x,writethreedifferentequationssothateachequationhas thesolution x = −2.Verifythat x = −2 makeseachequationtrue. Forexample, 3 × (−2) + 10 = 4,soonepossibleequationwouldbe 3x + 10 = 4
5 Writetwosetsofsimultaneousequationssothateachpairhasthesolution x = 3, y = −2
6 WhichAustraliancityhasitscentreontheintersectionoftheWarregoHighwayandtheNew EnglandHighway?
Todecodethispuzzle,solvetheinequalitiesandsimultaneousequationsbelow,andmatchthem toanumberlineorsolution.Placethecorrespondinglettersabovethematchingnumberstofind theanswer.
Solvetheseinequalitiesandmatchthesolutiontoanumberline(1 3).
Solvethesesimultaneousequationsandmatchtothesolution(4 6). 3
7 JulesandEnzoareparticipatinginalong-distancebikerace.Julesridesat 18 km/handhasa 2 hourheadstart.Enzotravelsat 26 km/h.
a HowlongdoesittakeforEnzotocatchuptoJules?(Use:Distance = speed × time.)
b HowfardidtheybothridebeforeEnzocaughtuptoJules?
8 Emilytravelledadistanceof 138 kmbyjoggingfor 2 hoursandcyclingfor 5 hours.Shecould havetravelledthesamedistancebyjoggingfor 4 hoursandcyclingfor 4 hours.Findthespeed atwhichshewasjoggingandthespeedatwhichshewascycling.
Expanding
a (b + c ) = ab + ac
a (b c ) = ab ac
e.g. 2(4x + 3) = 8x + 6 3x (2x y ) =−6x 2 + 3xy
Simplifying expressions
Add/subtract like terms only. Like terms have the same pronumeral factors.
e.g. 3x and 7x, 2xy and 4yx , not 2x and x 2 or 3y and 4xy For example, 3x + 2y x + 7y = 3
Multiply/Divide
Algebraic expressions
Adding/subtracting algebraic fractions
Find the lowest common denominator and combine.
e.g.LCD is 6.
Factorising
This is the opposite of expanding Factorised form Expanded form = 2x Look for highest common
2x 2 6x = −2x (x + 3)
7 is the coefficient of 4 is the coefficient of
4 terms 3 is the constant term. x y.
Multiplying/dividing algebraic fractions
Multiply: Cancel common factors in factorised form and then multiply.
e.g.
Divide: Multiply by the reciprocal of the fraction following the ÷ sign.
Reciprocal of is . a b b a = 12x 3(x + 4) 2 8x x + 4 × 1 1 1 4 3xy + 7x 4y + 3
Solving linear equations that have brackets and pronumerals on both sides
• Expand all brackets.
Solving linear equations
the value that makes an Solving involves finding equation true.
Equations with fractions
e.g.
2 = 7 3x 4
3x 4
• Collect like terms on each side of the equation.
• Collect terms with a pronumeral to one side (usually the LHS).
• Solve for unknown.
e.g.
12(x + 1) 2(3x 3) = 4(x + 10)
12x + 12 6x + 6 = 4x + 40
6x + 18 = 4x + 40
2x + 18 = 40 2x = 22 x = 11
e.g. 2x + 5 = 9 2x = 4 (subtract 5) x = 2 (divide by 2)
e.g. A = πr , C = 2πr
An unknown value can be found by substituting values for the other variables.
3x = 36 (× 4 both sides)
x = 12 (÷ 3 both sides)
e.g. = 7
2x 5 3
2x 5 =× 3 to both sides)
=+ 2 to both sides) 9 (first 21 (first
2x = 26 (+ 5 to both sides)
x = 13 (÷ 2 to both sides)
A formula can be rearranged to make a different variable the subject; i.e. the variable is out the front on its own.
e.g. E = mc 2 m when , find E = 320 and c = 4.
320 = m × 4 2 (substitute values)
320 = 16 m
20 = m (divide both sides by 16)
m = 20 (Write the answer with m on the left.)
Inequalities
These are represented using >, <, ≥, ≤ rather than =
e.g. x > 2
2 not included
34 x 2 01 1
e.g. x ≥ 2 2 is included
34 x 2 01 1
Solving inequalities uses the same steps as solving equations, except when multiplying or dividing by a negative number. In this case, the inequality symbol must be reversed.
e.g. 4 2x > 10 ( 4)
2x > 6 (÷ 2) x < 3 (reverse symbol)
Solving word problems
1
Define variable(s).
2 Set up equation(s).
3 Solve equation(s).
4 Check each answer and write in words.
Simultaneous equations
Use substitution or elimination to find the solution that satisfies two equations.
Substitution
e.g. 2x + y = 12 [1] y = x + 3 [2]
In [1] replace y with [2]: 2x + (x + 3) = 12 3x + 3 = 12 3x = 9 x = 3
Sub. 3 to find y x = In [2] y = 3 + 3 = 6
Solution is x = 3, y = 6
Elimination
Ensure both equations
have a matching pair. Add two equations if matching pair has different sign; subtract if same sign.
e.g. x + 2y = 2 [1] 2x + 3y = 5 [2] [1] × 2: 2x + 4y = 4 [3] [3] [2]: y =−1
In [1]: x + 2( 1) = 2 x 2 = 2 x = 4
Solution is x = 4, y = −1
AversionofthischecklistthatyoucanprintoutandcompletecanbedownloadedfromyourInteractiveTextbook.
3A 1 Icanidentifythepartsofanalgebraicexpression.
e.g.Fortheexpression 4a + 3b −7,statethe: a numberofterms b constantterm c coefficientof b
3A 2 Icanformanalgebraicexpression. e.g.Writeanalgebraicexpressionfor:
a 3 morethan 2 lotsof a b theproductof x and y,dividedby 2
3A 3 Icanevaluateanalgebraicexpressionusingsubstitution.
e.g.If x = 2, y = 5 and z = −3,evaluate: a xy + 2z b y2 xz
3B 4 Icanidentifyliketerms.
e.g.Writedowntheliketermsinthefollowinglist:
3B 5 Icancollectliketerms.
e.g.Simplify:
a 5b + 4b −2 b 4xy + 3x −5xy + 3x
3B 6 Icanmultiplyanddividealgebraicterms.
e.g.Simplify:
a 3a × 5ab b 9xy ÷ (18x)
3C 7 Icanexpandexpressionswithbrackets. e.g.Expandthefollowing.
a 4(3x −2) b −2y(5x −7y)
3C 8 Icansimplifyexpressionsbyremovingbrackets.
e.g.Expandandsimplify 3(2x + 5) −2(x + 2)
3D 9 IcandeterminetheHCF. e.g.DeterminetheHCFofthefollowing.
a 6x and 24x b 8ab and 20b2
3D 10 Icanfactoriseexpressionswithcommonfactors. e.g.Factorisethefollowing. a 8a + 12 b 6
3E 11 Icansimplifyalgebraicfractions.
e.g.Simplifythisfractionbyfactorisingfirst: 4x −12 x −3
3E 12 Icanmultiplyalgebraicfractions.
e.g.Simplifythisproduct: 3(x −2) 4x × 10x x −2.
(includingcommonnegative)
3E 13 Icandividealgebraicfractions.
e.g.Simplify 5x2 9 ÷ 10x 3 .
3F 14 Icanaddandsubtractsimplealgebraicfractions.
e.g.Simplify 3x 4 x 16
3F 15 Icanaddandsubtractwithbinomialnumerators.
e.g.Simplify x + 2 4 x 10
3G 16 Icansolvesimplelinearequations. e.g.Solvetheselinearequations. 2x −1 = 7 a x + 4 2 = 12 b
3G 17 Icansetupandsolvewordedproblemsusinglinearequations. e.g. 5 lessthantwiceanumberisequalto 31.Findthenumber.
3H 18 Icansolveequationswithbrackets.
e.g.Solve 3(x −2) = 21
3H 19 Icansolveequationswithvariablesonbothsides.
e.g.Solve 5x −2 = 3x + 6.
3H 20 Icansolvemorecomplexequationswithfractions.
e.g.Solve 2x −1 4 = −1
3H 21 Icansetupandsolveanequationwithbracketsfromarealsituation. e.g.Findthevalueof x iftheareaofthistriangleis 32 m2 4 m (x – 2) m
3I 22 Icansubstituteintoaformulaandsolveforavariable.
e.g.If A = h 2 (a + b) and A = 20, h = 4 and b = 3 findthevalueof a
3J 23 Icanillustrateaninequalityonanumberline.
e.g.Represent x > −2 onanumberline.
3J 24 Icansolveasimpleinequality.
e.g.Solve 3x −2 > 7
3J 25 Icansolveaninequalitywhenthepronumeralhasanegativecoefficient. e.g.Solve 6−3x Å 18
3K 26 Icanusethemethodofsubstitutiontofindthesolutiontoapairof simultaneousequations.
e.g.Solvethesimultaneousequations y = x −2 and 2x + 3y = −1 usingthesubstitutionmethod.
3K 27 Icanusethemethodofsubstitutiontofindasolutiontoarealproblem involvingsimultaneousequations.
e.g.Jonahis 9 yearsolderthenPennyandtheircombinedagesis 47.Findtheirages.
3L 28 Icanusethemethodofeliminationtofindthesolutiontoapairof simultaneousequations.
e.g.Solvethesimultaneousequations x + y = 1 and 4x + 3y = 5 usingtheeliminationmethod.
3L 29 Icanusethemethodofeliminationtofindasolutiontoarealproblem involvingsimultaneousequations.
e.g.Jillbuys 5 pensand 2 pencilsfromherfavouritestorefor$13,whileMichaelbuys 4 ofthe samepensand 3 ofthesamepencilsfromthesamestorefor$12.50.Findthecostofthispenand pencilfromthisstore.
1 3A Considertheexpression 3xy −3b + 4x2 + 5
a Howmanytermsareintheexpression?
b Whatistheconstantterm?
c Statethecoefficientof: x2 i b ii
2 3A Writeanalgebraicexpressionforthefollowing.
a 3 morethan y
b 5 lessthantheproductof x and y
c thesumof a and b isdividedby 4
3 3A Evaluatethefollowingif x = 3,
4 3B Simplifythefollowingexpressions.
5 3C Expandthefollowingandcollectliketermswherenecessary.
6 3D Factorisethefollowingexpressions.
(includethecommonnegative) d
7 3F Simplifythefollowingalgebraicfractionsinvolvingadditionandsubtraction.
8 3E Simplifythesealgebraicfractionsbyfirstcancellingcommonfactorsinfactorisedform.
9 3G Solvethefollowing.
4a = 32 a m 5 = −6 b
x +
10 3H Solvethefollowingbyfirstexpandingthebrackets.
+
) =
11 3H Findthevalueof p inthefollowing.
12 3H Writeanequationforthefollowingandthensolveit. Sixtimesanumberequals 420.Whatisthenumber? a Eightmorethananumberequals 5.Whatisthenumber? b Anumberdividedby 9 gives 12.Whatisthenumber? c Sevenmorethananumbergives 3.Whatisthenumber? d
13 3I
Thesumofanumberand 2.3 equals 7.Whatisthenumber? e
For A = 1 2 hb,find b when A = 24 and h = 6 a
For V = lwh,find w when V = 84, l = 6 and h = 4. b
For A = x + y 2 ,find x when A = 3.2 and y = 4 c
For E = mc2,find m when E = 40 and c = 2 d For F = 9 5 C + 32,find C when F = 95 e
14 3J Writetheinequalitydisplayedoneachofthefollowingnumberlines.
e
15 3J Solvethefollowing.
x + 8 Å −10 a 2x + 6 > 10 b m −6 Å 4 c −6x Ä 12 d 8− x Ä 10 e 5− x 3 > 2 f
16 3K Solvethesimultaneousequationsusingthesubstitutionmethod.
y = 5x −13
2x + 3y = 12 a
y = x −1
y = 3x −11 b
17 3L Determinethesolutionofthefollowingsimultaneousequations,usingtheelimination method.
2x + 7y = −25
5x + 7y = −31 a
x −2y = 0 b
3x + 2y = 8
x + 3y = 8
4x + 5y = 11 c
18 3L Thesumoftwonumbersis 15 andtheirdifferenceis 7.Usesimultaneousequationstofind thetwonumbers.
19 3L Amoneyboxcontains 20 centand 50 centcoins. Theamountinthemoneyboxis $50 andthereare 160 coins.
a Definetwovariablesandsetupapairoflinear equations.
b Solvethetwosimultaneousequationsto determinethenumberof 20 centand 50 cent coins.
20 3K Therearetwiceasmanyadultsaschildrenatalocalgrandfinalfootballmatch.Itcosts $10 foradultsand $2 forchildrentoattendthematch.Ifthefootballclubcollected $1100 attheentrancegates,howmanychildrenwenttoseethematch?
1 3A Thecoefficientof x in 3xy −4x + 7 is:
2 3B Thesimplifiedformof
3 3C Theexpandedformof
4 3D Thefullyfactorisedformof
5 3E Thesimplifiedformof 2(x + 1)
is:
6 3F Thesumofthealgebraicfractions 3x 8 + x 12 is: x 5 A x
7 3H Tosolvetheequation 3(2x + 4) −4(x + 2) = 6,youwouldfirst:
dividebothsidesby 12 A expandthebrackets B subtract 6 frombothsides C multiplybothsidesby 6 D add 4(x + 2) tobothsides E
8 3G Anumberisincreasedby 6 andthendoubled.Theresultis 36.Thistranslatestotheequation: 6x + 2 = 36 A 2x + 6 = 36 B 2(x + 6) = 36 C 2(x −6) = 36 D x + 12 = 36 E
9 3H If 4a −6 = 2a,then a equals: −1 A 1 B 6 C 3 D −3 E
10 3J x Ä 4 isasolutionto:
x + 1 < 3 A 3x −1 Ä 11 B x 2 −1 Å 0 C x −1 Å 1 D x Ä −4 E
11 3J Whichnumberlineshows x + 4 < 6?
12 3H Thesolutionto 5x 9 −4 = 1 is: x = 6 A x = −9 B x = −5 C
x = 9 D x = 5 E
13 3H Thesolutionto 3(x −1) = 12 is:
x = −1 A x = 2 B x = 0 C
x = 5 D x = 4 E
14 3K Thesimultaneousequations y = 3x and x + y = 4 havethesolution:
x = 1, y = 3 A
x = 3, y = 1 B
x = 2, y = 6 C
x = 2, y = 2 D
x = −1, y = 5 E
15 3K Substituting y = x −1 into x + 2y = 3 gives: x −2x −2 = 3 A x + 2y −2 = 3 B x x −1 = 3 C x + 2x −1 = 3 D x + 2(x −1) = 3 E
16 3L Adding x + y = 3 to x y = 4 gives: 2x −2y = 7 A 2x = 7 B x = 7 C y = 7 D 2y = 7 E
1 Aroominahousehastheshapeanddimensions,inmetres,shown.All linesmeetat 90°
a Findtheperimeteroftheroom,infactorisedform.
b If x = 3,whatistheroom’sperimeter?
c Iftheperimeteris 27 m,whatisthevalueof x? Theflooroftheroomistoberecarpeted.
d Givetheareaofthefloorintermsof x andinexpandedform.
e Ifthecarpetcosts $20 persquaremetreand x = 3,whatisthecostoflayingthecarpet?
2 Twocomputerconsultantshaveanup-frontfeeplusanhourlyrate.Rhyscharges $50 plus $70 per hour,whereasAgnescharges $100 plus $60 perhour.
a Using $C forthecostand t hoursforthetime,writearuleforthecostofhiring: Rhys i Agnes ii
b IfAgnescharges $280,solveanequationtofindhowlongshewashiredfor.
c Usethealgebraicmethodofsubstitutiontosolvethesimultaneousequationsandfindthe numberofhoursforwhichthecostisthesameandwhatthiscostis.