2021 Craig M. Berge Engineering Design Day

Page 61

Design, Build, Fly Aircraft Design Competition Team 21095

PROJECT GOAL Design and manufacture an uncrewed, electric-powered aircraft with a towed sensor – to represent the University of Arizona at the 2021 Design, Build, Fly Competition. In this competition, engineering students construct an aircraft with specific design constraints. The aircraft entry emphasizes speed, cargo-carrying capabilities and the ability during flight to fully deploy and retract a sensor with lights. The design includes a high wing spanning 58 inches, conventional tail and tricycle landing gear. The fuselage carries four cargo shipping containers and an additional container for the sensor. Mechanisms allow for fully deploying and retracting the sensor during flight. A singleengine propulsion system executes different mission types, enables aircraft maneuverability with the full payload and overcomes the drag from the towed sensor.

TEAM MEMBERS Matt Banko, Aerospace Engineering Michael Debbins, Aerospace Engineering, Mechanical Engineering Roman Alexander Gonzalez, Aerospace Engineering Davis Anthony Goolsby, Aerospace Engineering Sydney Magrit Kilen, Aerospace Engineering George Stancu, Aerospace Engineering, Mechanical Engineering COLLEGE MENTOR Sergey V. Shkarayev PROJECT ADVISOR Sergey V. Shkarayev

Preliminary prototyping and flight testing verify that the design is aerodynamically feasible and stable. With the results of the flight tests, initial design parameters have been adjusted and refined for in-flight stability and control.

Martian Ascent Vehicle Design Team 21096

PROJECT GOAL For a mission to Mars, develop an ascent vehicle with mass constraints half that of typical proposals. NASA is planning for an ascent vehicle to transport two astronauts and a payload of samples from the Mars surface back to a rendezvous spacecraft in low Mars orbit. The primary goal of the MARV-N project is to develop a minimum Mars Ascent Vehicle, or MAV, and identify key technologies and interfaces for meeting mission objectives. The MAV is scheduled to fly at the end of 2035, and it has a projected development budget of $2 billion per year for 10 years, totaling $20 billion. A MAV design with a wet mass of less than 20,000 kg and a dry mass of less than 5,000 kg equates to half of what has been previously proposed. Development of critical systems and structural testing have advanced enough to allow a full proposal, including CAD designs for major structural components, propulsion system design, ascent planning and trajectory design, rendezvous and docking.

TEAM MEMBERS Scott Ladd Omo, Aerospace Engineering, Mechanical Engineering Jessica Lynn Peebles, Chemical Engineering Felipe Martin Rodriguez Fuentes, Aerospace Engineering Javier Ruiz, Engineering Joshua Kristopher Smith, Aerospace Engineering Alexa McKenna Wilder, Aerospace Engineering COLLEGE MENTOR Sergey V. Shkarayev PROJECT ADVISOR Sergey V. Shkarayev

PROJECT DESCRIPTIONS

59


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.