Ammonia Fuel Cells 1st Edition Ibrahim Dincer
Visit to download the full and correct content document: https://ebookmass.com/product/ammonia-fuel-cells-1st-edition-ibrahim-dincer/


Visit to download the full and correct content document: https://ebookmass.com/product/ammonia-fuel-cells-1st-edition-ibrahim-dincer/
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
©2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrieval system,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmay becomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusing suchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions, orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-822825-8
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: OliverWalter
AcquisitionsEditor: RuthRhodes
EditorialProjectManager: JoannaCollett
ProductionProjectManager: SreejithViswanathan
CoverDesigner: AlanStudholme
TypesetbySPiGlobal,India
Duringthepastdecade,ammoniahasreceivedincreasingattentionfromvarioussectorsandmanypeopleduetoitsexcellentpropertiesandcarbon-freenaturealthough ithasbeenessentiallyverywellknownintherefrigerationindustryforrefrigeration applications.Wehavegoneintoanerawherehydrogenisessentialformanysectors asafuelandasanenergycarrier.Duetotheconsiderablechangesrequiredforhydrogenenergysystemsandapplications,ammoniaappearstoentailavitalpositioninthe developmentofthehydrogeneconomy.Havingnumerousfavorablepropertiesand characteristics,ammoniaisconsideredtobeapromisingcandidatethatcanaddress severalchallengesfacedbyhydrogenusageasafuel.Ammoniahas,formany decades,beenservinginvarioussectors,forexample,fertilizers,workingfluids, cleaningchemicals,refrigerants,andmanymoreinadditiontorefrigerationsystems asstatedabove.However,fromtheperspectiveoffuels,thenecessityofshifting towardcarbon-freefuelsinthiserahasmadeammoniastandoutasapromisingfuel thatcanaidinreducingthedependenceonfossilfuel-basedenergyproduction.Also, ammoniaisrecognizedasacleansolutionaslongasitisproducedcleanlybyrenewables.Inthisregard,ammoniafuelcellsplayakeyroletowardtheflourishmentof ammoniaenergy.Entailinghigherefficienciesthancombustionengines,fuelcells alongwithotherrenewablesareanticipatedtobetheupcomingrevolutioninpower generation.
Inthisbook, Chapter1 firsthighlightstheimportanceofimplementingclean energyresourcesincludingtheutilizationofammoniaandhydrogenfuelsandthen discussestheminbrief.Next, Chapter2 coverstheunderlyingfundamentalsoffuel celltechnologiesaswellasbackgroundinformationessentialtounderstandthe workingmethodologyofdifferenttypesofammoniafuelcells.Thenecessarycomponentsrequiredtoconstituteafuelcelldevicearedescribedandthephysicalaswell aschemicalphenomenaoccurringateachofthesecomponentsisdiscussed.Also,the classificationoffuelcellsaccordingtodifferentclassificationcategoriesisdescribed wherethecategorizationaccordingtothetypeofelectrolytes,fuel,andoperating conditionsispresented. Chapter3 dwellsonidentifyingdifferenttypesoffuelsthat havebeeninvestigatedforfuelcellapplications.Theserangefromhydrogenasthe mostcommonlyemployedfueltodifferenttypesofalcoholsaswellasalkanes. Ammoniaasapromisingfuelisthendescribedcomprehensivelypresentingvarious advantagesandfavorablepropertiesitentails.Theseprovidesufficientinformation neededtoproceedtowardthedetailsofammoniafuelcells. Chapter4 explicitlyconcernstheammoniafuelcellswhereitcomprehensivelycoversdifferenttypesof ammoniafuelcellsthathavebeendeveloped.Theperformanceofeachtypeof ammoniafuelcellislinkedtothetypeofelectrolyte,electrochemicalcatalyst, andelectrodesused.Ammoniafueledhigh-temperaturesolidoxidefuelcellswith bothproton-conductingandanion-conductingelectrolytesisdiscussed.Furthermore,low-temperaturedirectammoniaalkalinefuelcellsarecoveredindepth.
Thedevelopment,materials,operation,systemconditions,andcatalystsofthese ammoniafuelcellsarepresented.Moreover, Chapter5 presentstheanalysisand modelingoffuelcellswithspecificfocusonelectrochemicalinteractionofammonia moleculesthatoccursindirectammoniafuelcells.Theperformanceofthesedifferenttypesofammoniafuelcellsisalsodiscussed. Chapter6 describesvariousnew integratedammoniafuelcell-basedsystemsthathavebeendevelopedintherecent pastandtheirperformancesareanalyzedthroughoverallenergyandexergyefficiencies. Chapter7 discussesnovelammoniafuelcell-basedtechnologiesascasestudies wheretheirperformancesareinvestigatedatvaryingoperatingconditionsandsystemparameters.Lastly,thebookcloseswith Chapter8 providingseveralrecommendationsforfuturedevelopmentofammoniafuelcellsanddepictingthedevelopment ofammonia-basedenergytechnologiesmovingtowardanewammonia-basedera.
A area(m2)
C charge(Coloumbs),concentration(mol/m3)
cny conductivity(S/m)
D dayangle(°),diffusioncoefficient(m2/s)
ex specificexergy(kJ/kg)
E potential(V)
Ex exergyrate(kW)
F Faraday’sconstant(96,500C/mol)
g specificGibbsenergy(J/mol)
G Gibbsfreeenergy(J)
h specificmolarenthalpy(kJ/mol)
h specificenthalpy(kJ/kg)
H enthalpy(kJ) _ I solarintensity
J currentdensity(A/m2)
m mass(kg)
m massflowrate(kg/s)
M molarconcentration(mol/m3)
n numberofelectrons _ N molarflowrate(mol/s)
P pressure
P power(kW)
q heattransfer(kJ)
Q heattransferrate(kW)
R idealgasconstant(J/molK),Ohmicresistance(Ohm)
s specificentropy(kJ/kgK)
s specificmolarentropy(kJ/molK)
S entropy(kJ/K)
ST solartime(h)
T temperature(°C)
v specificvolume(m3/kg)
V voltage(V)
w specificwork(kJ/kg) _
W workrate(kW)
Greekletters
Ω resistance(Ohmcm2)
α chargetransfercoefficient
half-cellpotential(V)
ρ density(kg/m3)
η efficiency
δ declinationangle,diffusionlayerthickness
τ resistivity
μ surfacecoverage
γ orderofreaction
a anode
act activation
ads adsorbed
ar aerosol
b backward
c cathode
con condenser
conc concentration
conv convection
d density
dest destroyed
diff diffusion
dl declination
E electrode
elec electric
ex exchange,exit,exergy
f formation,forward
ga gas
gr grid
gen generation in incoming
L limiting lt latitude
mb beam mix mixture
nl normal Ohm Ohmic on ozone
op overpotential
or opencircuit
ox oxidant
prod products
PV photovoltaic
reac reactants
ref. reference
rev reversible
ry Rayleigh
s solar,surface
scs solarconstant
sen sensible
sn sun
T temperature
TV throttlevalve
wr water
zh zenith
ABS absorptioncoolingcycle
AEM anionexchangemembrane
AS ammoniasynthesis
ASR ammoniasynthesisreactor
DAFC directammoniafuelcell
DEFC directethanolfuelcell
DMFC directmethanolfuelcell
DPFC directpropanolfuelcell
COMP compressor
CON condenser
COP coefficientofperformance
Dl dayangle
EES engineeringequationsolver
FC fuelcell
GT gasturbine
HF heliostatfield
HHV higherheatingvalue
HX heatexchanger
KOH potassiumhydroxide
LHV lowerheatingvalue
MCFC moltencarbonatefuelcell
MF molarfraction
MEA membraneelectrodeassembly
MSTR multistageturbine
ORR oxygenreductionreaction
PAFC phosphoricacidfuelcell
PEM protonexchangemembrane
PSA pressureswingadsorption
PTFE polytetrafluoroethylyne
PV photovoltaic
PVA polyvinylalcohol
RC Rankinecycle
RO reverseosmosis
SEP separator
SDC samaria-dopedceria
SOFC solidoxidefuelcell
SRC secondaryRankinecycle
ST solartower
WES waterelectrolysis
YSZ yittria-stabilizedzirconia
Sincetheindustrialrevolution,powergenerationhasbeenplayingavitalrolein theadvancementofanynation,whichhas,therefore,becomeacentralelementof anyeconomythatdrivestheincreaseordecreaseinthenationalproductionlevels. Acontinuousandreliablegenerationofpowerisessentialtoattainasustainableand stableeconomyaswellasindustrialsector.However,theincreaseddependenceon fossilfuelsforpowergenerationintherecentdecadeshasdeterioratedtheenvironmentconsiderably.Thechangeintheglobalprimaryenergydemandssince2010 aredepictedin Fig.1.1.Theenergydemandsincreasedbynearly1.5%inthebeginningofthepreviousdecade.Thisriseindemandshasdecreasedmarginallyinthe beginningofthisdecade.Also,towardthemiddleofthisdecade,theprimaryenergy demandshadincreasedbyacomparativelyloweramount.Nevertheless,since2016 theenergydemandshaverisensharplywheretheriseincreasedfrom0.6%in2016 to2%in2017.Thishasincreasedfurtherto2.9%in2018.Hence,everyyeardue toseveralfactors,suchasindustrialization,urbanizationandmoderndevelopment, thespecificenergydemandstendtoincreasecontinuously.Thechangeintheamount ofincreasehasvariedintherecentpast,however,therehasbeenasteadyincreasein thedemands.Moreover,astheworldswiftlymovestowardatechnology-enriched livelihood,thedemandsforenergyareexpectedtoriserigorously.Theenergy demandsareofparticularinterestduetotheirdirectrelationwithenvironmental impacts.Currently,theglobalenergyproductionheavilyreliesonfossilfuelsand theincreaseinenergydemandswilldirectlyaffecttheusageoffossilsacross theglobe.Thisisattributabletovariousfactors.First,thepowergenerationsector thatprovideselectricitytorunanyindustry,corporateoffice,ortransportation sectorisdependentonfossilfuelsacrosstheglobe.Thisimpliesthatastechnical andinfrastructuraldevelopmentcontinuestoproceed,theusageofcarbon-rich andenvironmentallydetrimentalfuelscontinuestorise.Inaddition,invarious sectorssuchastransportation,thecurrenttechnologyincludestheusageofhydrocarbonfuels,whichhasledtosignificantenvironmentaldetrimentsacrosstheglobe.
Suchalarmingfactshaveledtoseriousconcernsacrosstheglobeandinvarious countriesattentionisbeingpaidtowardreducingthedependenceonaswellasusage offossilfuels.However,inseveralpartsoftheworld,fossilfuel-basedresources comprisethemajorenergysourcesandtheirdependencecouldnotbereduced significantlyuntilrecently. Fig.1.2 depictsthetotalusageofcoal,oil,andnatural gasacrosstheglobesincetheyear2000.Ascanbeobservedfromthefigure,the usageofeachofthesecarbon-richenergyresourceshasincreasedcontinuously. AmmoniaFuelCells. https://doi.org/10.1016/B978-0-12-822825-8.00001-3 # 2020ElsevierInc.Allrightsreserved.
Percentagechangeinglobalenergydemandbasedon2009.
DatafromRef. [1]
FIG.1.2
Globalconsumptionofcoal,naturalgas,andoil.
DatafromRef. [2]
Althoughvariousglobaleffortsandagreementsweremadetoreducefossilusageas wellasassociatedenvironmentalimpacts,theusageofsuchresourceshasincreased steadilyasshowninthefigure.Thisisattributabletovariousfactorssuchas increasedenergydemands.Tomeettheenergydemands,thesereadilyavailable resourcesareutilizedextensivelyacrosstheglobeleadingtoconsiderableenvironmentaldamage.Theusageofcoalincreasedfromnearly2300Mtoein2000tonearly 3800Mtoein2018.Thisdenotesasignificantincreaseof65%,whichshowsthe heavydependenceofvariouscountriesonfossilfuelsacrosstheglobe.Similarly, theglobalusageofnaturalgasincreasedfromapproximately2000Mtoein2000 tonearly3340Mtoein2018.Thisalsosignifiesanincreaseof67%intheusage ofthecarbon-richfossilfuel.Inaddition,oilisalsousedextensivelyinvarious sectorsrangingfromtheindustrialsectortothetransportationsector.Theusage ofoilhasalsoseenasteadyincreaseintherecentyearswhereanincreaseofnearly 25%isobservedfrom2000to2018.Theseareglobalestimatesthatconstitutethe usagebyallcountries.Somecountrieswherefossilfuel-basedenergyresources areasourceofincomeandaidinthedevelopmentoftheeconomy,entailasteady increaseintheproductionaswellasusageofcarbon-richfuels.However,these nationscouldessentiallydirecteffortstowardtheutilizationofcleanandrenewable energyresourceswhereapplicable.Forinstance,somegeographicallocations receivehigh-intensitysolarradiationacrosstheyear.Suchlocationsshouldemploy differenttypesofsolar-basedpowergenerationtechniques.Similarly,somelocationshavehighwindenergypotentialacrosstheyearthatshouldbeharvested.Also, otherrenewableenergyresourcesincludingbiomass,geothermal,andhydropower shouldalsobeconsideredwheretheyaresuitablyapplicable.
Therecentbreakdownofenergyresourceutilizationacrosstheglobeisdepicted in Fig.1.3 wheretheglobalpercentageofenergyresourcesusedforprimaryenergy supplyispresented.Asdepictedinthefigure,majorityoftheenergysupplywas attainedfromcarbon-richresources.Theseincluded27%coal,22%naturalgas, and32%oilresources [3].Thesethreecarbon-richfossilfuelscomprisenearly 80%ofthetotalfossilfuelusage.Thedeploymentofcleanenergyresourcessuch asbiofuels,nuclear,solar,etc.,entailsaminorportionoftheoverallusage.Although, aftercollectiveandcollaborativeefforts,thepercentageusageofcleanfuelshasrisen intherecentyears,thepresentscenariostillentailsaheavydependenceoncarbonrichfossilfuels.Theusageofbiofuelandwasteforpowergenerationhasgained paceandhasbeenimplementedinvariouscountriesacrosstheglobe.Thisentails theproductionofbiofuelsfromwastethatcomprisesusefulfuelssuchasethanol andbiodiesel.Ethanolcanbemadefromseveralplant-basedrawmaterialsthat aregenerallyreferredtoasplantbiomass.Moreover,biogasisanothertypeofbiofuelthatisproducedfromtheanaerobicdigestionoforganicmatter.Rawmaterials includingmanure,sewage,aswellasagriculturalwastecanbedeployedtoproduce biogas.Thiscomprisesmainlymethaneandcarbondioxide.Sincemethanehasa sufficientvalueofcombustionheatthatisemittedwhenburntwithoxygen,itisused asafuelforpowergeneration.AlthoughbiogasalsoentailsCO2 emissionswithits usageasafuel,itisgenerallyconsideredasarenewableenergyresourceowingtothe
DatafromRef. [3]
carboncycle.Inthisprocess,theCO2 emissionsresultingfromthecombustionof biofuelisrecycledthroughitsusagebyplantsduringphotosynthesis.Plantsuse CO2 tosynthesizeglucosethroughthephotosynthesisreactionthatincludesthe productionofglucosefromwaterandcarbondioxideinthepresenceofsunlight. Moreover,nuclearpowerisalsoconsideredtobeenvironmentallybenignbyvarious well-knownorganizationsasitdoesnotresultincarbonemissions.However,there areotherenvironmentalaswellassafetyhazardsassociatedwiththeusageofnuclear powerthathaveraisedconcernsinvariouspartsoftheworld.Inaddition,thenuclear powerplantaccidentsandtragediesresultedindecreasedattentiontowardnuclearbasedpowergeneration.Theseresourcesentailhighcarboncontentandthusresults inconsiderableamountofgreenhousegas(GHG)emissions.
TheCO2 emissionsthatresultedgloballyfromenergy-relatedfossilfuelusagein thepast20yearsfrom1998to2018aredepictedin Fig.1.4.Asdepictedinthefigure, therehasbeenasignificantincreaseintheCO2 emissionsinthepastdecade.In1998, theglobalCO2 emissionfromenergy-relatedfossilfuelutilizationwasrecordedto be23.4Gtonne.Thisincreasedsignificantlyto33.2Gtonnein2018 [4].Thereexists adirectrelationbetweentheusageoffossilfuelsforenergy-associatedactivitiesand theincreaseintheCO2 emissions,whichhavebeenidentifiedtoincreasetheglobal warmingphenomenon.Ascanbeobservedfromthefigure,thereisatrendofexponentialriseinCO2 emissionswheretherateofincreaseinemissionswithtimeis risingcontinuously.Everyyeartherateofchangerisesbyaspecificamountand theimportanceofreducingtheseemissionsisevidentfromsuchobservations. TheexponentialriseinCO2 emissionscanbelinkedtotheincreasedusageoffossil
FIG.1.3 Percentageofresourcesutilizedforprimaryenergysupplyglobally.FIG.1.4
Globalcarbondioxideemissionsarisingfromfossilfuelusageforenergy-relatedactivities whichisalsocorrelatedinanexponentialform.
DatafromRef. [4]
fuelsaspresentedearlier.TheriseinCO2 emissionsisparticularlyalarmingowingto thegreenhouseeffectthatitentails.SolarradiationenteringtheEarth’satmosphere isreflectedbyvariousobjectsandistrappedwithintheatmosphereduetothe presenceofGHGssuchasCO2.Thetrappedsolarradiationleadstothetrapping ofthermalenergywithintheatmosphereoftheEarth.Thishasbeenfoundtodisturb theglobaltemperatureswhereanincreaseintheaveragetemperatureshasbeen evidentlyprovenintherecentyears.Thiscanhavevariousdetrimentaleffectson theecosystemwheretheiceglacierscanstartmeltingatalarmingratesleadingto ariseinsealevels.Whensealevelsrise,variousdangersareposedtowardcountries situatedneartheoceansandothermajorwaterbodies.Inadditiontothis,theweather cyclesandassociatedcoldaswellashotclimatetemperaturescanalsobeaffectedby globalwarmingphenomenon.Theglobalwarmingphenomenonhasraisedmajor concernsaboutthesustainabilityandstabilityoftheecosystemaswellasthefuture generationstocome.Hence,therehavebeenglobalconcerns,efforts,andinitiatives directedtowardobtainingasolutiontothisincreasedfossilfueldependenceandthe associatedenvironmentallyharmfulemissions.Apartfromcarbon-basedemissions, combustionoffossilfuelsalsoresultsintheemissionofnitrogenoxides(NOx)and sulfuroxides(SOx).Theseemissionshavebeenproventobedetrimentaltoboth humanhealthandtheenvironment.
Owingtothesemajorconcernsassociatedwithfossilfuelusage,moreenvironmentallybenignenergyproductiontechnologies,systems,anddevicesarebeing lookedintowiththeobjectiveofreducingthecurrentenvironmentalburden.Primary effortsintherecentpastweredirectedtowardsolar,wind,andotherenvironmentally benignpowergenerationmethods.However,theintermittencyoftheseenergy resourceshashinderedtheirwidespreadusage.Bothsolar-andwind-basedpower plantsentailthedisadvantageofnothavingareliableandcontinuouslystable inputsourceofenergy.Solarpowerplantsrequiresufficientsolarradiationinput tooperateandthisdependsheavilyontheweatherconditionsinthespecificarea wherethepowerplantissituated.Specifically,forsolarthermalpowerplants(solar heliostat,parabolictrough,etc.),theavailabilityofsufficientincomingsolarradiationisnecessarytoheattheworkingfluidtothetemperaturesrequiredforoperating theplant.Inadditiontothis,aftersunsetthesolar-basedpowerplantscanonlyrely ontheexcessenergystoredduringtheday.Theconventionalenergystoragemethods includingthermalenergystorageandbatteriesarecapableofprovidingtherequired powerforonlyalimitednumberofhours.Moreover,windturbine-basedpower plantsarealsohinderedbytheintermittencyofwindflowandvelocities.Attimes, high-velocitywindsoccurthataresufficienttomeetahighamountofload.Nevertheless,considerablefluctuationsoccurinwindvelocitiesthatmakeitdifficultto predictthetotalpoweroutputsofagivenwindturbinepowerplant.Also,thewind velocitiesattimescanbemuchlowerthantheminimumvelocitiesrequiredtooperatethewindturbines.Furthermore,otherrenewablesourcesofenergysuchashydroandgeothermalpowerplantsarelimitedbygeographicallocations.Areaswithhigh headwaterreservoirsorhighflowriversaresuitableforhydropowerplants,whereas areasthataredeprivedofthesecommoditiescannotentailthispowergeneration methodologysatisfactorily.Furthermore,geothermalplantsarealsolimitedby geographicalconstraints.Locationswheregeothermalfluidisreadilyavailable andgeothermalwellscanbebuiltaresuitedforsuchpowerplants.However,such resourcesarenotreadilyavailableatalllocationsacrosstheworld.Hence,fuelcells areconsideredpromisingcandidatesthatcanplayavitalroleintherealizationof anenvironmentallybenignenergyproductioninfrastructurewheretheutilization ofhydrogenorhydrogenentailingfuelsprovideahigh-efficiencymethodfor producingenergywithoutharmfulemissions.Inaddition,consideringthetransportationsector,therehasbeenasignificantriseintheGHGemissionsarisingfromthe useoffuelsfortransportation. Fig.1.5 depictsthecomparisonoftheCO2 emissions arisingfromcoal,oil,andnaturalgasgloballyin1990and2017.Thetotalemissions wereestimatedtoincreasefrom20.5GtonnesCO2 in1990to32.6GtonnesCO2 in 2017 [5].Thissignifiesanincreaseofnearly60%duringthistimeperiod.TheCO2 emissionsarisingfromcoalusageincreasedfromnearly8.3Gtonnesin1990to 14.5Gtonnesin2017,whichalsoconstitutesanincreaseofnearly60%.TheCO2 emissionsaredirectlylinkedtotheamountofusageofcarbon-richcoalenergy resourcesandthisincreaseshowsthattheirusagehasrisenconsiderablyintherecent decadesandthecorrespondingenvironmentalimpactshavealsoincreased. Similarly,theCO2 emissionsarisingfromtheusageofnaturalgasincreasedfrom
DatafromRef. [5].
3.4Gtonnesin1990to6.7Gtonnesin2017.Thisindicatesanincreaseofnearly 100%intheCO2 emissionsresultingfromnaturalgasusage.Thiscanbeattributed totheincreaseintheimplementationofnaturalgas-basedindustrialdevelopments. Also,thetotalriseinCO2 emissionsintherecentdecadecanbeattributedtothe increasedusageoffossilfuelvehiclesalongwithindustrializationduringtheseyears. Hence,severaleffortshavebeenexertedonthedevelopmentofenvironmentally benignvehiclesthatarefueledbycleanfuelssuchashydrogenorammoniaoroperateviabatterypower.
Cleantransportationcanplayakeyroleindecreasingtheenvironmentalimpacts thatarebeingcausedduetotheusageoffossils.Insomecitiesaroundtheworld, transportationsectorhasbeenidentifiedasthemajorcontributortowardtheworseningoftheairqualityindex.Theemissionsarisingfromautomobiletailpipes includeseveraltypesofharmfulcompoundsthatharmboththeenvironmentaswell ashumanhealth.Forinstance,carbonmonoxideisknowntobedetrimentaltohuman healthwhereitcombineswiththehemoglobininthebloodtoformpermanent compoundsthatcanhaveadverseeffectsonhumanhealth.Also,particulatematter emissionsthatareemittedfromtheusageofdifferenttypesoffossilfuelsare alsoharmfulforlungsandhavebeenidentifiedasoneofthereasonsforrespiratory diseases.Insomecountries,suchdetrimentaltailpipeemissionshaveforcedtheresidentstowearpollutionmaskswhileoutside.Moreover,theformationofsmogis anotherharmfulenvironmentaldetrimentthatiscausedduetotheincreasedusage offossilfuels.Whenexcessivesmokeisreleasedintotheatmosphereinthepresence offog,aharmfulmixtureisformedintheatmospherewhichisknownassmog. Thiscomprisesseveraltypesofharmfulcompoundsthatcanalsoleadtovarious respiratorydiseases.
FIG.1.5 Comparisonofcarbondioxideemissionsarisingfromdifferentenergyresourcesin1990 and2017.Hence,theutilizationofautomobilesoperatingwithenvironmentallybenign fuelsisessentialforenvironmentalsustainability.Fuelcellvehiclesthathavebeen developedintherecentpastprimarilyincludetheutilizationofhydrogenfuelthatis passedthroughaprotonexchangemembrane(PEM)fuelcell,whichgeneratesthe requiredpowerneededbythevehicle.Thecentraladvantageofthesevehiclesliesin thefactthatwhenhydrogenisusedasthefuel,water(H2O)istheonlyoutputemission.Thusprovidingacleanmethodforpoweringvehicleswherenocarbonentailing emissionsarise.Also,PEMfuelcellsentailhigherefficienciesthanconventional enginesasdiscussedintheproceedingsections.Thisisalsoanadvantagethatis associatedwiththeusageoffuelcellvehicles.Intherecentpast,severalnewfuel cell-basedvehicleswereintroduced.TheHyundaiNexo,HondaClarity,Toyota Mirai,F-CellMercedes-Benzareafewexamplesoffuelcellcarsdevelopedby automotivecompaniesintherecentpast.Inadditiontothis,variouslocomotives andtrainspoweredbyfuelcellshavealsobeendevelopedintherecentyears. TheAlstomCoradiaiLintisoneofthelatestcommerciallyoperatedpassengertrain poweredbyfuelcelltechnology.Severalotherprototypetrains,locomotivesaswell asbuseswereintroducedrecentlyacrosstheglobe [6].Althougheffortsarebeing directedtowardthedevelopmentofhydrogen-basedenergyproductionforvarious sectors,severalchallengeshindertheflourishmentofthistechnology.Thehighflammabilityofhydrogenassociatesitwithahighsafetyriskwhiletransportationas wellasstorage.Further,thelowvolumetricdensityofhydrogengasnecessitates compressiontohighpressurestoattainanappropriatestoragevolume.Moreover, entailinganodorlesscharacteristic,hydrogenisnoteasytodetectwithoutproper hydrogensensors.Thus,increasingthesafetyconcernsowingtothehighflammabilityriskincaseofanyleakages.Owingtosuchchallenges,otherhydrogen-based fuelshavebeeninvestigatedforfuelcellapplications.Ammoniaisapromising hydrogen-basedfuelthatentailsthesolutionstothesechallengesbyhavingalow flammabilityrange,higherdensity,higherboilingpoint,andeasilydetectablesmell. Thus,ammoniahasbeeninvestigatedasafuelforvariouspowergenerationmethods includingfuelcells,internalcombustionenginesaswellasammoniagasturbines.
Thehistoryofutilizationofenergyresourcesisknowntohavebegunfromwoodasa sourceforobtainingthermalenergy.Intheearliertimes,woodwasburntthrough sparksemittedfromtherubbingofstones.Thethermalenergyobtainedfromthis processwasusedforvariouspurposes.Anestimatedtimelinedepictingtheevolution ofdominantandprevalentenergyresourcesfromwoodtofuelswithlowercarbon tohydrogenratiosisdepictedin Fig.1.6.Untilthemid-1700,theusageofwood asanenergyresourcewascommonthatdecreasedconsiderablyintheupcoming years.Throughtheexplorationofcoalasaneffectivefueltogeneratethermal energy,itsusagegainedextensivepopularity,especiallyintheindustrialrevolution. Specifically,incountrieswhereconsiderablecoalreserveswerefound,itwas
FIG.1.6
Evolutionofdominantenergyresourcesduringdifferenttimesdepictingthechangetoward lowcarbontohydrogenratiofuels.
adoptedastheprimarysourceofenergyproductionacrossthenation.Inaddition, whencoalpoweredlocomotiveswereintroduced,theusageofcoalincreasedextensivelyinmajorpartsoftheworld.Eventoday,somecountrieshavingmassivecoal reservesrelyonthecarbonintensivefuelforenergyproduction.Next,theadventof oilreservesoccurredwherecountrieswithsignificantamountofoilresourceswere observedtoflourishmassively.Infewyears,theusagehydrocarbongasessuchas naturalgas,propane,etc.,becameincreasinglycommoninvariouscountriesowing tothediscoveryofnewgasreserves.Also,theusageofgasolinepoweredcarsand automobilesbecameaglobalcommoditywheretransportationbecameheavily dependentonfossilfuels.Nearlyallmodesoftransportationincludingroad,air, andwatertransportmediumsweremanufacturedtooperatewithhydrocarbonfuels. Although,theevolutionofenergyresourceswasdependentonnumerousreasons, situations,andconditions,ageneraltrendofdecreasingcarbontohydrogenratios canbeobserved.Intherecentyears,whentheusageofhydrogenasafuelgained pace,thistrendfurthercontinuedtowardlowerandlowerusageofcarbon-based fuels.Entailingzerocarboncontent,hydrogenfuelisconsideredasapromising alternativetofossilfuelsthatcanovercomethemassiveenvironmentaldetriments, whichtheusageoffossilshavecausedintherecentpast.Theprimaryusageofhydrogenasafuelcomprisesusingelectrochemicaldevicesreferredtoasfuelcells.
Fuelcellsworkontheprincipleofthegenerationofelectricalenergyasa consequenceofaseriesofelectrochemicalreactions.Thisphenomenoncanbefound invariousaquaticanimalsincludingtheeel,torpedoray,etc.,thatareknownto generatevoltagesofnearly300V [7].Theprincipleofutilizingfuelcellsfor electricitygenerationbyprovidingthenecessaryelectrolytes,ions,andelectrodes isgenerallyattributedtoSirWilliamGrove,whohadestablishedtheworking principlesatisfactorilyin1839.
Nevertheless,theelectrochemicalprinciplesassociatedwiththeinteractionof dissimilarmetalsproducingelectricalsignalswereintroducedbySirLuigiGalvani, SirHumphreyDavy,andSirAlessandroVoltaintheearly19thcentury.Thesetypes ofelectrochemicalcellswerenamedthegalvanicandvoltaiccells.TheelectrochemicalcelldevelopedbySirHumphreyDavyutilizedtheinteractionbetweenoxygen obtainedvianitricacidandcarbonatoms.Thiscellwasparticularlyinterestinginthe sensethatitcouldproduceelectricalenergyviaconsumptionofcarbonentailing coal.However,thepracticalityrequiredforusefulapplicationswasnotachieved throughthismethodology.Nevertheless,theseembodimentsprovidedtheinitiative fordevelopingnewtypesofdirectcoalfuelcells,whichentailedtheworkingprincipleofusingcoal(readilyavailablefuelatthattime)toproduceelectricalenergy directlywithouttheusageofanintermediateheatengine.Moreover,theterm“fuel cell”isreportedtobecoinedbyMondandLanger [8].Sincethesetimes,several effortsweredirectedtowardproposing,developing,andinvestigatingdifferenttypes offuelcells.Considerableprogresswasachievedascomparedtotheinitialdevelopments.Theseprogressiveeffortswerenotcontinuousthroughouttimeandspans existedwherepeoplelosttheirinterestinfuelcelltechnologies.Thefirsttimeperiod whereincreasedinterestandeffortsexistedisgenerallystatedbetween1839and 1890.Duringthisperiod,theinitialdevelopmentoffuelcellsaswellastheintroductionofelectricitykeptthekeennessaliveinfuelcelltechnology.Specifically,owing totheuseoflow-efficiencysteamenginesatthosetimes,fuelcellswereconsidered promisingtechnologiesthatcanaidinutilizingcoaldirectlyforpowergenerationin amoreefficientway.Efficienciesofmorethan50%wereexpectedthroughthecoalbasedfuelcelltechnologies.However,afterseveralefforts,thisideawasabandoned consideringittobeimpracticalforusefulapplications.
Thenexttimespanafter1890swheretherewasconsiderableprogressinfuelcell inventionsexistedbetween1950and1960s.Significanteffortstowardresearchand theinventionofnewandbetterfuelcelltechnologiesstartedafterthesuccessful operationofthealkalinetypefuelcelltechnology.Theseweresatisfactorilyutilized inspacecraftapplications.TheApolloaswellasGeminiprogramsdevelopedbythe UnitedStatesraisedpositiveexpectationstowardthedevelopmentofmoreeconomicallyviableandtechnologicallypracticalfuelcellenergysystems.Furthermore, duringthisperiodseveralprivateaswellaspublicinitiativesandinvestmentswere madeinfuelcelldevelopment.Manytypesoffuelcellspopularlyknowntoday werestudiedandtheiradvancementwasinitiatedduringthisera.Theseinclude thepopularPEMfuelcell,solidoxidefuelcell(SOFC),moltencarbonatefuelcell (MCFC),andphosphoricacidfuelcell.Moreover,duringthiserathefuelcellswere differentiatedonthebasisoftheelectrolytemobility.Thealkalinefuelcells, forinstance,entailedelectrolytesthatcouldflowreadily,however,theSOFCwere associatedwithsolidelectrolytes.Thechoiceofelectrolytewasdependentonthe applicationandusage.Theinitiativesundertakenduringthiseracouldnotmeet theirexpectedoutcomesandobjectivesforfuelcelldevelopmentandapplication. Thisagainledtoalaybackinthedevelopmentofviablefuelcelltechnologies andtheinterestswerewithdrawnowingtotheunfavorableoutcomes.Nevertheless,
theerafilledwithconcernsregardingenvironmentalsustainabilityledtotherevival ofthedevelopmentoffuelcelltechnologies.Sinceearly1980s,continuousefforts havebeenexertedtowardreducingtheenvironmentalburdencausedduetothe colossalusageoffossilfuels.Further,thehumanhealthdetrimentscausedby theharmfulemissionsarisingfromfossilfuelusageaswellasdepletingfossil fuelreservesmadetheinvestigationanddevelopmentofnewenvironmentally benignenergyresourcesinevitable.Severaltypesoffuelcellsweredevelopedfor commercialapplicationsincludingPEM,AFC,SOFC,andMCFCintheseyears. Also,thefuelcelldevelopmentinthiserafocusedprimarilyonhydrogenfuel. However,severalchallengeshinderingtheflourishmentofhydrogenfuelincluding highflammability,lowvolumetricdensity,andsafetyandeconomicdisadvantages fortransportationandstoragehaveledtoincreasedeffortsinthedevelopmentof alternativefuels.Thedetaileddiscussionaboutthechallengesfacedbyhydrogenthat hinderitscurrentwidespreadusagearediscussedinthisbook.Owingtothosereasons,ammoniahasbeenidentifiedasacarbon-freefuelthatcanalsobeutilizedfor cleanpowerproductionanditentailsseveraladvantageouspropertiesandcharacteristics.Severaltypesofammonia-basedpowergenerationtechniquesexist.Energy canbeobtainedfromammoniafuelthroughconventionalenginesincluding compressionorsparkignitionsystems.Nevertheless,thecompressionratiosrequired forammoniacombustionaredifferentfromdieselfuel.Further,duetospecific flammabilitylimitsofammonia,ithastobeoftenblendedwithdifferentcombustion promotersthatcompriseconventionalfuels.Moreover,ammoniagasturbinescan alsobeemployedforpowergenerationwherethegas-basedpowergeneration cyclecomprisingcompression,combustion,andexpansionprocessescanbeimplemented.Inammoniagasturbines,ammoniafuelisusedinsteadoftheconventional gasturbinesthatarefueledwithnaturalgasasthefuel.Moreover,asammonia isusedinthermalenginesthroughtheprocessofcombustion,itcanalsobeused inelectrochemicalenginescomposedofdifferenttypesoffuelcelltechnologies whereelectrochemicalreactionofammoniaandoxygenoccurs.Thisistheprimary focusofthisbook.In1960,Cairnsetal. [9] studiedthepossibilityofutilizingammoniaforgeneratingelectricalenergyviafuelcells.Theyutilizedapotassiumhydroxideelectrolyte,thusconstitutinganalkalinefuelcelltype.Sincethen,several researchersandscientistshaveexertedeffortsonthedevelopmentofammonia-based fuelcellsforpowergenerationthataredescribedcomprehensivelyintheproceeding chapters.
Inthisbook,first,theunderlyingfundamentalsoffuelcelltechnologiesare describedindetailastheyprovidetheb ackgroundinformationneededtounderstandtheworkingmethodologyofdifferenttypesofammoniafuelcells.The necessarycomponentsrequiredtoconstituteafuelcel ldevicearedescribedand thephysicalaswellaschemicalphenomenaoccurringateachofthesecomponents arediscussed.Further,theclassificationoffuelcellsaccordingtodifferentclassificationcategoriesisdescribedwheret hecategorizationaccordingtothetype ofelectrolytes,fuel,andoperatingconditionsispresented.Next,thebookcovers differenttypesoffuelsthathavebeeni nvestigatedforfuelcellapplications.
Theserangefromhydrogenasthemostc ommonlyemployedfueltodifferent typesofalcoholsaswellasalkanes.Ammoniaasapromisingfuelisthendescribed comprehensivelypresentingvariousadvantagesandfavorablepropertiesitentails. Further,ammoniafuelcellsarecovered comprehensivelywheredevelopmentof differenttypesofammoniafuelcellsaredescribed.Theperformanceofeachtype ofammoniafuelcellhasbeenlinkedtothetypeofelectrolyte,electrochemical catalyst,andelectrodesused.Ammoniafueledhigh-temperatureSOFCswith bothproton-conductingandanion-conductingelectrolytesisdiscussed.Also, low-temperaturedirectammoniaalkalinefuelcellsarecoveredindepth.The development,materials,operation,andsystemconditionsoftheseammoniafuel cellsarepresented.Moreover,theanalysisandmodelingoffuelcellsispresented withaspecificfocusonelectrochemicalinteractionof ammoniamolecules thatoccursindirectammoniafuelcells.Theperformanceofthesedifferent typesofammoniafuelcellsis alsodiscussed.Severalnewintegratedammoniafuel cell-basedsystemsthathavebeendevelopedintherecentpastarepresentedand theirperformancesareassessedthroughoverallenergyandexergyefficiencies. Lastly,novelammoniafuelcell-basedtechnologiesarepresentedascasestudies andtheirperformancesareinvestigatedatvaryingoperatingconditionsand systemparameters.Thebookcloseswith severalrecommendationsforfuture developmentofammoniafuelcellsidentifyingthekeychallengesfacedbythese technologies.
Inthischapter,theimportanceofreducingthedependencyonfossilfuel-based energyproductionishighlighted.Therisingenergydemandsacrosstheglobeare shownthroughrecentstatisticscovering.Furthermore,thecorrespondingrisein CO2 emissionsisexplainedshowingthetrendintheexponentialriseintheseemissionsintherecentyears.Also,acomparisonofCO2 emissionsfromcarbon-richcoal, naturalgas,oil,andbiomassenergyresourcesismadecomparingrecentemission datawithrecentdecades.Thestatisticsarealarmingandshowthatimmediateattentionisneededtowardthereductionoffossilfuelusageandriseofrenewableenergy utilization.Moreover,ahistoricalperspectiveofenergyresourcesispresentedshowingthetrendtowardtheutilizationoflowcarboncontentenergyresources,wherethe initialusageofwoodasanenergyfuelwasreplacedwithcoalwhencoalminingwas introduced.Further,theadventofnaturalgasenergyreservesledtotheshifttoward naturalgas-basedpowergenerationinvariouspartsoftheworld.Further,afteroil wasintroducedalongwithitsvariousby-productsforutilizationinvariousindustries,itsusagegainedmomentum.Next,theincreasedattentiontowardlow-carbon fuelsledtotheusageofcarbon-freehydrogenfuelinrecentyears.Thehistorical backgroundoffuelcelltechnologiesisalsopresentedprovidinganoverviewof thetechnologicaldevelopmentandadvancementsthatoccurredsincethe19th century.
Inthischapter,thefundamentalsoffuelcellsarepresentedandcomprehensively elucidated.Theconceptofhydrogeneconomyisfirstdiscussedfollowedbythe underlyingoperatingphenomenaoffuelcells.Thesimilitudeoffuelcellstoother electrochemicaldevicesispresentedandtheessentialcomponentsconstitutinga fuelcelldevicearedescribed.Furthermore,thechemicalandphysicalphenomena thatoccurwithinafuelcellduringtheelectrochemicalinteractionsareexplained. Theclassificationofdifferenttypesoffuelcellsaccordingtothetypeofelectrolyte, electrode,operatingtemperature,etc.,isalsopresented.
Thehydrogeneconomyentailstheconceptofutilizinghydrogenastheprimefuelfor variousapplications.Someoftheseapplicationsincludeelectricitygeneration,transportation,metalrefining,fertilizerproduction,syntheticfuelproduction,etc.The ecosystembasedonhydrogencomprisescleanelectricitygenerationfromsolar, wind,ornuclearpower.Theelectricityproducedfromsuchenvironmentallybenign energyresourcesissuppliedtothegridandtheexcessenergyavailableintheformof solarorwindenergyisstoredintheformofhydrogen.Hydrogenissynthesizedvia waterelectrolysisthatdoesnotentailcarbonemissions,whichareassociatedwith steammethanereforming-basedhydrogenproduction.Thehydrogensynthesized fromthesecleanenergyresourcesisusedasafueltopowerautomobilesaswell asothertransportationvehicles.Further,theproducedhydrogenisalsousedtosynthesizesyntheticfuelssuchasammonia.Also,otherapplicationsincludeindustrial usagesuchasrefiningofmetals.Inadditiontothis,duringperiodsoflowenergy availability,theproducedhydrogencanbeusedasafueltogenerateelectricity throughtheusageoffuelcells.Moreover,toutilizehydrogenasafuelintransportationvehicles,fuelcelltechnologiesarerequired.Hence,fuelcellsentailhigh significanceinthehydrogeneconomy.Fuelcellsentailsomeresemblancetobatteries.Consideranon-rechargeablebatteryasdepictedin Fig.2.1.Insuchchemicalto electricalenergyconversiondevices,thereactantfuelaswellastherequiredreactant oxidantsarestoredwithinanenclosedcontainment.Owingtothisprinciple,they aresometimesknownasonboardstoragedevices.Batteriesarethusenergystorage devicessuchthattheystorechemicalenergyintheformofthefuelandoxidants.
FIG.2.1
Schematicrepresentationofabatterywithenclosedreactantfuelandoxidant.
Whenelectricalenergygenerationisrequired,thisstoredchemicalenergyis convertedintoelectricalenergyviaelectrochemicalinteractionsbetweenthestored reactantfuelandtheoxidants.Hence,eachbatteryhasaspecificamountofoutput electricalenergythatitcansupply.Thisamountisdirectlydependentontheamount ofreactantfuelandoxidantentailedintheenclosedbatterycontainment.Inthecase ofanon-rechargeablebattery,themaximumoutputelectricalenergyisthuslimited bytheenclosedreactantamount.Oncetheycompletelyreactwitheachother,no morechemicalenergytoelectricalenergyconversionispossible.Thelifespanof abatterypowerreserveisthuslimited,accordingtothechemicalreactantssatisfactorilyenclosed.Inadditiontothis,asallthereactantsrequiredfortheelectrochemicalconversionareenclosedtogether,theelectrochemicalinteractionsbegineven beforepowerisextractedfromthebatteryforusefulpurposes.Althoughthese interactionsoccurataslowrate,ifbatteriesareunusedforlongperiodsoftime,these interactionsmaycausealargelossofusefuloutputpotential.Thisisanotherlimitationofstoringenergyintheformofbatteries.Furthermore,theelectrodeemployed inabatterydeviceisalsoconsumedduringtheelectrochemicalconversion.Itis thussometimesstatedthatthebatterylifetimeisafunctionoftheelectrodelifetime. Thehighertheelectrodelifetime,thelongerwillbethelifetimeofthebatteryunit.
However,afuelcell(so-called:anelectrochemicaldevice)differsfromabattery primarilywiththeprinciplethatthereactantfuelaswellasoxidantarenotstored withinthecellandarecontinuouslysuppliedfromanexternalsourceorfuelreservoir.Asimplifiedschematicrepresentationofthisisdepictedin Fig.2.2.Afuel reservoirthatexistsoutsidethefuelcellstoresthefuelandsuppliesaccordingto therequiredpoweroutputneededfromthecell.Also,theoxidantneededfortheelectrochemicalreactionisobtainedexternallyusuallyfromambientairoranoxygen reservoirifnecessary.Moreover,astheelectrochemicalinteractionstakeplace betweenthefuelandtheoxidant,thereactionproductisformedonanelectrode thatneedstobeextractedfromthecellcontinuously.Also,theexothermicreactions produceheat,whichalsoneedstobeextractedfromthefuelcelltopreventoverheatingofthecellthatcandeterioratetheperformancessignificantly.Therefore,unlike
batterysystems,fuelcellscanoperatecontinuouslyaslongastheyreceivethefuel andoxidantinputs.Incomparison,batterysystemscanonlyoperateinconjunction withthereactantamountenclosedwithinthecontainment.Duetothis,fuelcellsare consideredindependentoflifetimespansasfarasthefuelisconcerned.Theycan operatecontinuouslyaslongasafuelinputfeedisprovided.However,other fuelcellcomponentsincludingthecatalystlayers,membranes,electrodes,etc.,have lifetimes,whicharesufficientlylongascomparedtoabatterysystem.Moreover,as thefuelcelldoesnotstorethereactants,thereisnolossofenergyinthecaseof non-utilizationofthedeviceforlongperiodsasforthecaseofbatteries.Infuelcell systems,thefuelissafelystoredincylindersorcontainersthatdonotallowany chemicalinteractionbetweenthefuelandanyotherexternalchemicalcompound. Thefuelisdirectlypassedfromthestoragetankstothefuelcelldevice.Also,the electrodesinfuelcelldevicesdonotgenerallyparticipateintheelectrochemical reactionsandarethusnotconsumedduringtheprocess.Thisisnotthecasefor batterysystems,whereelectrodesplayakeyroleintheelectrochemicalreactions occurringwithinthecell.
Nevertheless,thereareseveralsimilaritiesbetweenfuelcellsandbatteries.First, bothentailtheprincipleofconvertingchemicalenergydirectlyintoelectrical energy.Furthermore,bothutilizeelectrochemicalinteractionsforproducingelectricalenergy.Hence,bothareelectrochemicalenergyconversiondevices.Also,both
FIG.2.2entailtheusageofelectrolytesandelectrodes(anodesandcathodes).Theterm“battery,”however,canbeassociatedtoSirBenjaminFranklin,whohasutilizedthis termtodescribeacollectionofcapacitorsthatwerealsoknownasLeydenjars.
Asdiscussedearlier,fuelcellsandheatengine-basedelectricalgeneratorsalso entailsimilaritiesintheir overallenergyconversionprinciples.Bothutilizethe inherentchemicalenergyoffueltogenerateelectricalenergy.However,inaheat engine-basedelectricitygenerationsyste m,thechemicalenergyoftheinputfuelis firstlyconvertedintothermalenergy.Th einputfueliscombustedinthepresence ofanoxidantandtheresultingcombustionchemicalreactiongeneratesheatowing toitsexothermicnature.Theheatorthermalenergythatisgeneratedisthen utilizedfurthertoproducemechanicalenergy.Theresultingmechanicalenergy isfurtherutilizedtogenerateelectricalene rgyviaanelectricgeneratorthatentails currentcarryingcoilsandthusmagneticflux,whichgenerateselectricalenergyin thepresenceofrotationalkineticormechanicalenergyoftheshaft.Thus,aheat engine-basedelectricityge nerationmethodentailsaser iesofenergyconversion stepsthatstartwiththeconversionofchemicalenergyentailedinafuelinto thermalenergy,whichisfurtherconvertedintomechanicalenergythatis convertedfinallyintoelectricalenergy. Asimpleschematicrepresentationofheat engineisdepictedin Fig.2.3.Mostimportantly,everyenergyconversionstep involveslossesaseachtypeofenergyconversionincludesirreversibilitiesand exergydestructions.Notallthechemicalenergyentailedinthereactantscanbe convertedintothermalenergyandnotallthethermalenergyproducedbyfuel combustioncanbeconvertedintomechanicalenergy.Furthermore,themechanical energyoftherotatingshaftcannotbecompletelyconvertedintoelectricalenergy. Ontheotherhand,afuelcellentailsdirectconversionofchemicalenergyinto electricalenergy,whichallowstheavoidingofseveralenergyconversionsteps andthusresultinginhigherenergyefficiencies.Inaddition,heatengine-based electricalenergygenerationincludesthelimitsposedbytheCarnotefficiency. SincenopracticalheatenginecanhaveanefficiencyofmorethantheCarnot engine,theCarnotefficiencythatdependsonthehighandlowtemperaturesin thesystemdefineanupperlimitforthe efficiencyforanygivenheatengine. Thehightemperatureoftheheatenginesy stemthatdirectlyaffectstheCarnot efficiencyisafunctionofthefuelcombustionreactionandthusisalsolimited. Theselimitationscanbeduetoseveralfactorssuchastheheatlosses,heatabsorptionsbysideprocessesandreactionsaswellasconversionratios.Also,heat enginesneedtobeequippedwithseveralmovingpartsandcomponents.These partsalwaysinvolvefrictionallosses aswellasperformancedegradationwith timeduetowear.Thesefactorsalsocontributetodecreaseintheefficiencies. Inadditiontoefficiencylimitations,heatenginesarealsoassociatedwithenvironmentaldetrimentsthathaveraisedmajorconcernsacrosstheglobeintherecent
past.Conventionalelectricitygenerationpowerplants involvetheusageofheat engines,whicharemainlypoweredbyfossilfuelresourcessuchascoalornatural gasatpresent.Whensuchfossilfuelresourcesareutilized,theyresultinlarge amountsofGHGemissionsaswellasotherharmfulemissionsthataredetrimental toboththeenvironmentandthehumanhealth.
Consideringtheabove-discussedissues,fuelcellsareseemedtobepromising electricitygenerationdevicesascomparedtoheatengines.Thisisduetothe possibilityofgeneratingelectricalener gyatahigherefficiencythanaheatengine. Also,theenergyconversionisasinglestepprocessratherthanseveralconversion stepsasinthecaseofaheatengineandthusinvolvedloweramountofirreversibilitiesandlosses.Further,unlikeheatengines,fuelcellsdonotincludeseveral movingpartsthatinvolveregulardeteri orationandthusrequiremaintenance, resultinginlowermaintenancecosts.Nevertheless,fuelcellsarealsolimitedby severalfactors.Theseincludedeteriorationofcatalystlayers,thecatalystlayers thataredevelopedtoaidintheelectrochemicalreactionalsodegradewithtime. Thetimefordegradationdependsonthetypeofcatalysts,membranes,andfuels utilized.Also,othercomponentsincluding electrodesandgasdi ffusionlayerscan alsogetdamagedovertime.
FIG.2.3Agivenfuelcelldevicecomprisesthreeessentialbuildingblocksthatarenecessary fortheoperationofelectrochemicalinteractions.First,theanodeorthefuelelectrode wherethefuelisinputtothecellandtheanodicelectrochemicalreactionsoccur inthepresenceofcatalysts.Second,thecathodeortheoxidantelectrodewhere theoxidantreactantsareinputtothecellandtheyreactelectrochemicallyaccording tothecathodicelectrochemicalreactionsofthecell.Third,theelectrolytethatisgenerallysituatedbetweentheanodeandcathode.Theelectrolyteisalsoakeycomponentnecessaryforthetransferofionswithinthecell.Aschematicrepresentation ofthesefuelcellcomponentsandthecorrespondingfunctionsforaprotonexchange membrane(PEM)hydrogenfuelcellaredepictedin Fig.2.4.Asdepictedinthe figure,thefuel,thatis,hydrogeninthiscaseentersattheanodesideofthecell. Theanodeorthefuelelectrodeallowsthepassageofhydrogengastoreachthe catalystlayerswheretheyreactelectrochemicallyandemitelectrons.
Theanodicelectrochemicalreactioninthiscasecanberepresentedas
Theelectronsemittedasaresultofthishalf-cellelectrochemicalreactiongeneratethe currentinthecircuitthatcanincludeanexternalloadthroughwhichelectronflowis generated.Astheanodicelectrochemicalreactionkeepsemittingelectrons,thecorrespondingcathodicreactionassociatedwithacceptingelectronsisdenotedby
wherethepositivelychargedH+ ionsaretransferredtothecathodicsideofthecell throughthemembraneelectrolyte.InPEMfuelcells,theelectrolytecomprisesa membranethatallowsthepassageofpositivelychargedH+ ions,whichareoften referredtoasprotons.Theoxygenneededatthecathodetocompletethecathodic electrochemicalreactionissuppliedfromanexternalsource.Ifambientairisutilized astheoxygensource,italsoentailsnitrogenthatexitsthecathodiccompartment unreacted.Ascanbeobservedfromthecathodicreaction,thefinalproductof theoverallreactioniswater(H2O).Thus,theseriesofion,electron,andmasstransfer stepskeepproducingelectricalenergythatcanbeutilizedforusefulpurposes. Theoverallreactionforahydrogenfuelcellisexpressedas
H2 + 1 2 O2 ! H2 O (2.3)
Inhydrogenfuelcells,aswaterisformedcontinuouslyatthecathode,itneedstobe removedfromthecellsastheaccumulationofwatercausesfloodinginthecell.High accumulationofwatermoleculeshindersthemasstransportandthusaffectsthe overallelectrochemicalactivity.Inaddition,theoverallreactionbeingexothermic resultsinthegenerationofheat.Hence,continuousheatremovalfromthefuelcell isnecessarytopreventdamageofcellcomponents.
Theworkingprinciplesofammoniafuelcellsaresimilartohydrogenfuelcells entailingelectrodereactionsaswellasmembraneelectrolytes.However,alkaline electrolyte-basedammoniafuelcellsentailseveraldifferencesascomparedto hydrogenfueledPEMfuelcells.Aschematicrepresentationofanalkaline electrolyte-baseddirectammoniafuelcells(DAFCs)isshownin Fig.2.5 illustrating thereactantsandproductsatboththeanodeandthecathode. FIG.2.5
ThefuelinputfeedinaDAFCcomprisesadirectinletofammonia(NH3).In alkaline-basedDAFC,thisinputfuelreactselectrochemicallyattheanodeinthe presenceofcatalystwithnegativelychargedhydroxylions.Thisanodicreaction isrepresentedby
Theaboveanodicelectrochemicalreactionemitselectronsthatgenerateaflowof electronsthroughanyexternalloadandallowusefulpowerutilization.Thecorrespondingcathodicelectrochemicalreactionthatacceptselectronsandcompletes theoverallreactionisrepresentedas
Thenecessarycathodicreactantsofoxygen(O2)andwater(H2O)moleculesneedto beprovidedatthecathode,whichalsoreactinthepresenceofanelectrochemical catalysttoformhydroxyl(OH )ions.Thesehydroxylionsformedatthecathode migratetotheanodicsideofthefuelcellthroughanalkalineelectrolytethatallows thepassageofonlynegativelychargedanions.Hence,inthisway,theelectrochemicalreactionskeepoccurringateitherelectrodeswithfuelandoxidantinputsand usefulpowercanbecontinuouslyextractedfromthecell.Theoverallfuelcellreactionforanalkalineelectrolyte-basedDAFCcanberepresentedas
ThereareothertypesofDAFCthathavebeendevelopedintherecentpast,which willbediscussedindetailintheupcomingsectionsofthisbook.AlthoughtheworkingprinciplesofDAFCaresatisfactorilywellestablished,theirperformanceis considerablylowascomparedtohydrogenfuelcells.Thisisprimarilyattributed totheinsufficientelectrooxidationofammoniamolecules.Thetypeofcatalyst activityobservedinthecaseofhydrogenoxidationforfuelcellshasnotbeen achievedyetforthecaseofammoniaoxidation.Thisremainsoneofthekeyfactors thatprohibitthedevelopmentofhigh-performanceDAFC.
Theworkingprinciplesdescribedforhydrogenorammoniafuelcellsintheprecedingsectionrepresenttheoverallprocesses.However,thereareseveralotherphenomenathatoccurduringtheoperationoffuelcellsandaffecttheelectrochemical
behaviorandthustheperformance.Thesecanbemainlyclassifiedintochemicaland physicalphenomena.Theunderlyingchemicalphenomenonincludesprocessesof dissociationofhydrogenmoleculestohydrogenatomsandthesubsequentadsorptionprocessthatisfollowedfinallybytheoxidationprocess.Thephysicalphenomenonincludesmassandspeciestransportprocessesofthereactantsaswellas productsthattraveltoandfromthereactionsitestotheexitandbulkconcentration sides.Thetransportphenomenonoccurringwithinthecellaffectsvariousparameters includingvoltagelossesthatoccurwithinthecellaswellasthetransferofheat. Forinstance,considerafuelcellcomprisingaliquidelectrolyte.Asthefuelenters thecell,itcomprisesamixtureofthefuelaswellassomeminoramountsofwater vapor,hydrocarbons,orothercarbon-basedcompoundsdependingonthesourceof thefuel.Thefuelmixtureortheoxidantmixturereachesthesurfaceoftheelectrode bymeansofconvection.Theelectrodeisgenerallymadeofporousmaterialtoallow thepassageofreactantoroxidantmoleculesandbymeansofdiffusion,thesegases arriveattheadjacentinterfacecomprisingtheelectrolyteandreactantgascontact. Next,inthecaseofaliquidelectrolyte,dissolvingofreactantmoleculesoccursat thisinterface.Thisinterfacecomprisesboththeliquidelectrolyteandthegaseous reactantandisthusoftenreferredtoastwo-phaseinterface.Furthermore,afterdissolvingintheelectrolyte,diffusionofthesedissolvedspeciesoccursfromthetwophaseinterfacetothesurfaceoftheelectrode.Duringtheseprocesses,someundesiredreactionsmayalsooccur.Theseincludethereactionsbetweentheelectrolyte andanyimpuritiesthatwereentailedinthereactantmixture.Also,corrosionof theelectrodemayoccurduetocontactwithanyunwantedoxidizingspecies.However,thenextmajorprocesscomprisesadsorption.Thosespeciesthatreactelectrochemicallyarefirstadsorbedonthesurfaceoftheelectrode.Themigrationof adsorbedspeciesonthesurfaceoftheelectrodeoccursbydiffusion.Next,atthe surfaceoftheelectrodethatisincontactwiththeliquidelectrolyte,theelectrochemicalreactionstakeplaceduetowhichpositiveornegativeionsaswellaselectrons aregenerated.Thisinterfaceisgenerallyreferredtoasthethree-phaseboundary. Astheionsaccumulateatthesurfaceoftheelectrode,diffusionofthesecharged speciesoccursacrossthesurface.Further,theproductsoftheelectrochemical reactionaredesorbedfromthesurfaceoftheelectrode.Intheelectrochemicalcell, duetotheformationofoppositechargesacrossthetwoelectrodes,anelectricfield iscreatedthataidsinthetransferofelectronsaswellions.Theelectrochemical reactionproductsthataredesorbed,diffusethroughtheelectrolytetoreachthe two-phaseinterfacefromwheretheyfinallyexitthecell.
Aschematicrepresentationoftheseprocessesisdepictedin Fig.2.6.Thegaseous fuel(consideredH2 inthiscase)entersthecellfromthebottomandreachesthe electrolyteandfuelinterface.Further,themoleculesdissolvedatthisinterface diffusethroughtheelectrolyteandreachthesurfaceoftheelectrodeandtheadsorptionphenomenonproceeds.Aftertheprocessofadsorption,theelectrochemical interactionoccursresultingintheformationofionsandelectrons.
Ascanbeobservedfromthefuelcellprocessesandphenomenadiscussedearlier, electrodesaswellaselectrolytearecentr alfuelcellcomponentsthatareneededfor theelectrochemicalinteractionstooccurandproduceusefulelectricalenergy. Therearethreewaysinwhichtheutilizationofelectrodesinfuelcellscanbe described.First,electrodesprovidethe requiredreactionsitesnecessaryforthe dissociation,adsorption,andthustheelectrochemicalreactiontooccur.Second, electrodesalsoprovideappropriateflowchannelsforthefuelcellreactantsaswell asproducts.Especially,inthecaseoffuelcellstacks,electrodeswithsuitableflow channelsaredesignedandusedthatallowsmoothpassageofreactantsovereach cell.Third,electrodesalsoactaselectro ncollectors.Whenelectronsareemitted duringanelectrochemicalreaction,theyfirstaccumulateattheelectrodethat createsanelectricpotentialbetweentwoelectrodes.Thisactsasthedrivingforce tomovetheelectronsthroughanexternalcircuitwheretheloadissituated.One importantfeatureofelectrodesistheirporousstructure.Asasolidstructureis neededforprovidingadsorptionandreactionsites,andanemptypassagespace isneededfortheflowofreactantsandproducts,aporousstructureisdesired
FIG.2.6forelectrodes.Furthermore,astheelectrodesaresubjectedtovarioustypesofreactantsaswellasoxidants,theirchemicals tabilityisessentialforappropriatefuel celloperation.Incaseofanyundesiredsidereactionsbetweentheelectrodeand reactantsorproducts,theperformanceofthefuelcelldeterioratesconsiderably. Inaddition,goodmechanical strength,especiallyhighcompressivestrength,is desiredforfuelcellelectrodes.Theelectrodeswithporousstructuresaregenerally developedinlayeredconfigurations.Thefirstlayercomprisestheporousstructure thatallowsthepassageofreactantsandcollectselectrons(inconventionalfuel cellstheseareknownasgasdiffusionlayers).Thesecondlayercomprisesacatalystlayeralongwiththeinterfaceofthee lectrolyte.Conventionally,platinumis themostcommonlyemployedmetalthatisutilizedforfuelcellelectrodes.However,owingtoitshighcost,severalresearchstudiesarebeingconductedtodevelop catalystscomprisingnonpreciousmetalssuchasnickeloriron.Inthecaseof ammoniafuelcells,platinumcatalystsa repoisonedduringthedissociationand adsorptionprocesses.ThisaffectstheperformanceofDAFCsadverselyresulting inlowopen-circuitvoltages,poweroutput s,andcurrentdensities.Duetothisreason,severalstudiesintherecentpasthavefocusedondevelopingnewtypesof electro-catalyststhatarecompatiblewith electrochemicalinteractionofammonia molecules.Thedifferenttypesofcatalys tsdevelopedforammoniafuelcellsand theirrespectiveperformancesaredescribedinChapter4.
Theelectrolyteisalsoakeyfuelcellcomponentthatprovidesthemedium requiredfortheionstotransferfromone electrodetotheotherelectrode.The functionsoftheelectrolytecanalsobes ummarizedinthreeways.First,electrolyteistheionconductingmediumthatallowstheionicspeciesformedduringthe electrochemicalreactionstotravelfromtheelectrodewheretheyareformedto thecounterelectrodetocompletethehalf- cellelectrochemicalreactions.Second, theelectrolytealsoactsasanelectricinsulatorthatpreventsthecellfromshort circuiting.Ashortcircuitoccursinafuelcelliftheanodeandcathodeelectrodes comeintocontact.Inthiscase,theelectr onsareprohibitedfromtravelingthrough anyexternalloadandtheanode – cathodecontactshortcircuitsthecell.Thus,the electrolytethatisgenerallysandwiched betweenthetwoelectrodespreventsany electricalcontactandthusanychancesofcellshortcircuit.Third,theelectrolyte alsoseparatesthetwocompartmentsofthefuelcellthatcomprisethefuelinput sideandtheoxidantinputside.Theelectrolytesaremadefrommaterialsthatdo notallowthecrossflowofthefueloroxidantfromeitherside.Crossflowof reactants,alsoknownascrossover,canadverselyaffectthefuelcellperformance. Also,ifthefuelutilizediscombustibleandcrossesovertotheoxidantside,there canbesafetyhazards.Hence,asuitablefuelcellelectrolyteisrequiredtoentail severalpropertiesthatmakeitcompatibleforusage.Insolubleandnonporous propertiestowardreactantsarekeycharact eristics.Further,hi ghionicconductivityisdesirableforefficientflowofionsthroughtheelectrolyte,whichisessential toachievehighfuelcellperformances.
Acompletefuelcellreactioncomprisestwohalf-cellelectrochemicalreactionsthat occurateitherelectrode.Atoneelectrode(anode),theelectrochemicalreaction emitselectrons(anodicreaction)andattheotherelectrode(cathode),theelectrochemicalreactionacceptselectrons,thus,completingafullcircuit.Sinceeachelectrodeisaccompaniedbyanelectrochemicalreaction,itentailsanelectricpotential thatiscommonlyreferredtoasthehalf-cellpotential.Theanodicelectrochemical reactiongivesrisetoananodicelectricpotentialandthecathodicelectrochemical reactionresultsinacathodicelectricpotential.Theoverallfuelcellpotentialisthus determinedfromthedifferencebetweenthesetwohalf-cellpotentials.Theelectrons aregeneratedattheanodeandflowtowardthecathodethroughanexternalcircuit, hencetheelectronflowisfromtheanodetothecathode.However,accordingtothe conventionalcurrentdirectionterminology,thecurrentwouldbestatedtobeflowing intheoppositedirectionofelectronflow(cathodetoanode).Theoveralltheoretical fuelcellpotentialforahydrogenfuelcellconsideringEq. (2.1) astheanodicreaction andEq. (2.2) asthecathodicreactionis1.229V.Foranammoniafuelcell,thetheoreticalpotentialis1.17VconsideringEqs.(2.4)and(2.5)astheanodicandcathodic electrochemicalreactions,respectively.Thesepotentialsaretheoreticalandare obtainedifthefuelisconsideredcompletelypureandatambientconditionsof 1atmpressureand25°C.Furthermore,thesepotentialsaregenerallyknownas reversiblefuelcellpotentialsastheyareevaluatedforthermodynamicallyreversible operation.ThisisdiscussedindetailinChapter5.
Inactualfuelcelloperation,severalirreversibilitiesandlossesoccurinevitably. Theselossesoccurprimarilyintheformofpotentiallossesandowingtothese irreversibilities,theworkingcellpotentialreducessubstantially.Forinstance,for ahydrogenfuelcell,theworkingcellpotentialmightdroptonearly0.7Vifthe optimalpowerdensityrangesaretargetedinpracticalapplicationsofpoweroutputs. Also,inthecaseoftheammoniafuelcells,severalundesiredlossescandropthe open-circuitvoltagetonearly0.3V.Furthermore,awell-establishedphenomenon forfuelcellsisthedropincellvoltagewithanincreaseinthecurrentdensities. Asthecurrentdrawnfromthecellisincreased,thecellvoltageisobservedto decreaseduetoseveralvoltagelosses.Infuelcells,thelossesinvoltagedueto anincreaseincurrentdensitiesisgenerallyknownasoverpotentialorovervoltage. Also,thephysicalorchemicalphenomenoncausingthisoverpotentialisknownas polarization.Generally,thecathodicelectrochemicalreactionentailingthereduction ofoxygenmoleculesisassociatedwiththehighestlossinvoltage.Thiscanbeattributedtothecomparativelyslowerrateoftheelectrochemicaloxygenreduction reaction(ORR).Whenahighercurrentisdrawnfromthecell,thenumberelectrochemicalreactionsoccurringwithinthecellalsoincreasesimultaneouslytomeet thehigherelectronflowrequired.However,duetorate-limitingfactorssuchas hindrancesinthemasstransfer,theactualcelloperatingvoltagereduces.Thus, oneofthecurrentchallengesinfuelcelltechnologiesistoovercometheslow