Foundations of software science and computation structures christel baier

Page 1

Foundations of Software Science and Computation Structures Christel Baier

Visit to download the full and correct content document: https://textbookfull.com/product/foundations-of-software-science-and-computation-str uctures-christel-baier/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Foundations of Software Science and Computation

Structures 22nd International Conference FOSSACS 2019

Held as Part of the European Joint Conferences on Theory and Practice of Software ETAPS 2019 Prague Czech Republic April 6 11 2019 Proceedings Miko■aj Boja■czykhttps://textbookfull.com/product/foundations-of-software-scienceand-computation-structures-22nd-international-conferencefossacs-2019-held-as-part-of-the-european-joint-conferences-ontheory-and-practice-of-software-etaps-2019-pragu/

Foundations of Software Science and Computation

Structures 19th International Conference FOSSACS 2016

Held as Part of the European Joint Conferences on Theory and Practice of Software ETAPS 2016 Eindhoven

The Netherlands April 2 8 2016 Proceeding 1st Edition Bart Jacobs

https://textbookfull.com/product/foundations-of-software-scienceand-computation-structures-19th-international-conferencefossacs-2016-held-as-part-of-the-european-joint-conferences-ontheory-and-practice-of-software-etaps-2016-eindh/

Foundations of Software Science and Computation

Structures 23rd International Conference FOSSACS 2020

Held as Part of the European Joint Ireland April 25 30 2020 Proceedings 1 ed. 2020 Edition Jean GoubaultLarrecq (Editor) https://textbookfull.com/product/foundations-of-software-scienceand-computation-structures-23rd-international-conferencefossacs-2020-held-as-part-of-the-european-joint-irelandapril-25-30-2020-proceedings-1-ed-2020-edition-jean-go/

Foundations of Software Engineering Ashfaque Ahmed

https://textbookfull.com/product/foundations-of-softwareengineering-ashfaque-ahmed/

Foundations of Computer Science Behrouz Forouzan

https://textbookfull.com/product/foundations-of-computer-sciencebehrouz-forouzan/

Foundations of Data Science Avrim Blum

https://textbookfull.com/product/foundations-of-data-scienceavrim-blum/

Design of electrical transmission lines: structures and foundations. Volume I 1st Edition Kalaga

https://textbookfull.com/product/design-of-electricaltransmission-lines-structures-and-foundations-volume-i-1stedition-kalaga/

Foundations of earth science Eighth Edition Lutgens

https://textbookfull.com/product/foundations-of-earth-scienceeighth-edition-lutgens/

Mathematics and Computation A Theory Revolutionizing Technology and Science Wigderson

https://textbookfull.com/product/mathematics-and-computation-atheory-revolutionizing-technology-and-science-wigderson/

Christel Baier · Ugo Dal Lago (Eds.)

Foundations of Software Science and Computation Structures

21st International Conference, FOSSACS 2018

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018 Thessaloniki, Greece, April 14–20, 2018, Proceedings

LNCS 10803ARCoSS

LectureNotesinComputerScience10803

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison,UK

JosefKittler,UK

FriedemannMattern,Switzerland

MoniNaor,Israel

BernhardSteffen,Germany

DougTygar,USA

TakeoKanade,USA

JonM.Kleinberg,USA

JohnC.Mitchell,USA

C.PanduRangan,India

DemetriTerzopoulos,USA

GerhardWeikum,Germany

AdvancedResearchinComputingandSoftwareScience

SublineofLectureNotesinComputerScience

SublineSeriesEditors

GiorgioAusiello, UniversityofRome ‘LaSapienza’,Italy

VladimiroSassone, UniversityofSouthampton,UK

SublineAdvisoryBoard

SusanneAlbers, TUMunich,Germany

BenjaminC.Pierce, UniversityofPennsylvania,USA

BernhardSteffen, UniversityofDortmund,Germany

DengXiaotie, CityUniversityofHongKong

JeannetteM.Wing, MicrosoftResearch,Redmond,WA,USA

Moreinformationaboutthisseriesathttp://www.springer.com/series/7407

ChristelBaier • UgoDalLago(Eds.)

Foundations ofSoftwareScienceand ComputationStructures

21stInternationalConference,FOSSACS2018 HeldasPartoftheEuropeanJointConferences onTheoryandPracticeofSoftware,ETAPS2018

Thessaloniki,Greece,April14–20,2018

Proceedings

Editors

Dresden

Germany

ISSN0302-9743ISSN1611-3349(electronic) LectureNotesinComputerScience

ISBN978-3-319-89365-5ISBN978-3-319-89366-2(eBook) https://doi.org/10.1007/978-3-319-89366-2

LibraryofCongressControlNumber:2018937398

LNCSSublibrary:SL1 – TheoreticalComputerScienceandGeneralIssues

© TheEditor(s)(ifapplicable)andTheAuthor(s)2018.Thisbookisanopenaccesspublication.

OpenAccess ThisbookislicensedunderthetermsoftheCreativeCommonsAttribution4.0International License(http://creativecommons.org/licenses/by/4.0/),whichpermitsuse,sharing,adaptation,distribution andreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)and thesource,providealinktotheCreativeCommonslicenseandindicateifchangesweremade.

Theimagesorotherthirdpartymaterialinthisbookareincludedinthebook’sCreativeCommonslicense, unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’sCreative Commonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse, youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Printedonacid-freepaper

ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

ETAPSForeword

WelcometotheproceedingsofETAPS2018!AfterasomewhatcoldishETAPS2017 inUppsalainthenorth,ETAPSthisyeartookplaceinThessaloniki,Greece.Iam happytoannouncethatthisisthe firstETAPSwithgoldopenaccessproceedings.This meansthatallpapersareaccessiblebyanyoneforfree.

ETAPS2018wasthe21stinstanceoftheEuropeanJointConferencesonTheory andPracticeofSoftware.ETAPSisanannualfederatedconferenceestablishedin 1998,andconsistsof fiveconferences:ESOP,FASE,FoSSaCS,TACAS,andPOST. EachconferencehasitsownProgramCommittee(PC)anditsownSteeringCommittee.Theconferencescovervariousaspectsofsoftwaresystems,rangingfrom theoreticalcomputersciencetofoundationstoprogramminglanguagedevelopments, analysistools,formalapproachestosoftwareengineering,andsecurity.Organizing theseconferencesinacoherent,highlysynchronizedconferenceprogramfacilitates participationinanexcitingevent,offeringattendeesthepossibilitytomeetmany researchersworkingindifferentdirectionsinthe field,andtoeasilyattendtalksof differentconferences.Beforeandafterthemainconference,numeroussatelliteworkshopstakeplaceandattractmanyresearchersfromallovertheglobe.

ETAPS2018received479submissionsintotal,144ofwhichwereaccepted, yieldinganoverallacceptancerateof30%.Ithankalltheauthorsfortheirinterestin ETAPS,allthereviewersfortheirpeerreviewingefforts,thePCmembersfortheir contributions,andinparticularthePC(co-)chairsfortheirhardworkinrunningthis entireintensiveprocess.Lastbutnotleast,mycongratulationstoallauthorsofthe acceptedpapers!

ETAPS2018wasenrichedbytheunifyinginvitedspeakerMartinAbadi(Google Brain,USA)andtheconference-speci ficinvitedspeakers(FASE)PamelaZave(AT& TLabs,USA),(POST)BenjaminC.Pierce(UniversityofPennsylvania,USA),and (ESOP)DerekDreyer(MaxPlanckInstituteforSoftwareSystems,Germany).Invited tutorialswereprovidedbyArminBiere(JohannesKeplerUniversity,Linz,Austria)on modernSATsolvingandFabioSomenzi(UniversityofColorado,Boulder,USA)on hardwareveri fication.Mysincerethankstoallthesespeakersfortheirinspiringand interestingtalks!

ETAPS2018tookplaceinThessaloniki,Greece,andwasorganisedbythe DepartmentofInformaticsoftheAristotleUniversityofThessaloniki.Theuniversity wasfoundedin1925andcurrentlyhasaround75,000students;itisthelargestuniversityinGreece.ETAPS2018wasfurthersupportedbythefollowingassociations andsocieties:ETAPSe.V.,EATCS(EuropeanAssociationforTheoreticalComputer Science),EAPLS(EuropeanAssociationforProgrammingLanguagesandSystems), andEASST(EuropeanAssociationofSoftwareScienceandTechnology).Thelocal organizationteamconsistedofPanagiotisKatsaros(generalchair),IoannisStamelos,

LefterisAngelis,GeorgeRahonis,NickBassiliades,AlexanderChatzigeorgiou,Ezio Bartocci,SimonBliudze,EmmanouelaStachtiari,KyriakosGeorgiadis,andPetros Stratis(EasyConferences).

TheoverallplanningforETAPSisthemainresponsibilityoftheSteeringCommittee,andinparticularofitsExecutiveBoard.TheETAPSSteeringCommittee consistsofanExecutiveBoardandrepresentativesoftheindividualETAPSconferences,aswellasrepresentativesofEATCS,EAPLS,andEASST.TheExecutive BoardconsistsofGillesBarthe(Madrid),HolgerHermanns(Saarbrücken),Joost-Pieter Katoen(chair,AachenandTwente),GeraldLüttgen(Bamberg),VladimiroSassone (Southampton),TarmoUustalu(Tallinn),andLenoreZuck(Chicago).Othermembers oftheSteeringCommitteeare:WilvanderAalst(Aachen),ParoshAbdulla(Uppsala), AmalAhmed(Boston),ChristelBaier(Dresden),LujoBauer(Pittsburgh),DirkBeyer (Munich),MikolajBojanczyk(Warsaw),LuisCaires(Lisbon),JurriaanHage (Utrecht),RainerHähnle(Darmstadt),ReikoHeckel(Leicester),MariekeHuisman (Twente),PanagiotisKatsaros(Thessaloniki),RalfKüsters(Stuttgart),UgoDalLago (Bologna),KimG.Larsen(Aalborg),MatteoMaffei(Vienna),TizianaMargaria (Limerick),FlemmingNielson(Copenhagen),CatusciaPalamidessi(Palaiseau), AndrewM.Pitts(Cambridge),AlessandraRusso(London),DaveSands(Göteborg), DonSannella(Edinburgh),AndySchürr(Darmstadt),AlexSimpson(Ljubljana), GabrieleTaentzer(Marburg),PeterThiemann(Freiburg),JanVitek(Prague),Tomas Vojnar(Brno),andLijunZhang(Beijing).

Iwouldliketotakethisopportunitytothankallspeakers,attendees,organizers ofthesatelliteworkshops,andSpringerfortheirsupport.Ihopeyouallenjoythe proceedingsofETAPS2018.Finally,abigthankstoPanagiotisandhislocalorganizationteamforalltheirenormouseffortsthatledtoafantasticETAPSin Thessaloniki!

February2018Joost-PieterKatoen

VIETAPSForeword

Preface

Thisvolumecontainsthepaperspresentedatthe21stInternationalConferenceon FoundationsofSoftwareScienceandComputationStructures(FoSSaCS2018),which washeldApril16–19,2018,inThessaloniki,Greece.Theconferenceisdedicatedto foundationalresearchwithaclearsignificanceforsoftwarescienceandbringstogether researchontheoriesandmethodstosupporttheanalysis,integration,synthesis, transformation,andverificationofprogramsandsoftwaresystems.

Theprogramconsistedof31contributedpapers,selectedfromamong103submissions.EachsubmissionwasreviewedbyatleastthreeProgramCommitteemembers,withthehelpofexternalexperts.Afterathree-dayrebuttalphase,theselection wasmadebasedondiscussionsviatheEasyChairconferencemanagementsystem, whichwasalsousedtoassistwiththecompilationoftheproceedings.

WewishtothankallauthorswhosubmittedtoFoSSaCS2018,alltheProgram Committeemembersfortheirexcellentwork,andtheexternalreviewersfortheir thoroughevaluationofthesubmissions.Inaddition,wewouldliketothanktheETAPS organizationforprovidinganexcellentenvironmentforFoSSaCSandotherconferencesandworkshops.

UgoDalLago
March2018ChristelBaier

Organization

ProgramCommittee

AndreasAbelGothenburgUniversity,Sweden ChristelBaierTUDresden,Germany

NathalieBertrandInria,France

MikolajBojanczykWarsawUniversity,Poland

UdiBokerInterdisciplinaryCenter(IDC)Herzliya,Israel

LuisCairesUniversidadeNOVAdeLisboa,Portugal

UgoDalLagoUniversityofBologna,Italy

YuxinDengEastChinaNormalUniversity,China

MariangiolaDezani-CiancagliniUniversità diTorino,Italy

IchiroHasuoNationalInstituteofInformatics,Japan

RadhaJagadeesanDePaulUniversity,UK

StefanKieferUniversityofOxford,UK

BarbaraKönigUniversitätDuisburg-Essen,Germany

DavidMonniauxCNRS,VERIMAG,France

AndrzejMurawskiTheUniversityofWarwick,UK

JoelOuaknineMaxPlanckInstituteforSoftwareSystems, Germany

CatusciaPalamidessiInria,France

KirstinPetersTUBerlin,Germany

DamienPousCNRS,ENSLyon,France

Jean-FrancoisRaskinUniversité LibredeBruxelles,Belgium HelmutSeidlTechnicalUniversityofMunich,Germany

AlexandraSilvaUniversityCollegeLondon,UK

AlexSimpsonUniversityofLjubljana,Slovenia

JiriSrbaAalborgUniversity,Denmark

Jean-MarcTalbotAix-MarseilleUniversité,France

ChristineTassonUniversité DenisDiderot,France

KazushigeTeruiKyotoUniversity,Japan

AdditionalReviewers

AlerTubella,Andrea Almagor,Shaull Asada,Kazuyuki Atkey,Robert Bacci,Giorgio Bacci,Giovanni

Bagnol,Marc Baldan,Paolo

Basold,Henning Bavera,Francisco Beffara,Emmanuel Benveniste,Albert

Beohar,Harsh Berardi,Stefano Bertolissi,Clara Berwanger,Dietmar Blondin,Michael Bocchi,Laura

Boreale,Michele Boulmé,Sylvain Bouyer,Patricia Brazdil,Tomas Brotherston,James Brunet,Paul Bruni,Roberto Bucchiarone,Antonio Busatto-Gaston,Damien Bønneland,FrederikM. Cabrera,Benjamin Cadilhac,Michaël Carayol,Arnaud Castellan,Simon Chen,Tzu-Chun Clouston,Ranald Cockx,Jesper Coppo,Mario Corbineau,Pierre Cristescu,Ioana Doumane,Amina Dubut,Jérémy Eberhart,Clovis Emmi,Michael Enea,Constantin Enevoldsen,Søren Enqvist,Sebastian Exibard,Léo Falcone,Ylies Feng,Yuan Figueira,Diego Fijalkow,Nathanaël Fournier,Paulin Fujii,Soichiro Galmiche,Didier Geeraerts,Gilles Genest,Blaise Gorogiannis,Nikos Graham-Lengrand, Stéphane Grellois,Charles Haar,Stefan Haase,Christoph Halfon,Simon Hartmann,Nico Hautem,Quentin

Hirschkoff,Daniel Hirschowitz,Tom Hsu,Justin Huang,Mingzhang Jacobs,Bart Jacquemard,Florent Jansen,Nils Jaskelioff,Mauro Jecker,Ismaël Junges,Sebastian Kakutani,Yoshihiko Kanovich,Max Kaufmann,Isabella Kerjean,Marie King,Andy Klein,Felix Klin,Bartek

Kołodziejczyk,Leszek Kretinsky,Jan Krivine,Jean Kupke,Clemens Kutsia,Temur Küpper,Sebastian Laarman,Alfons Laird,Jim Lanese,Ivan Lang,Frederic Lazic,Ranko Lefaucheux,Engel Leifer,Matthew Lepigre,Rodolphe Letouzey,Pierre Levy,PaulBlain Li,Xin Liang,Hongjin Licata,DanielR. Litak,Tadeusz Lohrey,Markus Lombardy,Sylvain Long,Huan Luttik,Bas López,HugoA. Mackie,Ian Madnani,Khushraj Maggi,FabrizioMaria Mallet,Frederic

Maranget,Luc Markey,Nicolas Martens,Wim Mayr,Richard Mazowiecki,Filip Mikučionis,Marius Milius,Stefan Mio,Matteo Moggi,Eugenio Monmege,Benjamin Muniz,Marco Nestmann,Uwe New,Max Nielsen,Mogens Nolte,Dennis NordvallForsberg, Fredrik Nyman,Ulrik Okudono,Takamasa Orchard,Dominic Oualhadj,Youssouf Padovani,Luca Panangaden,Prakash Pang,Jun Pavlovic,Dusko Perez,Guillermo Pitts,Andrew Plump,Detlef Pouly,Amaury Power,John Pruekprasert,Sasinee Ramsay,Steven Regnier,Laurent Rehak,Vojtech Roggenbach,Markus Rot,Jurriaan SacerdotiCoen,Claudio Sammartino,Matteo Sankur,Ocan Saurin,Alexis Schalk,Andrea Scherer,Gabriel Schmidt-Schauß,Manfred Selinger,Peter Shirmohammadi,Mahsa Sickert,Salomon

XOrganization

Sighireanu,Mihaela Sistla,A.Prasad Sojakova,Kristina Soloviev,Sergei Sozeau,Matthieu Sprunger,David Strassburger,Lutz Tang,Qiyi TorresVieira,Hugo Tsuiki,Hideki Tsukada,Takeshi

Turrini,Andrea Tzevelekos,Nikos Valencia,Frank Valiron,Benoît vanDitmarsch,Hans Varacca,Daniele Vial,Pierre Vicary,Jamie Vijayaraghavan, Muralidaran Villevalois,Didier

Waga,Masaki Wagner,Christoph Wojtczak,Dominik Wolff,Sebastian Worrell,James Yamada,Akihisa Yang,Pengfei Yoshimizu,Akira Yu,Tingting Zimmermann,Martin

OrganizationXI

Semantics

Non-angelicConcurrentGameSemantics..........................3 SimonCastellan,PierreClairambault,JonathanHayman, andGlynnWinskel

ATraceSemanticsforSystemFParametricPolymorphism.............20 GuilhemJaberandNikosTzevelekos

CategoricalCombinatoricsforNonDeterministicStrategies onSimpleGames..........................................39

ClémentJacqandPaul-André Melliès

ASyntacticViewofComputationalAdequacy......................71 MarcoDevesasCamposandPaulBlainLevy

Linearity

ANewLinearLogicforDeadlock-FreeSession-TypedProcesses.........91 OrnelaDardhaandSimonJ.Gay

ADoubleCategoryTheoreticAnalysisofGradedLinear ExponentialComonads......................................110 Shin-yaKatsumata

DependingonSession-TypedProcesses...........................128 BernardoToninhoandNobukoYoshida

InteroperabilityforMLandaLinearLanguage..............146 GabrielScherer,MaxNew,NickRioux,andAmalAhmed

Concurrency

AutomataforTrueConcurrencyProperties.........................165 PaoloBaldanandTommasoPadoan

ATheoryofEncodingsandExpressiveness(ExtendedAbstract)..........183 RobvanGlabbeek

AFrameworkforParameterizedMonitorability......................203 LucaAceto,AntonisAchilleos,AdrianFrancalanza, andAnnaIngólfsdóttir

Contents

LogicsforBisimulationandDivergence...........................221 XinxinLiu,TingtingYu,andWenhuiZhang

Lambda-CalculiandTypes

Call-by-Need,NeedednessandAllThat...........................241 DeliaKesner,AlejandroRíos,andAndrésViso

Fitch-StyleModalLambdaCalculi..............................258 RanaldClouston

RealizabilityInterpretationandNormalizationofTypedCall-by-Need k-calculuswithControl......................................276 ÉtienneMiqueyandHugoHerbelin

QuotientInductive-InductiveTypes..............................293 ThorstenAltenkirch,PaoloCapriotti,GabeDijkstra,NicolaiKraus, andFredrikNordvallForsberg

CategoryTheoryandQuantumControl

GuardedTracedCategories....................................313 SergeyGoncharovandLutzSchröder

ProperSemiringsandProperConvexFunctors......................331 AnaSokolovaandHaraldWoracek

FromSymmetricPattern-MatchingtoQuantumControl................348 AmrSabry,BenoîtValiron,andJulianaKaizerVizzotto

QuantitativeModels

TheComplexityofGraph-BasedReductionsforReachability inMarkovDecisionProcesses.................................367 StéphaneLeRouxandGuillermoA.Pérez

AHierarchyofSchedulerClassesforStochasticAutomata..............384 PedroR.D’Argenio,MarcusGerhold,ArndHartmanns, andSeanSedwards

SymbolicallyQuantifyingResponseTimeinStochasticModels UsingMomentsandSemirings.................................403 HugoBazille,EricFabre,andBlaiseGenest

ComparatorAutomatainQuantitativeVerification....................420 SugumanBansal,SwaratChaudhuri,andMosheY.Vardi

XIVContents

LogicsandEquationalTheories

ModularTableauxCalculiforSeparationTheories...................441 SimonDochertyandDavidPym

DifferentialCalculuswithImpreciseInputandItsLogicalFramework......459 AbbasEdalatandMehrdadMaleki

TheEffectsofAddingReachabilityPredicatesinPropositional SeparationLogic...........................................476 StéphaneDemri, ÉtienneLozes,andAlessioMansutti

TheEquationalTheoryoftheNaturalJoinandInnerUnionisDecidable....494 LuigiSantocanale

GraphsandAutomata

MinimizationofGraphWeightedModelsoverCircularStrings..........513 GuillaumeRabusseau

GamesonGraphswithaPublicSignalMonitoring...................530 PatriciaBouyer

WQODichotomyfor3-Graphs.................................548 SławomirLasotaandRadosławPiórkowski

VerifyingHigher-OrderFunctionswithTreeAutomata................565 ThomasGenet,TimothéeHaudebourg,andThomasJensen

AuthorIndex ............................................583 ContentsXV

Semantics

Non-angelicConcurrentGameSemantics

SimonCastellan1(B) ,PierreClairambault2 ,JonathanHayman3 , andGlynnWinskel3

1 ImperialCollegeLondon,London,UK simon@phis.me

2 UnivLyon,CNRS,ENSdeLyon,UCBLyon1,LIP,Lyon,France

3 ComputerLaboratory,UniversityofCambridge,Cambridge,UK

Abstract. The hiding operation,crucialinthecompositionalaspectof gamesemantics,removescomputationpathsnotleadingtoobservable results.Accordingly,gamesmodelsareusuallybiasedtowards angelic non-determinism:divergingbranchesareforgotten.

Wepresentherenewcategoriesofgames,notsufferingfromthis bias.Inourfirstcategory,weachievethisbyavoidinghidingaltogether; insteadmorphismsare uncovered strategies(withneutralevents)upto weakbisimulation.Then,weshowthatbyhidingonlycertainevents dubbed inessential wecanconsiderstrategiesupto isomorphism,and stillgetacategory–thispartialhidingremainssounduptoweakbisimulation,sowegetaconcreterepresentationsofprograms(asinstandard concurrentgames)whileavoidingtheangelicbias.Thesetechniquesare illustratedwithaninterpretationofaffinenondeterministicPCFwhich isadequateforweakbisimulation;andmay,mustandfairconvergences.

1Introduction

Gamesemanticsrepresentsprogramsasstrategiesfortwoplayergamesdeterminedbythetypes.Traditionally,astrategyissimplyacollectionofexecution traces,eachpresentedasaplay(astructuredsequenceofevents)onthecorrespondinggame.Beyondgivingacompositionalframeworkfortheformalsemanticsofprogramminglanguages,gamesemanticsprovedexceptionallyversatile, providingveryprecise(oftenfullyabstract)modelsofavarietyoflanguagesand programmingfeatures.Oneofitsrightlycelebratedachievementsistherealisationthatcombinationsofcertaineffects,suchasvariousnotionsofstateor control,couldbecharacterisedviacorrespondingconditionsonstrategies(innocence,wellbracketing, ...)inasingleunifyingframework.ThisledAbramskyto proposethe semanticcube programme[1],aimingtoextendthissuccesstofurtherprogrammingfeatures:concurrency,non-determinism,probabilities,etc... However,thiselegantpicturesoonshowedsomelimitations.Whileindeed thebasiccategoryofgameswassuccessfullyextendedtodealwithconcurrency [10, 13],non-determinism[11],andprobabilities[9]amongothers,theseextensions(althoughfullyabstract)areoftenincompatiblewitheachother,andreally, incompatibleaswellwiththecentralconditionofinnocence.Henceasemantic c TheAuthor(s)2018

C.BaierandU.DalLago(Eds.):FOSSACS2018,LNCS10803,pp.3–19,2018. https://doi.org/10.1007/978-3-319-89366-2 1

4S.Castellanetal.

hypercubeencompassingalltheseeffectsremainedoutofreach.Itisonlyrecently thatsomenewprogresshasbeenmadewiththediscoverythatsomeofthese effectscouldbereconciledinamorerefined,moreintensionalgamesframework. Forinstance,in[6, 16]innocenceisreconciledwithnon-determinism,andin[15] withprobabilities.In[7],innocenceisreconciledwithconcurrency.

Butsomethingisstillmissing:theworksabovedealingwithnon-deterministic innocenceconsideronly may-convergence ;theyignoreexecutionbranchesleadingtodivergence.Tosomeextentthisseemstobeafundamentallimitationof thegamesemanticsmethodology:attheheartofthecompositionofstrategies liesthe hiding operationthatremovesunobservableevents.Divergingpaths,by naturenon-observable,areforgottenbyhiding.Somemodelsofmust-testing doexistforparticularlanguages,notablyMcCuskerandHarmer’smodelfor non-deterministicIdealizedAlgol[11];themodelworksbyannotatingstrategies with stoppingtraces,recordingwheretheprogrammaydiverge.Butthisapproachagainmixespoorlywithotherconstructions(notablyinnocence),andmore importantly,istiedtomayandmustequivalences.Itisnotclearhowitcould beextendedtosupportrichernotionsofconvergence,suchas fair-testing [2].

Ouraimistopresentabasisfornon-deterministicgamesemanticswhich, besidesbeingcompatiblewithinnocence,concurrency, etc.,isnotbiasedtowards may-testing;itis non-angelic.Itshouldnotbebiasedtowardsmust-testing either;itshouldinfactbe agnostic withrespecttothetestingequivalence, andsupportthemall.Clearly,forthispurposeitisparamounttorememberthe non-deterministicbranchinginformation;indeedintheabsenceofthatinformation,notionssuchas fair-testing arelost.Infact,therehasbeenalotof activityinthepastfiveyearsorsoaroundgamesmodelthat do observethe branchinginformation.ItisafeatureofHirschowitz’sworkpresentingstrategies aspresheavesorsheavesoncertaincategoriesofcospans[12];ofTsukadaand Ong’sworkonnondeterministicinnocenceviasheaves[16];andofourownline ofworkpresentingstrategiesascertaineventstructures[5, 7, 14].

Butobservingbranchinginformationisnotsufficient.Oftheworksmentioned above,thoseofTsukadaandOngandourownpreviousworkarestillangelic, becausetheyrelyonhidingforcomposition.Ontheotherhand,Hirschowitz’s workgetsclosetoachievingourgoals;byrefrainingfromhidingaltogether, hismodelconstructsanagnosticandpreciserepresentationoftheoperational behaviourofprograms,onwhichhethenconsidersfair-testing.Butbynotconsideringhidinghedepartsfromthepreviousworkandmethodsofgamesemantics,andfromthemethodologyofdenotationalsemantics.Incontrast,wewould likeanagnosticgamesmodelthatstillhasthecategoricalstructureoftraditional semantics.Agamesmodelwithpartialhidingwasalsorecentlyintroducedby Yamada[18],albeitforadifferentpurpose:heusespartialhidingtorepresent normalizationsteps,whereasweuseittorepresentfine-grainednondeterminism.

Contributions. Inthispaper,wepresentthefirstcategoryofgamesandstrategiesequippedtohandlenon-determinism,butagnosticwithrespecttothe notionofconvergence(includingfairconvergence).Weshowcaseourmodel byinterpreting APCF+ ,anaffinevariantofnon-deterministicPCF:itisthe

simplestlanguagefeaturingthephenomenaofinterest.Weshowadequacywith respecttomay,mustandfairconvergences.Thereaderwillfindinthefirst author’sPhDthesis[3]correspondingresultsforfullnon-deterministicPCF (withdetailedproofs),andaninterpretationofahigher-orderlanguagewith sharedmemoryconcurrency.In[3],themodelisprovedcompatiblewithour earliernotionsofinnocence,byestablishingaresultoffullabstractionformay equivalence,fornondeterministicPCF.Wehaveyettoprovefullabstractionin thefairandmustcases;finitedefinabilitydoesnotsufficeanymore.

Outline. WebeginSect. 2 byintroducing APCF+ .Tosetthestage,wedescribe anangelicinterpretationof APCF+ inthecategory CG builtin[14]with strategiesuptoisomorphism,andhintatourtwonewinterpretations.InSect. 3, startingfromtheobservationthatthecauseof“angelism”ishiding,weomitit altogether,constructingan uncovered variantofourconcurrentgames,similar tothatofHirschowitz.Despitenothiding,whenrestrictingthelocationofnondeterministicchoicestointernalevents,wecanstillobtainacategoryupto weak bisimulation.Butweakbisimulationisnotperfect:itdoesnotpreservemusttesting,andisnoteasilycomputed.SoinSect. 4,wereinstatesomehiding:we showthatbyhidingallsynchronisedeventsexceptsomedubbed essential,we arriveatthebestofbothworlds.Wegetanagnosticcategoryofgamesand strategies uptoisomorphism,andweproveouradequacyresults.

2ThreeInterpretationsofAffineNondeterministicPCF

2.1SyntaxofAPCF+

Thelanguage APCF+ extendsaffinePCFwithanondeterministicboolean choice, choice.Itstypesare A,B ::= B | A B ,where A B representsaffine functionsfrom A to B .Thefollowinggrammardescribestermsof APCF+ : M,N ::= x | MN | λx.M | tt | ff | if MN1 N2 | choice |⊥

Typingrulesarestandard,weshowapplicationandconditionals.Asusual, aconditionaleliminatingtoarbitrarytypescanbedefinedassyntacticsugar.

Γ M : A BΔ N : A Γ,Δ MN : B Γ M : B Δ N1 : B Δ N2 : B Γ,Δ if MN1 N2 : B

Thefirstruleis multiplicative : Γ and Δ aredisjoint.Theoperational semanticsisthatofPCFextendedwiththe(only)twonondeterministicrules choice → tt and choice → ff.

2.2GameSemanticsandEventStructures

Gamesemanticsinterpretsanopenprogrambyastrategy,recordingthe behaviouroftheprogram(Player)againstthecontext(Opponent)ina2playergame.Usually,theexecutionsrecordedarerepresentedas plays, i.e. linear

Non-angelicConcurrentGameSemantics5

sequencesofcomputationaleventscalled moves ;astrategybeingthenasetof suchplays.Forinstance,thenondeterministicbooleanwouldberepresentedas the(even-prefixclosureofthe)setofplays {q · tt+ , q · ff+ } onthegamefor booleans.Intheplayq · tt+ ,thecontextstartsthecomputationbyaskingthe valueoftheprogram(q )andtheprogramreplies(tt+ ).Polarityindicatesthe origin(Program(+)orOpponent/Environment( ))oftheevent.

Beingbasedonsequencesofmoves,traditionalgamesemanticshandlesconcurrencyviainterleavings[10].Incontrast,inconcurrentgames[14],playsare generalisedtopartialorderswhichcanexpressconcurrencyasaprimitive.For instance,theexecutionofaparallelimplementationof and againstthecontext (tt, tt)givesthefollowingpartialorder:

Inthispicture,theusualchronologicallinearorderisreplacedbyanexplicit partialorderrepresenting causality.Movesareconcurrentwhentheyareincomparable(asthetwoPlayerquestionshere).Followingthelongstandingconventioningamesemantics,weshowwhichcomponentofthetypeacomputational eventcorrespondstobydisplayingitunderthecorrespondingoccurrenceof agroundtype.Forinstanceinthisdiagram,Opponentfirsttriggersthecomputationbyaskingtheoutputvalue,andthen and concurrentlyevaluateshis twoarguments.Theargumentshavingevaluatedto tt, and canfinallyanswer Opponent’sinitialquestionandprovidetheoutputvalue.

In[7],wehaveshownhowdeterministicpurefunctionalparallelprograms canbeinterpreted(ina fullyabstract way)usingsuchrepresentations.

Partial-OrdersandNon-determinism. Torepresentnondeterminisminthispartialordersetting,onepossibilityistousesetsofpartialorders[4].Thisrepresentationsuffershoweverfromtwodrawbacks:firstlyitforgetsthepointof non-deterministicbranching;secondly,onecannottalkofan occurrence ofa moveindependentlyofanexecution.Thoseissuesaresolvedbymovingto event structures [17],wherethenondeterministicbooleancanberepresentedas:

Thewigglyline( )indicates conflict :thebooleanvaluescannotcoexistinan execution.Togetherthisformsan eventstructure,definedformallylater.

6S.Castellanetal.
B ⇒ B ⇒ B q ✺✉✉✉ ✯❥❥❥❥❥❥❥❥ ( ) q q (+) tt ❚❚❚❚❚❚❚✔ tt ■■✠ ( ) tt (+)
B q ✷ ▲▲▲☞ ( ) tt ff (+)

2.3InterpretationsofAPCF+ withEventStructures

Letusintroduceinformallyourinterpretationsbyshowingwhicheventstructurestheyassociatetocertaintermsof APCF+ .

AngelicCoveredInterpretation. Traditionalgamesemanticsinterpretations ofnondeterminismareangelic(withexceptions,see e.g. [11]);theyonlydescribe whattermsmaydo,andforgetwheretheymightgetstuck.Theinterpretationof M =(λb. if b tt ⊥) choice forinstance,inusualgamesemanticsisthesameas thatof tt.Thisisduetothenatureofcompositionwhichtendstoforgetpaths thatdonotleadtoavalue.Considerthestrategyforthefunction λb. if b tt ⊥:

Theinterpretationof M arisesasthe composition ofthisstrategywith thenondeterministicboolean.Compositionisdefinedintwosteps:interaction (Fig. 1a)andthenhiding(Fig. 1b).Hidingremovesintermediatebehaviourwhich doesnotcorrespondtovisibleactionsintheoutputtypeofthecomposition. Hidingiscrucialinorderforcompositiontosatisfybasiccategoricalproperties(withoutit,theidentitycandidate,copycat,isnotevenidempotent).Strategiesoneventstructuresareusuallyconsidered uptoisomorphism,whichisthe strongestequivalencerelationthatmakessense.Withouthiding,thereisno hopetorecovercategoricallawsuptoisomorphism.However,itturnsoutthat, treatingeventsinthemiddleas τ -transitions(∗ inFig. 1a),weakbisimulation equatesenoughstrategiestogetacategory.Followingtheseideas,acategoryof uncovered strategiesupto weakbisimilarity isbuiltinSect. 3.

Non-angelicConcurrentGameSemantics7
B ⇒ B q ✱❧❧❧❧❧❧ ( ) q ✾②② ❊❊✆ (+) ff tt ❋❋✝ ( ) tt (+)
Fig.1. Threeinterpretationsof(λb. if b tt ⊥) choice

8S.Castellanetal.

InterpretationwithPartialHiding. However,consideringuncoveredstrategiesuptoweakbisimulationblurstheirconcretenature; causalinformation is lost,forinstance.Moreovercheckingforweakbisimilarityiscomputationally expensive,andbecauseoftheabsenceofhiding,atermevaluatingto skip may yieldaverylargerepresentative.However,thereisawaytocutdownthestrategiestoreachacompromisebetweenhiding no internalevents,orhiding all of themandcollapsingtoanangelicinterpretation.

Inourgamesbasedoneventstructures,havinganon-ambiguousnotionofan occurrenceofeventallowsustogiveasimpledefinitionoftheinternaleventswe needtoretain(Definition 9).Hidingotherinternaleventsyieldsastrategystill weaklybisimilartotheoriginal(uncovered)strategy,whileallowingustoget acategory uptoisomorphism.Theinterpretationof M inthissettingappears inFig. 1c.Asbefore,onlytheeventsundertheresulttype(notlabelled ∗)are now visible, i.e. observablebyacontext.Buttheeventscorrespondingtothe argumentevaluationareonlypartiallyhidden;thoseremainingareconsidered internal,treatedlike τ -transitions.Becauseoftheirpresence,thepartialhiding performedlosesnoinformation(w.r.t. theuncoveredinterpretation)uptoweak bisimilarity.Butwehavehiddenenoughsothattherequiredcategoricallaws betweenstrategieshold w.r.t. isomorphism.Themodelismorepreciseandconcretethanthatofweakbisimilarity,preservescausalinformationandpreserves must-convergence(unlikeweakbisimilarity).

Followingtheseideas,acategoryofpartiallycoveredstrategiesuptoiso(the targetofouradequacyresults)isconstructedinSect. 4.

3UncoveredStrategiesuptoWeakBisimulation

Wenowconstructacategoryof“uncoveredstrategies”,uptoweakbisimulation. Uncoveredstrategiesareveryclosetothe partialstrategies of[8],but[8]focused onconnectionswithoperationalsemanticsratherthancategoricalstructure.

3.1PreliminariesonEventStructures

Definition1. An eventstructure isatriple (E, ≤E , ConE ) where (E, ≤E ) is apartial-orderand ConE isanon-emptycollectionoffinitesubsetsof E called consistentsets subjecttothefollowingaxioms:

–If e ∈ E ,theset [e]= {e ∈ E | e ≤ e} isfinite, –Forall e ∈ E ,theset {e} isconsistent, –Forall Y ∈ ConE ,forall X ⊆ Y ,then X ∈ ConE . –If X ∈ ConE and e ≤ e ∈ X then X ∪{e} isconsistent.

Adown-closedsubsetofeventswhosefinitesubsetsareallconsistentiscalled a configuration.Thesetoffiniteconfigurationsof E isdenoted C (E ).If x ∈ C (E )and e ∈ x,wewrite x e −−⊂ x when x = x ∪{e}∈ C (E );thisisthe coveringrelation betweenconfigurations,andwesaythat e givesan extension of x.

Twoextensions e and e of x are compatible when x ∪{e,e }∈ C (E ), incompatible otherwise.Inthelattercase,wehavea minimalconflict between e and e incontext x (written e x e ).

Theseeventstructuresarebasedon consistentsets ratherthanthemore commonly-encounteredbinary conflict relation.Consistentsetsaremoregeneral, andmorehandymathematically,butthroughoutthispaper,eventstructures concretelyrepresentedindiagramswillonlyuse binaryconflict, i.e. therelation e x e doesnotdependon x,meaning e y e whenever y extendswith e, andwith e –inwhichcaseweonlywrite e e .Thenconsistentsetscanbe recoveredasthosefinite X ⊆ E suchthat ¬(e e )forall e,e ∈ X .Our diagramsdisplaytherelation ,alongwiththe Hassediagram of ≤E ,called immediatecausality anddenotedby E .Allthediagramsabovedenote eventstructures.Themissingingredientinmakingthediagramsformalisthe names accompanyingtheevents(q, tt, ff,... ).Thesewillariseasannotations byeventsfrom games,themselveseventstructures,representingthetypes.

The parallelcomposition E0 E1 ofeventstructures E0 and E1 hasfor events ({0}× E0 ) ∪ ({1}× E1 ).The causalorder isgivenby(i,e) ≤E0 E1 (j,e ) when i = j and e ≤Ei e ,and consistentsets bythosefinitesubsetsof E0 E1 thatprojecttoconsistentsetsinboth E0 and E1 .

A (partial)mapofeventstructures f : A B isa(partial)functionon eventswhich (1) mapsanyfiniteconfigurationof A toaconfigurationof B ,and (2) islocallyinjective:for a,a ∈ x ∈ C (A)and fa = fa (bothdefined)then a = a .Wewrite E forthecategoryofeventstructuresandtotalmapsand E⊥ forthecategoryofeventstructuresandpartialmaps.

An eventstructurewithpartialpolarities isaneventstructure A with amap pol : A →{−, +, ∗} (whereeventsarelabelled“negative”,“positive”,or “internal”respectively).Itisa game whennoeventsareinternal.Thedual A⊥ ofagame A isobtainedbyreversingpolarities.Parallelcompositionnaturally extendstogames.If x and y areconfigurationsofaneventstructurewithpartial polaritiesweuse x ⊆p y where p ∈{−, +, ∗} for x ⊆ y & pol (y \ x) ⊆{p}

Givenaneventstructure E andasubset V ⊆ E ofevents,thereisanevent structure E ↓ V whoseeventsare V andcausalityandconsistencyareinherited from E .Thisconstructioniscalledthe projection of E to V andisusedin[14] toperformhidingduringcomposition.

3.2DefinitionofUncoveredPre-strategies

Asin[14],wefirstintroduce pre-strategies andtheircomposition,andthen consider strategies,thosepre-strategieswell-behavedwithrespecttocopycat.

UncoveredPre-strategies. An uncoveredpre-strategy onagame A isa partialmapofeventstructures σ : S A.Eventsinthedomainof σ arecalled visible or external,andeventsoutside invisible or internal.Via σ ,visible eventsinheritpolaritiesfrom A.

Uncoveredpre-strategiesaredrawnjustliketheusualstrategiesof[14]:the eventstructure S hasitseventsdrawnastheirlabellingin A ifdefinedor ∗ if

Non-angelicConcurrentGameSemantics9

10S.Castellanetal.

undefined.ThedrawingofFig. 1aisanexampleofanuncoveredpre-strategy. Froman(uncovered)pre-strategy,onecangetapre-strategyinthesenseof [14]:for σ : S A,define S↓ = S ↓ dom(σ )wheredom(σ )isthedomain of σ .Byrestriction σ yields σ↓ : S↓ → A,calleda coveredpre-strategy.A configuration x of S canbedecomposedasthedisjointunion x↓ ∪ x∗ where x↓ isaconfigurationof S↓ and x∗ asetofinternaleventsof S . Apre-strategy fromagame A toagame B isa(uncovered)pre-strategy on A⊥ B .Animportantpre-strategyfromagame A toitselfisthe copycat pre-strategy.In A⊥ A,eachmoveof A appearstwicewithdualpolarity.The copycatpre-strategy ccA simplywaitsforthenegativeoccurrenceofamove a beforeplayingthepositiveoccurrence.See[5]foraformaldefinition.

Isomorphismofstrategies[14]canbeextendedtouncoveredpre-strategies: Definition2. Pre-strategies σ : S A,τ : T A are isomorphic (written σ ∼ = τ )ifthereisaniso ϕ : S ∼ = T s.t. τ ◦ ϕ = σ (equalityofpartialmaps).

InteractionofPre-strategies. Recallthatinthecoveredcase,composition isperformedfirstbyinteraction,thenhiding;whereinteractionofpre-strategies isdescribedastheirpullbackinthecategoryof totalmaps [14].Eventhough E⊥ haspullbacks,thosepullbacksareinadequatetodescribeinteraction.In[8], uncoveredstrategiesareseenastotalmaps σ : S → A N ,andtheirinteraction asapullbackinvolvingthese.Thismethodhasitsawkwardnessso,instead,here wegiveadirectuniversalconstructionofinteraction,replacingpullbacks.

Westartwiththesimplercaseofa closed interactionofapre-strategy σ : S A againstacounterpre-strategy τ : T A⊥ .Asin[5]wefirstdescribethe expected states oftheclosedinteractionintermsof securedbijections,fromwhich weconstructaneventstructure;beforecharacterisingthewholeconstructionvia auniversalproperty.

Definition3(Securedbijection). Let q, q bepartialordersand ϕ : q q beabijectionbetweenthecarriersets(nonnecessarilyorder-preserving).Itis secured whenthefollowingrelation ϕ onthegraphof ϕ isacyclic: (s,ϕ(s)) ϕ (s ,ϕ(s )) iff s q s ∨ ϕ(s) q ϕ

Ifso,theresultingpartialorder ( ϕ )∗ iswritten ≤ϕ .

)(1)

Let σ : S A and τ : T A bepartialmapsofeventstructures(we droppedpolarities,astheconstructioniscompletelyindependentofthem).A pair(x,y ) ∈ C (S ) × C (T )suchthat σ↓ x = τ↓ y ∈ C (A),inducesabijection

ϕx,y : x y∗ x ∗ y definedbylocalinjectivityof σ and τ :

ϕx,y (0,s)=(0,s)(s ∈ x ∗ )

ϕx,y (0,s)=(1,τ 1 (σs))(s ∈ x↓ )

ϕx,y (1,t)=(1,t)

Theconfigurations x and y haveapartialorderinheritedfrom S and T Viewing y∗ and x ∗ asdiscreteorders(theorderingrelationistheequality), ϕx,y

s
(

isabijectionbetweencarriersetsofpartialorders.An interactionstate of σ and τ is(x,y ) ∈ C (S ) × C (T )with σ↓ x = τ↓ y forwhich ϕx,y issecured.Asa result(thegraphof) ϕx,y isnaturallypartialordered.Write Sσ,τ forthesetof interactionstatesof σ and τ .Asusual[5],wecanrecoveraneventstructure:

Definition4(Closedinteractionofuncoveredpre-strategies). Let A be aneventstructure,and σ : S A and τ : T A bepartialmapsofevent structures.Thefollowingdatadefinesaneventstructure S ∧ T : – events: thoseinteractionstates (x,y ) suchthat ϕx,y hasatopelement, – causality:(x,y ) ≤S ∧T (x ,y ) iff x ⊆ x and y ⊆ y , – consistency: afinitesetofinteractionstates X ⊆ S ∧ T isconsistentiffits union X isaninteractionstatein Sσ,τ .

Thiseventstructurecomeswithpartialmaps Π1 : S ∧T S and Π2 : S ∧T T , analogoustotheusualprojectionsofapullback:for(x,y ) ∈ S ∧ T , Π1 (x,y ) isdefinedto s ∈ S wheneverthetop-elementof ϕx,y is((0,s),w2 )forsome w2 ∈ x ∗ y .Themap Π1 isundefinedonlyoneventsof S ∧ T correspondingto internaleventsof T (i.e. (x,y )withtopelementof ϕx,y oftheform((1,t), (1,t))). Themap Π2 isdefinedsymmetrically,andundefinedoneventscorrespondingto internaleventsof S .Wewrite σ ∧ τ for

2 : S ∧ T A

Lemma1. Let σ : S A and τ : T A bepartialmaps.Let (X,f : X S,g : X T ) beatriplesuchthatthefollowingoutersquarecommutes:

Ifforall p ∈ X with fp and gp defined, σ (fp)= τ (gp) isdefined,thenthere existsaunique f,g : X S ∧ T makingthetwouppertrianglescommute.

Fromthisclosedinteraction,wedefinetheopeninteractionasin[14].Given twopre-strategies σ : S → A⊥ B and τ : T → B ⊥ C ,theirinteraction τ σ :(S C ) ∧ (A T ) A⊥ C

isdefinedasthecompositepartialmap(S C ) ∧ (A T ) A B C A C , wherethe“pullback”isfirstcomputedignoringpolarities–thecodomainofthe resultingpartialmapis A⊥ C ,oncewereinstatepolarities.

Non-angelicConcurrentGameSemantics11
σ ◦ Π1
τ ◦ Π
=
X SS ∧ TT A f,g f g σ Π2 Π1 σ ∧τ τ

12S.Castellanetal.

WeakBisimulation. Tocompareuncoveredpre-strategies,wecannotuseisomorphismsasin[14],sinceashintedearlier, ccA σ comprisessynchronised eventsnotcorrespondingtothosein σ .Tosolvethis,weintroduceweakbisimulationbetweenuncoveredstrategies:

Definition5. Let σ : S A and τ : T A beuncoveredpre-strategies.A weakbisimulationbetween σ and τ isarelation R ⊆ C (S ) × C (T ) containing (∅, ∅),suchthatforall x R y ,wehave:

–If x s −−⊂ x suchthat s isvisible,thenthereexists y ⊆∗ y t −−⊂ y with σs = τt and x R y (andthesymmetricconditionfor τ )

–If x s −−⊂ x suchthat s isinternal,thenthereexists y ⊆∗ y suchthat x R y (andthesymmetricconditionfor τ )

Twouncoveredpre-strategies σ,τ areweaklybisimilar(written σ τ )when thereisaweakbisimulationbetweenthem.

Associativityofinteraction(uptoisomorphism,henceuptoweakbisimulation)followsdirectlyfromLemma 1.Moreover,itisstraightforwardtocheck thatweakbisimulationisacongruence(i.e. compatiblewithcomposition).

CompositionofCoveredStrategies. Frominteraction,wecaneasilydefine thecompositionofcoveredstrategies.If σ : S → A⊥ B and τ : T → B ⊥ C arecoveredpre-strategies,theircomposition(inthesenseof[14]) τ σ isdefined as(τ σ )↓ .Theoperation ↓ iswell-behavedwithrespecttointeraction:

Lemma2. For σ,τ composablepre-strategies, (τ σ )↓ ∼ = τ↓ σ↓ .

3.3ACompact-ClosedCategoryofUncoveredStrategies

Althoughwehaveanotionofmorphism(pre-strategies)betweengamesand anassociativecomposition,wedonothaveacategoryuptoweakbisimulation yet.Unlikein[14],racesinagamemaycausecopycatonthisgametonotbe idempotent(see[3]foracounterexample),whichisnecessaryforittobean identity.Toensurethat,werestrictourselvesto race-free games:thosesuch thatwheneveraconfiguration x canbeextendedby a1 ,a2 ofdistinctpolarities, theunion x ∪{a1 ,a2 } isconsistent.Fromnowon,gamesareassumedrace-free.

Lemma3. Forarace-freegame A, ccA ccA ccA .

Proof. ItwillfollowfromtheforthcomingLemma 4

UncoveredStrategies. Finally,wecharacterisethepre-strategiesinvariant undercompositionwithcopycat.Thetwoingredientsof[5, 14],receptivityand courtesy(called innocence in[14])areneeded,butthisisnotenough:weneed anotherconditionaswitnessedbythefollowingexample.

Considerthestrategy σ : ⊕1 ⊕2 onthegame A = ⊕1 ⊕2 playingnondeterministicallyoneofthetwomoves.Thentheinteraction ccA σ is:

Itisnotweaklybisimilarto σ : ccA σ cando ∗1 ,aninternaltransition,to which σ canonlyrespondbynotdoinganything.Then σ canstilldo ⊕1 and ⊕2 whereas ccA σ cannot:itiscommittedtodoing ⊕1 .Tosolvethisproblem, weneedtoforcestrategiestodecidetheirnondeterministicchoices secretly,by meansofinternalevents–so σ willnotbeavaliduncoveredstrategy,but ccA σ will.Indeed, ccA ( ccA σ )belowisindeedweaklybisimilarto ccA σ .

Definition6. An(uncovered)strategyisapre-strategy σ : S A satisfying: – receptivity: if x ∈ C (S ) issuchthat σx a −−⊂ with a ∈ A negative,thenthere existsaunique x s −−⊂ with σs = a – courtesy: if s s and s ispositiveor s isnegative,then σs σs . – secrecy: if x ∈ C (S ) extendswith s1 ,s2 but x ∪{s1 ,s2 } ∈ C (S ),then s1 and s2 areeitherbothnegative,orbothinternal.

Receptivityandcourtesyarestatedexactlyasin[14].Asaresult,hidingthe internaleventsofanuncoveredstrategyyieldsastrategy σ↓ inthesenseof[14].

Foranygame A, ccA isanuncoveredstrategy:itsatisfiessecrecyasitsonly minimalconflictsareinheritedfromthegameandarebetweennegativeevents.

TheCategoryCG . Ourdefinitionofuncoveredstrategydoesimplythat copycatisneutralforcomposition.

Lemma4. Let σ : S A beanuncoveredstrategy.Then ccA σ σ Theresultfollowsimmediately:

Theorem1. Race-freegamesanduncoveredstrategiesuptoweakbisimulation formacompact-closedcategory CG .

3.4InterpretationofAffineNondeterministicPCF

Fromnowon,strategiesarebydefaultconsidereduncovered.Wesketchthe interpretationof APCF+ inside CG .Asacompact-closedcategory, CG supportsaninterpretationofthelinear λ-calculus.However,theemptygame1 isnotterminal,astherearenonaturaltransformation A : A → 1in CG .

ThenegativecategoryCG .Wesolvethisissueasin[4],bylookingat negativestrategiesandnegativegames.

Non-angelicConcurrentGameSemantics13

14S.Castellanetal.

Definition7. Aneventstructurewithpartialpolaritiesis negative whenall itsminimaleventsarenegative.

Astrategy σ : S A isnegativewhen S is.Copycatonanegativegameis negative,andnegativestrategiesarestableundercomposition:

Lemma5. Thereisasubcategory CG of CG consistinginnegativeracefreegamesandnegativestrategies.Itinheritsamonoidalstructurefrom CG in whichtheunit(theemptygame)isterminal.

Moreover, CG hasproducts.The product A & B oftwogames A and B ,hasevents,causality,polaritiesasfor A B ,butconsistentsetsrestricted tothoseoftheform {0}× X or {1}× X with X consistentin A or B .The projections are A :CCA → (A & B )⊥ A,and B :CCB → (A & B )⊥ B

Finally,the pairing ofnegativestrategies σ : S A⊥ B and τ : T → A⊥ C istheobviousmap σ,τ : S & T A⊥ B & C ,andthelawsforthe cartesianproductaredirectverifications.

Wealsoneedaconstructiontointerpretthefunctionspace.However,for A and B negative, A⊥ B isnotusuallynegative.Tocircumventthis,weintroduce anegativevariant A B ,thelineararrow.Tosimplifythepresentation,we onlydefineitinaspecialcase.Agameis well-opened whenithasatmost oneinitialevent.When B iswell-opened,wedefine A B tobe1if B =1; andotherwise A⊥ B withtheexceptionthateverymovein A dependsonthe singleminimalmovein B .Asaresult preservesnegativity.Weget:

Lemma6. If B iswell-opened, A B iswell-openedandisanexponential objectof A and B

Inotherwords,well-openedgamesareanexponentialidealin CG .Weinterpret typesof APCF+ insidewell-openedgamesof CG :

B = A B

done+

InterpretationofTerms. Interpretationoftheaffine λ-calculusin CG followsstandardmethods.First,theprimitives tt, ff, ⊥, if areinterpretedas:

com
B
q ❈✄✄ ❀❀④
A
= run
=
tt+ ff+

Anon-standardpointistheinterpretationof ⊥:usuallyinterpretedingame semanticsbytheminimalstrategysimplyplaying q (aswillbedoneinthenext section),ourinterpretationherereflectsthefactthat ⊥ representsaninfinite computationthatneverreturns.Conditionalsareimplementedasusual:

if MNN = if ( M N , N )

SoundnessandAdequacy. Wenowproveadequacyforvariousnotionsof convergence.First,webuildanuncoveredstrategyfromtheoperationalsemantics.

Definition8(Theoperationaltree). Let M beaclosedtermoftype B.We definethepre-strategy t(M ) on B asfollows:

Events: Aninitialevent ⊥ plusoneeventperderivation M →∗ M

Causality: ⊥ isbelowotherevents,andderivationsareorderedbyprefix

Consistency: Asetofeventsisconsistentwhenitseventsarecomparable.

Labelling: ⊥ haslabelq,aderivation M →∗ b where b ∈{tt, ff} islabelledby b.Otherderivationsareinternal.

Asaresult, t(M )isatree.Ourmainresultofadequacycannowbestated:

Theorem2. Foraterm M : B, t(if M ttff) and M areweaklybisimilar.

Weneedtoconsider t(if M ttff)andnotsimply t(M )toensuresecrecy. Fromthistheorem,adequacyresultsformayandfairconvergencesarise:

Corollary1. Foranyterm M : B,wehave:

May: M →∗ tt ifandonlyif M containsapositivemove

Fair: Forall M →∗ M , M canconverge,ifandonlyifallfiniteconfigurations of M canbeextendedtocontainapositivemove.

However,wecannotconcludeadequacyformustequivalencefromTheorem 2. Indeed,mustconvergenceisnotgenerallystableunderweakbisimilarity:for instance,(thestrategiesrepresenting) tt andY(λx. ifchoicett x)areweakly bisimilarbutthelatterisnotmustconvergent.Toaddressthisinthenextsection wewillrefinetheinterpretationtoobtainacloserconnectionwithsyntax.

4EssentialEvents

Themodelpresentedintheprevioussectionisveryoperational;configurations of M canbeseenasderivationsforanoperationalsemantics.Theprice, however,isthatbesidesthefactthattheinterpretationgrowsdramaticallyin size,wecanonlygetacategoryuptoweakbisimulation,whichcanbetoo coarse(forinstanceformustconvergence).Wewouldliketoremoveallevents thatarenotrelevanttothebehaviouroftermsuptoweakbisimulation.Inother words,wewantanotionof essentialinternalevents that (1) sufficestorecover allbehaviourwithrespecttoweakbisimulation,butwhich (2) isnotanobstacle togettingacategoryuptoisomorphism(whichamountsto ccA ◦ σ ∼ = σ ).

Non-angelicConcurrentGameSemantics15

4.1DefinitionofEssentialEvents

Asshownbefore,thelossofbehaviourswhenhidingisduetothedisappearance ofeventsparticipatinginaconflict.Aneutraleventmaynothavevisibleconsequencesbutstillberelevantifinaminimalconflict;sucheventsare essential.

Definition9. Let σ : S A beanuncoveredpre-strategy.An essentialevent of S isanevent s whichiseithervisible,or(internaland)involvedinaminimal conflict(thatissuchthatwehave s x s forsome s ,x).

Write ES forthesetofessentialeventsof σ .Anypre-strategy σ : S A induces anotherpre-strategy E (σ ): E (S )= S ↓ ES A called theessentialpart of σ

Thefollowingprovesthatourdefinitionsatisfies (1) :nobehaviourislost.

Lemma7. Anuncoveredpre-strategy σ : S A isweaklybisimilarto E (σ ).

Thisinducesanewnotionof(associative)compositiononlykeepingtheessentialevents.For σ : A⊥ B and τ : B ⊥ C ,let τ σ = E (τ σ ).Weobserve that E (τ σ ) ∼ = E (τ ) E (σ ).

Whichpre-strategiescomposewellwithcopycatwiththisnewcomposition?

4.2EssentialStrategies

Wenowcanstateproperty (2) :theeventsaddedbycompositionwithcopycat areinessential,hencehiddenduringcomposition:

Theorem3. Let σ : S A beanuncoveredstrategy.Then ccA σ ∼ = E (σ ).

Thispromptsthefollowingdefinition.Anuncoveredpre-strategy σ is essential whenitisastrategy,andif,equivalently: (1) allitseventsareessential, (2) σ ∼ = E (σ ).Weobtainacharacterisationofstrategiesinthespiritof[14]:

Theorem4. Apre-strategy σ : S A isessentialifandonlyif ccA σ ∼ = σ .

Asaresult,weget:

Theorem5. Race-freegames,andessentialstrategiesuptoisomorphismform acompact-closedcategory CG .

RelationshipBetweenCGandCG . Coveredstrategiescanbemadeinto acompact-closedcategory[5, 14].Rememberthatthecompositionof σ : S → A⊥ B and τ : T → B ⊥ C in CG isdefinedas τ σ =(τ σ )↓ .

Lemma8. Theoperation σ → σ↓ extendstoanidentity-on-objectfunctor CG → CG

Intheotherdirection,astrategy σ : A mightnotbeanessentialstrategy;in factitmightnotevenbeanuncoveredstrategy,asitmayfailsecrecy.Sending σ to ccA σ delegatesthenon-deterministicchoicestointernaleventsandyields anessentialstrategy,butthisoperationisnotfunctorial.

16S.Castellanetal.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.