Algorithms and architectures for parallel processing 16th international conference ica3pp 2016 grana

Page 1

Spain December 14 16 2016 Proceedings 1st Edition Jesus Carretero

Visit to download the full and correct content document: https://textbookfull.com/product/algorithms-and-architectures-for-parallel-processing-1 6th-international-conference-ica3pp-2016-granada-spain-december-14-16-2016-proc eedings-1st-edition-jesus-carretero/

Parallel
Algorithms and Architectures for
Processing 16th International Conference ICA3PP 2016 Granada

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Algorithms and Architectures for Parallel Processing

ICA3PP 2016 Collocated Workshops SCDT TAPEMS BigTrust

UCER DLMCS Granada Spain December 14 16 2016

Proceedings 1st Edition Jesus Carretero

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-ica3pp-2016-collocated-workshops-scdttapems-bigtrust-ucer-dlmcs-granada-spaindecember-14-16-2016-proceedings-1st-edition-jesus-carretero/

Algorithms and Architectures for Parallel Processing

13th International Conference ICA3PP 2013 Vietri sul

Mare Italy December 18 20 2013 Proceedings Part I 1st Edition Antonio Balzanella

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-13th-international-conferenceica3pp-2013-vietri-sul-mare-italydecember-18-20-2013-proceedings-part-i-1st-edition-antoniobalzanella/

Algorithms and Architectures for Parallel Processing

13th International Conference ICA3PP 2013 Vietri sul

Mare Italy December 18 20 2013 Proceedings Part II 1st Edition Peter Benner

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-13th-international-conferenceica3pp-2013-vietri-sul-mare-italydecember-18-20-2013-proceedings-part-ii-1st-edition-peter-benner/

Algorithms and Architectures for Parallel Processing

18th International Conference ICA3PP 2018 Guangzhou China November 15 17 2018 Proceedings Part I Jaideep Vaidya

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-18th-international-conferenceica3pp-2018-guangzhou-china-november-15-17-2018-proceedings-parti-jaideep-vaidya/

Algorithms and Architectures for Parallel Processing

18th International Conference ICA3PP 2018 Guangzhou

China November 15 17 2018 Proceedings Part III Jaideep Vaidya

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-18th-international-conferenceica3pp-2018-guangzhou-china-november-15-17-2018-proceedings-partiii-jaideep-vaidya/

Algorithms and Architectures for Parallel Processing

18th International Conference ICA3PP 2018 Guangzhou

China November 15 17 2018 Proceedings Part IV Jaideep Vaidya

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-18th-international-conferenceica3pp-2018-guangzhou-china-november-15-17-2018-proceedings-partiv-jaideep-vaidya/

Algorithms and Architectures for Parallel Processing

ICA3PP 2018 International Workshops Guangzhou China

November 15 17 2018 Proceedings Ting Hu

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-ica3pp-2018-international-workshopsguangzhou-china-november-15-17-2018-proceedings-ting-hu/

Algorithms and Architectures for Parallel Processing

14th International Conference ICA3PP 2014 Dalian China

August 24 27 2014 Proceedings Part II 1st Edition XianHe Sun

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-14th-international-conferenceica3pp-2014-dalian-china-august-24-27-2014-proceedings-partii-1st-edition-xian-he-sun/

Algorithms and Architectures for Parallel Processing

14th International Conference ICA3PP 2014 Dalian China

August 24 27 2014 Proceedings Part I 1st Edition XianHe Sun

https://textbookfull.com/product/algorithms-and-architecturesfor-parallel-processing-14th-international-conferenceica3pp-2014-dalian-china-august-24-27-2014-proceedingspart-i-1st-edition-xian-he-sun/

Jesus Carretero · Javier Garcia-Blas

Ryan K.L. Ko · Peter Mueller

Algorithms and Architectures for Parallel Processing

16th International Conference, ICA3PP 2016 Granada, Spain, December 14–16, 2016

Proceedings

123 LNCS
10048

LectureNotesinComputerScience10048

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison

LancasterUniversity,Lancaster,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

FriedemannMattern

ETHZurich,Zurich,Switzerland

JohnC.Mitchell

StanfordUniversity,Stanford,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

C.PanduRangan

IndianInstituteofTechnology,Madras,India

BernhardSteffen TUDortmundUniversity,Dortmund,Germany

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbrücken,Germany

Moreinformationaboutthisseriesathttp://www.springer.com/series/7407

JesusCarretero

AlgorithmsandArchitectures forParallelProcessing

16thInternationalConference,ICA3PP2016

Granada,Spain,December14–16,2016 Proceedings

123

Editors

JesusCarretero

UniversityCarlosIIIofMadrid Leganes

Spain

JavierGarcia-Blas

CarlosIIIUniversityofMadrid Leganes,Madrid

Spain

RyanK.L.Ko

TheUniversityofWaikato

Hamilton NewZealand

PeterMueller

IBMZurichResearchLaboratory

Rüschlikon

Switzerland

KojiNakano

HiroshimaUniversity

Higashi-Hiroshima

Japan

ISSN0302-9743ISSN1611-3349(electronic)

LectureNotesinComputerScience

ISBN978-3-319-49582-8ISBN978-3-319-49583-5(eBook) DOI10.1007/978-3-319-49583-5

LibraryofCongressControlNumber:2016959169

LNCSSublibrary:SL1 – TheoreticalComputerScienceandGeneralIssues

© SpringerInternationalPublishingAG2016

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

WelcomeMessagefromtheICA3PP2016 GeneralChairs

Welcometotheproceedingsofthe16thInternationalConferenceonAlgorithmsand ArchitecturesforParallelProcessing(ICA3PP2016),whichwasorganizedbythe UniversityofMadridCarlosIIandtheUniversityofGranada.

ItwasourgreatpleasuretoorganizetheICA3PP2016conferenceinGranada, Spain,duringDecember14–16,2016.OnbehalfoftheOrganizingCommitteeofthe conference,wewouldliketoexpressourcordialgratitudetoallparticipantswho attendedtheconference.

ICA3PP2016wasthe16theventintheseriesofconferencesstartedin1995thatis devotedtoalgorithmsandarchitecturesforparallelprocessing.ICA3PPisnowrecognizedasthemainregularinternationaleventthatcoversmanydimensionsofparallel algorithmsandarchitectures,encompassingfundamentaltheoreticalapproaches,practicalexperimentalprojects,andcommercialcomponentsandsystems.Theconference providesaforumforacademicsandpractitionersfromaroundtheworldtoexchange ideasforimprovingtheefficiency,performance,reliability,security,andinteroperability ofcomputingsystemsandapplications.

ICA3PP2016attractedhigh-qualityresearchpapershighlightingthefoundational workthatstrivestopushbeyondthelimitsofexistingtechnologies,includingexperimentalefforts,innovativesystems,andinvestigationsthatidentifyweaknessesinexisting parallelprocessingtechnology.

ICA3PP2016consistedofthemainconferenceand fiveinternationalsymposiaand workshops.Manyindividualscontributedtothesuccessoftheconference.Wewould liketoexpressourspecialappreciationtoProf.YangXiang,Prof.WeijiaJia, Prof.LaurenceT.Yang,Prof.YiPan,andProf.WanleiZhou,theSteeringCommittee chairs,forgivingustheopportunitytohostthisprestigiousconferenceandfortheir guidancewiththeconferenceorganization.Specialthankstotheprogramchairs, Dr.PeterMuller,Dr.RyanK.L.Ko,andDr.JavierGarcíaBlas,fortheiroutstanding workonthetechnicalprogram.Thanksalsototheworkshopchairs,Dr.AtsushiHori, Dr.RyanK.L.Ko,andDr.FlorinIsaila,fortheirexcellentworkinorganizingattractive symposiaandworkshops.Thanksalsotothelocalarrangementschair,Prof.Julio Ortega.WewouldliketogiveourthankstoallthemembersoftheOrganizingCommitteeandProgramCommitteeaswellastheexternalreviewersfortheireffortsand support.Wewouldalsoliketothankthekeynotespeakers,Prof.VladimirVoevodin, Dr.RafaelAsenjo,andProf.PedroJosé Marrón,forofferinginsightfulandenlightening talks.Lastbutnotleast,wewouldliketothankalltheauthorswhosubmittedtheir paperstotheconference.

December2016JesúsCarretero KojiNakano

WelcomeMessagefromtheICA3PP2016 ProgramChairs

OnbehalfoftheProgramCommitteeofthe16thInternationalConferenceonAlgorithmsandArchitecturesforParallelProcessing(ICA3PP2016),wewouldliketo welcomeyoutotheproceedingsofconference,whichwasheldinGranada,Spain, duringDecember14–16,2016.

TheICA3PPconferenceaimsatbringingtogetherresearchersandpractitionersfrom bothacademiaandindustrywhoareworkingonalgorithmsandarchitecturesfor parallelprocessing.Theconferencefeatureskeynotespeeches,technicalpresentations, symposiums,andworkshops,wherethetechnicalpresentationsfromboththeresearch communityandindustrycovervariousaspectsincludingfundamentaltheoretical approaches,practicalexperimentalprojects,andcommercialcomponentsandsystems. ICA3PP2016wasthenexteventinaseriesofhighlysuccessfulinternationalconferencesonalgorithmsandarchitecturesforparallelprocessing,previouslyheldas ICA3PP2015(Zhangjiajie,China,November2015),ICA3PP2014(Dalian,China, August2014),ICA3PP2013(VietrisulMare,Italy,December2013),ICA3PP2012 (Fukuoka,Japan,September2012),ICA3PP2011(Melbourne,Australia,October 2011),ICA3PP2010(Busan,Korea,May2010),ICA3PP2009(Taipei,Taiwan,June 2009),ICA3PP2008(Cyprus,June2008),ICA3PP2007(Hangzhou,China,June 2007),ICA3PP2005(Melbourne,Australia,October2005),ICA3PP2002(Beijing, China,October2002),ICA3PP2000(HongKong,China,December2000),ICA3PP 1997(Melbourne,Australia,December1997),ICA3PP1996(Singapore,June1996), andICA3PP1995(Brisbane,Australia,April1995).

TheICA3PP2016conferencecollectedresearchpapersonrelatedresearchissues fromallaroundtheworld.Thisyearwereceived102submissionsforthemainconference.Allsubmissionsreceivedatleastthreereviewsduringahigh-qualityreview process.Theprogramprovidedabalancedandinterestingviewoncurrentdevelopments andtrendsinalgorithmsandparallelarchitectures.TwopaperswereselectedasoutstandingcontributionstoICA3PP2016.Accordingtothereviewresults,30paperswere selectedfororalpresentationattheconference,givinganacceptancerateof29.4%.

WewouldliketoofferourgratitudetoProf.YangXiang,Prof.WeijiaJia, Prof.LaurenceT.Yang,Prof.YiPan,andProf.WanleiZhou,theSteeringCommittee chairs.Ourthanksalsogotothegeneralchairs,Prof.JesúsCarreteroandProf.Koji Nakano,fortheirgreatsupportandgoodsuggestionsforasuccessfulthe fi nalprogram. Specialthankstotheworkshopchairs,Dr.AtsushiHori,Dr.RyanK.L.Ko,and Dr.FlorinIsaila.Inparticular,wewouldliketogiveourthankstoallresearchersand practitionerswhosubmittedtheirmanuscripts,andtotheProgramCommitteeandthe externalreviewers,whocontributedtheirvaluabletimeandexpertisetoprovide

professionalreviewsworkingunderaverytightschedule.Moreover,wearevery gratefultoourkeynotespeakers,whokindlyacceptedourinvitationtogiveinsightful andprospectivetalks.

December2016PeterMuller RyanK.L.Ko JavierGarciaBlas VIIIWelcomeMessagefromtheICA3PP2016ProgramChairs

Organization

ProgramCommittee

HabtamuAbieNorwegianComputingCenter,Norway

MarcoAldinucciUniversityofTurin,Italy

GiulioAlibertiUniversità degliStudiRomaIII,Italy

PedroAlonsoUniversitatPolitècnicadeValència,Spain

AlbaAmatoSecondaUniversità degliStudidiNapoli,Italy

DanielAndresenKansasStateUniversity,USA

CosimoAnglanoUniversitá delPiemonteOrientale,Italy

DaniloArdagnaPolitecnicodiMilano,Italy

MarcosAssuncaoInria,LIP,ENSLyon,France

DavidDelRioAstorgaUniversityCarlosIIIofMadrid,Spain

HrachyaAstsatryanNationalAcademyofSciencesofArmenia

NikzadBabaiiRizvandiUniversityofSydney,NICTA,Australia YanBaiUniversityofWashingtonTacoma,USA

MuneerMasadehBani

Yassein

Alal-BaytUniversity,Jordan

SaadBani-MohammadAlal-BaytUniversity,Jordan JorgeBarbosaFEUP,Portugal

NovellaBartoliniUniversityofRomeSapienza,Italy

LadjelBellatrecheLIAS/ENSMA,France

SalimaBenbernouUniversité ParisDescartes,France SiegfriedBenknerUniversityofVienna,Austria

JorgeBernalBernabeUniversityofMurcia,Spain

MdZakirulAlamBhuiyanTempleUniversity,USA

JavierGarciaBlasUniversityCarlosIIIofMadrid,Spain OanaBoncaloUniversityPolitehnicaofTimisoara,Romania

DanielRubioBonillaHLRS – UniversityofStuttgart,Germany

GeorgeBosilcaInnovativeComputingLaboratory,Universityof Tennessee,USA

PascalBouvryUniversityofLuxembourg SurenBynaLawrenceBerkeleyNationalLaboratory,USA MassimoCafaroUniversityofSalento,Italy

SilvinaCainoLoresUniversityCarlosIIIofMadrid,Spain ChristianCallegariUniversityofPisa,Italy

AparicioCarranzaNewYorkCityCollegeofTechnology,USA

JesusCarreteroUniversityCarlosIIIofMadrid,Spain

PedroA.CastilloValdiviesoUniversidaddeGranada,Spain TaniaCerquitelliPolitecnicodiTorino,Italy

SudipChakrabortyValdostaStateUniversity,USA

JerryH.ChangNationalCenterforHigh-PerformanceComputing, China

Yue-ShanChangNationalTaipeiUniversity,Taiwan AnupamChattopadhyayNanyangTechnologicalUniversity,Singapore JingChenNationalChengKungUniversity,Taiwan

Tzung-ShiChenNationalUniversityofTainan,Taiwan

YuChenStateUniversityofNewYork – Binghamton,USA ZizhongChenUniversityofCalifornia,Riverside,USA

JohnA.ClarkUniversityofYork,UK

StefaniaColonneseUniversità diRomaLaSapienza,Italy

MassimoCoppolaInstituteofInformationScienceandTechnologies (ISTI/CNR),Italy

AnaCortesUniversitatAutònomadeBarcelona,Spain

RaphaëlCouturierUniversityofFrancheComte,France

FélixCuadradoQueenMaryUniversityofLondon,UK

AlfredoCuzzocreaUniversityofTrieste,Italy

BogusławCyganekAGHUniversityofScienceandTechnology,Poland GeorgesDaCostaIRIT/ToulouseIII,France

MasoudDaneshtalabKTHRoyalInstituteofTechnology,Sweden GregoireDanoyUniversityofLuxembourg

SabrinaDeCapitani diVimercati

Università degliStudidiMilano,Italy

SaptarshiDebroyCityUniversityofNewYork,USA CasimerDecusatisMaristCollege,USA

EugenDeduUniversityofFranche-Comté,France

Juan-CarlosDíaz-MartínUniversityofExtremadura,Spain

YacineDjemaielCommunicationNetworksandSecurity,Research Laboratory,Tunisia

CiprianDobreUniversityPolitehnicaofBucharest,Romania

ManuelF.DolzUniversityCarlosIIIofMadrid,Spain

SusanDonohueUniversityofVirginia,USA ZhihuiDuTsinghuaUniversity,Beijing,China

YucongDuanHainanUniversity,China

ChristianEspositoUniversityofSalerno,Italy

RobertoR.ExpósitoUniversityofACoruña,Spain

JoseAlfredoFerreiraCostaUFRN – UniversidadeFederaldoRioGrandedo Norte,Brazil

UgoFioreFedericoIIUniversity,Italy

NekiFrasheriPolytechnicUniversityofTirana,Albania FrancoFrattolilloUniversityofSannio,Italy

MarcFrincuUniversityofSouthernCalifornia,USA

JaafarGaberUniversité deTechnologiedeBelfort-Montbéliard, France

JoseDanielGarciaUniversityCarlosIIIofMadrid,Spain

LuisJavierGarcíaVillalbaUniversityComplutenseofMadrid,Spain

XOrganization

Juan-L.García-ZapataUniversityofExtremadura,Spain SaurabhKumarGargUniversityofTasmania,Australia

EsterMartinGarzonAlmeriaUniversity,Spain

PaoloGastiNewYorkInstituteofTechnology,USA VictorGergelNizhnyNovgorodStateUniversity,Russia

AnsgarGerlicherStuttgartMediaUniversity,Germany

VladimirGetovUniversityofWestminster,UK

HaraldGjermundrodUniversityofNicosia,Cyprus DieterGollmannHamburgUniversityofTechnology,Germany JingGongKTH,Sweden

ArturoGonzalez-EscribanoUniversidaddeValladolid,Spain

PilarGonzalez-FerezICS-FORTH,Greece Jose-Luis

Gonzalez-Sanchez CINVESTAV,Mexico

José GraciaHigh-PerformanceComputingCenterStuttgart, Germany

ChristosGrecosIndependentConsultants,Greece

DanielGrosuWayneStateUniversity,USA

SheikhM.HabibTechnischeUniversitätDarmstadt,Germany

KhalidHasanovIBMResearchIreland HoucineHassanUniversitatPolitecnicadeValencia,Spain

Shi-JinnHorngNationalTaiwanUniversityofScienceand Technology,Taiwan

AtanasHristovUniversityofInformationScienceandTechnology, FYRMacedonia

Sun-YuanHsiehNationalChengKungUniversity,Taiwan

Ching-HsienHsuChungHuaUniversity,China JiaHuLiverpoolHopeUniversity,UK XinyiHuangFujianNormalUniversity,China YonggangHuangBeijingInstituteofTechnology,China

ZhiyiHuangUniversityofOtago,NewZealand MauroIaconoSecondaUniversità degliStudidiNapoli,Italy

ShadiIbrahimInria,RennesBretagneAtlantiqueResearchCenter, France

Young-SikJeongDonggukUniversity,SouthKorea HaiJiangArkansasStateUniversity,USA WenjunJiangHunanUniversity,China

EdwardJungSouthernPolytechnicStateUniversity

VanaKalogerakiAthensUniversityofEconomicsandBusiness,Greece GeorgiosKambourakisUniversityoftheAegean,Greece PanagiotisKarampelasHellenicAmericanUniversity,USA HelenKaratzaAristotleUniversityofThessaloniki,Greece ChristophKesslerLinköpingUniversity,Sweden

MuhammadKhurramKhanKingSaudUniversity,SaudiArabia

PeterKilpatrickQueen’sUniversityBelfast,UK SookyunKimPaiChaiUniversity,SouthKorea

OrganizationXI

RyanK.L.KoTheUniversityofWaikato,NewZealand PeterKropfUniversityofNeuchatel,Switzerland

RuggeroDonidaLabatiUniversità degliStudidiMilano,Italy

Kuan-ChouLaiNationalTaichungUniversity,Taiwan

AlgirdasLančinskasVilniusUniversity,Lithuania AlexeyLastovetskyUniversityCollegeDublin,Ireland Che-RungLeeNationalTsingHuaUniversity,Taiwan

LaurentLefevreEcoleNormalLyon,France YingjiuLiSingaporeManagementUniversity,Singapore YusenLiNanyangTechnologicalUniversity,Singapore ZengxiangLiInstituteofHighPerformanceComputingAgencyfor Science,TechnologyandResearch,Singapore XinLiaoHunanUniversity,China

ChunyuLinHTCCorp.,Taiwan

ZhenLingSoutheastUniversity,China

QinLiuHunanUniversity,China

HaikunLiuNorthChinaElectricityPowerUniversity

XiaoLiuSoftwareEngineeringInstitute,EastChinaNormal University,China

YongchaoLiuGeorgiaInstituteofTechnology,USA GiovanniLivragaUniversità degliStudidiMilano,Italy

JaimeLloretUniversidadPolitécnicadeValencia,Spain

GeorgeLoukasUniversityofGreenwich,UK HaibingLuSantaClaraUniversity,USA PaulLuUniversityofAlberta,Canada RongxingLuUniversityofNewBrunswick,Canada WeiLuKeeneStateCollege,USA LiangLuoUniversityofWashington,USA SidiAhmedMahmoudiUniversityofMons,France AmitMajumdarUniversityofCaliforniaSanDiego,SanDiego SupercomputerCenter,USA

DamianAlvarezMallonForschungszentrumJülich,Germany JoseMiguelMantasRuizUniversidaddeGranada,Spain RavindranathManumachuUniversityCollegeDublin,Ireland XinjunMaoNationalUniversityofDefenseTechnology,China TomasMargalefUniversitatAutonomadeBarcelona,Spain StefanoMarkidisKTH,Sweden FabrizioMarozzoDIMES,UniversityofCalabria,Italy PedroJ.MarronUniversityofDuisburg-Essen,Germany

StefanoMarroneSecondUniversityofNaples,Italy AlejandroMasrurTUChemnitz,Germany

BarbaraMasucciUniversityofSalerno,Italy SusumuMatsumaeSagaUniversity,Japan

RafaelMayoGualUniversityJaumeI,Spain AnatolyMelnykLvivPolytechnicNationalUniversity,Ukraine ViktorMelnykJohnPaulIICatholicUniversityofLublin,Poland

XIIOrganization

IosifMeyerovUNN,Russia

KonstantinaMitropoulouUniversityofCambridge,UK

MiguelCárdenasMontesCIEMAT,Spain

FrancescoMoscatoSecondUniversityofNaples,Italy

PeterMuellerIBMZurichResearch,Switzerland

DavidNaccacheUniversité ParisII,France

TakeshiNanriKyushuUniversity,Japan

EsmondNgLawrenceBerkeleyNationalLaboratory,USA

KennethO’BrienUniversityCollegeDublin,Ireland

HirotakaOnoKyushuUniversity,Japan

EunokPaekHanyangUniversity,SouthKorea

FrancescoPalmieriFedericoIIUniversity,Italy

BenoitParreinUniversityofNantes,France

AbelFranciscoPazGallardoCIEMAT,Spain

CathrynPeoplesUniversityofUlster,Ireland

FernandoPereniguez-GarciaCatholicUniversityofMurcia,Spain

GüntherPernulUniversityofRegensburg,Germany

KalyanPerumallaOakRidgeNationalLaboratory,USA

DanaPetcuWestUniversityofTimisoara,Romania

SalvadorPetitUniversidadPolitécnicadeValencia,Spain

Jean-MarcPiersonUniversityofToulouse,IRIT,France

RobertoDiPietroRomaTreUniversityofRome,Italy

VincenzoPiuriUniversityofMilan,Italy

FlorinPopUniversityPolitehnicaofBucharest,Romania NinaPopovaMoscowStateUniversity,Russia

HengQiDalianUniversityofTechnology,China

Md.ObaidurRahmanDhakaUniversityofEngineeringandTechnology, Bangladesh

RajivRanjanTheUniversityofNewSouthWales,Australia

ThomasRauberUniversityofBayreuth,Germany

Md.AbdurRazzaqueUniversityofDhaka,Bangladesh

YongliRenDeakinUniversity,Australia

JuanAntonioRicoGallegoUniversityofExtremadura,Spain

GabrielRodríguezUniversidadedaCoruña,Spain

FélixR.RodríguezUniversityofExtremadura,Spain

ImedRomdhaniEdinburghNapierUniversity,UK

BimalRoyIndianStatisticalInstitute,Kolkata,India

GudulaRuengerChemnitzUniversityofTechnology,Germany

SalvatoreRuggieriUniversità diPisa,Italy

AntonioRuiz-MartínezUniversityofMurcia,Spain

FrancoiseSailhanCNAM,France

SubhashSainiNASA,USA

RizosSakellariouUniversityofManchester,UK

LuisMiguelSanchezUniversityCarlosIIIofMadrid,Spain

HamidSarbazi-AzadIPM,Iran

Sven-BodoScholzHeriot-WattUniversity,UK

OrganizationXIII

EstefaniaSerranoUniversityCarlosIIIofMadrid,Spain JunShenUniversityofWollongong,Australia

AliShokerINESCTECandUniversityofMinho,Portugal

AnnaSikoraUniversityAutonomaofBarcelona,Spain DraganSimicUniversityofNoviSad,Serbia

DimitrisE.SimosSBAResearch,Austria

DavidE.SinghUniversityCarlosIIIofMadrid,Spain

GenovevaVargasSolarCNRS-LIG-LAFMIA,France ChaoSongUniversityofElectronicScienceandTechnology ofChina

AndreySozykinUralFederalUniversity,Russia

GiandomenicoSpezzanoCNR-ICARandUniversityofCalabria,Italy

PatriciaStolfIRIT,France

PeterStrazdinsTheAustralianNationalUniversity,Australia

ChunhuaSuJapanAdvancedInstituteofScienceandTechnology

Chang-AiSunUniversityofScienceandTechnologyBeijing,China

MagdalenaSzmajduchCracowUniversityofTechnology,Poland

DaisukeTakahashiUniversityofTsukuba,Japan

DomenicoTaliaUniversityofCalabria,Italy

AndreiTchernykhCICESEResearchCenter

SabuM.ThampiIndianInstituteofInformationTechnologyand Management,India

HiroyukiTomiyamaRitsumeikanUniversity,Japan MassimoTorquatiUniversityofPisa,Italy

PaoloTrunfioDEIS,UniversityofCalabria,Italy

TomoakiTsumuraNagoyaInstituteofTechnology,Japan

RaduTudoranHUAWEIERC,Germany

DidemUnatLawrenceBerkeleyNationalLaboratory,USA SebastienVarretteUniversityofLuxembourg,Luxembourg

MariaBarredaVayá UniversitatJaumeI,Spain

SalvatoreVenticinqueSecondaUniversità diNapoli,Italy

VladimirVoevodinMoscowUniversity,Russia ChenWangCSIROICTCenter,Australia MingzhongWangUniversityoftheSunshineCoast,Australia QianWangWuhanUniversity,China

You-ChiunWangNationalSunYat-senUniversity,China YunshengWangKetteringUniversity,USA

ZekeWangNanyangTechnologicalUniversity,Singapore

ZhiboWangWuhanUniversity,China

MartineWedlakeIBM,USA

JinWeiUniversityofAkron,USA

ShengWenDeakinUniversity,Australia

BeatWolfHES-SO,UniversityofWürzburg,Germany

HejunWuSunYat-SenUniversity,China WeigangWuSunYat-senUniversity,China

XIVOrganization

YongdongWuInstituteforInfocommResearch,Singapore RomanWyrzykowskiCzestochowaUniversityofTechnology,Poland LiaoXiaofeiHuazhongUniversityofScienceandTechnology, China

XiaofeiXingGuangzhouUniversity,China QuanqingXuDataStorageInstitute,A*STAR,Singapore WeiXueTsinghuaUniversity,China

RaminYahyapourGWDG – UniversityofGöttingen,Germany Chao-TungYangTunghaiUniversity,Taiwan BaijianYangPurdueUniversity,USA BaoliuYeNanjingUniversity,China

HuaYuHuazhongUniversityofScienceandTechnology, China

ShuchengYuUniversityofArkansas,USA MazdakZamaniKeanUniversity,USA

SheraliZeadallyUniversityofKentucky,USA DezeZengUniversityofAizu,Japan

PengZhangStonyBrookUniversity,USA

DaqiangZhangTongjiUniversity,China

DongfangZhaoPaci ficNorthwestNationalLaboratory Yun-WeiZhaoNanyangTechnologicalUniversity,Singapore YunhuiZhengIBMT.J.WatsonResearchCenter,USA JianlongZhongGRAPHSQLINC,USA XingquanZhuFloridaAtlanticUniversity,USA SotiriosZiavrasNewJerseyInstituteofTechnology,USA

AdditionalReviewers

Andión,José M. Bao,Tao Bezemskij,Anatolij Catuogno,Luigi CortezMendoza, JorgeMario Crane,Paul Dhoutaut,Dominique

Fernandez,Javier GarcíaZapata,JuanLuis Heart field,Ryan Kieffer,Emmanuel Mair,Jason Niu,Zhaojie Peng,Tao Seo,Hwajeong

Soundararajan,Varun Tao,Jinsong Tygart,Adam Veiga,Jorge Zhang,Shaobo Zhao,Jieyi

OrganizationXV

ParallelandDistributedArchitectures

IntelligentSPARQLEndpoints:OptimizingExecutionPerformance byAutomaticQueryRelaxationandQueueScheduling................3 AnaI.Torre-Bastida,EstherVillar-Rodriguez,MirenNekaneBilbao, andJavierDelSer

Hardware-BasedSequentialConsistencyViolationDetectionMadeSimpler...18 MohammadMajharulIslam,RiadAkram,andAbdullahMuzahid

OptimizedMappingSpikingNeuralNetworksontoNetwork-on-Chip......38 YuJi,YouhuiZhang,HeLiu,andWeiminZheng

SoftwareSystemsandProgramming

APortableLock-FreeBoundedQueue............................55 PeterPirkelbauer,ReedMilewicz,andJuanFelipeGonzalez

AC++GenericParallelPatternInterfaceforStreamProcessing..........74 DaviddelRioAstorga,ManuelF.Dolz,LuisMiguelSanchez, JavierGarcíaBlas,andJ.DanielGarcía

CreatingDistributedExecutionPlanswithBobolangNG...............88 DavidBednárek,MartinKruliš,JakubYaghob,andFilipZavoral

DecidingtheDeadlockandLivelockinaPetriNetwithaTargetMarking BasedonItsBasicUnfolding..................................98 GuanjunLiu,KunZhang,andChangjunJiang

ANewScalableApproachforDistributedMetadatainHPC............106 CristinaRodríguez-Quintana,AntonioF.Díaz,JulioOrtega, RaúlH.Palacios,andAndrésOrtiz

EnablingAndroid-BasedDevicestoHigh-EndGPGPUs...............118 RaffaeleMontella,CarmineFerraro,SokolKosta,ValentinaPelliccia, andGiulioGiunta

DistributedandNetwork-BasedComputing

3-AdditiveApproximationAlgorithmforMulticastTimein2D TorusNetworks...........................................129 HovhanessA.HarutyunyanandMeghrigTerzian

Contents

OnlineResourceCoalitionReorganizationforEfficientScheduling ontheIntercloud...........................................143

AdrianSpataru,TeodoraSelea,andMarcFrincu

Graphein:ANovelOpticalHigh-RadixSwitchArchitecture for3DIntegration..........................................162

JieJian,MingcheLai,LiquanXiao,andWeixiaXu

ImprovingthePerformanceofVolunteerComputingwithDataVolunteers: ACaseStudywiththeATLAS@homeProject......................178 SaúlAlonso-Monsalve,FélixGarcía-Carballeira, andAlejandroCalderón

Microcities:APlatformBasedonMicrocloudsforNeighborhoodServices...192 IsmaelCuadrado-Cordero,FelixCuadrado,ChrisPhillips, Anne-CécileOrgerie,andChristineMorin

ImpactofShutdownTechniquesforEnergy-EfficientCloudDataCenters...203 IssamRaïs,Anne-CécileOrgerie,andMartinQuinson

ProcessingPartiallyOrderedRequestsinDistributedStream ProcessingSystems.........................................211 RijunCai,WeigangWu,NingHuang,andLihuiWu

ImplementandOptimizationofIndoorPositioningSystemBased onWi-FiSignal...........................................220 ChongshengYu,XinLi,LeiDou,JianweiLi,YuZhang,JianQin, YuqingSun,andZhiyueCao

BigDataandItsApplications

OptimizingInter-serverCommunicationsbyExploitingOverlapping CommunitiesinOnlineSocialNetworks..........................231 JingyaZhou,JianxiFan,BaoleiCheng,andJunchengJia

RoadSegmentInformationBasedNamedDataNetworking forVehicularEnvironments...................................245 JunlanXiao,JianDeng,HuiCao,andWeigangWu

Energy-AwareQueryProcessingonaParallelDatabaseClusterNode......260 AmineRoukh,LadjelBellatreche,NikosTziritas,andCarlosOrdonez

CurrentFlowBetweennessCentralitywithApacheSpark...............270 MassimilianoBertolucci,AlessandroLulli,andLauraRicci

XVIIIContents

ParallelandDistributedAlgorithms

LightLoss-LessDataCompression,withGPUImplementation...........281

ShunjiFunasaka,KojiNakano,andYasuakiIto

DeterministicConstructionofRegularGeometricGraphswithShort AverageDistanceandLimitedEdgeLength........................295 SatoshiFujita,KojiNakano,MichihiroKoibuchi,andIkkiFujiwara

AGPU-BasedBacktrackingAlgorithmforPermutationCombinatorial Problems................................................310

TiagoCarneiroPessoa,JanGmys,NouredineMelab, FranciscoHerondeCarvalhoJunior,andDanielTuyttens

BufferMinimizationforRate-OptimalSchedulingofSynchronous DataflowGraphsonMulticoreSystems...........................325 MingzeMaandRizosSakellariou

ImplementingSnapshotObjectsonTopofCrash-ProneAsynchronous Message-PassingSystems.....................................341

CaroleDelporte-Gallet,HuguesFauconnier,SergioRajsbaum, andMichelRaynal

ScalingDBSCAN-likeAlgorithmsforEventDetectionSystemsinTwitter...356

JoanCapdevila,GonzaloPericacho,JordiTorres,andJesúsCerquides

TowardsParallelCFDComputationfortheADAPTFramework..........374 ImadKissami,ChristopheCérin,FayssalBenkhaldoun, andGillesScarella

FeedbackControlOptimizationforPerformanceandEnergyEfficiency onCPU-GPUHeterogeneousSystems............................388 Feng-ShengLin,Po-TingLiu,Ming-HuaLi,andPao-AnnHsiung

TheImpactofPanelFactorizationontheGauss-HuardAlgorithm fortheSolutionofLinearSystemsonModernArchitectures............405

SandraCatalán,PabloEzzatti,EnriqueS.Quintana-Ortí, andAlfredoRemón

LeveragingthePerformanceofLBM-HPCforLargeSizesonGPUs

UsingGhostCells..........................................417

PedroValero-Lara

ImprovingHashDistributedA*forSharedMemoryArchitectures

UsingAbstraction..........................................431

VictoriaSanz,ArmandoDeGiusti,andMarceloNaiouf

ContentsXIX

OnaParallelAlgorithmfortheDeterminationofMultipleOptimal SolutionsfortheLCSSProblem................................440

BchiraBenMabrouk,HamadiHasni,andZaherMahjoub

LocalityofComputationforStencilOptimization....................449 LufengYuan,JunhongLiu,YulongLuo,andGuangmingTan

GPUComputingtoSpeed-UptheResolutionofMicrorheologyModels.....457 GloriaOrtega,AntonioPuertas,FcoJavierdeLasNieves, andEsterMartin-Garzón

ApplicationsofParallelandDistributedComputing

MethodologicalApproachtoData-CentricCloudificationofScientific IterativeWorkflows.........................................469

SilvinaCaíno-Lores,AndreiLapin,PeterKropf,andJesúsCarretero

EfficientParallelAlgorithmforOptimalDAGStructureSearchonParallel ComputerwithTorusNetwork.................................483

HirokazuHonda,YoshinoriTamada,andReijiSuda

BinRecyclingStrategyforanAccuracy-AwareImplementation ofTwo-PointAngularCorrelationFunctiononGPU..................503

MiguelCárdenas-Montes,JuanJosé Rodríguez-Vázquez, MiguelA.Vega-Rodríguez,IgnacioSevillaNoarbe, andAntonioGómez-Iglesias

AnEfficientImplementationofLZWCompressionintheFPGA.........512

XinZhou,YasuakiIto,andKojiNakano

SharedMemoryTile-BasedvsHybridMemoryGOP-BasedParallel AlgorithmsforHEVCEncoder.................................521 HéctorMigallón,OtonielLópez-Granado,VicenteGaliano, PabloPiñol,andManuelP.Malumbres

GPU-BasedHeterogeneousCodingArchitectureforHEVC.............529

GabrielCebrián-Márquez,HéctorMigallón,José LuisMartínez, OtonielLópez-Granado,PabloPiñol,andPedroCuenca

OptimizingGPUCodeforCPUExecutionUsingOpenCL andVectorization:ACaseStudyonImageCoding...................537

PedroM.M.Pereira,PatricioDomingues,NunoM.M.Rodrigues, GabrielFalcao,andSergioM.M.deFaria

ImprovingthePerformanceofCardiacSimulationsinaMulti-GPU ArchitectureUsingaCoalescedDataandKernelScheme...............546

RaphaelPereiraCordeiro,RafaelSachettoOliveira, RodrigoWeberdosSantos,andMarceloLobosco

XXContents

ServiceDependabilityandSecurityinDistributedandParallelSystems

DynamicVerifiableSearchOverEncryptedDatainUntrustedClouds......557 XiaohongNie,QinLiu,XuhuiLiu,TaoPeng,andYapinLin

ReducingTCBofLinuxKernelUsingUser-SpaceDeviceDriver.........572 WeizhongQiang,KangZhang,andHaiJin

OBCBasedOptimizationofRe-encryptionforCryptographic CloudStorage.............................................586 HuidongQiao,JiangchunRen,ZhiyingWang,HaiheBa,HuaizheZhou, andTieHong

PerformanceModelingandEvaluation

ModelingPerformanceofHadoopApplications:AJourneyfromQueueing NetworkstoStochasticWellFormedNets.........................599 DaniloArdagna,SimonaBernardi,EugenioGianniti, SoroushKarimianAliabadi,DiegoPerez-Palacin, andJosé IgnacioRequeno

D-SPACE4Cloud:ADesignToolforBigDataApplications............614 MicheleCiavotta,EugenioGianniti,andDaniloArdagna

PortingMATLAB ApplicationstoHigh-PerformanceC++Codes: CPU/GPU-AcceleratedSphericalDeconvolutionofDiffusionMRIData....630 JavierGarciaBlas,ManuelF.Dolz,J.DanielGarcia, JesusCarretero,AlessandroDaducci,YasserAleman, andErickJorgeCanales-Rodriguez

OnStochasticPerformanceandCost-AwareOptimalCapacityPlanning ofUnreliableInfrastructure-as-a-ServiceCloud......................644 WeilingLi,LeiWu,YunniXia,YuandouWang,KunyinGuo,XinLuo, MingweiLin,andWanboZheng

ADistributedFormalModelfortheAnalysisandVerification ofArbitrationProtocolsonMPSoCsArchitecture....................658 ImenBenHafaiedh,MarouaBenSlimane,andRiadhRobbana

SyntheticTrafficModeloftheGraph500Communications..............675 PabloFuentes,EnriqueVallejo,José LuisBosque, RamónBeivide,AndreeaAnghel,GermánRodríguez, MitchGusat,andCyrielMinkenberg

AuthorIndex ............................................685

ContentsXXI

ParallelandDistributedArchitectures

AnaI.Torre-Bastida1(B) ,EstherVillar-Rodriguez1 ,MirenNekaneBilbao2 , andJavierDelSer1,2,3

1 TECNALIA.OPTIMAUnit,48160Derio,Spain {isabel.torre,esther.villar,javier.delser}@tecnalia.com

2 UniversityoftheBasqueCountryUPV/EHU,48013Bilbao,Spain {nekane.bilbao,javier.delser}@ehu.eus

3 BasqueCenterforAppliedMathematics(BCAM),48009Bilbao,Spain

Abstract. TheWebofDataiswidelyconsideredasoneofthemajor globalrepositoriespopulatedwithcountlessinterconnectedandstructureddatapromptingtheselinkeddatasetstobecontinuouslyand sharplyincreasing.Inthiscontexttheso-calledSPARQLProtocoland RDFQueryLanguageiscommonlyusedtoretrieveandmanagestored databymeansofSPARQLendpoints,aqueryprocessingserviceespeciallydesignedtogetaccesstothesedatabases.Nevertheless,dueto thelargeamountofdatatackledbysuchendpointsandtheirstructural complexity,theseservicesusuallysufferfromsevereperformanceissues, includinginadmissibleprocessingtimes.Thisworkaimsatovercoming thisnotedinefficiencybydesigningadistributedparallelsystemarchitecturethatimprovestheperformanceofSPARQLendpointsbyincorporatingtwofunctionalities:(1)aqueuingsystemtoavoidbottlenecks duringtheexecutionofSPARQLqueries;and(2)anintelligentrelaxationofthequeriessubmittedtotheendpointathandwheneverthe relaxationitselfandtheconsequentlyloweredcomplexityofthequery arebeneficialfortheoverallperformanceofthesystem.Tothisendthe systemreliesonatwo-foldoptimizationcriterion:theminimizationof thequeryrunningtime,aspredictedbyasupervisedlearningmodel;and themaximizationofthequalityoftheresultsofthequeryasquantified byameasureofsimilarity.Thesetwoconflictingoptimizationcriteriaare efficientlybalancedbytwobi-objectiveheuristicalgorithmssequentially executedovergroupsofSPARQLqueries.Theapproachisvalidatedon aprototypeandseveralexperimentsthatevincetheapplicabilityofthe proposedscheme.

Keywords: SPARQL · Queryrewriting · LinkedOpenData · Ontology management · Multiobjectiveoptimization

1IntroductionandMotivation

Itwillbesoonadecadesincetheso-calledLinkedOpenData(LOD)paradigm,alongwithseveralrelatedprojectsandinitiatives,becamethemain c SpringerInternationalPublishingAG2016 J.Carreteroetal.(Eds.):ICA3PP2016,LNCS10048,pp.3–17,2016. DOI:10.1007/978-3-319-49583-5 1

IntelligentSPARQLEndpoints:Optimizing ExecutionPerformancebyAutomaticQuery RelaxationandQueueScheduling

technologyenablerfortheexpansionoftheSemanticWeb,whose raisond’ˆetre was anintrinsicinformationtechnologiesrevolutioncenteredonenrichingthepublisheddataandcopingwiththeinherentinabilityofmachinestounderstandwebsites[1].OverthelastdecadetheincreasingadoptionofLODledtothedevelopmentofadistributedmeshofgloballyinterlinkedknowledgecapableofproviding apioneeringmethodtotraversethewebandinterpretitscontents:theWebof Data.Thishuge,distributed,diversedatabaseisdeployedonmanifolddomains andawiderangeofsubjectssuchasgovernment,libraries,lifescienceandmedia, amongmanyothers.Itallowsfortheexecutionofexploratoryandselectivequeries overaenormoussetofupdated,comprehensiveandpertinentdata.TheprevalentsemanticquerylanguagefortheserepositoriesisSPARQL,whichprovidesa fullsetofqueryoperationsandfunctionalities.Notwithstanding,inordertofully unleashtheSemanticWebpotentialSPARQLusersareforcedtodominatethe syntaxoftheSPARQLlanguage.Onthispurposethecommunityhasdevotedconsiderableresearchefforttowardsderivingsophisticatedyetfriendlytoolstohelp usersproperlyexploitthevastamountofavailabledataandachieveasatisfactory performanceintermsofaccuracy.Underthisrationale,thesystemsandengines whereSPARQLendpointsaredeployedhavebecometheprimarytargetwhereto allocatespecializedresourcesandintelligentsoftwareprocedurestoenhancethe qualityofservicecommonlyjeopardizedandcalledintoquestionduetosignificant delays,speciallywhendealingwithlargedatasets[2].

Thecontributionofthisresearchworkgravitatesonthreemainaxesto improvetheperformanceofSPARQLsystems:theperformancepredictionof SPARQLqueriespriortotheirprocessing,theirrelaxationandtheplanningof runqueuesinprocessingengines.Inthefieldofperformancepredictionthereis alargenumberofworksinthefieldoftheSQLquerylanguageforrelational databases,whichhavetraditionallyrevolvedaroundstatisticalorheuristicscosts estimation.Inregardstothepredictionofthequeryexecutiontime,supervised learningmodelshavepositionedthemselvesasthe off-the-shelf estimatorsin recentyears(seee.g.[3, 4]).Tothebestofourknowledgethereareveryscarce studiesthatextrapolatethisacquiredknowledgewithrelationaldatabasesto theLODrepositories.Themaindifferencebetweenthesetwoareasresideson theabsenceofanschematicstructureintheRDFstandard,aswellasonthe shortageofstatisticsofthedatasetscompoundingtheLODenvironment.Justifiably,thecurrentgenerationofSPARQLquerycostestimationapproaches thatinspirefromthosederivedforrelationaldatabaseshavebeenproventobe inadequateforthetaskofperformanceprediction.Thisistherationaleforthe brandnewdirectionstartedin[3]andsubsequentlyfollowedin[4, 5]thatresorts tomachinelearningtechniquestoextractSPARQLperformancemetricsfrom alreadyexecutedqueries.Despitethegoodpredictivescoresreportedinthese references(withthelatestworkin[5]scoringanaverage R2 of0.94withSupport VectorMachines),wewillshowthroughoutthismanuscriptthatthereisstill roomforimprovementintermsofthelearningmodelandthesetoffeatures.

Concerningthesecondaspectthatcanbeleveragedsoastoimprovethe performanceofendpoints,theoptimizationofSPARQLquerieshashitherto

4A.I.Torre-Bastidaetal.

mainlyfocusedonrewritingthequeryathandbasedondifferentobjectives, suchastheminimizationoftheexecutiontimeorthereductionofitsstructuralcomplexity.Weclassifythesestudiesintothreecategoriesdependingon theutilizedoptimizationtechnique:cost-based[6–8],heuristics-based[9–11]and machinelearningtechniques[12, 13].Cost-basedschemessufferfromtheaforementionedlowavailabilityofstatisticsintheLOD.Heuristicapproachesassume thatstructurallysimplequeriesareingenerallessexpensive,butthisisnotthe caseinSPARQLduetotheinferenceandvariantextensionalinformationcontainedinaSPARQLarrangement.TheworkbyBiceretal.in[12]introducethe conceptofRelationalKernelMachines,whichsimplifytheproblemofextractingfeaturesfromthecomplexstructureofsemanticdataandhenceimproving na¨ıveapproximationsbasedonSupportVectorMachines.Likewise,in[13]longrunningqueries(detectedbypredictingitscomputationalcosts)arerelaxedby applyingaGeneticAlgorithm(GA)basedrewritingapproachsoastoyielda fasterrewrittenquery.Inourworkwewilltakeastepfurthersoastoconsider inthedeterminationofthequeryrelaxationpolicytheinherentParetotrade-off betweenthequalityoftheresultsreturnedbythequeryandtherelativerunning timewithrespecttoitsoriginalversion.ThisPareto-optimalbalancebetween bothobjectiveswillbeshowntobetractableviaevolutionarymulti-objective heuristics.

Finally,thethirdaxisreferstotheschedulingofrunqueuestoorganizeand coordinatequeryexecutions,aroundwhichourliteraturesurveyhasidentifieda single,recentyetrelevantcontributionforSPARQLendpoints[14].Inthispaper theauthorsexplainthatguaranteeingaconsistentlygoodqualityofservicein SPARQLendpointsisadifficulttasktoaccomplish,forwhichtheuseofan schedulerisproposedtooptimallymanagetheexecutionofqueriesinSPARQL endpoints.Wegoonestepbeyondthesimpleschedulersexploredinthisreference byproposinganovelapproachinwhichweoptimizetheschedulingcriterion basedonthepreviouslymentionedSPARQLrelaxationpolicies.

Oursoftwaresystemblendstogetherthethreeaspectscommentedaboveto improvetheruntimeperformanceofaSPARQLendpoint.Theproblemisthat manyofthequeriesprocessedbysuchsystemscannotbeexecutedwithina reasonabletimefortheuser.Toaddressthisissueabi-objectivealgorithmis designedtoobtaintheoptimalsetofrelaxationrulesonthisdatasetwithout disregardingthequalityofthequeryresult.ByapplyingsuchaPareto-optimal setofrelaxationrulestheexecutiontimeofthequeriesisreducedwhilekeeping thequalitydegradationoftheirresultstoaminimum.Suchrulesetscanbe furtherexploitedbyimplementingasetofprocessingqueuesintheSPARQL endpoint,sothattheoptimizationalgorithmdeterminestheadequatesetof relaxationrules,theallocationofqueriesoverthepoolofprocessingqueuesand theexecutionorderofthequeriesassignedtoeveryqueue.Insummary,the maingoalofthispaperisthedesignofasoftwaresystemcapableofenhancing theperformanceofaSPARQLendpointbycombiningoptimizedrunqueues, adequatequeryrelaxationpoliciesandSPARQLqueryruntimepredictions. Schematicallythenoveltechnicalingredientsofthisresearchworkareasfollows:

IntelligentSPARQLEndpoints5

1.Thederivationofnewpredictivefeaturesforthedesignofaruntimeestimator forSPARQLqueries,whichcanbedividedinquerylanguagealgebraand vocabularyfeaturesdefiningthetermsofthequery.

2.Thedesignandimplementationofasystembasedonrunqueuestoimprove theperformanceofSPARQLendpoints,whichtoourknowledgeisthefirst oneproposedintheliterature.

3.Aqueryrelaxationoptimizationalgorithmguidedbytwoobjectives:themaximizationofthequeryquality(quantifiedintermsofsimilarity)andthe minimizationoftheruntimeofthequery.

4.Theuseofparallelizableevolutionarymeta-heuristicsolverstotheperformanceimprovementofSPARQLendpointsintheparticularaspectsofquery relaxationandrunqueueschedulingmentionedpreviously.

Therestofthemanuscriptisstructuredasfollows:Sect. 2 overviewsthe generalarchitectureoftheproposedsystemandformulatestheoptimization problemthatmathematicallydefinesitsoperation.Subsects. 2.1 and 2.2 delve intothedesignofestimatorsforthequeryrunningtimeandqualityonwhich theaforementionedoptimizationproblemisbased.Next,Sect. 3 elaborateson themeta-heuristicoptimizationalgorithmdesignedtoefficientlyimplementthe proposedsystem,includingrelevantaspectssuchasthesolutionencodingand thedesignoftheoperators.Section 4 reportsontheexperimentalevaluationof theproposedschemeandconclusionsaredrawninSect. 5.

2ArchitectureOverviewandProblemFormulation

Inthissectionwebrieflyintroducekeyconceptsandnotationusedthroughout therestofthepaper.SPARQListhestandardquerylanguageforRDF.Let I bethesetofallIRIs(InternationalizedResourceIdentifiers), L bethesetof RDF literals,and B bethesetofRDF blanknodes.Thesethreeinfinitesetsare pairwisedisjoint.AnRDF triple isatuple(s,p,o) ∈ (I ∪ B ) × I × (I ∪ B ∪ L); s iscalledthe subject, p isthe predicate,and o standsforthe object ofthetriple, respectively.AnRDF graph isafinitesetoftriples.Forthepurposeofthis paper,a dataset D isanRDFgraph.Givenadataset D,werefertotheset voc (D) ⊆ (I ∪ L)ofIRIsandliteralsoccurringin D asthe vocabulary of D.We usethewords term or resource torefertoelementsin I ∪ L.

ThecoreofaSPARQLqueryisa basicgraphpattern,whichisusedtomatch anRDFgraphinordertosearchfortherequiredanswers.A triplepattern is atriple,withoutblanknodes,whereavariablemayoccurinanyplaceofthe triple.A graphpattern isanexpressionrecursivelydefinedasfollows:(1)atriple patternisagraphpattern;(2)if P1 , P2 aregraphpatterns,then(P1 and P2 ), (P1 union P2 ),and(P1 opt P2 )aregraphpatterns;and(3)if P isagraph patternand C isSPARQLconstraint,then(P filter C )isagraphpattern. Withthesedefinitionsinmind,aqueryisdefinedby Q =(D,δ )where D isthe datasettobeusedduringthepatternmatchingand δ isthegraphpatternof thequery.

6A.I.Torre-Bastidaetal.

Figure 1 showsanoverviewoftheproposedsystem,whichisconceivedas anintermediatemanagerbetweentheuserssubmittingtheirqueriesandthe poolofparallelprocessingqueuesthatcompoundtheSPARQLendpoint.Severalmodulescanbefoundinthisdiagram:firstitisimportanttoremarkthat therelaxationpoliciesandthemappingtoprocessingqueuesareoptimizedat thelevelofpreviouslyclusteredquerygroups,sothatquerieswithinthesame clusterundergothesamerelaxationrulesandareassignedtothesameprocessingqueue.Thisclusteranalysismoduleisbasedonthemethodologypresented in[15]thatfollowthesesteps:datagenerationmimickinganinputdatasource, querylogmining,clusteringandSPARQLfeatureanalysis.Asaresult P query sets

Fig.1. Overviewoftheproposedarchitectureassuming P =3queryprofiles {Qp }3 p=1 and Z =3processingqueuesattheendpoint.Thelowerpartoftheplotcorresponds totheprocessingstagesthatareperformedoff-linebasedonahistoricrecordofqueries submittedtotheendpoint,whereastheupperpartillustratestheentirerelaxationand schedulingprocedureappliedtoanewincomingquerysubmittedtotheendpoint.

PriortoitsonlineworkingregimetheSPARQLendpointmustdecidethe setofrelaxationpolicies,thequeueandtheprioritywithinthequeueforeach ofsuchclusters.Let fr (Q)bethegenericdefinitionforarelaxationrule,drawn froma R-sizedvocabulary F = {fr (Q)}R r =1 ofpossiblerelaxationoperators.Itis importanttonotethat fr (Q)mayonlyimpactonacertaintriple(s,p,o)within Q or,instead,involvemoretermswithinitsexpression.Threekindofruleshave beenconsideredinthesetup:

1.Deletionrules,whichconsistofeliminatingatriple(s,p,o),filter,terms,union and/oroptionalclausesfromthequery.

IntelligentSPARQLEndpoints7
{Qp }P p=1 = {{Qn p }Np n=1 }P p=1 (clusters)areproducedwith Qn p =(D,δ n p ). T (Q ,Q) P (Q ,Q) Cluster analysis Scheduling optimization Q1 Q2 Q3 F T ()-P () Paretoestimation Fp P (·) Fp T ( ) F ∗ 1 F ∗ 2 F ∗ 3 Cluster mapping Relaxation module Scheduler module {τz }3 z=1 Average runningtime Average quality Q
New
ON-LINE OFF-LINE (training) (testing) Q τ1 τ2 τ3 Q SPARQL database Cluster index p {α♦,m p }3 p=1 Selected policy {F ♦,m p }3 p=1 {λ♦,m (p)}3 p=1
=(D,δ )
SPARQL query

8A.I.Torre-Bastidaetal.

2.Additionrules,whichaddarestrictiveclausetothequery,e.g.alimitoperator.

3.Hierarchicalrules,bywhichatermofthequeryissubstitutedbyitsdescendantorascendantintheontologicalhierarchyofthequerieddataset.

Thecompletelistofpossiblerules F issortedbytheirestimateddegreeof degradationontheresultsoftherelaxedquery.Underthisnotation Fp ⊆F will denotethesequenceofrelaxationoperatorsthatwillbeappliedtothequeries belongingtocluster p,whereas Qn, p willdenotetherelaxedversionofquery Qn p aftertheapplicationoftherulesin Fp

Thedeterminationof {Fp }P p=1 willbedoneunderatwofoldcriteria:weseek tooptimallybalancetheimpactoftherelaxationpolicyontheaveragerunning timeandqualityoftheresultsassociatedtothequery;themorerelaxedthequery Qn, p is,thefasteritwillbeexecutedattheendpoint,butthelessprecisethe returnedresultswillbewithrespecttotheoriginal,unrelaxedquery Qn p .Such objectiveswillberepresentedbytwofunctions T (Qn, p ,Qn p )and P (Qn, p ,Qn p ), both ∈ [0, 1],correspondingtotherelativerunningtimeandqualityofthe relaxedquery Qn, p w.r.t. Qn p .Inmathematicaltermstherelaxationmodulein Fig. 1 seeks,foreachqueryprofile Qp ,agroupofpolicies F ∗ p composedbyseveral relaxationrulesets {F ∗,m p }Mr m=1 suchthat F ∗,m p =arg Fp ⊆F

min 1 Np Np n=1 T (Qn, p ,Qn p ), max 1 Np

subjectto Qn, p beingthequeryresultingfromthesuccessiveapplicationofthe relaxationrules f ∈Fp to Qn p .Foreach m ∈{1,...,Mr } adifferentsetofrules F ∗,m p balancesdifferentlybothfitnessobjectiveswhenappliedoverthereference queryprofile Qp .Subsects. 2.1 and 2.2 willelaborateontheestimationofthe valuefor T (Qn, p ,Qn p )and P (Qn, p ,Qn p )priortotheexecutionofthequeryitself.

OncesuchParetoestimationshavebeenproducedoff-lineforeachquery profile,theschedulermoduleexploitsthisinformationtodetermine(1)which processingqueueshouldbeassignedtoanincomingqueryassociatedtoacertain cluster p ∈{1,...,P };(2)whichrelaxationpolicyshouldbeappliedtothe queryamongthosein F ∗ p ;and(3)theexecutionorderofthequeries(i.e.their priority)inthecaseseveralofthemareassignedtothesamequeue.Without lossofgeneralitycomputingpowerdifferencesbetweenprocessingqueuesare assumedtoyieldfactors {τz }Z z =1 (with τz ∈ (0, 1]and Z denotingthenumber ofqueues)suchthatthetimetakenbyqueue z toprocess Qn p isreducedby 100 · τz %.Thequeueallocationtobedecidedatthismodulewillbedenoted asanon-surjective,non-injectivemappingfunction λ : {1,...,P } →{1,...,Z }, suchthat λ(p)willstandforthequeuetowhichthequeriesassociatedtoprofile p ∈{1,...,P } willbeforwarded.Prioritieswithinqueue z ∈{1,...,Z } will bedenotedasareal-valuedvariable αp ∈ R suchthatif λ(p)= λ(p )(i.e. profiles p and p areassignedthesameprocessingqueue),thequeriesinprofile p willbeexecutedfirstif αp ≤ αp .Conversely,if αp >αp queriesbelongingto

⎧ ⎨
Np n=1 P
n,
n p
⎫ ⎬ ⎭
(Q
p ,Q
)
, (1)

cluster p willbegrantedahigherexecutionprioritylevelthanthosein p.The criteriontodeterminetheoptimalmapping λ♦ (p),relaxationpolicies {F ♦ p }P p=1 andpriorityfactors α♦ = {α♦ p }P p=1 attheschedulermodulewillagainrelyon theaforementionedtime-qualityParetotrade-off,butincorporatingasubtleyet relevantaspect:querieswithinthesameprocessingqueueinteractintermsof theircompletiontime,i.e.boththerelativeorderofquerieswithinagivenqueue andthedifferentprocessingcapabilitiesofthequeuesthemselvesaremeaningful fortheoverallevaluationoftheaverageexecutiontimetakenbytheendpointto processincomingqueries.Inotherwords,avectorofmappingfunctions λ♦ ( ) . = {

,relaxationpolicies F

willbalancethefollowingPareto:

where I( )isanauxiliaryindicatorfunctiontakingvalue1ifitsargumentis trueand0otherwise; λ(p) ∈{1,...,Z } denotestheindexofthequeuetowhich thequeriesincluster p areassigned;and Qn, p istheresultofrelaxingquery Qn p throughpolicy Fp .Inwords,Expression(2)denotesthetimetakenbythe queries Qn p withincluster p,whichdependsnotonlyontheassignedqueue through τλ(p) ,butalsoontheaveragetimetakenbyqueriesbelongingtoother clusters ∈{1,...,p 1,p +1,...,P } providedthattheyareassignedtothe sameprocessingqueueandgrantedhigherpriority.Finally,Expression(3)poses themeanqualityscoreaveragedoveralltheconsideredqueryclusters.

Beforeproceedingwiththealgorithmicsolutionproposedtoefficientlysolve theaboveproblems,itshouldbenotedthatinpracticetherelaxationand schedulingmodulesmightbeconceivedandformulatedasasingleoptimization problemdrivenbytheobjectivefunctionsinExpressions(2)and(3).However, bydecouplingbothmodulesadeeperunderstandingoftheflexibilityoftheclusterswithrespecttothesetofrelaxationoperatorscanbeacquired,withfurther potentialapplicationsbeyondtheoneaddressedinthispaper(e.g.optimizinga distributeddeploymentofthedatabaseathand).

2.1SPARQLQueryRun-TimePrediction

AsshowninFig. 1 andarguedabove,anestimationoftherunningtimerequired tocompleteagivenrelaxedquery Q isneededwhentheproposedapproach

IntelligentSPARQLEndpoints9
λ
p=1
λ♦,m (·), α♦,m , F ♦,m p =arg λ∈Λ α∈RP Fp ⊆F ⎧ ⎨ ⎩ min 1 P P p=1 τλ(p) Np Np n=1 T (Qn, p ,Qn p ) P =1 =p 1 N N η =1 τλ( ) T (Qη, ,Qη )I(α ≤ αp )I(λ( )= λ(p)), (2) max 1 P P p=1 1 Np Np n=1 P (Qn, p ,Qn p ) ⎫ ⎬ ⎭ , (3)
♦,m ( )}Ms m=1
p . = {F ♦,m p }Ms m=1 andprioritylevels A♦ ( ) . = {α♦,m }Ms m=1 = {{α♦,m p }P
}Ms m=1

operatesinbothoff-lineandon-linemodes.Suchanestimationmustbeproduced withoutexecutingthequeryitself.Therefore,asupervisedlearningmodelis includedinordertopredictexecutiontimesofgenericSPARQLqueriesbased onahistoricsetofalreadyexecutedqueries.Theadoptedapproachissimilar totheonepresentedbyHassanetal.in[5],butwithnovelingredients:the learningmodelitselfandthesetoffeaturesextractedfromtheexpressionofthe SPARQLqueriestobuildthetrainingdataset.Assuch,thisdatasetconsistof asetofpreviouslyexecutedqueriesandtheobservedperformancemetricvalues (executiontimes)forthosequeriesintheirnative,unrelaxedform.Thegoalisto extractproperfeaturesfromthesyntaxofthequeriestoconstructaprediction modelthatprovideuswithanaccurateestimationoftheexecutiontimethatcan begeneralizedtonew,possiblyrelaxedquerysets.Theproposedsetoffeatures areclassifiedas:

1.Algebrafeatures,whichrepresentthesyntaxoftheSPARQLquery,itsoperatorsandstructuralinformation.Firstwetransformaqueryintoanalgebra expressiontree,fromwhichweextractthefollowingfeatures:numberofbasic graphpatterns,filteroperatorpresence,typeoffilter,limitoperatorpresence, optionaloperatorpresence,distinctoperatorpresence,numberofprojected variables,groupoperatorpresence,numberofunion,numberofjoinsand numberofleftjoins.

2.Datasetvocabularyfeatures,forwhichweusethedatasettermsinvolvedin theSPARQLquerydefinitiontoextractintensionalandsemanticinformation aboutthem.Firstwecomputetheoverallsetofterms,andwiththis bagof words wecomputetheTF-IDFfrequency[16]asaquantitativescoreofthe importanceofthetermsofthequery(words )inthedataset(document ) (Fig. 2).

Regardingthesupervisedlearningmodelweoptforaso-calledRandom ForestClassifier[17],awidelyutilizedensemblemodelcharacterizedbyitsgood generalizationpropertiesandlowtendencytooverfit.InshortRandomForests exploittheprincipleofbaggingbyrandomlysplittingthedataintochunks, selectingafeaturesubsetandtrainingaweaklearner(tree)oneachofthem, fromwherethepredictedoutputisgivenbyvoting(classification)oraveraging (prediction)theindividualoutputsoftheaforementionedweakmodels.

10A.I.Torre-Bastidaetal.
Fig.2. SPARQLqueryfeaturesvector.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.