Curiosity Issue 2

Page 31

WAITING FOR THE PILLOW TO COME FELT LIKE WAITING FOR SOMEONE TO OPEN THE BOX HOLDING SCHRODINGER’S CAT

you. That is the mystery. How does Nature make calculations that have more states than there are particles in the observable Universe?” Akhalwaya points out that with all the hype around quantum computing, it is important to remember that a future quantum computer will not solve every difficult problem or have all the answers. “A quantum computer does not compute the incomputable nor is it magically intelligent, but it does make certain calculations that were impractical (taking billions of years to run through all options on a classical computer) feasible by doing them in parallel,” he says. One example is drug discovery. Classical computers have not been very successful in this regard as they are unable to search an array of possibilities simultaneously to find answers, because they use a binary process of eliminating every possibility in a linear fashion: Yes or No Heads or Tails Up or Down 0 or 1 “Quantum computing is basically making things that have been practically infeasible become feasible and suddenly a whole new world opens up of things that are possible. The first ‘killer’ application will probably be optimisation, such as supply chains and chemistry,” says Akhalwaya. THE RACE IS ON Worldwide varying approaches are underway to build the first real universal quantum computer because, no matter what we have heard, it still does not exist – but that doesn’t mean we don’t already have some toy systems with which to play around. One of the leaders in this new ‘Space race’ is IBM with its IBMQ. This is an industry-first initiative launched in March 2017 to build commercially available universal quantum computing systems.

Whilst the action is happening at IBM’s research HQ in New York, here in Johannesburg at the IBM Research Africa Lab in Wits University’s Tshimologong Digital Innovation Precinct in Braamfontein, Akhalwaya and his colleague, Waheeda Saib are building the Precinct’s quantum community. Saib, who studied quantum physics at Wits and has more than 10 years’ IT experience, is currently pursuing a Master’s in Data Science specialising in quantum machine learning, at the University of Edinburgh. Saib investigates deep learning in the IBM Research data-driven healthcare project. A theoretical physicist, Akhalwaya’s day job at the IBM Research Lab is to engage in fundamental Square Kilometre Array physics and astronomy research, especially through machine learning and exploring quantum information research. It is through their shared interest in quantum machine learning that they have teamed up and are working on applications to contribute to the IBM Quantum Experience, a quantum computer that IBM has made available freely in the Cloud to anyone, as an enablement tool for scientific research and a resource for university classrooms. “This is our side hobby,” jokes Akhalwaya. In the end it could grow and IBM will reap the benefit in the near future. For now, they are quite mysterious about what this might be and do not want to let Schrödinger’s cat out of the box just yet. APPLIED QUANTUM MACHINE LEARNING. A few months ago 40 members of the emerging young quantum community, including Saib, assembled in South Africa for a 10-day workshop to talk about quantum machine learning and to test their skills via a unique programming challenge. The challenge was to classify the MNIST handwritten digit dataset into two groups. The dataset includes 9 586 images of handwritten digits of 3 and 8. Each image is a 28 x 28 pixel square or 784 pixels in total. Saib’s team won the Most Creative/ Novel Solution, being the only team to implement a deep learning quantum classification algorithm. 31


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Curiosity Issue 2 by Curiosity - Issuu