Mathematical physics in theoretical chemistry first edition blinder s.m. - ebook pdf - The ebook is

Page 1


Mathematical physics in theoretical chemistry First Edition Blinder S.M. - eBook PDF pdf download

https://ebooksecure.com/download/mathematical-physics-intheoretical-chemistry-ebook-pdf/

We believe these products will be a great fit for you. Click the link to download now, or visit ebooksecure.com to discover even more!

(eBook PDF) A First Course in Mathematical Modeling 4th Edition

http://ebooksecure.com/product/ebook-pdf-a-first-course-inmathematical-modeling-4th-edition/

Fundamentals Of Mathematical Physics 1st EditioneBook PDF

https://ebooksecure.com/download/fundamentals-of-mathematicalphysicsugrshort-disc-paperback-ebook-pdf/

(eBook PDF) Chemistry Atoms First 2e

http://ebooksecure.com/product/ebook-pdf-chemistry-atomsfirst-2e/

(eBook PDF) Chemistry: Atoms First 3rd Edition

http://ebooksecure.com/product/ebook-pdf-chemistry-atomsfirst-3rd-edition/

(eBook PDF) Chemistry: Atoms First 4th Edition

http://ebooksecure.com/product/ebook-pdf-chemistry-atomsfirst-4th-edition/

Mathematical optimization terminology: a comprehensive glossary of terms First Edition Keller - eBook PDF

https://ebooksecure.com/download/mathematical-optimizationterminology-a-comprehensive-glossary-of-terms-ebook-pdf/

General Chemistry: Atoms First 1st Edition - eBook PDF

https://ebooksecure.com/download/general-chemistry-atoms-firstebook-pdf/

(eBook PDF) Introductory Chemistry An Atoms First Approach

http://ebooksecure.com/product/ebook-pdf-introductory-chemistryan-atoms-first-approach/

Chemistry: An Atoms First Approach 3rd Edition (eBook PDF)

http://ebooksecure.com/product/chemistry-an-atoms-firstapproach-3rd-edition-ebook-pdf/

MathematicalPhysics inTheoretical Chemistry

DevelopmentsinPhysical& TheoreticalChemistry

Withthenewseries DevelopmentsinPhysical&TheoreticalChemistry,Elsevier introducesacollectionofvolumesthathighlighttimelyandimportantdevelopments inthisinterdisciplinaryfield.Theseriesaimstopresentusefulandtimelyreference worksdealingwithsignificantareasofresearchinwhichthereisrapidgrowth. Throughthecontributionsofspecialists,thesevolumeswillprovideessential backgroundonappropriateandrelevanttopicsandprovidesurveysoftheliterature ataleveltobeusefultoadvancedstudentsandresearchers.Inthisway,thevolumes willaddresstheunderlyingtheoreticalandexperimentalbackgroundonthetopics forresearchersenteringthetopicfieldsandfunctionasusefulreferenceworksof lastingvalue.Aprimarygoalforthevolumesintheseriesistoprovideastrong educationalthrustforadvancedstudyinparticularfields.Eachvolumewillhave aneditorwhoisintimatelyinvolvedinworkconstitutingthetopicofthevolume. Althoughcontributionstovolumesintheserieswillincludethoseofestablished scholars,contributionsfromthosewhoarerisinginprominencewillalsobeincluded.

2018 PhysicalChemistryofGas–LiquidInterfaces

JenniferA.FaustandJamesE.House,Editors

2019 MathematicalPhysicsinTheoreticalChemistry

S.M.BlinderandJ.E.House,Editors

DevelopmentsinPhysical& TheoreticalChemistry

J.E.House,SeriesEditor

MathematicalPhysics inTheoretical Chemistry

UniversityofMichigan, AnnArbor,MIandWolframResearch, Champaign, IL,USA

J.E.House

IllinoisWesleyanUniversity, Bloomington,IL;andIllinoisState University,Normal, IL,USA

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-813651-5

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: AnnekaHess

EditorialProjectManager: AmyM.Clark

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: VictoriaPearson

TypesetbySPiGlobal,India

Contributors

S.M.Blinder

UniversityofMichigan,AnnArbor,MI,UnitedStates

CailaBruzzese

DepartmentofChemistry,BrockUniversity,St.Catharines,Ontario,Canada

KimberlyJordanBurch

DepartmentofMathematics,IndianaUniversityofPennsylvania,Indiana, PA,UnitedStates

AndrewL.Cooksy

DepartmentofChemistryandBiochemistry,SanDiegoStateUniversity, SanDiego,CA,UnitedStates

GuidoFano

UniversityofBologna,Bologna,Italy

JamesW.Furness

DepartmentofPhysicsandEngineeringPhysics,TulaneUniversity,NewOrleans, LA,UnitedStates

DavidZ.Goodson

DepartmentofChemistryandBiochemistry,UniversityofMassachusetts Dartmouth,NorthDartmouth,MA,UnitedStates

JustinK.Kirkland

DepartmentofChemistry,UniversityofTennessee,Knoxville,TN,UnitedStates

ErrolLewars

DepartmentofChemistry,TrentUniversity,Peterborough,ON,Canada

DevinA.Matthews

InstituteforComputationalEngineeringandSciences,TheUniversityofTexasat Austin,Austin,TX,UnitedStates

EgorOspadov

DepartmentofPhysics,BrockUniversity,St.Catharines;DepartmentofChemistry,TheUniversityofWesternOntario,London,Ontario,Canada

StuartM.Rothstein

DepartmentofPhysics;DepartmentofChemistry,BrockUniversity,St.Catharines, Ontario,Canada

JohnF.Stanton

DepartmentofChemistry,UniversityofFlorida,Gainesville,FL,UnitedStates

JianweiSun

DepartmentofPhysicsandEngineeringPhysics,TulaneUniversity,NewOrleans, LA,UnitedStates

JacobTownsend

DepartmentofChemistry,UniversityofTennessee,Knoxville,TN,UnitedStates

IngaS.Ulusoy

DepartmentofChemistry,MichiganStateUniversity,EastLansing,MI, UnitedStates

KonstantinosD.Vogiatzis

DepartmentofChemistry,UniversityofTennessee,Knoxville,TN,UnitedStates

AngelaK.Wilson

DepartmentofChemistry,MichiganStateUniversity,EastLansing,MI, UnitedStates

YuboZhang

DepartmentofPhysicsandEngineeringPhysics,TulaneUniversity,NewOrleans, LA,UnitedStates

Mathematicalphysicsin theoreticalchemistry

CONTENTS

(i) TheHartree-Fockapproximation(S.M.Blinder)

(ii) SlaterandGaussianbasisfunctionsandcomputationofmolecularintegrals (A.K.Wilson)

(iii) Post-Hartree-Fockmethods:Configurationinteraction,many-body perturbationtheory,couple-clustertheory(K.D.Vogiatzis)

(iv) Density-functionaltheory(J.Sun)

(v) Vibrationalenergiesandpartitionfunctions(A.L.Cooksy)

(vi) QuantumMonte-Carlo(S.M.Rothstein)

(vii) Computationalchemistryonpersonalcomputers(E.G.Lewars) (viii) Chemicalapplicationsofgraphtheory(K.J.Burch)

(ix) Singularityanalysisinquantumchemistry(D.Z.Goodson)

(x) Diagrammaticmethodsinquantumchemistry(J.F.Stanton)

(xi) Quantumchemistryonaquantumcomputer(G.FanoandS.M.Blinder)

INTRODUCTION

Theoreticalchemistryprovidesasystematicaccountofthelawsgoverningchemical phenomenainmatter.Itappliesphysicsandmathematicstodescribethestructureand interactionofatomsandmolecules,thefundamentalunitsofmatter.Throughtheend ofthe19thcentury,chemistryremainedpredominantlyadescriptiveandempirical science.1 True,therehadbeendevelopedbythenaconsistentquantitativefoundation basedonthenotionsofatomicandmolecularweights,combiningproportions, thermodynamicquantities,andthefundamentalideasofmolecularstereochemistry. Chemistrywascertainlyfarmorerationalthanitsancientrootsinalchemybutwas stilllargelyacollectionofempiricalfactsaboutthebehaviorofmatter.Immanuel Kant,inhisCritiqueofPureReason,claimedthat“inanyspecialdoctrineofnature therecanbeonlyasmuchproperscienceasthereismathematicstherein.”2 This canserveasourphilosophicalrationalizationforemphasizingmathematicalmethods (specificallythefielddesignated mathematicalphysics)intheoreticalchemistry.

1 AveryintriguingaccountofthehistoricaldevelopmentofmodernchemistryisgivenbyMaryJo Nye[1].

2 QuotedintheonlineStanfordEncyclopediaofPhilosophy.

Thedevelopmentsofphysicsinthe20thcenturymadeallofchemistryexplicable, inprinciple,byquantummechanics.AssummarizedbyDirac:“Theunderlying physicallawsnecessaryforthemathematicaltheoryofalargepartofphysicsand thewholeofchemistryarethuscompletelyknown,andthedifficultyisonlythat theexactapplicationoftheselawsleadstoequationsmuchtoocomplicatedtobe soluble”[2].Byitsverynature,quantummechanics is mathematicalphysicsand therebyweestablishtheconnectionwhichisthethemeofthisvolume.However,the loopholenotedbyDirac,theexistenceofchemicalproblemstoomathematically complextobesolvedexactly,justifiesthesurvivalofpartsofchemistryasan empiricalscience.Inthiscategoryaresemiempiricalconceptsofchemicalbonding andreactivity.Thishasalsoledtocomputationalmodelspromotingrationaldrug design.Thesehavealsostimulatedapplicationsofotherbranchesofmathematics, forexample,informationtheoryandgraphtheoryappliedtothedefinitionofvarious chemicalindices.

Theprimaryobjectiveoftheoreticalchemistryistoprovideacoherentaccount forthestructureandpropertiesofatomicandmolecularsystems.Techniques adaptedfrommathematicsandtheoreticalphysicsareappliedinattemptstoexplain andcorrelatethestructuresanddynamicsofchemicalsystems.Inviewofthe immensecomplexityofchemicalsystems,theoreticalchemistry,incontrastto theoreticalphysics,generallyusesmoreapproximatemathematicaltechniques,often supplementedbyempiricalorsemiempiricalmethods.

Thisvolumebeginswithanintroductiontothequantumtheoryforatomsand smallmolecules,expandingupontheoriginalapplicationsofmathematicalphysics inchemistry.Thisfieldisnowlargelysubsumedwithinasubdisciplineknownas computationalchemistry. Chapter1 beginswithanintroductiontotheHartree-Fock method,whichistheconceptualfoundationforcomputationalchemistry. Chapter2 discussesthebasisfunctionsemployedinthesecomputations,nowlargelydominated byGaussianfunctions. Chapter3 describessomepost-Hartree-Fockmethods,which seektoattain“chemicalaccuracy”inatomicandmolecularcomputations,inparticular,configurationinteraction,many-bodyperturbationtheory,andcoupled-cluster theory. Chapter10 discussesdiagrammatictechniquesborrowedfromtheoretical physics,whichcanenhancetheefficiencyofcomputations. Chapter7 isanaccount ofthedevelopmentofpersonalcomputersandtheirapplicationstocomputational chemistry.

Forlargermoleculesandcondensedmatter,alternativeapproaches,including densityfunctionaltheory(Chapter4)andquantumMonte-Carlo(Chapter6),are becomingpopularcomputationalmethods.Someadditionaltopicscoveredinthis volumearevibrationalpartitionfunctions(Chapter5),singularityanalysisofperturbationtheories(Chapter9),andchemicalapplicationsofgraphtheory(Chapter8).

Finally, Chapter11 introducestheprinciplesofthequantumcomputer,whichhas thespeculativepossibilityofexponentialenhancementofcomputationalpowerfor theoreticalchemistry,aswellasmanyotherapplications.

REFERENCES

[1] NyeMJ.Fromchemicalphilosophytotheoreticalchemistry.Berkeley:Universityof CaliforniaPress;1993.

[2] DiracPAM.Quantummechanicsofmany-electronsystems.ProcRSocA(Lond) 1929;123:714–33.

Introductiontothe Hartree-Fockmethod

1

UniversityofMichigan,AnnArbor,MI,UnitedStates

Afundamentalbottleneckinbothclassicalandquantummechanicsisthe three-body problem.Thatis,themotionofsystemsinwhichthreeormoremassesinteractcannot besolvedanalytically,sothatapproximationmethodsmustbeutilized.Thischapter introducesthebasicideasoftheself-consistentfield(SCF)andHartree-Fock(HF) methods,whichprovidethefoundationforthevastmajorityofcomputationalwork ontheelectronicstructureofatomsandmolecules.Moreadvancedgeneralizations ofHFarediscussedin Chapter3.ConceptualdevelopmentsbeyondHF,including density-functionalandMonte-Carlomethods,areintroducedinsubsequentchapters.

1 HARTREESELF-CONSISTENTFIELDTHEORY

AprecursorofSCFmethodsmighthavebeentheattemptstostudythemotionsof electronsinmanyelectronatomsinthe1920s,onthebasisoftheOldQuantum Theory.Theenergylevelsofavalenceelectron,suchasthe3s-electroninsodium, couldbereproducedquitecloselyiftheBohrorbitsoftheinnerelectronswere smearedoutintoacontinuoussphericallysymmetricchargedistribution[1–3].After thedevelopmentofwavemechanicsin1926,itwasrecognizedbyHartree[4]that Bohrorbitsmustbereplacedbycontinuouschargecloudsofelectrons,suchthatthe chargedensityofasingleelectronisgivenby ρ(r) =−e|ψ(r)|2 .Here, e isthe magnitudeoftheelectroncharge(1.602 × 10 19 coulomb)andthechargedensity ρ(r) followstheBorninterpretationoftheatomicorbital ψ(r)

Theapproachestoatomicandmolecularstructurethataretobedescribedin thischapterareclassifiedasabinitio(“fromthebeginning”)methods,sinceno experimentalorsemiempiricalparametersareused(otherthanthefundamental physicalconstants).

ThesimplestapplicationofHartree’sSCFmethodistheheliumatom,withtwo electrons.Electron1,whichoccupiestheatomicorbital ψ1 (r1 ),movesinthefield ofthenucleusandelectron2.Thepotentialenergyofanelectronwithcharge e a distance r fromanucleusofcharge +Ze followsdirectlyfromCoulomb’slaw,with MathematicalPhysicsinTheoreticalChemistry.https://doi.org/10.1016/B978-0-12-813651-5.00001-2 Copyright©2019ElsevierInc.Allrightsreserved.

V (r ) =− Ze2 r .(1)

(WeuseGaussianunitstoavoidtheunnecessaryfactors4π 0 ,and,inanyevent,we willsoonbeswitchingtoatomicunits.)Toreview,theSchrödingerequationfora hydrogen-likeatomcanbewritten

),(2)

wheretheenergyforprincipalquantumnumber n isgivenby n =−Z 2 e2 /2a0 n2 , with a0 equaltotheBohrradius h2 /me2 .Theone-electronfunctions ψ(r),whenused inthecontextofamultielectronsystem,arecalled orbitals [5],anadjective,usedas anoun,todenotethequantum-mechanicalanalogofclassical orbits.Foranelectron atpoint r interactingwiththechargedistributionofasecondelectroninanatomic orbital ψ(r ),thepotentialenergyisgivenby

Thus,thetotalpotentialenergyforelectron1isgivenby

wherethenotation V1 [ψ2 ] indicatesthat V1 isa functional of ψ2 ,emphasizingthe dependanceonthechargedistributionofelectron2.InHartree’smethod,electron1 obeystheeffectiveone-particleSchrödingerequation

where 1 istheorbitalenergyofelectron1,negativeforboundstates.Analogously, interchangingthelabels1and2,theorbitalfunctionforelectron2isthesolutionof

Thecoupledintegro-differentialequations(5),(6),knownasthe Hartreeequations, canberepresentedinsymbolicformby

Thesearecoupledinthesensethatthesolutiontothefirstequationentersthesecond equation(viatheeffectiveHamiltonianoperator H eff 2 containing V2 [ψ1 ]),andvice versa.Asolutiontotheseequationscanbefound,inprinciple,byasuccessive approximationprocedure.Aninitial“guess”ofthefunctions ψ1 and ψ2 isusedto

computethepotentialenergies V1 [ψ2 ] and V2 [ψ1 ].EachHartreeequationscanthen besolvedtogive“first-improved”orbitalfunctions ψ (1) 1 and ψ (1) 2 .These,inturn, areusedtorecompute V (1) 1 and V (1) 2 ,andthenewHartreeequationsaresolvedto givesecond-improvedorbitalfunctions.Theiterativeprocedureiscontinueduntil theinputandoutputfunctionsagreetowithinsomedesiredaccuracy.Theorbital functionsandpotentialfieldsarethensaidtobe self-consistent.Theusualquantummechanicalrestrictionsonaboundstatewavefunction—thatitbeeverywheresinglevalued,finite,andcontinuous—applyateachstageofthecomputation.EachHartree equationisthusaneigenvalueproblem,solubleonlyforcertaindiscretevaluesof i (ingeneral,differentineachstage).Fortheheliumatomtheorbitalfunctions ψ1 and ψ2 turnouttobeidentical.ThisdoesnotviolatethePauliprinciplesincethetwo orbitalscanhaveoppositespins.NotethattheHartreemethoddoesnotitselftake spinintoaccount.

ExtensionoftheHartreemethodtoan N -electronatomisstraightforward.Each electronnowmovesinthepotentialfieldofthenucleusplustheoverlappingcharge cloudsof N 1otherelectrons.Now N coupledintegro-differentialequationsareto besolved:

Eachsetoforbitalfunctions ψ1 ...ψN canbeidentifiedwithanelectronicconfiguration,forexample,1s2 2s2 2p6 3s fortheNaatom.Itislefttothegoodsenseoftheuser nottoallowmorethantwooftheorbitals ψ1 ...ψN tobethesame.1 Thedifferent orbitalpairsshouldalsobeconstructedtobemutuallyorthogonal.Theeigenvalues i shouldbenegativeforboundorbitals.Theirmagnitudesareapproximationstothe ionizationenergiesofthecorrespondingelectrons.

Atthispoint,itisconvenienttointroduceatomicunits,whichsimplifiesallofthe previousformulasbyremovingtherepetitivephysicalconstants.Weset

1 Ignoringthisrestrictionhasbeendubbed“inconsistentfieldtheory.”

Theunitoflengthisthe Bohr equaltotheBohrradius a0 = h2 /me2 = 0.529177 × 10 10 m.Theunitofenergyisthe Hartree,equalto e2 /a0 ,correspondingto 27.2114eV.Expressedinatomicunits,theSchrödingerequationforahydrogen-like atom(2)simplifiesto

with n =−Z 2 /2n2 . Hartree’sSCFmethod,asdescribedsofar,followedentirelyfromintuitive considerationsofatomicstructure.Weturnnexttoamorerigorousquantumtheoreticalderivationofthemethod[6,7].Thefirststepistowritedownthe Hamiltonianoperatorforan N -electronatom.Nowusingatomicunits,neglecting magneticinteractionsandotherhigher-ordereffects:

Theone-electronpartsoftheHamiltonian—thekineticenergyandnuclearattraction operators—arecontainedinthefirstsummation.Thesecondsummation,over N (N 1)/2distinctpairs i, j,representstheinterelectronicrepulsiveinteractions.The interelectronicdistancesaredenoted rij =|ri rj |.The N -electronwavefunctionis approximatedbya Hartreeproduct :

where ψ(ri ) aretheone-electronorbitals.Theseshouldconsistofmutuallyorthonormalfunctions

withnonerepeatedmorethantwice(maximumoftwoelectronsperatomicorbital). NotethatwehavenowintroducedDiracnotation,forcompactness.Afullyseparable wavefunctionsuchasEq.(14)wouldbeexactonlyiftheHamiltonianwereasumof one-electronparts.Thisisnotthecasesincetheelectroncoordinatesareinextricably mixedbythe r 1 ij terms,representingmutualelectronrepulsion.Wethereforemust considerapproximatesolutionsofthe N -particleSchrödingerequation,optimized inaccordancewiththevariationalprinciple.Thismeansminimizingtheratioof integrals

Thisgivesanupperlimittotheexactgroundstateenergy E0 : E ≥ E0 WenextgiveaderivationoftheHartreeequations.Usingtheorthonormalized orbitals ψi (r),satisfyingEq.(15),thetotalwavefunctionisfoundtobenormalized aswell:

Thusthevariationalenergycanbewritten,withdetailedspecificationof Ψ and H ,

wherewehaveseparatelywrittenthecontributionsfromtheone-electronandtwoelectronpartsoftheHamiltonian.Wenowdefinetheone-electronintegrals

andthetwoelectronintegrals

The Hi areknownas coreintegrals,whilethe Jij arecalled Coulombintegrals sincetheyrepresenttheelectrostaticinteractionsofinterpenetratingelectron-charge clouds.AftercarryingouttheintegrationsimplicitinEq.(18),weobtain

asanapproximationtothetotalenergyofthe N -electronatom.

Wecannowapplythevariationalprincipletodeterminethe“bestpossible”set ofatomicorbitals ψ1 ...ψN .Formally,aminimumof E issoughtbyvariationof thefunctionalformsofthe ψi .Theminimizationisnotunconditional;however, sincethe N normalizationconditions(15)mustbemaintained.Aconditional minimumproblembecomesequivalenttoanunconditionalproblembyapplication ofLagrange’smethodofundeterminedmultipliers.The ψi and ψ ∗ i areformally treatedasindependentfunctionalvariables.TheLagrangemultipliersaredenoted i inanticipationoftheirlateremergenceasenergiesintheHartreeequations. Accordingly,weseektheminimumofthefunctional

Expressing L intermsoftheoriginalintegrals,usingEqs.(15),(19),(20),weobtain

Thevariationof L [ψ , ψ ∗ ] intermsofvariationsinallthe ψi and ψ ∗ i isgivenby

Sincetheminimumin L isunconditional,thisresultmustholdforarbitrary variationsofallthe δψi and δψ ∗ i .Thisispossibleonlyifeachofthecoefficients ofthesevariationsvanish,thatis,

Letusfocusononeparticularterminthevariation δ L ,namelythetermlinearin δψ ∗ k forsome i = k .Fromthecondition ∂ L ∂ψ ∗ k = 0appliedtoEq.(23),weareledto theHartreeequations2

inagreementwithEqs.(8)–(10).Wehaveusedthefactsthatthefirstsummation i reducestoasingletermwith i = k andthevanishingoftheintegral d 3 r for arbitraryvaluesof δψ ∗ k impliesthattheremainingintegrandisidenticallyequalto0.

2 DETERMINANTALWAVEFUNCTIONS

Theelectronineachorbital ψi (r) isaspin 1 2 particleandthushastwopossiblespin orientationsw.r.t.anarbitraryspatialdirection, ms =+ 1 2 or ms =− 1 2 .Thespin functionisdesignated σ ,whichcancorrespondtooneofthetwopossiblespinstates σ = α or σ = β .Wedefineacompositefunction,knownasa spin-orbital

(27)

denotingby x thefour-dimensionalmanifoldofspaceandspincoordinates.For example,ahydrogen-likespin-orbitalislabeledbyfourquantumnumbers,so a = {n, l, m, ms }.Wewillabbreviatecombinedintegrationoverspacecoordinatesand summationoverspincoordinatesby spin

d 3 r = dx (28)

2 TheHartreeequationsmightappeartodaytohaveonlyhistoricalsignificance,buttheirgeneralization leadstotheKohn-Shamequationsofmoderndensity-functionaltheory.

AHartreeproductofspin-orbitalsnowtakestheform

Ψ(1 ... N ) = φa (1)φb (2)...φn (N ). (29)

Forfurtherbrevity,wehavereplacedthevariables xi simplybytheirlabels i Tobephysicallyvalid,asimpleHartreeproductmustbegeneralizedtoconform totwoquantum-mechanicalrequirements.FirstisthePauliexclusionprinciple, whichstatesthatnotwospin-orbitalsinanatomcanbethesame.Thisallows anorbitaltooccurtwice,butonlywithoppositespins.Second,themetaphysical perspectiveofthequantumtheoryimpliesthatindividualinteractingelectronsmust beregardedasindistinguishableparticles.Onecannotuniquelylabelaspecific particlewithanordinalnumber;theindicesgivenmustbeinterchangeable.Thus eachofthe N electronsmustbeequallyassociatedwitheachofthe N spin-orbitals. Sincewehavenowundonetheuniqueconnectionbetweenelectronnumberand spin-orbitallabel,wewillhenceforthdesignatethespin-orbitallabelsaslowercaseletters a, b, ... , n whileretainingthelabels1,2, ... , N forelectronnumbers. Thesimplestexampleisagainthe1s2 groundstateofheliumatom.Letthetwo occupiedspin-orbitalsbe φa (1) =

2).Tofulfillthe necessaryquantumrequirements,wecanconstructthe(approximate)groundstate wavefunctionintheform

Inclusionofthetermwithinterchangedparticlelabels, φa (2)φb (1),fulfillstheindistinguishabilityrequirement.Thefactor 1 √2 preservesnormalizationforthelinear combination(assumingthat φa and φb areindividuallyorthonormalized).The exclusionprincipleisalsosatisfied,sincethefunctionwouldvanishidenticallyif spin-orbitals a and b werethesame.AgeneralconsequenceofthePauliprincipleis the antisymmetryprinciple foridenticalfermions,whereby Ψ(2,1)

Thefunction(30)hastheformofa2 × 2determinant

Thegeneralizationforafunctionof N spin-orbitals,whichisconsistentwiththe Pauliandindistinguishabilityprinciples,isan N × N Slaterdeterminant3

3 ThedeterminantalformwasfirstproposedbyHeisenberg[8,9]andDirac[10].Slaterfirstuseditin theapplicationtoamany-electronsystem[11].

Thereare N ! possiblepermutationsof N electronamong N spin-orbitals,which accountsforthenormalizationconstant1/√N !.Ageneralpropertyofdeterminantsis thattheyidenticallyequalto0ifanytwocolumns(orrows)areequal;thisconforms tothePauliexclusionprinciple.Asecondpropertyisthat,ifanytwocolumns areinterchanged,thedeterminantchangessign.Thisexpressestheantisymmetry principleforan N -electronwavefunction:

Aclosed-shellconfigurationofanatomormoleculecontains N /2pairsof orbitals,doublyoccupiedwith α and β spins;thiscanberepresentedbyasingle Slaterdeterminant.However,anopenshellconfigurationmust,ingeneral,berepresentedbyasumofSlaterdeterminants,sothat Ψ(1 N ) willbeaneigenfunction oftotalspinandorbitalangularmomenta.Asasimpleillustration,considerthe1s2 and1s2s configurationsofheliumatom.The1s2 groundstatecanberepresentedby asingledeterminant

whichisaneigenfunctionofthespinwitheigenvalues S = 0, MS = 0.The1s2s stateswith S = 1, MS =±1canlikewiseberepresentedbysingledeterminants:

for S = 1, MS =+1and

for S = 1, MS =−1.Thestateswiththesameconfigurationfor MS = 0must, however,bewrittenasasumoftwodeterminants:

The (+) signcorrespondstothe S = 1, MS = 0state,andisthethirdcomponent ofthe1s2s 3 S term,whilethe ( ) signcorrespondsto S = 0, MS = 0andrepresents the1s2s 1 S state.

3 HARTREE-FOCKEQUATIONS

TheHFmethodismostusefullyappliedtomolecules.Wemust,therefore,generalize theHamiltoniantoincludetheinteractionoftheelectronswithmultiplenuclei, locatedatthepoints R1 , R2 , ,withnuclearcharges Z1 , Z2 , :

Ψ(... j i ...) =−Ψ(... i j ...) (34)

Weusetheabbreviation riA =|ri RA |.InaccordancewiththeBorn-Oppenheimer approximation,weassumethatthepositionsofthenuclei R1 , R2 , arefixed. Thustherearenonuclearkineticenergytermssuchas 1 2MA ∇ 2 A .Theinternuclear potentialenergy Vnucl (R) = A,B ZA ZB RAB isconstantforagivennuclearconformation, whichisaddedtotheresultaftertheelectronicenergyiscomputed.Notethatthe totalenergy E (R) aswellastheone-electronenergies i (R) aredependentonthe nuclearconformation,abbreviatedsimplyas R.Itisofmajorcurrenttheoretical interesttoplot energysurfaces,whicharethemolecularenergiesasfunctionsof theconformationparameters R

Wearenowreadytocalculatetheapproximatevariationalenergycorresponding toHFwavefunctions[12,13]

Wewillnowrefertotheone-electronfunctionsmakingupaSlaterdeterminant as molecularorbitals.Toderivetheenergyformulas,itisusefultoreexpressthe determinantalfunctionsinamoredirectlyapplicableform.Recallthatan N × N determinantisalinearcombinationof N ! terms,obtainedbypermutationofthe N electronlabels1,2, ... , N amongthe N molecularorbitals.Whenevernecessary,we willlabelthespin-orbitalsby r , s ... n todistinguishthemfromtheparticlelabels i, j ... N .Wecanthenwrite

where Pp isoneof N ! permutationslabeledby p = 1 N !.Permutationsare classifiedaseither even or odd,accordingtowhethertheycanbecomposedof anevenoranoddnumberofbinaryexchanges.Theproductsresultingfrom anevenpermutationare added,inthelinearcombination,whilethosefroman oddpermutationare subtracted.Evenpermutationsarelabeledbyeven p,odd permutationsbyodd p.Thuseachproductinthesumismultipliedby ( 1)p .Let usfirstconsiderthenormalizationbra-ketof ΨHF

Becauseoftheorthonormalityofthemolecularorbitals φr , φs , ,theonlynonzero termsofthisdoublesummationwillbethosewith x

Therewillbe N ! suchterms,thusthebra-ketreducesto

Thecorecontributionstotheenergyinvolvestermsintheone-electronsumin Eq.(39).Definingthecoreoperator

theexpressionforthecoreintegral Hr reducesto

InanalogywithEq.(43)forcaseofthenormalizationbra-ket,alltheotherfactors φb |φs , s = r areequalto1.ThisisanalogoustoEq.(19),thedefinitionofthe coreintegralintheHartreemethod,exceptthatnowspin-orbitals,ratherthansimple orbitalsarenowused.Actually,thescalarproductsofthespinfunctions σr give factorsof1,sothatonlythespace-dependentorbitalfunctionsareinvolvedinthe computation,justasintheHartreecase.

Weconsidernexttheinterelectronicrepulsions r 1 ij .Followingananalogous calculation,allcontributionsexceptthosecontainingparticlenumbers i or j give factorsof1.Whatremainsis

Theminussignreflectsthefactthatinterchangingtwoparticlelabels i, j multiplies thewavefunctionby 1.ThefirsttermearliercorrespondstoaCoulombintegral (20);againthesearelabeledbyspin-orbitals,butthecomputationinvolvesonly space-dependentorbitalfunctions:

ThesecondterminEq.(46)givesrisetoan exchangeintegral:

Thisrepresentsapurelyquantum-mechanicaleffect,havingnoclassicalanalog,and arisingfromtheantisymmetryprinciple.Intermsoftheorbitals ψ(r),aftercarrying outtheformalintegrationsoverthespin,wecanwrite

Unlike Jij , Kij involvestheelectronspin.Becauseofthescalarproductofthespins associatedwith φi and φj ,theexchangeintegralvanishesif σi = σj ,inotherwords, ifspin-orbitals i and j haveoppositespins, α , β or β , α Theexpressionfortheapproximatetotalenergycannowbegivenbythe summation

Notethat Kii = Jii ,whichwouldcancelanypresumedelectrostaticself-energyof aspin-orbital.Theeffectiveone-electronequationsfortheHFspin-orbitalscanbe derivedbyaprocedureanalogoustothatofEqs.(22)–(26).Anewfeatureisthatthe Lagrangemultipliersmustnowtakeaccountof N 2 orthonormalizationconditions

φi |φj = δij ,leadingto N 2 multipliers λij .Accordingly

TheLagrangemultipliers λij canberepresentedbyaHermitianmatrix.Itshould thereforebepossibletoperformaunitarytransformationtodiagonalizethe λ-matrix. Fortunately,wedonothavetodothistransformationexplicitly;wecanjustassume thatthesetofspin-orbitals φi aretheresultsafterthisunitarytransformationhasbeen carriedout.Thenewdiagonalmatrixelementscanbedesignated i = λii .Again,we seethatthe i willcorrespondtotheone-electronenergiesinthesolutionsoftheHF equations.AsageneralizationofEq.(26),thecontributiontothevariation δ L linear in δφ ∗ i isgivenby

TheeffectiveHFHamiltonian HHF isknownasthe Fockoperator,designated F . Finally,theHFequationscanbewritten

IncontrasttotheHartreeequations(26), F φi (x) alsoproducestermslinearinthe otherspin-orbitals φj , j = i.JustasintheHartreecase,thecoupledsetofHFintegrodifferentialequationscan,inprinciple,besolvednumerically,usingtheanalogous self-consistencyapproach,withiterativelyimprovedsetsofspin-orbitals.

Thesignificanceoftheone-electroneigenvalues i canbefoundbypremultiplyingtheHFequation(53)by φ ∗ i (x) andintegratingover x.Usingthedefinitionsof Hi , Jij ,and Kij ,wefind

E = i Hi +
Kij . (51)

Considernowthedifferenceinenergiesofthe N -electronsystemandthe (N 1)electronsystemwiththespin-orbital φk removed

Therefore,themagnitudesoftheeigenvalues k areapproximationsfortheionization energiesofthecorrespondingspin-orbitals φk .Sincethe k arenegative,IPk =| k |. Thisresultisknownas Koopmans’theorem.Itisnotexactsinceitassumes“frozen” spin-orbitals,whenthe N -electronsystembecomesan (N 1)-electronpositiveion. Inactualfact,theseparatelyoptimizedorbitalsforanatomormoleculeandits positiveionwillbedifferent.

ItcanbeshownthatthemagnitudesoftheCoulombandexchangeintegrals satisfytheinequalities

Ingeneral, Kij isanorderofmagnitudesmallerthanthecorrespondingCoulomb integral Jij .HFexpressionsforthetotalenergycanreadilyexplainwhythetriplet stateof,forexample,the1s2s 3 S configurationofheliumatomislowerinenergy thanthesingletofthesameconfiguration1s2s 1 S.Denotingthetwo-determinant functionsinEq.(38)as Ψ(1,3 S) forthe(+)and( )signs,respectively,wecompute theexpectationvalueofthetwo-electronHamiltonianforhelium(with Z = 2).After somealgebra,thefollowingresultisfound:

Therefore,since K > 0,thetriplet,withthe( )sign,hasthelowerenergy.One caution,however,isagainthefactthatthesingletandtripletstateshavedifferent optimizedorbitals,sothatthevaluesof K1s,2s (aswellas J1s,2s , H1s ,and H2s )arenot equal.Butevenwithseparatelyoptimizedorbitals,theconclusionremainsvalid.

OnecanalsogiveasimpleexplanationofHund’sfirstrulebasedonexchange integrals.Foragivenelectronconfiguration,thetermwithmaximummultiplicity hasthelowestenergy.Themultiplicity2S + 1ismaximizedwhenthenumberof parallelspinsisaslargeaspossible,whileconformingtothePauliprinciple.But moreparallelspinsgivemorecontributionsoftheform Kij ,thuslowerenergy.

4 HARTREE-FOCKEQUATIONSUSINGSECOND QUANTIZATION

InmuchoftherecentliteratureontheoreticaldevelopmentsbeyondtheHFmethod (“post-HF”),ithasbecomecommontoexpressoperatorsandstatevectorsusing secondquantization,whichisbasedon creation and annihilationoperators.This formalismwasoriginallyintroducedtorepresentphysicalprocessesthatinvolved actualcreationordestructionofelementaryparticles,photons,orexcitations(suchas phonons).Inamajorityofapplicationsofsecondquantizationtoquantumchemistry, noelectronsareactuallycreatedorannihilated.Theoperatorsjustserveasa convenientandoperationallyusefuldeviceintermsofwhichquantum-mechanical states,operators,commutators,andexpectationvaluescanberepresented.Tomake thenotationmorefamiliartothereader,wewill,inthissection,reexpresstheHF equationsinthelanguageofsecondquantization.

Acommonwaytointroducecreationandannihilationoperatorsisviaan alternativealgebraicapproachtotheone-dimensionalharmonicoscillator.The Schrödingerequation,inatomicunits,canbewritten

Nowdefinetheoperators

where p =−id /dq isthedimensionlessmomentumoperator.Thecanonical commutationrelation q, p = i implies

andtheHamiltonianoperatorthensimplifiesto

Withthewavefunction ψn (x) writteninDiracnotationas |n ,theSchrödinger equationinEq.(59)becomes

Thisimpliestherelation

Theharmonicoscillatorequationscanbereinterpretedasrepresentinganassembly ofphotons,orotherBose-Einsteinparticles,inwhich |n isthestatewith n particles

and aa† isthe numberoperator,whichcountsthenumberofparticlesinthestate, calledthe occupationnumber.

Considernowthecommutationrelation

Applyingthistothestate |n ,wehave

whichcanberearrangedto

Theinterpretationofthelastequationisthat a† |n isaneigenfunctionofthenumber operator a† a withtheeigenvalue n+1.Thus a† isa creationoperator,whichincreases thenumberofbosonsinthestate |n by1.Thenormof a† |n isgivenby

Thus,ifboth |n and |n + 1 arenormalized,wehavethepreciserelationforthe creationoperator

Byananalogoussequenceofstepsbeginningwith [a† a, a]=−a,wefind

showingthat a actsasthecorresponding annihilationoperator forthebosons.

The n = 0groundstateoftheharmonicoscillatorcorrespondstoastate containingnobosons, |0 ,calledthe vacuumstate.Astate |n canbebuiltfrom thevacuumstatebyapplying a† n times:

Bycontrast,theannihilationoperatorappliedtothevacuumstategiveszero.The vacuumstateissaidtobe quenched bytheactionoftheannihilationoperator.4 a|0 = 0. (72)

Intheeventthatthestatecontainsseveraldifferentvarietyofbosons,with occupationnumbers n1 , n2 , ,thecorrespondingstateswillbedesignated |Ψ =|n1 , n2 nN (73)

4 Aninterestingphilosophicalconundrumtoponderisthedifferencebetweenthevacuumstateand zero.Onewaytolookatit:thevacuumstateislikeanemptybox;zeromeansthattheboxisalsogone.

Thisiscalledthe occupation-numberrepresentation,the n-representation,or Fock space.Inthelanguageofsecondquantization,onedoesnotask“whichparticleis inwhichstate,”butrather,“howmanyparticlesarethereineachstate.”The vacuum state,inwhichall ni = 0,willbeabbreviatedby

(Anothercommonnotationis |vac .)

Therewillexistcreationandannihilationoperators a† 1 , a† 2 ... , a1 , a2 ....Assumingthatthebosonsdonotinteract, a and a† operatorsfordifferentvarietieswill commute.Thefollowinggeneralizedcommutationrelationsaresatisfied:

Forbosons,theoccupationnumbers ni arenotrestrictedandthewavefunctionofa compositestateissymmetricw.r.t.anypermutationofindices.Thingsare,ofcourse, quitedifferentforthecaseofelectrons,orotherfermions.Theexclusionprinciple limitstheoccupationnumbersforfermions, ni toeither0or1.Also,aswehaveseen, thewavefunctionofthesystemisantisymmetricforanyoddpermutationofparticle indices.

Thebehavioroffermionscanbeelegantlyaccountedforbyreplacingthe bosoncommutationrelations(75)bycorresponding anticommutationrelations.The anticommutatoroftwooperatorsisdefinedby

{A, B}≡ AB + BA,(76)

andthebasicanticommutationrelationsforfermioncreationandannihilation operatorsaregivenby

Theserelationsareintuitivelyreasonable,sincetherelation

isan alternativeexpressionoftheantisymmetryprinciple(34),while

0accords withtheexclusionprinciple.

Thestate(73)canbeconstructedbysuccessiveoperationsofcreationoperators onthe N -particlevacuumstate

Letusnextconsidertherepresentationofmatrixelementsinsecond-quantized notation.Wewishtoreplacetheexpectationvalueofanoperator A forthestate |Ψ withoneevaluatedforthevacuumstate |O :

Weintroducetheconventionthatanannihilationoperator,say ak ,actingonthe N -electronvacuumstate,whichwetemporarilydesignate |ON ,producesthe (N 1)electronvacuumstate |ON 1 ,inwhich0k isdeleted.Foraone-electronoperator,say H (x),suchasthecoreterm(45)intheHFequations,wecanwrite

notingthatthe k summationisoverparticles,whilethe r summationisoverspinorbitallabels.Wecannowshowthattherulefortranscribingasingle-particle operatorintosecond-quantizedformisgivenby

notingthat

sincethe |ON 1 arenormalized.ThisagreeswithEq.(80)andverifiestherule(81). Foratwo-particleoperator,suchastheelectronrepulsion r 1 ij ,wehave

where ar as = ar as or as ar .Withuseofthetruncatedvacuumstate |O

2 ,in analogywiththeabove,wefind

wherewehaveintroducedthenotationforCoulombandexchangeintegrals (47),(48).

5 ROOTHAANEQUATIONS

AsignificantimprovementinthepracticalsolutionoftheHFequationswasintroducedbyRoothaan[14].Almostallcurrentworkonatomicormolecularelectronic structureisbasedonthisandrelatedprocedures.Essentially,theintegro-differential equationsforthe φi (x) aretransformedintolinearalgebraicequationsforasetof

coefficients ciα .Theresultingmatrixequationsareparticularlysuitablecomputers basedonvonNeumannarchitecture.Accordingly,thespin-orbitalsarerepresented aslinearcombinationsofasetof n basisfunctions

For n = N ,wehavewhatiscalleda minimalbasisset.Formoreaccurate computations,largerbasissetsareused,with n > N ,even n N .Mostoften, the χα (x) areatomic-likefunctions,centeredaboutsinglenucleiinamolecule. Conceptually,thisisageneralizationofthesimpleLCAOMOmethod,inwhich molecularorbitalsofsmallmoleculesareapproximatedbyalinearcombinationof atomicorbitals.

WebeginwiththeHFequations(54)

andsubstitutetheexpansion(85),togive

Nextwemultiplybothsidesby χ ∗ β (x) anddothefour-dimensionalintegrationover x.Theresultcanbewritten

Introducingtheabbreviations

wecanwrite

whichcanbefurtherabbreviatedasthematrixequation

Weneedtoshow,inmoredetail,thestructureoftheFockoperator F and thecorrespondingmatrix Fβα .First,wederivethecore,Coulomb,andexchange integralsintermsofthebasisfunctions χα .Forthecorecontribution,substitute Eq.(85)intoEq.(45)togive

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.