AfTERMATH
D E PA RT M E N T O F M AT H E M AT I C S BIANNUAL NEWSLETTER | FALL 2017 | VOLUME 17, ISSUE 1
8
9
36
45
21 28
120
35 70
126
210
5
1
15
6
56 126
252
1
21
7 28
84
210
1 8
1
36
9
120 45
j=1 i=1
Σ
x i,j =
8
i=1
Σx
x i,1 +
1 10
1
8
i=1
i,2
Σ
logxy = logx + logy
P
0
0
ALAN TURING
÷
4 (4x) + 2 (x) = 72 16x + 2x = 72 18x = 72 x=?
JR
.
+
EU
87 98
LE
R
ax
+
2
bx
1 = 0.999999999... RD
SH
A N
∞
Dx y
ƒ(x)
A∆ B
≈∫
Ax = b
)≥
0
c=
cos x dx = sin x
∫
t
sin(x2/2) dx)
+
SOPHIE GERMAIN
A
ø
PYTHAGORAS OF SAMOS
x
2
cos(x /2) dx,
H
h
»∫
є (∫
t
N
«
c = π·d = 2·π·r
∫xdx
35 56
84
1
10 20
ax2 + bx + c = 0
8
O
ES
=
17 x 24 = 30 25
2
LE
RB FO
∂v ∂x ∂v ∂y
1
10 15
1 4
GOTTFRIED WILLHELM LEIBNIZ 2.56 = 2 + 56/100
ΣΣ
≤
N
H
JO
[ ]
∂u J = ∂x ∂u ∂y
10
7
6
ARCHIMEDES OF SYRACUSE
d x e dx
1
5 6
SA = 6s 2
A = s2
EMMY NOETHER
1
ADA LOVELACE
≥
f(x+h) - f(x)
0
1 1
4
3
V-E+F=2
√2
h
1
1
3
n
ƒ'(x)= lim
1
O
|| x + y || ≤ || x || + || y ||
(a n) m = a nm
ɸ i=0
–b ± √b - 4ac 2a
x=
1 2
n
Σ
f (i)(0) i x i!
1 1
2
1
123 x 5 =
∞
2
HYPATIA OF ALEXANDRIA
1
∫ sin x dx = -cos x
sin(0.01) ≈ 0.01
< ± f (x) = F(b) - F(a)
ƒ(x)=
c
EUCLID OF ALEXANDRIA
LEONARDO BONACCI
∫a
√
E = mc
‰
b
n
sinh(x) = (ex - e - x)/2
a
γ
↑
d2(3x3)/dx2 = 18x
b
10
x+y=z
1 y= x
2
ELENA CORNARO PISCOPIA
a2+ b2= c 2
SIR ISAAC NEWTON
>
π
Δiπ e +1= 0
x
d = √(x2 - x1)2 + (y2 - y1)2
BERNHARD RIEMANN
SRINIVASA RAMANUJAN
≠
8-4 = 2
ÿ
OMAR KHAYYÁM
A = xr C=2πr
є>0
x
102
46264338327950288419 71693993751058209749 44592307816406286208 99862803482534211706 79821480865132823066 470938446095505822....
2 > -3
r
525
456 x 0 =
1/4 + 3/4 = 4/4 = 1
2
CARL FRIEDRICH GAUSS
t
ERATOSTHENES OF CYRENE
LEONARDO PISANO BLGOLLO
w
| -5 | = 5 101 = 5
84112 > -84112
2 × (3 + 5) = 16 MDCCCL √-1 3.141592653589793238 MATH
®