Page 1

Steenkool Feiten en cijfers


Voorwoord Hoe lang is het geleden dat een gesprek over energie steevast strandde in wazige blikken en onverholen gegaap? Energie, daar moest je geen woorden aan vuil maken. Dat was er gewoon. Hoe anders is dat vandaag! Energie speelt inmiddels een sleutelrol in ons denken over leefbaarheid, duurzaamheid, economie en geopolitiek. Geen kleine onderwerpen. Er gaat dan ook geen dag meer voorbij zonder mediale aandacht voor energie, energietransitie en energie-innovatie. Zo veranderde energie in korte tijd van commodity naar trending topic. Zon, wind, aardolie, aardgas, biomassa en steenkool… Stuk voor stuk energiebronnen, met hun eigen plussen en minnen. En elk met een heel eigen positie in onze nationale energiemix. Niet eenvoudig om daarin een consistente toekomstvisie te ontwikkelen. Toch zijn overheid, wetenschap, NGO’s en industrie er in 2013 in geslaagd om

2

een uitgebalanceerd Energieakkoord voor duurzame groei te sluiten, waarin harde afspraken zijn gemaakt over de transitie naar een duurzame energiemaatschappij. Geen overbodige luxe. Want al is het einddoel helder, de weg naar een CO2-neutrale toekomst is lang. Daarin spelen beschikbaarheid, leveringszekerheid, onafhankelijkheid en betaalbaarheid een cruciale rol. Een van de energiebronnen in het Energieakkoord is steenkool. Ook hierover zijn stevige afspraken gemaakt. Zo is afgesproken dat de oudere steenkoolcentrales op korte termijn worden vervangen door nieuwe, efficiënte centrales. Om de klimaateffecten nog verder terug te schroeven voegt het Energieakkoord


hier de wens tot meestook van bio足 massa en ondergrondse CO2-opslag aan toe. Met recht een ambitieuze visie op energietransitie dus. Als een van de leidende Europese energieconcerns is Uniper actief in de grootschalige opwek van energie. Dus ook in steenkool. De gloednieuwe steenkoolcentrale van Uniper op de Maasvlakte, is wat mij betreft een voorbeeldproject van innovatief transitiedenken. Hierin gaat Uniper aanzienlijk verder dan het Energieakkoord. In denken, investeren en doen. Bij voorkeur in nauwe samenwerking met maatschappelijke en kennispartners. Zo ontstaat rondom de nieuwe centrale op de Maasvlakte een heel eigen

regionale energiebiotoop, inmiddels beter bekend als Energy Hub West. In deze samenwerking zetten lokale overheden, de Rotterdamse haven, het bedrijfsleven en de energiesector grote stappen met het gebruik van biomassa, de opslag en hergebruik van CO2, warmtelevering aan de gebouwde omgeving en samenwerking met de omliggende industrie. Steenkool speelt hierin dus een belangrijke rol. Voor ons reden om een klein boekje open te doen over deze energiebron. Frits Bruijn, Country Chairman Uniper Benelux

3


Wat heeft steenkool vandaag opgeleverd?

In 24 uur ‌ ... voorzag het in 22% van de benodigde energie voor 6,1 miljoen Facebook-gebruikers, 1,1 miljoen YouTube-gebruikers, 0,3 miljoen LinkedIn-gebruikers en 1,5 miljoen Twittergebruikers in Nederland Bron: Marketingfacts, 2014

... maakte het de productie van 18 miljoen ton staal in Nederland mogelijk Bron: World Steel Association, 2015

4


… verbeterde het de leveringszekerheid van tientallen landen over de wereld Bron: Science News Today, 2011

…. werd 148 miljoen kilo kolen geïmporteerd waarvan 104.8 miljoen uitgevoerd/doorgevoerd Bron: Steenkoolbalans, CBS, 2014

…. produceerde het 80 miljoen kWh aan elektriciteit – meer dan gas, wind en waterkracht bij elkaar Bron: Nationale Energieverkenning, ECN, 2015

5


Ontstaan van steenkool Steenkool is ontstaan uit resten van planten die meer dan 300 miljoen jaar geleden groeiden. Het zeeniveau was in deze tijd hoog en grote delen van de aarde waren bedekt met moerassen. De plantenresten onder water werden eerst veen. In de loop der eeuwen vormde zich een dikke laag zand en klei op de plantenresten. Onder invloed van toenemende druk en temperatuur werd het veen eerst omgezet in bruinkool, en toen de druk en temperatuur nog hoger werden in steenkool.

100 tot 400 miljoen jaar geleden 100 miljoen jaar geleden

Water

Planten Sediment- en steenlaag

Moeras

Plantenresten veranderen in veen

Illustratie niet op schaal

6


Vandaag

Steenkoollaag

Sediment- en steenlaag Steenkoolwinning Steenkoollaag

7


Steenkool in de wereld Nederland Verenigde Staten 12,9

108.501

615,8

Colombia

6.746

Bewezen winbare voorraden steenkool (Mt), 2011

Steenkool足consumptie (Mtce), 2014

Totaal 403.197

Totaal 5.544 Mt: Megaton Mtce: Megaton steenkool-equivalent

Bron: World Energy Council, 2013; IEA, 2015

8


Steenkool is na aardolie de belangrijkste energiebron ter wereld (World Coal Association) en met een bijdrage van ongeveer 40% aan de mondiale elektriciteits­ productie ’s werelds grootste bron van elektriciteit (World Energy Council). De dominante positie van steenkool in de mondiale energiemix is te danken aan de grote aanwezige voorraad verspreid over de wereld en de gunstige prijs.

Rusland

49.088

149,5

China Japan

India

2.836 550,5

550,5

AustraliĂŤ Zuid Africa 37.100 30.156

9


Herkomst en verbruik Nederland

Steenkoolbalans Nederland importeert kolen vanuit de hele wereld. Nederlands grootste leverancier van kolen is Colombia. Meer dan 70% van de ge誰mporteerde steenkool wordt weer uitgevoerd. Van de resterende 30% wordt 70% gebruikt voor elektriciteitsopwekking in de Nederlandse elektriciteitscentrales. Het overige deel wordt ingezet voor de staalindustrie.

Herkomst en verbruik Nederland, 2014 (miljoen kg)

Invoer

54.227

Steenkoolverbruik

14.554

Colombia 33%

Noord-Amerika 23%

Elektriciteits足 centrales

Rusland 16% Zuid-Afrika 10% Australi谷 8% Overig 10%

10.195

Uitvoer

38.223

Totaal aanbod NL

14.554

Cokes足 fabrieken

2.906

Staalindustrie Bron: Wood Mackenzie, 2014; CBS, 2015

10

1.399


Eemshaven

Kolencentrales in Nederland

Essent/RWE Kolencentrale

Kolencentrale gesloten conform Energieakkoord

Amsterdam Nuon

Rotterdam Per 1 juli 2017

ENGIE

Uniper

Nijmegen Borssele EPZ

Per 1 januari 2016

Geertruidenberg Per 1 januari 2016

Per 1 januari 2016

ENGIE

Essent/RWE

Bron: CBS

11


Elektriciteitsproductie De roep tot het substantieel terug­ dringen van het aandeel fossiele energie in de energiemix door vergroting van het aandeel hernieuwbaar wordt steeds luider. De verwachting is echter dat – met ongewijzigd beleid – het ­gebruik van fossiele bronnen als steenkool en aardgas op mondiaal niveau nog aanzienlijke tijd zal stijgen. Op dit moment staat elektriciteits­ productie opgewekt door kolen op de eerste plaats. Duurzame technologieën vormen gezamenlijk de tweede grootste

bron voor elektriciteitsopwekking. Volgens het IEA zal het aandeel kolengestookte elektriciteitsproductie in de periode tot 2030 afnemen naar 30%, terwijl het aandeel duurzaam blijft groeien: in 2014 was de helft van alle nieuw opgestelde capaciteit duurzaam (World Energy ­Outlook 2015, IEA). De snelle groei is volgens het IEA voor een groot deel te danken aan de beleidsmaatregelen op nationaal en internationaal niveau om duurzame energie te stimuleren.

Elektriciteitsproductie naar energiebron, wereldwijd (TWh), 2014 7%

8%

7%

8%

17%

11% 39%

39%

1.068

1.068

Waterkracht Waterkracht3.796

3.796

Kernenergie Kernenergie2.417

2.417

Steenkool

Steenkool 8.726

8.726

Aardgas

Aardgas

4.933

4.933

Overig

Overig

1.520

1.520

Totaal:

Totaal:

22.433

22.433

Olie

22%

%

17%

11%

Olie

Bron: World Bank, 2015

12


Elektriciteitsproductie naar energiebron, Europa (TWh), 2014 10% 10% 16% 16%

8%

8%

17% 17%

25% 25%

24% 24%

Wind Wind

283 283

Waterkracht Waterkracht

604 604

Kernenergie Kernenergie

858 858

Steenkool Steenkool

889 889

Aardgas Aardgas

571 571

OverigOverig

362 362

TotaalTotaal

3.568 3.568

Bron: World Bank, 2015

Elektriciteitsproductie naar energiebron, Nederland (TWh), 2014 48,2% 48,2%

4,5% 4,5%6,4% 6,4% 4,9% 4,9% 7,2% 7,2%

28,8% 28,8%

Wind, zon en water 6,6 Wind, zon en water 6,6 Biomassa 5 Biomassa 5 Kernenergie en overig 7,4 Kernenergie en overig 7,4 Steenkool 29,5 Steenkool 29,5 Aardgas 49,5 Aardgas 49,5 Andere fossiele brandstoffen 4,6 Andere fossiele brandstoffen 4,6 Totaal: 103,6 Totaal: 103,6 Bron: CBS, 2015

Het aandeel kolen in de elektriciteitsproductie in Nederland is tussen 2010 en 2014 sterk gestegen (van 18% naar 29%) ten koste van gas (van 62% naar 48%). Voor de elektriciteitsproductie in 2014 werd de hoogste hoeveelheid steenkool ingezet sinds 1991, het vroegste jaar waarover deze gegevens bekend zijn. De oorzaak van deze verschuiving is een relatief lage prijs voor kolen ten opzichte van gas, de ingebruikname van nieuwe kolencentrales en de lage prijs voor CO2emissierechten (CBS, 2015).

13


Hoe lang gaan fossiele bronnen nog mee? We horen en lezen het overal: ‘onze’ fossiele grondstoffen worden schaars. Dit komt omdat de toekomstige beschikbaarheid niet vanzelfsprekend is. De voorraad fossiele grondstoffen is namelijk afhankelijk van de fysieke aanwezigheid in de aarde. Bovendien gaat het gebruik van fossiele brandstoffen sneller dan de vorming ervan. De huidige voorraden fossiele brandstoffen zijn nog goed voor 54 (aardolie), 61 (aardgas) en 142 (steenkool) jaar bij eenzelfde verbruik als in 2011. Van de fossiele brandstoffen is van steenkool dus nog de meeste voorraad.

Bewezen winbare voorraad

142 jaren

De figuren geven de geschatte productiejaren weer, gebaseerd op de geschatte productie in 2013.

14

Totaal geschatte winbare voorraad

3.050 jaren

Steenkool


Fossiele-brandstofreserves naar soort

Totaal geschatte winbare voorraad Totaal geschatte winbare voorraad

Bewezen winbare voorraad

Bewezen winbare voorraad

61 jaren

233 jaren

Aardgas

54 jaren

178 jaren

Olie

Bron: BGR (2012); O&GJ (2012); USGS (2000, 2012a en 2012b); IEA schattingen en analyses

15


Levelized costs of energy

Betaalbaarheid Om de verschillende elektriciteitsproductiemethoden met elkaar te kunnen vergelijken, wordt gebruikgemaakt van de Levelized costs of energy (LCOE). Dat zijn de productiekosten per eenheid energie (MWh) op basis van investerings- en variabele kosten (zoals brandstofkosten en onderhoudskosten) tijdens de technische levensduur, zonder extra subsidie.

Elektriciteitsproductiemethode Steenkool Aardgas Olie Kernenergie Biomassa

Uit de grafiek is af te lezen dat de LCOE van bijvoorbeeld olie en zonnepanelen (kleinschalig, op daken) hoog is, terwijl dit voor steenkool en gas een stuk lager ligt. Maar omdat de prijs van steenkool de laatste jaren is gedaald en duur­zame elektriciteitsproductie toeneemt, draaien de gascentrales minder vaak op vol vermogen en stijgt hun LCOE.

Zonnepanelen (daken – kleinschalig) Zonnepanelen (grond – grootschalig) Wind (op land) Wind (op zee) Wind (op zee, inclusief transmissie)

De LCOE van zon en wind is de afgelopen jaren (sterk) gedaald. De verwachting is dat die de komende jaren verder zal afnemen (Levelized Cost of Electricity Renewable Energy Technologies, Fraunhofer Institute for Solar Energy Systems ISE, 2013).

Waterkracht (dam) Waterkracht (rivier) Geothermisch

Bron: Subsidies and costs of EU energy, Ecofys, 2014

16


Levelized costs of energy voor elektriciteitsopwekking in de 28 EU-lidstaten (â‚Ź/MWh)

0

50

100

150

200

250

â‚Ź/MWh

17


Energiebalans: betaalbaar, betrouwbaar, schoon Sinds de Energienota uit 1974, uitgebracht naar aanleiding van de eerste olie­ crisis in 1973/1974, rust het energiebeleid in Nederland op drie pijlers: betaalbaar, betrouwbaar en schoon. In het rapport Brandstofmix in beweging van de Algemene Energieraad (2008) worden de bronnen steenkool, zonnepanelen, wind, nuclair, gas en biomassa beoordeeld op: • betaalbaarheid (absolute niveau van de prijs, prijs in Nederland ten opzichte van de omringende landen, prijsvolatiliteit). • betrouwbaarheid (leveringszekerheid en voorzieningszekerheid). • mate van schoon (uitstoot van CO2, NOx en fijnstof, thermische verontreiniging van oppervlaktewater, horizonvervuiling en radioactief afval).

Steenkool Steenkool is relatief goedkoop en afkomstig uit een beperkt aantal stabiele landen. Wel zijn de CO2-emissies groot, zeker bij de oudere kolencentrales. De relatief nieuwe poederkooltechniek ontwikkelt zich verder. CO2-opslag kan de score op schoon verbeteren, maar het zal de betaalbaarheid verslechteren. Biomassameestook zorgt ten slotte voor een positieve bijdrage aan het criterium schoon.

Zonnepanelen Zonnepanelen scoren met name slecht op betaalbaarheid. Elektriciteit opgewekt door zonnepanelen is op dit moment nog aanmerkelijk duurder dan de alternatieven (op basis van LCOE, zie pagina 17), maar de verwachting is dat de kosten van zonnepanelen de komende jaren (snel) zullen afnemen (Levelized Cost of Electricity Renewable Energy Technologies, Fraunhofer Institute for Solar Energy Systems ISE, 2013).

18


Wind Wind is nog onrendabel. Flexibel back-upvermogen is nodig (gas- of kolengestookt). Wellicht in de toekomst is elektriciteitsopslag mogelijk. Wind scoort als duurzame energie goed op het criterium schoon met uitzondering van horizonvervuiling en oppervlaktegebruik. Veel potentieel wordt van offshore verwacht. Al zijn de kosten daarvan nu nog aanzienlijk – er wordt een kostendaling voorzien (Cost reduction options for Offshore wind in the Netherlands FID 2010-2020, TKI Wind op Zee, 2015).

Nucleair Kernenergie heeft lage variabele kosten, maar kent hoge investeringen. De hoeveelheid toegankelijk (te maken) uranium is geen belemmering voor uitbreiding van kernenergie. De CO2-uitstoot is zeer laag, maar het geproduceerde radioactief afval zorgt voor een lage score op de pijler schoon. De (behandelings-)techniek van het afval ontwikkelt zich positief.

Gas Een betrouwbare bron die zeker in Nederland ruim voor handen was. Gas heeft een hoge prijs die bovendien zeer beweeglijk is. Met de afnemende Nederlandse gasproductie en gasvoorraden en huidige aardbevingsproblematiek neemt de kwetsbaarheid toe.

Biomassa Biomassa is nog onrendabel, maar levert als meestook in kolencentrales een positieve bijdrage aan het criterium schoon van steenkool. Import levert opnieuw afhankelijkheid op, zij het van andere landen dan die voor de overige brandstoffen. Belangrijker is het onderscheid tussen ‘afvalbiomassa’ (dat goed scoort op de pijler schoon) en geteelde biomassa. Dit scoort vooralsnog slecht op schoon. Bron: Brandstofmix in beweging, Algemene Energieraad, 2008  

19


Energy returned on investment Het kost energie om energie te verkrijgen. Het netto energierendement, de EROI, geeft de verhouding weer tussen de geleverde energie en de energie die ge誰nvesteerd is in de winning van deze energie. Het verbranden van steenkool, aardgas en aardolie levert zoveel energie, dat de verhouding tussen de opbrengst en de investering kan oplopen tot 40:1. Anders gezegd: een investering van 1 kilowattuur levert 40 kilowattuur op. Aardgas, steenkool en uranium hebben een hoge vermogensdichtheid: ze zijn zelf opgeslagen energieproductievoorraden waarvan de energie vrijgemaakt kan worden door verbranding of een kernreactie. Bronnen met een lage vermogensdichtheid, zoals wind, zon en biomassa, zijn onvoldoende in staat om aan de behoeften van onze ge誰ndustrialiseerde samenleving te voldoen. De economische drempelwaarde in de figuur (7) is het minimaal vereiste niveau hiervoor (Energieverkenning 2015, Stichting Groene Rekenkamer, 2015). De EROI van zon en wind zonder energieopslag scoort aanzienlijk lager dan de EROI met energie-opslag. Op dagen dat de zon veel schijnt of de wind flink waait, kan dit overschot aan opgewekte elektriciteit helaas (nog) niet worden opgeslagen.

Nucleair

Waterkracht

Steenkoolcentrale

Gascentrale (STEG)

Zonnespiegelcentrale (CSP)

Bron: Forbes, 2015

20

Wind

Biomassa

Zonnepanelen

EROI


Energy returned on investment De horizontale schaal geeft de verhouding weer tussen de energie die bijvoorbeeld een gascentrale opbrengt gedurende de levensduur en de energie die het gekost heeft om deze centrale te bouwen, in stand te houden en te ontmantelen. Energieopslag is de opslag van energie, zoals elektriciteit in accu’s of het stuwmeer van een waterkrachtcentrale.

7 75 75 49 35 30 30 28 28 19 9 16 4

Met energie-opslag Zonder energie-opslag

4 4

Economische drempelwaarde

4 2

0

20

40

60

80

21


Emissies De mens wordt gezien als de belangrijkste veroorzaker van het broeikaseffect en versnelde klimaatverandering. De temperatuur op aarde stijgt doordat wij steeds meer fossiele brandstoffen en meer energie gebruiken, maar ook omdat ontbossing, landbouw en veeteelt toenemen. De broeikasgassen die nu al in de lucht zitten, hebben het klimaat al opgewarmd. Om dit verder te beperken, is het nodig om minder broeikasgassen uit te stoten. CO2 is in Nederland het belangrijkste broeikasgas (56%). Ook methaan (32%) en lachgas (6%) zijn belangrijk. Deze gassen komen onder andere vrij uit mest, industrie en verkeer en door verbranding van olie, aardgas en kolen. De doelstelling van de EU is dat in 2020 de uitstoot van broeikasgassen 20% lager moet zijn dan in 1990.

*) CO2-equivalenten Om de invloed van de verschillende broeikasgassen te kunnen optellen, worden de emissiecijfers omgerekend naar zogeheten CO2-equivalenten. EĂŠn CO2-equivalent staat gelijk aan het effect dat de uitstoot van 1 kg CO2 heeft. De uitstoot van 1 kg distikstofoxide (N2O) staat gelijk aan 310 CO2-equivalenten en de uitstoot van 1 kg methaan (CH4) aan 21 CO2-equivalenten. De fluor(chloor)gassen hebben elk een hoog CO2-equivalent, maar omdat de uitgeworpen hoeveelheden relatief klein zijn, is hun bijdrage aan het landelijk totaal gering.

22


ikasgasemmissies per gas

O2-equivalenten)

Broeikasgasemissies per gassoort (Mton CO2-equivalenten*)

Koolstof足 dioxide (C02)

200 175

Methaan (CH4)

150 125

Lachgas (N2O)

100 75

Fluor足houdend (HFK/PKF, SF6)

50 25

gasemmissies per2000sector 1990 1995 2005

2010

2013

2-equivalenten)

Broeikasgasemissies per sector (Mton CO2-equivalenten)

C02 Industrie en energie

200 175 150

CO2 Verkeer en vervoer

125

CO2 Landbouw

100

CO2 Gebouwde omgeving

75 50 25

1990

1995

2000

2005

2010

Bron: Nederlandse Energieverkenning 2015, ECN Beleidsstudies

2013

175

23


CO2-emissie Door efficiĂŤntere en schonere productie-installaties slaagt de energiesector erin om de uitstoot van zwaveldioxide (SO2), stikstofoxiden (NOx) en CO2 terug te dringen. De CO2-uitstoot hangt sterk samen met het gebruik van fossiele brandstoffen. Deze uitstoot groeit mee met de productie van elektriciteit. Door efficiĂŤntieverbetering van centrales neemt de uitstoot af. Substantieel kan de uitstoot daarmee niet worden teruggedrongen - dat kan alleen met hernieuwbare bronnen, kernenergie of CO2-opslag (CBS).

Emissiebron Industrie* Opwekking elektriciteit Verkeer en vervoer Afvalverwijdering Handel, Diensten en Overheid (HDO) Landbouw Olie- gaswinning continentaal plat Riolering en waterzuiveringsinstallaties Bouw Olie- gaswinning land Transport en distributie olie en gas Drinkwatervoorziening * Chemische industrie, raffinaderijen en overige industrie

Bron: Emissieregistratie, Rijksinstituut voor Volksgezondheid en Milieu

24


C02-uitstoot per sector in Nederland, 2014 (miljoen kg)

45.070 45.040 39.980 9.743 9.355 6.370 1.471 804 661,7 517,6 35,2 10,75

0

10.000

20.000

30.000

40.000

CO2/miljoen kg

25


Energy Hub West Op de Maasvlakte staat de ultramoderne, met poederkool gestookte MPP3-centrale van Uniper. De centrale heeft een enorm hoog rendement en kan snel en vergaand vermogen af- en bijschakelen. Ook kan de centrale een steeds groter aandeel biomassa verwerken als meestook. Daarnaast is de centrale geschikt voor de afvang van CO2. De opslag daarvan kan dichtbij, in lege gasvelden, plaatsvinden. Tot slot kenmerkt de MPP3 zich door 20% minder CO2 -uitstoot en sterk verlaagde emissies voor NOx, CO2 en fijnstof. In het middelpunt van de regionale energiehub, genaamd Energy Hub West, staat de MPP3. De energiehub faciliteert het nuttig en grootschalig gebruik van de restwarmte van de MPP3 en zorgt voor een optimale uitwisseling van nuttige grondstoffen en restproducten tussen naburige bedrijven. Zo draagt de Energy Hub West bij aan de transitie naar een duurzame samenleving.

Biomassa

Steenkool

Stroom CO2-opslag

26


Stadswarmte Warmtelevering

ยบC

Industrie Stoom

Glastuinbouw

CO2

Transportnet Bron: Uniper

27


Energy Hub West Zoals gezegd ontstaat op de Maasvlakte rondom de nieuwe MPP3-centrale een regionale energiehub: Energy Hub West. Een omgeving waar lokale overheden, de Rotterdamse haven, het bedrijfsleven en de energiesector grote stappen zetten met het gebruik van biomassa, de opslag en hergebruik van CO2, warmtelevering aan de gebouwde omgeving en samenwerking met de omliggende industrie. De Energy Hub West fungeert als een circulair systeem waarbinnen (bij)producten zoveel mogelijk hergebruikt worden. Grondstoffen houden daardoor hun waarde: de ultieme ketensamenwerking, met ruimte voor innovatie, minder grondstoffenverbruik, uitstoot en afval.

Opslag en hergebruik CO2 CO2 kan worden opgeslagen in uitgeproduceerde gasvelden dicht bij de Maasvlakte. Het wordt gebruikt in de kassen van het Westland. De CCS*-pilot ROAD, een samenwerkingsverband van Uniper en ENGIE, zit in de laatste ontwikkelingsfase. * CCS: Carbon Capture and Storage

Industrie De MPP3 en de omliggende bedrijven zijn zowel leverancier als afnemer van (bij)producten. Denk daarbij aan stoom, warm water, CO2, koelwater, gips, biomassa, biopropaan en condensaat. Daarnaast verwerkt de centrale industriĂŤle afvalstoffen van de omliggende bedrijven.

28


ºC Warmte De overheid stimuleert het gebruik van restwarmte. Efficiënte warmtelevering is mogelijk door de nabijheid van de kassen en het stadsnet van Den Haag en omgeving. Het gebruik van restwarmte levert een belangrijke bijdrage aan het halen van de Nederlandse CO2-doelen.

Biomassa

MPP3 De MPP3 is een ultramoderne, zeer efficiënte met poederkool gestookte centrale. Hij is extreem goed regelbaar. Ook levert de centrale koelwater aan de nabijgelegen bedrijven. Steenkool wordt direct gelost bij overslagbedrijf EMO – CO2 -uitstoot door verder vervoer via treinen of binnenvaartschepen wordt zo voorkomen.

De productie van elektriciteit met behulp van biomassa wordt gestimuleerd via wettelijk geregelde subsidies (SDE+). Duurzame biomassa wordt direct aangeleverd via de Rotterdamse haven. Naast biomassa worden biogene residuen verwerkt. De meestook van biomassa zorgt voor een grote bijdrage aan het aandeel hernieuwbare energie.

Bron: Uniper

29


CO2

Wat levert het op?

Energy Hub West

C

CO2-uitstoot MPP3 (stand-alone) CO2-uitstoot MPP3 (stand-alone) Steenkool Steenkool voor 7.000 voor 7.000 draaiuren draaiuren

MPP3 stoot 900.000 De MPP3De stoot 900.000 ton CO2 ton CO2 dan de oudere per jaaruit minder dan deuitoudere per jaar minder MP1- en MP2-centrales MP1- en MP2-centrales die per die per 1 juli 2017 gesloten worden 15%)(-15%) 1 juli 2017 gesloten worden (-

+5.100.000 +5.100.000

COjaar per jaar ≈ 730 gram ton COton per ≈ 730 CO2 per kWh* CO2gram per kWh* 2 2

MPP3 MPP3

Over Over

30

*Een gemiddeld huishouden in Ned *Een gemiddeld huishouden in Nederland ±3.300 kWh (CBS) verbruiktverbruikt ±3.300 kWh (CBS)


2

CO2-uitstoot Hub West -uitstoot EnergyEnergy Hub West

CCS

CCS CCS -1.100.000 -1.100.000 -afvang en -opslag COCCS -afvang enCO -opslag 2 2 ton CO2 per jaar ton CO2 per jaar venture met ENGIE Joint venture Joint met ENGIE

BiomassaBiomassa

-1.600.000 -1.600.000

ton CO2 per jaar Meestook miljoen perCO jaar per jaar Meestook 1 miljoen ton 1per jaar tonton 2

-50%

ºC

-50%

Totale Totale CO2-reductie: CO2-reductie: -1.500.0003.200.000 Warmtelevering -1.500.000 Warmtelevering 3.200.000 ton CO2 per jaar ton CO2 per jaar Kassen KassenºC ton per jaar ton per jaar StadswarmteStadswarmte Industrie (co-siting) Industrie (co-siting)

waarvan 600.000 waarvan 600.000 ton in de regioton in de regio Zuid-Holland Zuid-Holland

+1.000.000 +1.000.000

Elektriciteitsderving Elektriciteitsderving ton CO ton CO per jaar

n Nederland CBS)

2

2

per jaar

gram CO2 per kWh* ≈ 250 gram CO≈2 250 per kWh* moderne gascentrale (vgl. moderne (vgl. gascentrale gram CO2 per kWh) per kWh) 330 gram CO2 330

+2.500.000 +2.500.000 tonjaar CO2 per jaar ton CO2 per

Over

Over

%

%

CO2

CO2

ºC

ºC

Getallen bij benadering Getallen bij benadering

31


Colofon Uitgever Uniper Benelux Concept en realisatie Scripta Communicatie Contactgegevens Uniper Benelux Postbus 8642 3009 AP ROTTERDAM Website: www.benelux.uniper.energy @UniperNieuws Contactpersoon Edwin Kotylak, woordvoerder E-mail: edwin.kotylak@uniper.energy Telefoon: +31 102 89 57 11

Meer weten over steenkool? Lees dan de longread op www.hetverhaalvansteenkool.nl.

Copyright Niets uit deze publicatie mag verveelvoudigd en/of vermenigvuldigd worden door middel van druk, fotokopie, digitale technieken, internet of op welke andere wijze dan ook, zonder voorafgaande toestemming van Uniper Benelux. Hoewel aan de samenstelling van deze uitgave de uiterste zorg is besteed, is het toch mogelijk dat bepaalde informatie onvolledig of onjuist is. Voor de inhoud kan door Uniper geen aansprakelijkheid worden aanvaard. Aan de inhoud kunnen ook geen rechten worden ontleend. Wijzigingen voorbehouden. Uniper BeneluxŠ, april 2016


Feiten en cijfers - Steenkool  

Hoe lang is het geleden dat een gesprek over energie steevast strandde in wazige blikken en onverholen gegaap? Energie, daar moest je geen w...

Read more
Read more
Similar to
Popular now
Just for you