How To Leverage Entity Extraction To Make Your Ecommerce Search Engine More Intelligent
Online Shopping and Global ecommerce In 2017, US ecommerce revenue was $447B , or 36% of total retail revenue. That means that Americans buy at least one in every three items online. And the most common way most shoppers try to find what they’re looking for, not surprisingly, is search. Are ecommerce search engines doing the best that they can? However, even the top 50 grossing US ecommerce websites don’t do a great job supporting some common types of search queries, resulting in irrelevant products or zero results. For example, when you search for “Bluetooth headphones from $100 to $200” on Amazon, the query returns two products, and one of them costs $249. Other ways even the most popular ecommerce websites fall short: they fail to support product names (that are clearly listed on the product pages), don’t understand spelling mistakes, don’t process synonyms (understanding or nomenclature differences), can’t grasp themes or subjective qualifiers (keywords such as winter dresses, cheap, or in fashion), can’t manipulate symbols and abbreviations (such as feet when the site uses ft), etc. Let’s look at some simple search query types at the largest ecommerce companies. Product type searches — A query “30 in laptop” on Amazon shows “30 inch” laptop tables in the first two results. As another example, a search for a 16 inch laptop brings up laptop cases.