Engineering Quarterly Winter 2020

Page 1

EngineeringQuarterly

Welcometothe secondissueofVolume2oftheEngineeringQuarterly,a newsletterpublished fourtimesayearby theUniversityofMary SchoolofEngineering,whichincludesarticlesfromeachofthefourengineeringmajors thatwecurrentlyofferoncampus:Electrical Engineering,MechanicalEngineering,Civil Engineering,andConstructionManagement.

Hands-ondesignconstitutesalargepartof ourengineeringdegreeprograminalldisciplinesandinallyearsfromfreshmanthrough senior.Inthefallsemesterofthesenioryear, ourstudentsdoaseniordesignprojectwithin theirengineeringdisciplineandinthespring semesteroftheirsenioryeartheydoacrossdisciplinarydesignproject.Thisfalltheseniordesignprojectswerepresentedtothe publicduringtheweekofDecember9to13. Wewilloutlinebelowsomeofthoseprojects aswellasotherdesignprojectsdonebyour sophomoreandjuniorlevelstudentsintheir courses.

InthisissueofEQ,wewilloutlinethe firstsemesterdesignprojectsaswellasother itemsandeventsofinteresttoengineeringstudents,engineeringcompanies,andalumniof ourengineeringprogramsuchasserviceand outreachactivitiesinthecommunity,scholarships,internships,guestspeakers,andeven assignmentandexamproblems.Enjoy!

Overthecourseofseveralmonths,I workedwithKileeHarmon,theDevelopment DirectorforCHISt.Alexius,todesignand plantheconstructionofthememorialspace. Theprojectbeganasadesigncompetitionthat theengineeringstudentsundertookduringthe springsemesterlastyear.Webrokeupinto groupsandeachgroupdesignedamemorial forthespaceatthehospital.

Theprojectwasbrokenintotwophases duetotiming.Phase1wastheconcretepad andmonument/benches,andphase2wasthe rampgoingfromthemonumenttothehospital.

Theconcretepadforthemonumentwas pouredonSeptember26,andthemonument alongwiththebencheswasshippedNovember1andinstalledshortlythereafter.WaldosConstructiondonatedtheconcretework atcostminus10%andColdspringdonated thebenchesandmonumentalsoatcostminus 10%.TheCHISt.AlexiusHealthAuxiliary ladiesfundedtherestoftheproject.

Wethenheldapostersessionwherethe stafffromCHISt.Alexiusstudiedeachof thestudentdesignsanddecidedonthewinningproject.Duringthesummer,professor WaldenmaierandImetwithrepresentatives fromSt.Alexiushospitalonseveraloccasions toworkoutfinaldesignplans.

WeareofferinganFEExamPreparation coursethissemesterwhichrunsonTuesday andThursdayeveningsfrom6pmto8pmat ourFrontAvenuelocationnorthoftheBismarckEventCenter.

OnNovember18,2018,aBismarckAir Medicalplanecrashed,killingmedicalstaff members.ToddLasky,a48-year-oldpilot,diedinthecrash,alongwithnurseBonnieCook,63,andMetroAreaAmbulance paramedicChrisIverson,47.Theywereen routefromBismarcktoWillistontopickup aneonatalpatientwhenthecrashoccurred. Shortlyafterthecrash,morethan1,400people,includinghundredsofemergencyrespondersfromthroughoutNorthDakota,attended acivicmemorialserviceforthethree.Dozens ofambulancesparticipatedinaprocession throughBismarck.Thisyear,onthefirstanniversaryofthecrash,BismarckAirMedical andCHISt.AlexiusHealtheachheldaprivatememorialservicesandthehospitalunveiledandblessedamemorialspaceoutside itsSouthBroadwayentrance.Thespaceisa sittingareadesignatedforreflectionandwas designedbyourUniversityofMarySchoolof Engineeringstudents.

Istartedtheconstructionofamodulefor thefinaldesignandpresentedittotheBenedictineSistersofAnnunciationMonastery. Followingthepresentation,Ibeganworkon thearchitecturalplansforbidding.St.Alexiuswantedasimplebutelegantdesign.The mainplatformwasmadeintheshapeofan arch.ThearchshapeisasymboloftheCHI hospital.Italsocreatesagreatdesignflow forthememorialasitestablishesaverywelcomingfeel,whichwillalsodrawpeopleinto lookatit.

Thenextmajorelementswerethebenches andthemaincenterpiece.Thecenterpieceis athree-sidedstoneslab,withthreebenches surroundingit.Eachofthethreevictimswill haveasideoftheslabdevotedtothem.Then threebencheswillthensitperpendicularto eachface.Thiswillallowpeopletocomein, paytheirrespectsandstayforalittlewhileif theysochoose.Therewillalsobeshort2’ bollardstolightupthememorialatnight.

Thecourseisopentoanyonewhowould liketotakeit.Soifyouareanengineerwhois currentlyworkinginindustryandwouldlike totaketheFEexamthisspring,orifyou plantotakeyourPEexamandwouldlike arefresheronthematerial,youcansignup forthepreparationcourseandthencometo whicheversessionscovertopicsthatareon yourspecificexam.

Thecoursecoversallofthetopicsonthe FundamentalsofEngineeringexamsforcivil, electrical,andmechanicalengineering.The formatoftheclassisquiteinformal.We simplymeetat6pmandgothroughproblemsfromoldFEexamsandfromthevarious studyguides,remindingstudentsofthekey elementstolookforandexplainingthefastest waystosolveeachtypeofproblem.

ThecoursebeganonJanuary9andwill continuethroughtoMarch17anditisour hopethatmost,ifnotall,thestudentswill thenimmediatelytaketheFEexam.

Weofferthiscourseeveryspringsemester anditwillremainopentoanyonewhowould

UniversityofMary
WINTER2020 FREE
VOL.II...No.2
CHIST.ALEXIUS MEMORIAL ByLOGANMAHONEY LoganMahoney FEEXAM PREPARATION

likearefresherontheFEexamsubjects. Formoreinformationandtoenrollinthis coursepleaseseetheUniversityofMary’s continuingeducationsitehere: https:// continuinged.umary.edu/

creativeyoungscientiststochooseacareerin engineering.Ofcourse,weattheUniversity ofMarySchoolofEngineeringjumpedatthe chancetoattendtheevent,totellourownindividualstories,andtoencouragethesestudentstochoosetheUniversityofMaryfor theirundergraduateengineeringdegree.

TheNDSPEChapter3helditsNovember meetingatourEngineeringSchool’stempo-

Itoldmystorytothestudentsanddiscussedourengineeringprogramandhowit differsfromotherschools.Ifollowedthisby handingoutissuesoftheEngineeringQuarterlyalongwithapplicationsmaterialsandinformationpacketsfortheUniversityofMary SchoolofEngineering.

TheycallitaMobileAppControlledArticulatedVehicle(MACAV).Springsteendesignedthesystem,anddevelopedthecodefor themicrocontrollerboards,andthecellphone appsothatoperatorcancontrolthevehicle fromthesmartphone.

rarylocationonFrontAvenue.Theybrought pizzaforthestudentsandprofessorJames CarricogaveapresentationaboutourupcomingengineeringservicetriptoPeruthathe isorganizingforspring2020(seethearticle aboutthePerutripintheFall2019issueof EngineeringQuarterly).Thestudentsgotto seewhattheNDSPEhasbeendoinglately andthehopeisthattheywillbeencouraged tojointhisandotherengineeringserviceorganizationsandremainmembersthroughout theircareers.

Thefirstgroupofseniorelectricalengineeringstudentsbuiltanarticulatedelectric vehiclecontrolledbyasmartphone.The projectwassponsoredby GenesysGatesTechnology ofBismarck.

Basedonarticlesfromthemanufacturer onhowtorunthemotorsandhowtocontrolthemotorcontrollerboardsusingcommandlinefromacomputer,heputtogether astand-alonesystemcontrolledbymicrocontrollerdevelopmentboards,whichisableto handlealltheinformationtorunthemotors, calibrationofencoders,feedbackofthesystem,WiFiconnection,etc.andpairitwith anappthathasanoperator-friendlyuserinterface.

ScienceOlympiads,mathcompetitions, andsciencebowlsareveryimportantevents

forencouragingstudentstoexcelinSTEM fieldsandtochooseSTEMcareers.Welove toattendandhosttheseeventsandwealso lovetocongratulateandencouragethewinningteams.

IntheeveningofNov.20,2019,theNorth DakotaPetroleumCouncilhostedthewinning teamoftheLegacyScienceOlympiadtotheir locationtoeatpizzaandlistentoengineers fromvariousbranchesofengineeringtellhow theyendedupwithcareersasengineers,as wellasstoriesabouttheamazingprojectsthey haveworkedonuptonow.

Thesponsorgavethestudentsfour 3-phaseinductionmotors,twocontroller boards,twolinearactuators,andbatteries, withthegoalofmakingthemintoanelectric vehicle.

AaronBales(Bismarck,ND),Richard Bendish(Mandan,ND),andPhillipSpringsteen(Graham,WA)spentthesemesterworkingonthecodethatwouldrunthecontroller boardsandthemotors;reliabilitytestsforthe linearactuatorcontrol,anditspositioningand thecoolingsystemdesignofthecontroller boardscompartment.

Thegroupalsodevelopedthetesting equipmentusedtocontrolandcollectdata fromthecoolingsystemandtheactuatorcontroltestsinordertochoosethefinaldesign forthecoolingsystemandthepositionforthe linearactuator.

Microcontrollerswereprogrammedtorun apredeterminedsequenceandvariableswere

VOL.II...No.2 EngineeringQuarterly WINTER2020 2
NORTH DAKOTA SOCIETYOF PROFESSIONAL ENGINEERS NORTH DAKOTA PETROLEUM COUNCIL Thegoalwastoencouragethesesmartand APP CONTROLLED VEHICLE ByAARONBALES,RICHARDBENDISH,AND PHILLIPSPRINGSTEEN

observed,suchascurrentandtemperature. Theresultofthesetestswereusedtochoose thefinaldesignforthis3-creditdesignclass.

“Icouldn’thavedonethisprojectwithouttherestofmyteammembers,”said Springsteen,whoisalsoanAcademicAllConferenceandAll-Americangrapplerfor theUniversityofMarywrestlingprogram. “Thiswasagroupprojectandweallcontributed.Everyone’spartinthisprojectwas necessary.”Springsteenaddsthatmechanically,thisprojectisnowherenearcomplete.

Theyhopetomakeadjustmentsandbe abledesignitsothattheMACAVisableto remotelycompletetasksaroundthehome–asiftheoperatorwasplayingavideogame ontheirphone.

thestudentshadalimitedbudgetandwerenot allowedtogooverit:$200includingeverything.

oftheproject.Thesestudentswereassigned thefollowingtasks:1)Theprojectionofthe requiredtexttotheLEDmatrix,2)Calibratingthetemperaturesensor,andgettingagood readingfromittobeprojectedtotheLEDmatrix,3)andfinallythestudentsaddedanintermissiondisplaybetweeneachphaseoftherequiredtextoneoftheseintermediatedisplays wasaclipofConways’GameofLife.

AfterassemblingtheLEDsinthebox,the powersupplyandtherestofthecomponents, thefrontsideoftheboxwascoveredwitha semi-transparentdisplayglasstodiffusethe highilluminationoftheLEDsandmakethe textbeingdisplayedcomfortablylegible.

Thefirstthingthatthestudentsthought of:AreahundredLEDsenoughtomakethe writinglegible?Toanswerthisquestion,they openedaspreadsheetandtriedtowritetheir namesbyfillingthecellsinthespreadsheet. TheyrealizedthattheyneededmoreLEDsto makethewritingonthesignreadablefrom adistance.Consequently,afterstudyingthe sizeoftheboxthathousedtheLEDs,and studyingtheproperminimumdistancebetweentwoadjacentLEDsforcorrectillumination,thestudentsdecidedthatthereshould be720LEDsinthatboxtoproperlydisplay thetext.Theyweretobeputinamatrixof 48 × 15 LEDs.

TheLEDsignwasagreatsuccess,and itwillbedisplayedinthenewEngineering buildingonceitisdone.Totakealookat atime-lapseshowingthestepsoftheproject usingthislink: https://tinyurl.com/ UmaryLED

SeniorstudentsJosefSollmannandJohn Santiagostudiedanoff-the-shelfsmartphone chargingstationinordertodiscoverhowthe variouspropertiessuchasphonecasethicknessandphonepositionontopofthechargingpadaffectthestation’sabilitytocharge thephone.Thesevariableswerechosenbased theirperceptionasconsumersofissueswhen chargingtheirdevices.Theydidnumerous trialsandstatisticallyanalyzedthedatato comeupwithanoptimalconfigurationand testedthechargingcapacityofthewireless chargedandwirelesschargerreceiverusedin theproject.

DIGITAL LEDDISPLAY ByKHALIDOWEIS

Duringthefall2019semester,fourof theElectricalEngineeringjuniorstudentsin theElectronicsILab:GabrielZimmer,Josh Reiner,Snæd´ısDan´ıelsd´ottir,andJeffStrong, wereassignedaninterestingtermproject.The projectconsistedofa30by40inchelectronic signwithacoloredLEDmatrixthatincluded atleast100LEDs.Thesignshouldpresenta welcometothevisitorsoftheSchoolofEngineering.

ItshouldalsostatethesixBenedictinevaluesthattheUniversityofMaryholdsvery deeply(Community,Hospitality,Moderation, Prayer,RespectforPersons,Service)withoptionalexplanationforeachone.Thesevalues canbefoundhere: https://tinyurl. com/benvalues.Furthermore,thissign hastodisplaythecurrentindoortemperature.

Ontopofthat,theyhadtobuildeverythingfromscratch,includingtheboxthat housedtheLEDsandtheequipment.Finally,

Thenextstepwastobuildtheboxitself. Theygotthematerialsfromthelocalhardwarestore,andassembledtheboxofthedigitalsign.Theboxwasthenpaintedblack togiveitaprofessionalfeel.Theboxhad twomainlevelsandcompartments:Theback compartmenthousedtheDCpowersupply, theArduinomicrocontrollerthatcontrolled theLEDsandthewires.Thewireswent outfromthebackcompartmentveryneatly tothefrontcompartment.ThefrontcompartmenthadtheLEDsandtheplasticmeshgrid thatseparatedtheLEDsforclearillumination. TheygluedtheLEDswithevenspacingto thewallthatseparatedthecompartmentsin thebox.Thentheysolderedthewirestothe LEDs.

OurseniorMechanicalEngineeringstudentspresentedtheirprojectofdesigninga therapeuticvibrationplateforhorses,particularlythosethatcompeteinrodeocompetitions.ThisprojectwasrequestedbyProfessor AlannaDennisonintheAthleticTrainingand KinesiologyDepartment.Therequirements ofthedesignwerethatitneededtobelow cost,controlmultiplevibrationsettings,operateonuneventerrain,andportable.The studentsusedCAD,initialprototyping,and performedengineeringanalysisincomingup withafinaldesignforavibrationplatform. Furthermore,theyalsodevelopedadynamic simulationmodelonOctavetodeterminethe forcesandstressespotentiallyoccurringatthe jointswhenahorseexperiencesthevibrations generatedbytheplate.

Whilethehardwaredesignandbuilding wasbeingdonebytwostudents,theothertwo studentswereworkingonthesoftwareside

OursophomoreEngineeringstudentshad

VOL.II...No.2 EngineeringQuarterly WINTER2020 3
WIRELESS POWER TRANSFER ByJOHNSANTIAGOANDJOSEFSOLLMANN EQUINE VIBRATION THERAPY PLATE ByJARADZITTLEMAN,BAILEYMEYER, REBEKKAHKELLER,ANDDYLANLARSON DYNAMICS PROJECT ByERICGARCIA

acatapultcompetitionintheirDynamicsclass inwhichtheyweretaskedtodesignandconstructacatapultwhichwouldlaunchaprojectiletohittheirinstructor,Dr.EricGarcia,in thefaceatadistanceatleast10metersaway. Thestudentswerelimitedtoonlytwoshots toensurethattheirdesignwasbasedontheir calculationsandnotjusttrialanderror.

Therewerefourteamsofthreestudents andeachteamwasonlyprovided$20worthof woodmaterialsandanyscrapwoodinthemachineshop.Eachteamcameupwithaunique designthatusedeitherropesorbungeecords. Oneteamevendesignedandbuilttheirown springusingourLatheinthemachineshop.

snowremoval,andtrafficflowissues,anddesignthecampusesstormwaterdistributionand drainagesystem.

OneteamsuccessfullyhitDr.Garciain thefaceandwasthefirstteamtodosoin thetwoyearsthisprojecthasbeenassigned. Theteam(pictured)thatsucceedinginhitting theirtargetwasKarsenMeyer,DanielMinor, andPeterSmith.Inadditiontoabuiltcatapult,studentsweretaskedtoputtogetherdesignreportsdocumentingtheirdesignprocess andcalculations.

Studentwerealsotaskedtoanalyzethe campus’infrastructure,identifyanyfunctionaland/oraestheticissueanddesignan engineeringsolutiontotheproblem.

kneejointisnotplanarbecausetheamountof rollingandslipisnotidenticalonthelateral andmedialsidesofthejoint.Tosimplifythe problem,studentsindesignofmachineryfocusedonthelateralside,whichexhibitsmore rollingthanslipandthuschosetomodelthe kneeaspurerollingcontact.Insodoing,the studentswereabletoapproximatetheinstantaneouscenterofrotation(ICR)betweenthe femurandtibiatobealwaysbeatthepoint ofcontactbetweenthetwoandthusfollow thecurveofthefemoralhead.Thissimplified thedesignofaknee-bracemechanismtobeingsimplythedesignofafour-barmechanism withanICRthatfollowedthetrajectorydescribedbythefemoralheadandtheappropriatejointangleforanygivenpointalongthat trajectory.

Bothteamscameupwithcreativeengineeringsolutionsanddesignstosolvevariousissuestheyidentifiedoncampussuchas indoorwalkwaysbetweencampusbuildings andbuildingexpansions.

GIVING TREE

CIVIL ENGINEERING SENIOR DESIGN ByERICGARCIA

TheseniorCivilEngineeringstudents wereseparatedintotwogroupsfortheirdesignprojects.Thefirstgroupconsistedof AustinKonschak,AlexDavis,ColinGudereit,andCalebWeisgarber,andthesecond groupconsistedofLeviClagett,JacksonPenner,andRobertSpady.

Eachteam’sdesignreportstotaledcloseto 100pagesofcalculations,technicaldrawings, costestimates,andotherdesigndetails!

DESIGNOF MACHINERY ByJAMESCARRICO

TheschoolofEngineeringtookpartinthe university-widegivingtreecompetitionfor thefirsttimethisyear.

Thetreesarelocatedineachoftheschools andtheycontainornamentswhichlistitems

Theirprojectwastodeveloptheirown ‘landscapemasterplan’forPhaseIIofthe UniversityofMary’sVision2030plantoimprovethecampus’layout,functionality,and aesthetics.

Theoverarchinggoaloftheprojectwas toimprovetheinfrastructureoftheUniversity ofMarycampus.Thespecifictasksassigned weretodesignareinforcedconcreteparkingstructure,redesigntheroads/pavementsof campustoaddresscampusentrance,parking,

Indesignofmachinery,studentsare taskedwithsimulatingthemotionofphysical systemsandsynthesizingtheirownmechanismsideallywithsomepracticalend(togive authenticityandpurposefulnesstoprojects). Onelearningoutcomeofthesedesignprojects ishowfundamentallydifferentdevicescan exhibitidenticalmotiontoeachother.Thisis apowerfulinsightfordesignofmechanisms becauseitillustratesthewideisthesolution spacefordesignproblems.Ifdesiredoutcomescan’tbeachievedwithacammechanism,whataboutalinkage,ornon-circular gearing?Thisequivalencebetweendifferent mechanismssuggestsanapproachtodesign. Forinstance,onemethodtodesignofaknee bracemightbesummarilydescribedasidentifyingthetypeofjointakneeisandidentifyingmechanismsthatproduceanidentical motion.Intruth,akneejointisnotaplanar jointandexhibitsbothrollingandslip.The

thatareneededbyvariousnon-profitorganizationsintheBismarck-Mandancommunity. Theideaisthatthefacultyandstaffwillselect anornamentfromthetree,purchasetheitem, thenreturntheitemtothecollectionboxbesidethetree.

WegotourtreeontheDec.3andwe foundtoourdelightthatalloftheornaments

VOL.II...No.2 EngineeringQuarterly WINTER2020 4

playedgames,ate,anddiscussedhowthe semesterwent.

Itwasasuccessfulsemestereventhough ithasbeenadifficultonegiventhatour

hadbeencompletedandtheitemsreturnedto thecollectionboxbyDecember4!

Asaresult,ourfacultyandstudentsenjoyedacelebrationofourgivingonDecem-

coursesweresplitbetweencampusanddowntownBismarck.Ourstudentsandourfaculty haven’tcomplained,andinfact,Ithinkwe allfeelwehaveplentytobethankfulforthis year.

andendwithablizzard.Winterstartedparticularlyearlyin2019,withourfirstsubstantial snowfalloccurringinearlyOctober.Thisleft inchesofsnowontheground.ECI313 GeneralSurveying isacoursecoveringthebasic elementsofalandsurvey;locatingandmeasuringpreciselocations,angles,elevations, anddistancesoflargelandareasandproperties.Thisbegsthequestion;howcanstudentslearntoconductanaccuratesurveyon icy,slippery,inaccessible,andsnow-covered landareas?

ber17thwhichconsistedofadonutandhot chocolatebuffet!Thebuffetlastedalldayand thestudentswereabletohaveacupofhot chocolateandadonutbetweentheirfinalexams.

ThankstoMelindaSeidlingforhelpingthe EngineeringSchoolgetinvolvedintheGivingTreethisyear.

Herearesomeproblemstakenfromour variousengineeringcoursesthatourstudents hadtosolve.Thesolutionscanbefoundat theendofthisnewsletter.

Duetotheinitialsnowfallandtheregularinclementweatherthatoccurredonsurvey labdays,thefall2019ECI313hadtoadapt. Surveyingwasbroughtindoorswithacombinationofinsideinstrumentuseandtheuse ofGoogleEarth.Theclasswasluckyenough toconductinitialleveling,profile,andbasic traversingsurveysusingtraditionalleveling instruments,staking,andtapingmethodsoutdoors.Asforadvancedsurveymethodsinvolvedintraversing,routeswereestablished withinconnectedbuildingsoncampus.The combinationofhands-onindoor/outdoorapplicationsallowedtheclasstounderstandthe basicprinciplesinvolvedinfieldtechniques.

Writean NGSPICE netlistwhichwillplot thetransientresponseofandRLCcircuitbetween 0 5µs and 500µs foraninductorof L =100mH withaninitialcurrentof 1mA, acapacitorof C =200pF ,andaresistorof R =1kΩ.Showtheplotofthevoltageacross theresistorandthecurrentsthroughthecapacitorandtheinductor.

ThebasketballplayersnominatedprofessorAnthonyGarciaasoutstandingfacultythis semesterandonSaturday,December21,the men’sbasketballteamhostedahomegame weretheyannouncedprofessorGarcia’sname beforethelineup.

ProfessorGarciaevengotaT-shirtfrom theteam!Thankstoallourfacultyforhaving suchagreatimpactonourUniversityofMary studentathletes.

ThefacultyoftheUniversityofMary SchoolofEngineeringheldaChristmasparty

Problem: Fortheamplifierinthefigure, determine: (a) Rin(base), (b) Rin, (c) Av , (d) Ai,and (e) Ap S

atthetemporarybuildingonFrontAvenue justbeforefinalsweek,wherethefulltime professorsaswellastheadjunctprofessors

ForthereaderwholivesinNorthDakota, orreallyanywhereintheMidwest,wintercan makeanappearanceasearlyasSeptember.A weekmaystartwithtemperaturesinthe90s

Thefinallabprojectsforthecoursewere assignedusingstrictlycomputer-basedmethods.Studentsweretoconductaseriesofsurveysutilizingthemeasuringtoolsavailableon GoogleEarth;distance,elevation,andangles. Thefirstassignmentwasconductingalong open-linktraversespanningseveralmilesor aplotsurveyofaverylargestructure(such asasportsstadium).Studentsweretorecord measurementsconsistentwithfieldnotesfor allpointsobserved–treatingthesurveyas ifiswereon-site.Thefinalassignmentwas toconductathoroughsurveyofroughlyonethirdoftheUMarycampus.Thisincluded profilesofallroadsandwalkingpaths,grid surveysoffieldsandparkinglots,andperimetersofbuildingswithinthesection.Thegoal wastocombinetheeffortsofthethreegroups intoanall-inclusivecampussurvey.Students werealsodirectedtotieinknownelevations fromfieldsurveystocalibratetheelevation estimationfromGoogleEarth.

Conductingahands-onlabviacomputer wasnevertheplanforthecourse.However, itisarelieftoknowthattechnologycanhelp usadapttocopewithMotherNatureseverchangingplansforNorthDakota.

Problemtotryonyourown:

UsingGoogleEarth(https://earth. google.com/web/)conductaclosed-loop traverseofalocationofyourchoosing.Measuredistancesbetweenpointsandrecordelevations.Recommendationsforlocations: HighwaysectionsofBismarck,professional sportsstadiums,oracityblockfromyour hometown.

• Themeasuringtoolislocatedontheleft borderoftheapp(lowestoption)

• Selectanodeandnotetheelevation whichisfoundinthelowerrightcorner

• Selectthenextnodewiththemeasuring tool,recordthedistance,andnotethe elevationofthenode

• Proceedtothenextnodeandcontinue theprocessuntiltheendisreached(a

VOL.II...No.2 EngineeringQuarterly WINTER2020 5
PROFESSOR ANTHONY GARCIA NOMINATEDFOR AWARD CHRISTMAS PARTY FUN STUFF CIRCUITS IIPROBLEM ByNANCYKELLY ELECTRONICS II PROBLEM ByKHALIDOWEIS
URVEYING INDOORS:USING MODERN TECHNOLOGYTO ACCOUNTFOR WINTER IN NORTH DAKOTA ByANTHONYWALDENMAIER

closedloopshouldendonthelocation oftheinitialnode)

AsampleSurveyofWrigleyField(Chicago, IL)isprovidedbelow.

andthus

z = x + jy = r cos θ + jr sin θ

= r (cos θ + j sin θ)

= rejθ whereweusedEuler’sformulainthelaststep.

OnecoolthingthatyoucandowithEuler’sformulaisuseitasawayofderiving trigonometricidentitiesifyouhappentobe stuckonadesertedislandwithnointernetand ahostiletribeofcannibalsdemandstoknow thetrigidentitiesoryouwillbeeaten.Exponentshavethefollowingnicepropertyunder multiplication:

X aX b = X a+b

andso

ejθ ejφ = ej(θ+φ)

andifweinsertEuler’sformulainforthese exponentialswehave

cos(θ + φ)+ j sin(θ + φ)= [cos(θ)+ j sin(θ)]+[cos(φ)+ j sin(φ)]

systemwiththefunctionshowingupasasurfacegraph.

Nowwhataboutcomplexfunctions?

Acomplexnumber, z,isanumberwhich hasbotha real partandand imaginary part andcanbewrittenas z = x + jy where x and y arebothrealnumbersand j = √ 1.These numbersareveryfamiliartobothelectricalengineeringstudentsandmechanicalengineeringstudents,sincetheyappearanytime onedealswithoscillatingsystemssuchasAC circuitsorsprings,pendulums,orevensatellitesorbitingtheEarth.

Complexnumbersarecalled algebraically complete becausetherootsofanypolynomial equationwillbecomplexnumbers.Onthe otherhand,therealnumbersarenotalgebraicallycomplete.Forexample,theequation z2 +1=0 isapolynomialequationwhichhas nosolutionintherealnumbersbuthastwo solutionsinthecomplexnumbers: z = ±j arethesolutionsandbotharepureimaginary numbers.

Oneofthemostamazingpropertiesof complexnumberswasdiscoveredbythefamousmathematicianLeonhardEuler1 inthe mid1700’s.Thisisthefamous EulerFormula:

ejθ =cos θ + j sin θ

Thisisausefulformulainamultitudeofways

First,noticethatifyouput θ = π inEuler’s formulayougettheremarkableequation

ejπ = 1

whichrelates e =2 71828 , π = 3 141592 ,and j = √ 1

Complexnumberscanbewrittenasvectorsin2-dimensionalCartesiancoordinates byidentifyingtheverticalaxisasthe‘imaginaryaxis’andwriting

z = x + jy −→ (x,y)

andifyoutransformtopolarcoordinates wherethevectorshaveradius r2 = x2 + y2

andangle θ =tan 1(y/x) thenyouhave

x = r cos θ

y = r sin θ

whichwecanmultiplyout,usingthefactthat j 2 = 1,toget

cos(θ + φ)+ j sin(θ + φ)= [cos(θ)cos(φ) j sin(θ)sin(φ)] + j [cos(θ)sin(φ)+sin(θ)cos(φ)]

andequatingtherealpartsandtheimaginary partsgivesfinally:

cos(θ + φ)=cos(θ)cos(φ) sin(θ)sin(φ) sin(θ + φ)=cos(θ)sin(φ)+sin(θ)cos(φ)

Noticethat,if θ = φ thesebecome

cos(2θ)=cos2(θ) sin2(θ) sin(2θ)=2cos(θ)sin(θ)

andsoon.

Wehaveseenhowtovisualizecomplexnumbersasvectors,orpoints,ona 2-dimensionalplane.Whataboutcomplex functions?Recallthatweusuallyvisualizea functionusingagraph.

Forexampleifwehaveafunction f (x) ofasinglerealnumber x thenwecandraw ahorizontalaxistorepresentthevaluesof x andthendrawaverticalaxistorepresentthe valuesof f (x) andthefunctionwillthenbea curvedrawnonthisgraph.

Whataboutafunctionoftwovariables x and y?Wellinthatcasethefunctionis f (x,y) andsoweusetwoaxesforthe x andthe y variablesandweuseathirdonefor f (x,y) whichwillgiveusa3-dimensionalcoordinate

Whatifwewanttographafunction f (z) from thecomplexnumberstothecomplexnumbers?Inotherwordsboth z isacomplexnumberand f (z) isalsoacomplexnumber.This isabitproblematicsincethecomplexnumbersareequivalentto2-dimensionalvectors. Sowewouldneed2dimensionsforthedomain–justlikeour f (x,y) plotabove,butwe wouldalsoneed2dimensionsfortherange since f (z) isalsotwodimensional.Thusthe actualgraphwouldbea3-dimensional“surface”ina4-dimensionalspace!Itisimpossibletographthisinour3-dimensionaluniverse.Henceweneedadifferentwaytovisualizewhatisgoingonhere.

Hereisamethodthatwecanuse:We pickarandompointandplotitinacertain colorandthenweplotthevaluethatthepoint mapstounderthefunction.Soifthecomplexfunctionwas f (z)= z2 forexample, wewouldchoosearandompoint,say z = 0 54+0 32j =(0 54, 0 32) andweplotit, thenwealsoplot

f (z)= z 2 =(0 54+0 32j) ∗ (0 54+0 32j) =0 1892+0 3456j =(0 1892, 0 3456)

inadifferentcolor.Nowifwechooseawhole bunchofrandomnumbersfromaregionofthe xy-planesuchasasquarebetween x = ±1 and y = ±1 andmapeachofthepointswe shouldgetafeelforwhatthecomplexmapis doingtothepoints.HereisaGNUPLOT script thatchooses5000randomnumbersbetween zeroandone,thenshiftsthemsotheyarebetween 1 and +1 andplotsboththeoriginal squareregionandtheregionthatitmapsto underthecomplexfunction f (z)= z2

Thegraphshowsthattheoriginalsquare regiongetswarpedintoasortofovalregion wherethedensityofpointsincreasestoward thecenter.

VOL.II...No.2 EngineeringQuarterly WINTER2020 6
COMPLEX NUMBERS ByTERRYPILLING 1NotethattheGermanname‘Euler’ispronounced‘Oiler’asintheEdmontonOilershockeyteam.

complex-map.gnuplot

settitle ”f(z)=zˆ2”

setxrange [ 2:2]

setyrange [ 2:2]

unset key

set offset0.1,0.1,0.1,0.1

setsamples 5000

fx(x,y)=x ∗x y ∗ y

fy(x,y)=2∗ x ∗ y

plot ’+’ using (x=rand (0),y= rand (0),2∗ x 1):(2 ∗ y 1)pt 7ps0.2, \

’+’ using (x=rand (0),y=rand (0) ,fx(2 ∗ x 1,2∗ y 1)):(fy(2 ∗ x 1,2∗ y 1))pt7ps0.3

Sothemap f (z)= z2 ispushingpointstowardthecenteranditisalsostretchingthem outvertically.Thiscanbeseenmoreeasilyby recallingEuler’sformula:

f (z)= z 2

⇒ f (rejθ )= r 2 ej2θ

weseebytheformulathattheanglesareall doubledandtheradiusesaresquared.Hence radiiwhicharelessthan1willbecompressed (ifyousquareanumberthatislessthan1it getsevensmaller)andradiiwhicharegreater than1arestretched.Thisiswhyweseethe accumulationattheorigin.Alsothedoubling oftheanglesiswhytheovalshapeappears.

Let’stakealookatanothercomplexfunctionforfun.Thistimewewilllookat f (z)= 1/(z +1).Westartbyjustlookingatrandompointsinsideasquarebetween0and1 onboththe x andthe y coordinates.Hereis theGNUPLOT codethatgeneratesit

complex-map2.gnuplot

settitle ”f(z)=1/(z+1)”

setxrange [ 1:1]

setyrange [ 1:1]

set offset0.1,0.1,0.1,0.1

unset key

setsamples 2000

fx(x,y)=(x+1)/(x ∗ x+2∗ x+1+y ∗ y)

fy(x,y)= y/(x ∗ x+2∗ x+1+y ∗ y)

plot ’+’ using (x=rand (0),y= rand (0),x):(y)pt7ps

0.2, \

’+’ using (x=rand (0),y=rand (0) ,fx(x,y)):(fy(x,y))pt7ps

0.3

Interestingly,weseethattheoriginal squaregetsshrunkendown,rotatedandhas somecusps.Itactuallystillhasfourcorners whichleadsustobelievethatcornersmapto cornersandedgestoedges.Isthereaway

2

mightliketotry.

Assignment: Modularforms arefunctionsofcomplexnumbersthatobeythefollowingsymmetryrelation:

f az + b cz + d =(cz + d)k f (z)

toprovethisusingEuler’sformulaorsome othermethod?

Let’sshiftthesquareregionsothatitsurroundstheoriginlikewedidinourfirstplot. Hereisthecodethatdoesit:

complex-map3.gnuplot

settitle ”f(z)=1/(z+1)”

setxrange [ 1:1.5]

setyrange [ 1.5:1.5]

unset key set offset0.1,0.1,0.1,0.1

setsamples 10000

fx(x,y)=(x+1)/(x ∗ x+2∗ x+1+y ∗ y)

fy(x,y)= y/(x ∗ x+2∗ x+1+y ∗ y)

plot ’+’ using (x=rand (0),y= rand (0),2∗ x 1):(2 ∗ y 1)pt 7ps0.2, \

’+’ using (x=rand (0),y=rand (0) ,fx(2 ∗ x 1,2∗ y 1)):(fy(2 ∗ x 1,2∗ y 1))pt7ps0.3

Nowweseethatcornersdon’tseemto maptocornersafteralldothey?Thereseems tobemorethanfourcornersontheimageand morethanfouredgesalso.Itisacoolmap though.

isamatrixinthegroup SL(2,Z).I.e.it isa 2 × 2 matrixwithintegerentrieswhich hasdeterminantequalto1.Therearemany unsolvedproblemsandopenresearchquestionsdealingwithmodularforms.Theyare usedinCryptography,NumberTheory,and inQuantumPhysics,HighEnergyQuantum FieldTheory,QuantumGravity,Superstring Theory,andtheywerefamouslyusedbyProfessorAndrewWilesinhisproofofthe400 yearoldproblemcalled Fermat’sLastTheorem2

Wewouldliketotrytoplaywithmodular formsusingourplottingmethodtotryandget amoreintuitivefeelforthem,however,usinggnuplotisabittootediouswhenrapidly changingparametersandtryingnewthingson thefly.Betteristowriteaprogramthatacceptsparametersfromthecommandlineor fromamenusoyoucanuseittoplayand exploreideasquickly.Tothisend,writea programinC++usingtheOpenGLgraphics librarywhichtakesintegers a,b,c,d asinput parametersandoutputsthetransformationof asquareregionofthecomplexplaneunder thelinearfractionaltransformation:

z −→ az + b cz + d inawaysimilartothemethodweusedwith GNUPLOT.

Complexmapsarethefirststeptoward generatingfractalsasyoumayhaveguesses bytheimagesthatweareseeing.Thesecond ingredientthatyouneedtogeneratefractals isrepeatediterationsofacomplexmap.One thingyoumightwanttotryforfunisthefollowingtechnique:

z

andsooniterativelycoloringeachiteration byadifferentcolor.Iwonderwhatcool imagesyouwouldfind?IfyouareinterestedbythisstuffyoumightenjoythearticlefromourSpring2019issueofthe EngineeringQuarterly entitled EtherealDelights whichexploresrepeatedexponentialcomplex mapsandshowsthecoolpicturesthatappear. HereisanassignmentproblemfromourEEL 461AdvancedProgrammingcoursethatyou

Aboveisascreenshotoftheoutputofthe desiredC++programunderthe z → z2 transformationwestudiedbeforeusingGNUPLOT Theproblemistomodifyittooutputtheresultofalinearfractionaltransformationinsteadof z2

Onepossiblesolutiontothisproblem,usingOpenGLalongwiththe(nowmostlydeprecated) GLUT windowinglibraryisgivenat theendofthisnewsletter.

Notethatiftheentriesofthelinear fractionaltransformationmatrixarecomplex numbers,ratherthanintegers,thetransformationiscalledaMobiustransformation.These areusedinmodernimageprocessingtocreate 360◦ sphericaleffects.ForexampleGoogle StreetViewandvirtualtoursofbuildingsare

VOL.II...No.2 EngineeringQuarterly WINTER2020 7
→ f (z) → f (f (z)) → f (f (f (z)))
where ab cd
TheBBCproducedanexcellentdocumentaryaboutDr.WilesstrugglestoproveFermat’sLastTheoremwhichcanbefoundhere: https://www.dailymotion. com/video/x621ukl

createdbytakingpicturesfromvariouspositionsandthenpatchingthemtogetherusingtransformationslikethese.Forsome coolvideosandpicturesofMobiustransformationsappliedtoimagestakealookhere: ima.umn.edu/ arnold/moebius/

SOLUTIONSTO PROBLEMS

ElectronicsIIproblem:

Firstwefind

VTH = R2 R1 + R2 Vcc =3 66V

RTH = R1R2 R1 + R2 =9 56kΩ

IE = VTH VBE RE RTH /βDC =2 63mA

andusingthese,thesolutionsare

(a) Rin(base) = βac(25mV/IE )=665Ω

(b) Rin = R1||R2||Rin(base) =622Ω

(c) Av = RC ||RL re =261

(d) Ai = βac =70

(e) Ap = AµAi =(261)(70)=18270

CircuitsIIProblem:

ComplexNumbersProblem: Thesolutionis aprogramproducingaMobiustransformation forusersuppliedintegersa,b,c,anddsothat theoutputfromthecommand ./moebius 0110 isthefollowingpicture

} void draw axes( void ) { glColor3f(0.0,0.0,0.0);

glEnable(GL LINE SMOOTH); glLineWidth(1.0);

glBegin(GL LINES); glVertex2f( Lx+1,0); glVertex2f(Lx 1,0); glVertex2f(0, Ly+1); glVertex2f(0,Ly 1);

glEnd();

glBegin(GL LINES); for ( int k=0;k <20;k++) { glVertex2f(cos(2 ∗ M PI ∗ k /20),sin(2 ∗ M PI ∗ k/20) ); glVertex2f(cos(2 ∗ M PI ∗ (k +1)/20),sin(2 ∗ M PI ∗ (k +1)/20));

}

glEnd(); } void draw points( void ) { glPointSize(2.0);

ThefollowingisaprogramwritteninCusing OpenGLandglutwhichproducestheplot

moebius.c

//gcc omoebiusmoebius.c lm

// lGL lGLU lglut

#include <time.h>

#include <math.h>

#include < stdio.h>

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

#define Lx5

#define Ly5

#define lx1

#define ly1

RLCdampedoscillatorinNGSpice

∗ RLCcircuit

L1ba100mHIC=1mA

R1ad1000

C1dc200p

V0Lb00V

V0Rc00V

.control

tran0.5u500uuic

gnuplotvoltageV(a)

gnuplotcurrentsi(V0L)i(V0R)

.endc

.end

}

#define N20000 int a,b,c,d; void Initialize( void ); void display( void ); void draw axes( void ); void draw points( void ); void key( unsignedchar , int , int ) ; float U( float , float ); float V( float , float ); void Timer( int );

float U( float x, float y) { float numerator=(a ∗ x+b) ∗ (c ∗ x+d)+a ∗ c ∗ y ∗ y; float denominator=(c ∗ x+d) ∗ ( c ∗ x+d)+c ∗ c ∗ y ∗ y; float transformed=numerator /denominator; return (transformed);

}

float V( float x, float y) { float numerator=a ∗ y ∗ (c ∗ x+d) c ∗ y ∗ (a ∗ x+b); float denominator=(c ∗ x+d) ∗ ( c ∗ x+d)+c ∗ c ∗ y ∗ y; float transformed=numerator /denominator; return (transformed);

} void Initialize( void ) { glClearColor(0.8,0.8,0.9, 1.0); gluOrtho2D( Lx,Lx, Ly,Ly);

} void display( void ) { glClear(GL COLOR BUFFER BIT); draw points(); draw axes(); glutSwapBuffers();

}

glBegin(GL POINTS); for ( int i=0;i <N;i++) { int sign1=rand()%2; if (!sign1)sign1= 1; int sign2=rand()%2; if (!sign2)sign2= 1; float x=sign1 ∗ (( float )( rand()%10000))/5000; float y=sign2 ∗ (( float )( rand()%10000))/5000; float u=U(x,y); float v=V(x,y); glColor3f(0.4,0.8,0.4); glVertex2f(x,y); glColor3f(0.4,0.4,0.4); glVertex2f(u,v);

glEnd();

void key( unsignedchar key, int x, int y) { switch (key) { case ’q’: exit(0); default : break ; }

} int main( int argc, char ∗ argv []) {

if (argc!=5) { fprintf(stderr,”Usage:%sa bcd \ n”,argv[0]); fprintf(stderr,”whereabc dareintegers \ n”); return 1;

}

a=atoi(argv[1]);

b=atoi(argv[2]);

c=atoi(argv[3]); d=atoi(argv[4]); srand(time(NULL)); glutInit(&argc,argv);

glutInitDisplayMode( GLUT DOUBLE | GLUT RGB); glutInitWindowPosition(200, 100);

glutInitWindowSize(1000,800)

; glutCreateWindow(”ComplexMap z > zˆ2”);

glutDisplayFunc(display); glutKeyboardFunc(key);

Initialize();

glutMainLoop();

return 0; }

VOL.II...No.2 EngineeringQuarterly WINTER2020 8
ContactInformation
warmlyappreciated:emailtoEngineering@umary.edu.Thankyoufor beingpartofourcommunity.
Yourquestionsandcommentsare

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.