Momentum Volume 4 | UCF MAE | 2019-2020

Page 8

FACULTY

A DROP OF INNOVATION A team of University of Central Florida researchers is looking at

changing people’s saliva to help manage the spread of COVID-19 as the nation gets ready to go back to work and school. The team is doing this through a recently awarded National Science Foundation Rapid Response Research Award for $200,000 to explore reducing COVID-19 transmission by making saliva heavier and stickier using candy or corn starch to help sneeze and cough particles fall rather than float. The approach could lead to creating something as simple as a cough drop or lozenge that people would pop in their mouths before going into the grocery store, work or school. “One way to kind of think about it is, for example, clouds are just little, tiny droplets that are suspended in the air for hours, and they just flow 8 | MOMENTUM Fall 2020

with the atmosphere,” said Mike Kinzel, an assistant professor in UCF’s Department of Mechanical and Aerospace Engineering who is the project’s principal investigator. “However, these droplets collide to form larger droplets that just fall out of the air,” he says. “That’s kind of the process we’re trying to promote. We don’t want the droplets to blow around with the wind like a cloud, we want them to fall out of the sky like rain.” A way to reduce transmission distance will be especially important as people return to work and school, where maintaining six feet of social distance may be difficult, said Kareem Ahmed, an assistant professor in the department and coprincipal investigator. “The six feet is great as a general guide, but then in a confined environment like our offices, grocery stores, public transit or hospitals, these droplets are going to interact

with surfaces, HVAC systems or ventilations,” Ahmed said. “So if we change the properties from the source, which is essentially our respiratory functions, whether it’s coughing, sneezing, speaking or breathing, then you’re simply going to reduce the amount that you’re producing, and hopefully bring the six feet to something shorter, where we can interact more,” Ahmed said. “Based on our early data, coupling a face mask with saliva mixed with corn starch will potentially have us go from six feet to two feet for social distancing,” he said. Leading the analyses of the effort are postdoctoral researchers Douglas Hector Fontes in Kinzel’s lab and Jonathan Reyes in Ahmed’s lab. Fontes is running numerical simulations to study how differences in viscosity, density and surface tension impact droplet dispersal. “Our preliminary results have shown a significant reduction in the


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Momentum Volume 4 | UCF MAE | 2019-2020 by UCF Department of Mechanical and Aerospace Engineering - Issuu