Magnesium Alloys Market Record Stellar CAGR During Forecast Period

Page 1

Magnesium Alloys Market Record Stellar CAGR during Forecast Period The global metals and alloys industry is transitioning in terms of innovation and development of new alloys to improve tensile strength and other properties of the conventional metals. Magnesium is one of the most abundantly found elements in the world. It is found primarily in the surface of ocean beds in the form of dolomite, magnesite, and carnallite minerals. Alloying magnesium improves its heat resistance, tensile strength, and creep resistance. Magnesium alloys are used as an alternatives to aluminum and iron metals for weight reduction and to improve tensile strength of the material. Magnesium alloys have excellent corrosion resistant property and are considerably light in weight; therefore, they are utilized in a wide range of applications such as portable electronic devices, automobile parts, computer parts, and portable telephones. Additionally, improved heat resistance and strength of magnesium alloys have extended their application in automotive frame manufacturing and the aerospace industry. Read Report Overview @ https://www.transparencymarketresearch.com/magnesium-alloys-market.html Magnesium reserves around the globe is about two-fifth that of iron, quarter that of aluminum and 190 times higher than those of copper and nickel. The high abundance of magnesium makes it as one of the most inexhaustible resource distributed all over the world. Magnesium is one of the lightest metals used in making frames, structures, and cellular mobile phones parts. Magnesium has a density of about one-quarter that of iron and two-third that of aluminum. Magnesium alloys have excellent shielding property and can provide protection from electromagnetic waves, allowing its use in the aerospace industry. Magnesium alloys are produced in definite proportions with aluminum, zinc, manganese, and other rare Earth metals to form different alloys with distinctive physical properties. These alloys are produced by electrolysis and thermal reduction processes. In electrolysis, magnesium chloride is first extracted from the ores and reduced to a metallic form using the electrolysis process. In the thermal reduction process, magnesium oxide is extracted from the ores by adding reducing agents such as ferrosilicon. The extracted material is refined at high temperature and pressure to form a pure magnesium alloy. Magnesium alloys have excellent dent resistance, machinability, and good vibration damping, which makes it a preferred choice in automotive and electronics industries. Magnesium alloys are non-toxic in nature and are used as biodegradable implants in the human body. Some major shortcomings of the magnesium alloys are poor heat-resistance, poor corrosion, and elongation. Most of magnesium alloys tend to corrode owing to the traces of metals such as nickel, iron, and copper present in the alloys. Increase in purity of magnesium is anticipated to improve the corrosion resistance property in magnesium alloys. Most these alloys are surface treated to prevent them from corrosion,


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.