Proximity Based Adaptation of Content to Groups of Viewers of Public Displays

Page 1

PROXIMITY-BASED ADAPTATIONOF CONTENTTO GROUPSOF VIEWERSOF PUBLIC DISPLAYS

AmirE.SarabadaniTafreshi,KimMarbach,andGerhardTroster

ETHZ¨urichUniversity,CH-8092Z¨urich,Switzerland

ABSTRACT

Responsivedesignadaptswebcontenttodifferentviewingcontextstodeliveranoptimal viewingandinteractionexperience.Recentworkproposedamodelandframeworkfor proximity-basedadaptationofwebcontentasanewdimensionforresponsivewebdesign. Whileitwasshownthatthemodelimprovestheperceptionanduserengagementforsingle viewers,untilnow,theeffecthadnotbeeninvestigatedformultiplesimultaneousviewers whomaybeatdifferentdistancesfromthedisplay.Inthispaper,wereportonaninitial studythatevaluatedandcomparedtheeffectsofusingtheaveragedistanceofviewersas thebasisforhandlingadaptationofcontenttomultipleviewerswithaclassiconethat adaptscontentbasedonlyondisplaycharacteristics.Ourresultsshowthattheadaptive modelprovidesabetterviewofthecontentandimprovesuserengagement,butcanbe confusingwhenservingmultipleviewers.

KEYWORDS

Distance;largedisplays;Responsivedesign;multipleviewers.

1Introduction

Despitethefactthatviewersofpublicdisplaysperceivethecontentofadisplayatdifferentsizesaccordingtotheirdistancefromthedisplay,currentresponsivewebdesigns (RWD)onlyadaptwebcontentbasedonthecharacteristicsofthedeviceandbrowser. Therefore,inarecentwork,Tafreshietal.[1]proposedamodelthatextendscurrent responsivedesigntechniquestotakeuserproximityintoaccountaspartoftheviewing contextforpublicdisplays.However,oneoftheopenissuesandmajorchallengesisconsideringhowtohandlethefactthatpublicdisplaystypicallyhavemultiplesimultaneous viewerswhomaybeatdifferentdistancesfromthedisplay.

TheproposedJavaScriptframework,ResponDis,wasdesignedtosupportexperimentationwithvariantsofproximity-basedadaptationmodelinbothsingleandmulti-viewer contexts.However,untilnowonlysingle-userscenarioshadbeeninvestigated.Inthis paper,wereportonourinitialinvestigationsofmulti-viewercontexts.Followingone ofthesuggestedmethodsbyTafreshietal.[1],weusetheaverageviewerdistanceof viewerstocalculatetheproximityofagroupofuserstoadisplay.Ourhypothesisisthat theaverage-basedmethodthatconsiderstheproximityofallviewerswouldimprovethe viewers’perceptionanduserengagementingeneral.Auserstudywith24participants wascarriedouttocomparetheresultingdynamicproximity-basedadaptationofscreen contentwithanapproachthatperformsastaticadaptationofcontentbasedsolelyonthe

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
DOI:10.5121/iju.2018.92011

displaycharacteristics.Ourfindingsshowthattheproximity-basedadaptivemodelimprovedtheuserengagementandprovidedabetterviewofthecontentthatavoidedusers havingtomoveclosetothedisplay.However,weobservedthattheadaptiveapproach resultedinsomeconfusion.

2RelatedWork

HTML5andCSS3providefeaturesthatfacilitateresponsivedesigninwhichawebsite adaptstothecharacteristicsofadeviceorbrowser.RecentproposalsforCSS4media queriestakesupportforresponsivedesignfurtherbycateringtoothercharacteristicsofthe viewingcontext,forexampleadjustingthedesigndependingonthe luminosity level[2]. Recentworks[1, 3]addanotherdimensionsbyalsotakingintoaccountthedistanceand walking-speedoftheviewerasimportantfactorsforresponsivewebdesign,especiallyin thecaseofpublicdisplays.

Inallofthesecases,eachofthefactorstakenintoaccountisassociatedwithasingle input.Forexample,thesizeofthebrowser,thelevelofambientlight,orthedistanceof theviewertothedisplay.However,sincepublicdisplayscanoftenhavemultipleviewers,therecouldbemultipleinputsforviewerdistance.Proximity-basedresponsiveweb designsthereforeneedtosomehowmediateinthecaseofmultipleviewers.Strategies previouslyproposedorenvisagedintheliteraturetohandlesuchsituationscanbeclassifiedintothreeapproaches:(i)split-screen,(ii)selectingonetargetvieweroutofagroup, and(iii)mixed.

Asplit-screenapproach[4,5]splitsthescreenintomultipleregionsandallocateseach ofthemtoadifferentviewer.Clearly,increasingthenumberofviewersleadstothese regionshavingsmallersizeswhichcannegativelyaffecttheperceptionoftheviewersto thecontentandalsodistractthem.Atthesametime,itcanwastescreenspaceifregions endupshowingthesameinformation.

Thesecondapproachhastodecideonastrategyforselectingoneoftheviewersasa target,therebyignoringtheothersandadaptingthecontentbasedonthedistanceofthe targetviewertothedisplay[6].Onepossibilitywouldbetotaketheuserfirstdetectedas thetarget,whileanotheristoselecttheviewerclosesttothedisplay.

Themixedapproach[6]combinesthedistanceofalltheviewersandrepresentsthem asasingleparameterfordesigndecisions.Forexample,theaveragedistanceofthe viewerscouldbeused.However,itisnotclearwhethersuchanapproachimprovesthe viewers’experience,sowechosetoinvestigatethis.

3ExtensionoftheModelforMultipleViewers

Theproximity-basedadaptationmodel[1]providestheoptimalcontentresolution(CVR) foraviewerwhoisinfrontofadisplay.Thecalculationofoptimalcontentresolutionis notonlybasedontheviewer’sdistancetothedisplay(VD)andthedisplay’sdiagonalsize (DS)ininchesbutalsoonthedisplay’snativehorizontalandverticalresolutioninpixels, denotedNHRandNVR,respectively.Theequationthatconsidersallofthesefactorsto calculatetheCVRisequalto:

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
2

Similartotheuseofscreensizeincurrentresponsivedesignmethods,designerscan usethecalculatedCVRasaparameterfordefiningasetofmediaquerieswhereeach mediaquerywillcorrespondtoadistancerangethateffectivelydefinesazoneinfrontof thedisplay.Thismeansthatthezonesinwhichusersarestandingaswellastheiractual distancesfromthedisplaycanbeusedtoadaptcontenttomultipleviewers.

4UserStudy

Weconductedauserstudyinacontrolledlabsettingtoevaluatetheproposedadaptation modelwithgroupsofpeople.Thegoalofourexperimentwastwo-fold.First,wewanted toexaminewhethertheproposedmodelimprovestheuserengagement,usabilityand viewerperceptioninthecaseofmultipleviewers.Second,weaimedtoevaluatehow themodelwouldcompareinamulti-viewersettingwithcurrentmethodsusedtoadapt contentbasedondisplaycharacteristics.Notethatakeydifferenceinthesetwomethods isthattheformerperformsadynamicadaptationasviewersmove,whilethelatterisa fixedadaptation.Figure 1 illustratesthesampleuseoftheaverageproximitymethodto adaptthecontenttogroupsofviewers.Forourinitialstudy,wedecidedtousetheaverage proximitymethodsinceitseemsthefairestintermsofgivingthesameconsiderationto allviewers.

4.1Participants

Werecruited24participants(8females;20–41(median:23)years)fortheuserstudy. Theparticipantswerearrangedingroupsofthree(8groups).Alloftheparticipantshad normalorcorrected-to-normaleyesight.

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
Figure1:Asampleuseoftheaverageproximitymethodtoservemultipleviewers CVR = DS (( NHR NVR )2 + 1) × VD × tan( 1 60 × π 180 ) (1)
3

4.2MethodandProcedure

Foreachgroupofparticipants,weintroducedthesystemandthegoalofthestudy.We alsoaskedtheirconsenttorecordtheexperimentusingavideocamera.Theexperiment taskwasthensummarised.

Thetaskwastoquicklyfindaspecificcharacterinawimmelbook[7]picture,choosingcharactersandpicturesthatarewellknowntomanypeople.Wecarefullyadjusted andfittedthecharacterstobefoundsothattheyintegratedwellwithothercharactersin thepicture.OurdesigndecisiononthesizeofthepictureforthestaticUIwastoprovide afairlygoodviewforboththefurthestandclosestviewers.Therefore,weadjustedthe sizeofthepictureto50%oftheentirescreensizecharacteristic.FortheadaptiveUI, wedesignedtheUItoresizethepresentationofthepictureforfourzones,sothatauser standingineachzonehadaclosetooptimalviewofthepicture.

Sinceourgoalwastocomparetheadaptiveandstaticapproaches,wedecidedtokeep thetypeofadaptationassimpleaspossiblesothatthefocusofthestudywasonthe approachesandnottheadaptationstrategyitself.

Eachgroupperformedthetasksusingthetwodifferentinterfaces.Eachparticipant inthegroupwasequippedwithastopwatch.Weshowedaphotoofacharacterand, aftercountingfromonetothree,theparticipantsstartedtheirstopwatchesandcouldwalk aroundfreely,whilesearchingforthecharacterinthepicture.Onceauserhadfound thecharacter,theyhadtopressthestopbuttonandstopmovinguntileveryonehadfound thecharacter.Thisallowedustoidentifyandrecordthezonesinwhichtheyfoundthe characteraswellashowlongittookeachofthemtofindit.Thisprocedurewasrepeated fivetimesforeachapproachusingdifferentpictures(total:10conditions).Thedesignof thestudieswascounterbalancedinsuchawaythatanygroupwasequallylikelytostart withoneorotherUI.Furthermore,thecontentordersineachcasewererandomised.

Whenparticipantshadfinishedthetasks,theywereallowedtofreelymovearoundand testthetwoapproaches.Then,eachparticipantfilledoutaquestionnaireandanswered somesemi-structuredquestionsabouttheirexperiences.Thefirstpartofthequestionnaire consistedofquestionsregardingdemographicinformationandthevisualacuityofthe participant.ThiswasfollowedbyUsabilityScale(SUS)questions[8]andthenaseriesof questionsassessinguserengagement.Attheend,theparticipantsalsoprovidedanoverall ratingona10-pointLikert-scaleforeachapproach.

10questions,eachona5pointLikertscale,wereincludedintheSUS,allowingusto calculateasinglemeasureofusabilitywithinthe0–100range.WeconsideredtheSUS scoreasthemainfactorforevaluatingtheusabilityofbothapproaches.

Toevaluatetheuserengagement,weusedO’BrienandToms’[9]userengagement scale(UES)whichintegratesavarietyofuserengagementfactorsandincludessixdifferentdimensionsincluding AestheticAppeal, Endurability, FeltInvolvement, Focused Attention, Novelty,and PerceivedUsability Endurability evaluatestheoverallsuccessof thesystem,willingnessofrecommendation,andwhethertheviewerwouldusethesystemagain. AestheticAppeal measuresthevisualqualityofthesystem. FeltInvolvement describeshowinvolvedtheuserfeltwiththesystem. FocusedAttention describestowhat degreethesystemattainstheuser’sfullattention. Novelty measurestheviewer’scuriosity anddegreeofinterest. PerceivedUsability reflectstheuser’ssatisfactionwiththesystem.

Byconsideringdifferentdimensions,wecouldcheckfromdifferentperspectives, whichapproachenhancestheuserengagementmore[9].Toevaluatethesix-dimensions

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
4

oftheUES,wehadelevenquestionsthatwerealsousedtoevaluatethemodelwithsingle viewers[1].Thequestionswereona5-pointLikert-scaleandweevaluatedeachdimensionbysummingthereceivedscoresofthecorrespondingquestions.

Tocomparetheattributesofthestaticandadaptiveapproaches,weusedrelatedsamplesWilcoxonsignedranktests.Moreover,whentheassumptionsweremet(i.e. nonormalityviolationastestedbyShapiro-Wilktest(p>0.05),etc.),weusedrepeated measureANOVA.Weconsideredp=0.05astheminimumsignificancelevel.

Weconductedourexperimentsusinga27”LEDdisplay,configuredinlandscape mode(seeFig. 2).TheResponDisframeworkwasconfiguredbasedonthedisplayinformation,i.e.DS=27,NHR=1920,andNVR=1080.Forourexperiment,weusedthe defaultsetting“averageProximity”toadapttheUI.WealsousedoneKinectwhichcan simultaneouslytrackamaximumofsixpeople.

4.3Results

4.3.1ViewerPerception

Theaveragetimemeasurementsoftherepeatedexperimentsforfivedifferentpictures, showedatrend(Z = 1.914, p = 0.056)towardlesstimerequiredtofindthecharacterusingtheadaptiveapproach(Median = 4 5870s)comparedtothestaticapproach (Median = 6 1390s).Thisresultsuggeststhattheadaptivemethodimprovedtheparticipants’perceptionofthecontentby25 28%.

Moreover,theendingzoneswheretheparticipantsendedupfindingthecharacter forbothstatic(Median = 2.2)andadaptive(Median = 3)approaches,werestatistically significantlydifferent(Z=-3.617,p<0.001).Therefore,usingtheadaptiveapproachpar-

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
5
Figure2:Thestudysetup(picturepublishedearlierinTafreshietal.[1]).

Table1:Comparisonofdifferentdimensionsofuserengagementforadaptiveandstatic approaches. ✓:theadaptiveapproachperformsbetter; n.s.:nodifferencewasfound.

ticipantsneededtomovelesstoadaptthemselvestothepictureonthedisplaycompared tothestaticapproach.

4.3.2UserEngagement

Theresultsofthestatisticalanalysistoevaluatethedifferencebetweentheapproacheson differentdimensionsoftheuserengagementarepresentedinTable 1.Thecomparison columnindicateswhichapproachhadastatisticallysignificantlyhighervalue,orwhether therewasnostatisticallysignificantdifference.Thesign ✓ markintheconclusioncolumn showssignificantfindingswithp ≤ 0.05iftheadaptiveapproachperformedbetterthan thestaticmodel.n.s. marksnon-significantdifferences.Therewasnocasewherethestatic approachwassuperior.

4.3.3UsabilityandOverallrating

TherewasnostatisticallysignificantdifferencebetweentheSUSscoreoftheadaptive (Median = 75)andstatic(Median = 77 5)approaches, Z = 1 333, p = 0 182.Further, theoverallratingona10-pointLikertscaleshowednostatisticallysignificantdifferencebetweenthetwoapproaches, Z = 0 185, p = 0 853.However,theadaptiveapproachachievedarelativelyhigherscore(Median = 7)comparedtothestaticapproach (Median = 6).

4.3.4UserFeedback

ParticipantsconsideredthestaticUIasthe “stateoftheart,nothingnew”.(P1.3).Anotherparticipantnoted: “Itwasjustastaticpicture.Thereisnothingspecialaboutthat.” (P3.3).TheyalsohighlightedoneoftheissuesofstaticUIdesign: “Thisishowweknow itfromeverywhere.Ijusthavetogoveryclosetoseethesmallthingsonit.” (P2.1). “The pictureswerejustsmall,Idonotseethepoint....” (P3.2).

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018 FactorsofEngagement Median Z-value p-Value Conclusion AestethicAppeal Adaptive:4,Static:3 Z=-1.624 p=0.104 n.s Endurability Adaptive:7,Static:6 Z=-1.844 p=0.065 n.s FeltInvolvement Adaptive:8,Static:7 Z=-2.777 p=0.005 ✓ FocusedAttention Adaptive:7,Static:8 Z=0.253 p=0.800 n.s Novelty Adaptive:8,Static: 3.5 Z=-3.777 p < 0.001 ✓ PerceivedUsability Adaptive:4.5,Static: 4 Z=-0.986 p=0.324 n.s
6

Usingtheadaptivedesign,some “...didntunderstandwhatitadaptsto” (P6.1).One participantwrote: “Atfirst,Ididnotunderstandthattheadaptivedisplaywaschanging thescreensizeinlinewiththedistance.Iwasfarfromthescreen.Ithoughtitwas randomlyre-sizingtomakethetaskmoredifficult.Thiswasprobablybecausewewere multipleusers,andthescreenwastryingtoadapttoallofusatthesametime.Intheend Ifounditconfusingwhyitwasre-sizing.” (P8.3).Manywouldhavepreferredasmoother transitionbetweenthezones: ”Thestatechangesaretoocoarse....” (P3.2)andmany suggested: “somekindofsmoothedtransitionand/orawaytopreventtoofastswitching betweentwostatesshouldbeimplementedforacalmeruserexperience”.(P2.3).

Ouradaptiveapproachwascompletelynewtousersandthereforeafewofthemwere confused,irritatedandlookingforafamiliarfeature: “itwasfrustratingtoseetheimage getsmaller” (p8.1).Theabrupttransition “...distractsfromwhateversearchpatternI wason.IhadtorecollectmyselfforamomentandfindoutwhereIwasagain.” (P8.2). However,otherparticipantsfoundthat “...theadaptivedisplayisveryhelpfulforpeople whodonotseeverywell.” (P2.1).Inaddition,theyfoundthattheimages “...wereeasier toseebecauseofthestatechanges...” (P3.2).Somefutureworkwasalsosuggested: “... itwouldbeinterestingtoseethedifferenceitmakeswhiletryingtoreadsomething.” (P 2.3).Anotherparticipantnotedthat: “Ithinkthetimetofindthecharacteralsodepends ontheuser’sfamiliaritywiththecharacter.I.e.becauseIamfamiliarwithPinkPanther, itwaseasyformetospotit.” (P6.2).Overalltheadaptiveapproachwaspreferred: “...I wouldreallyprefertheadaptiveapproach.Itwouldhelpforexampleatthetramstation.” (P2.1).

Choosinganappropriatemethodforgroupsofviewerswasfoundchallengingandrequiresfurtherinvestigationasoneparticipantmentioned:“Ifeelthattheadaptivedisplay wouldbebettersuitedforanindividual,notagroup.”.(P5.1).Oneparticipantalsoreportedoneofthedifficultiesindecisionmakingforservingmultipleviewers: “Theonly drawbackoftheadaptiveapproachinmyopinionistheflickeringduetomultiplepeople interactingandthefactthat2people,onestandingfaraway,thesecondonecloseresult inastatewhereoneofthosecannotseewhatheshould.” (7.3).

5Discussion

Weobservedatrendtowardrequiringlesstimetofindthecharacterusingtheadaptive approach.Whiletheinsignificantimprovementcouldbeduetotheapproach,itmight alsobearesultoftheobservedbehaviouroftheparticipants:Someparticipantswere eagertofindthecharacterasfastaspossible,andmembersofagroupstartedcompeting againsteachother.Incontrast,othergroupswalkedaroundslowly,tryingtonotdisturb oneanother.

Theanalysisofthezoneswheretheparticipantsendedupfindingthecharacterproved that,usingtheadaptiveapproach,participantsdidnothavetowalkasclosetothedisplay. Thiscanbeattributedtothefactthatthedisplayadapteditselftotheviewers,rather thantheparticipantshavingtoadapttheirpositiontothedisplay.Therefore,theadaptive approachcouldbemoreeffectiveinapublicsetting,asitrequireslesseffortfromthe viewers.

Theissueofengagingtheviewersofpervasivedisplaysystemsisawell-knownproblem[10–12].Weobservedasystematicdifferenceinfavouroftheadaptiveapproachon

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
7

the FeltInvolvement and Novelty factorsofuserengagement.ThehigherleveloffeltinvolvementislikelyduetotheadaptationoftheUIaccordingtothepositionoftheviewer. Thedifferenceinthe novelty canofcoursebeaccreditedtothefactthatcurrentUIdesignsusethestaticapproachandparticipantshadnotpreviouslyencountereddynamic, proximity-basedadaptation.

Furthermore,viewersperceivedusingtheadaptiveapproachtobemoreworthwhile. However,itwasobservedthattheadaptiveapproachcouldalsobemoreconfusing.Therefore,the“averagedistance”strategyisprobablynotthebestandothermethodsneedtobe exploredforservingmultipleviewers.Reviewingthefeedbackandrecordedvideos,the mainconfusionseemedtobeduetothedisplayUIflickeringwhenaparticipantmoved forwardandbackwardasymmetrically.Viewersalsodidnotexpecttheabruptchangeof theUI.Someparticipantssuggestedthatthereshouldbeasmoothertransitionbetween thestates.Also,itwasclearthatsomeparticipantsdidnotrealisehowtheUIactually adaptedtomultipleviewers.Nonetheless,wefoundnosystematicdifferencebetweenthe approachesaboutthefeelingofbeingannoyed.

Theusabilityscoresofbothapproacheswereaboveaveragebutnotstatisticallysignificantlydifferentfromeachother.Therefore,usingeitheroftheapproaches,thereisno riskofalowusabilityeffectleadingtolowuserengagement.

Although,theadaptiveapproachachievedahigheroverallratingandprovidedviewers withabetterview,weobservednostatisticallysignificantdifferencebetweentheoverall ratingoftheapproaches.

6ConclusionandFutureWork

Unlikemodernpersonaldevicesthathavetouchinput[13],somelargerdisplaysareout ofreachorsupportnodirectinputonthedisplaysurface.Wehavepresentedauser studythatconsiderstheaverageproximityofviewersasaninputtohandleproximitybasedadaptationofcontenttomultipleviewersofpublicdisplays.Inourstudy,weused theaverageproximityofviewersasaninputtoapreviouslyproposedproximity-based adaptationmodelthatintegratesviewerdistanceproximityasanadditionaldimensionfor responsivewebdesign.Althoughtheresultsofourstudywithmultipleviewersshowed anenhancementinfavouroftheadaptivemethod,theimprovementachievedwasnot assignificantasthatfoundintheprevioussingle-vieweruserstudy[1].Therefore,we plantoinvestigatealternativemethodsandrefinementsforproximity-basedadaptationin multipleviewersettingsinfuturework.

References

[1] AmirEsmaeilSarabadaniTafreshi,KimMarbach,andMoiraC.Norrie.ProximityBasedAdaptationofWebContentonPublicDisplays.In InternationalConferenceonWebEngineering(ICWE),pages282–301.SpringerInternationalPublishing,2017.DOI:10.1007/978-3-319-60131-116

[2] BenFrain. ResponsiveWebDesignwithHTML5andCSS3.PacktPublishingLtd, 2015.

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
8

[3] AmirE.SarabadaniTafreshi,AdrianWicki,andGerhardTroster.RDSpeed:DevelopmentFrameworkforSpeed-BasedAdaptationofWebContentonPublicDisplays.In 26thInternationalConferenceinCentralEuropeonComputerGraphics, VisualizationandComputerVision(WSCG).WSCG,2018.

[4] TillBallendat,NicolaiMarquardt,andSaulGreenberg.ProxemicInteraction:DesigningforaProximityandOrientation-awareEnvironment.In ACMInternational ConferenceonInteractiveTabletopsandSurfaces(ITS),pages121–130.ACM, 2010.DOI:10.1145/1936652.1936676.

[5] JakubDostal,UtaHinrichs,PerOlaKristensson,andAaronQuigley.SpiderEyes: DesigningAttention-andProximity-awareCollaborativeInterfacesforWall-sized Displays.In Proceedingsofthe19thInternationalConferenceonIntelligentUser Interfaces,IUI’14,pages143–152,2014.DOI:10.1145/2557500.2557541.

[6] MiaosenWang,SebastianBoring,andSaulGreenberg.Proxemicpeddler:Apublicadvertisingdisplaythatcapturesandpreservestheattentionofapasserby.In Proceedingsofthe2012InternationalSymposiumonPervasiveDisplays(PerDis), pages3:1–3:6.ACM,2012.DOI:10.1145/2307798.2307801.

[7] CorneliaR´emi.Readingasplaying. EmergentLiteracy:Children’sbooksfrom0to 3,13,2011.

[8] JeffSauro. APracticalGuidetotheSystemUsabilityScale:Background,Benchmarks&BestPractices.MeasuringUsabilityLLC,2011.

[9] HeatherLOBrienandElaineGToms.ExaminingtheGeneralizabilityoftheUser EngagementScale(UES)inExploratorySearch. InformationProcessing&Management,49(5):1092–1107,2013.

[10]

AmirE.SarabadaniTafreshiandMoiraC.Norrie.Screenpress:Apowerfuland flexibleplatformfornetworkedpervasivedisplaysystems.In Proceedingsofthe6th ACMInternationalSymposiumonPervasiveDisplays(PerDis),pages13:1–13:8. ACM,2017.DOI:10.1145/3078810.3078813.

[11]

AmirE.SarabadaniTafreshi,MilanBombsch,andGerhardTr¨oster.Chained Displays:ConfigurationofMultipleCo-LocatedPublicDisplay. InternationalJournalofComputerNetworks&Communications(IJCNC),10(3),2018. DOI:10.5121/ijcnc.2018.10301.

[12]

AmirE.SarabadaniTafreshi,AndreaSoro,andGerhardTroster.Automatic,Gestural,Voice,Positional,orCross-DeviceInteraction?ComparingInteractionMethods toIndicateTopicsofInteresttoPublicDisplays.In FrontiersinICT.Frontiers,2018.

[13]

AmirE.SarabadaniTafreshi,SaraC.SarabadaniTafreshi,and AmirehsanSarabadaniTafreshi.Tiltpass:Usingdevicetiltsasanauthenticationmethod.In Proceedingsofthe2017ACMInternationalConferenceonInteractiveSurfacesandSpaces(ISS),pages378–383.ACM,2017. DOI:10.1145/3132272.3134112.

InternationalJournalofUbiquitousComputing(IJU),Vol.9,No.1/2,April2018
9

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Proximity Based Adaptation of Content to Groups of Viewers of Public Displays by timothypauketat.5 - Issuu