Selected Work Data science + Architecture

Page 1


ketProjection

H-;11.,.,H-ih.i,,,Cily tt.U1

SOUlltlmJ ,_,_, Cioy 1ratl O•nvilro,..,,1r o.,. ·~·

$an!<...(;u.>yn* Vrl);" "�

M_,,h,a.an ,.l.11r1h1a.anC11yClly mo - - "'-• lf�l

Ne«wl•Ne«wi,Cey ....... •KO T,,- r..,..,u, Ciey .,.,.,

$ou1..Rlc'--fliill N(w,·.,,1:;Otr Ctr Ran;:lloP•I<)•Yen!(,.f'•kJoi.V<t<lol',olatKJOity LO)JIJ\ntdrs\'l,cwf'.it,,.w...,,•· c,� - �OryC11ylt;o,(1

Hoc�1..,1,.:eH.o111U1<11,GI)' tun Am- 8t1Ai,Sou_.a,p •KO Liewlmlk ,.,,_ - ,�...-, $1,«-;oiqr K.anil(y\'ilbl,'I' "� W<,tl)oMol,_,,W<,tOui1olnot'OCIIT N.ol;l,\111�lltrryHIiiC11y01T OkO Ch.......iplae..t,,;u�\'ill't<" ...,, ,_, Sc-w,.,,...OlyCiey tun S-lh"""'S-3-h"0t,(:ily T-• '--•\'(I'•ta,V<s••(lilyQ1y .... - - Ckrlto.'.I r«tCdl1•r«t�om.c1,y ""' P.twi..:lc1Grne,,IF.11•CieyCllP (:.mdrn ....... a,p •KO EuHu�T-hip - .,,, n.kCl'l'(kU.1..-•d.aC., .,., "� S,.,ll,J(;lariu. �CIUhllOil)' °" - ;\ks>CilyCDP ·� or,,...... \\�,.... Ci1y "� C:m,1&,y ,_., c,, 1un tt,,�lclphi•C-V..'Cll.l-trlg.h;,.b-,..;a, c-,- \'Ill� 1,..... 1»'6 46616 �,n '" 66..<o? ,�,.\ 76.Zn ""' 1f•n Qoy U-o.'.1 92113 11901 2>009 ,,... .,,.. "'' J1!1i 61821 11213 ·~· ""' ,..., -�, ·�· '''" .....

fc:�•11'..-.:kv rc�•._amr1t-�st,1fc�,._amrlt, ,. sc-w,·ud:s,· " !,,dj- IN " lnd•- ,s " Pu-R.iw PII lO K.lnwt <> ..,,._ Al. .. ... TX " """'c.,...,,c ,. N(w\'qrk NY ' C.hl<)tnb CA • """"" CA • C.11� CA ' A1bn.., AR ,. M•rybnJ !,,II) .. ..... TX " 111,n,oo, IL " .... IA ., r-- TS ,, ...... II. ,. sc-w,.......!,,'") .. T�,1.•ln< " �. "' 21 -·- "' • """... 00 .. lthoJ�lobnd " "' Mi-�'I,; MS " N,cwl<Toey NJ " """" <)fl • C.l;fornl.l CA ,.._ A2 u '""" FL " Wioe<wuinWI ., f'n:ln-,iv:ini• PA " l',:orthC.e-oli,ul'-C

ThebankinginstitutionisseekingactionableinsightsrelatedtoMortgage-BackedSecurities,Geographic BusinessInvestment,andRealEstateAnalysis.lheobjectiveistoidentifyuntappedopportunitiesinthe mortgageloanmarket.Toachievethis,thebankaimstodeterminepotentialmonthlymortgageexpenses fordifferentregions,basedonkeyfactorssuchasmonthlyfamilyincon1eandrentalvaluesofrealestate. However>lheprojectposeschallengesduetoitshigh•<limensionala.ndnoisynalure.

[J1themidstofrapidgrowthincertainregions,competitorbanksareofferingnwrtgageloanstosubprime customersatlowerinterestrates.Toenhancemarketpenetrationandtargetnewcustomerseffectively,the bankrequiresthedevelopmentofastatisticalmodelthatcanpredictthepotentialdemand,intermsof loanamounts,foreachregionacrosstheUSA.Additionally,adynamicdashboardneedstobecreatedto providereal-timeupdates,consolidatingdatafromvariousagencies.Thisdashboardwillserveasavalu• abletoolformonitoringkeymetricsandidentifyingemergingtrends.

Byleveragingadvancedanalyticsanddatavisualizationtechniques,thebankaimslogainvaluableinsights intothemortgageloanmarket.Thiswillenablethemtomakeinformedbusinessdecisions,identifygrowth opportunities,andstayaheadofcompetitors.

•• ... m,rrlNmurk>.l,,ip UM0812>,7S..SOIS2Jt 41.7014.0,86.U.UUS .t,.;'92Ml'-H.SIS.?� JIUHIOU41()11689 )\l.l;s!1.\116.S69J6S1 "-Sl9Sil\l•87.ISIIIOt JJ.IU.?8142 •9'1.iM"99 ».1367�ltJ.!9Ul7 "' ...,...,.. 90!7S '" "' J4J).lt1U1 JlM54.176•U7.l;'OJ1'J )4"60610193..oi,11116 -'9.41U!8S-I.;6..)0�IO!J ».o;-ss14s -�714$1 �l.l)Utl9 ·8$.U1◄:1'8 """ ,,, J6.ll.l12l1-86.114215.\ 40.IJ.4�,68J24?12i 40.6J0NJI,?J.ti-149?2 "' J)l.81:10tW .W..18).:,9.)4•IIS.l$21)0$ .!4U1'SUII •'2.<18!»9$ .,. "10.�-t24 "' 41Jl:7Si712 Jl.,�2-89.&607S2 ,., 3t.allSi33 ,&$.)$NU$·IU.JMISl '61 ,u� JJ.)iSlt<)\l •HI� ?S.8664171,80.lS.US 44.4.Sll6i'9J.$7.9-212184 llS -OA6J4;4J JS.$06.2126 .iMJ(i»J) .,

69UIS95 2$419.)

110$7)1)

1&10lll1 '8iJ4) ,.,, 66.1211MIJJl22SIJ .., 160"8»119123'?>176 .,,..,.,,... IS7$31 • Jl.7SSM74·11$.-107s.19S ,...... tlUllttlt t621◄$0 126-.I01't ,,,.,,10127!41183311?14H2

m.i�_pop .,....,,. --- _.,.....,, _..,.,., Nl'II.W,oplt_�I f>tlllJillllf'IOf>tlll�I0 ?61? "'" ;69JUJS ,.. ,,,..,,., ??LJ4t41 "' 0.86i61O.i'9l�S "" '™ 80.UN-2� ... lSJ.46i4i Jl?.S&6J? '" 0.9741o.932?1 ..., "'' m.n� ,., JlJ,39011l91ml "' G.9$1)30.836:, IHI "" (11)),1)018 ,., ''"'"' U9J0)16 "' 0,.9te,9)0.871SI ,,,. "" \l�9.\ '" )\ll.4f!O!l6IOOM""t:'01 ...,.. 0.W-'217 ,... "" (l(IS.102,46 ... 2�1Stl1.1'1.1040S '" ()Ml#l).74S64 ... "' 66U696J6i4 ,,._..,,. l?S..U.US '" o.;w10.?1?42 "" 1318 iMJ61il i29�01.676?1 ...... 1?4 ,,,. 117' 17U14�1.a),SOI�•.a.91,16 76,.$071) "' I lllJi'92 "" -- 21ou-.s1,1$U $J&.7"� 4$,IWt "' ''" "" - 10rH'J4SS21121m.,142-4S03.19tlSS "" -0.\l7MS ,., 115i ,...,.,,. '"' m.)J$()9M.n6U ,.. 0,)11(070.\llllJ7 10?? '"' ltl&.ll0J77?:,,-....,178-U»UUI106SO.M-1;'1.0.3-111 '"' "" ........ ,... 44t.7SJll92Ul861612? I 0.M)J.?3 '"' ... )171.1*"9J!41 ,111).1,nw $.J0MI " I '"' )21◄ :WUMU '" l�.a,3';'9)SOl,<r.W "' ....,, ..... 2�.... - 2m26JI - ,,, 200.(,,l'N.\488..IS,� '"

(l)Pemogc-1phics: •Popul.aliOnOtmographics:P2Puhtionds·mosrnohk$1illbliC'.S, COUNTYIOS1'ATEII)slatestatc_abcityplacel)'PI.'

•GeogaphkDemographics: AlandAWaterpopmalc_popfcmal�•_pop

•MaritalOcmographics.: marriedmarried_snpte-par.Jteddivorced

•AgeDemographics:.AAAds·nws:r,,phic8'illi•(lic&, ma1e_age_meanmate_age_medianmale_age_stdc" 1fomale_age_mea1lfemale_age_medianfomale_age_$1dev matc_age_samplt.>_,wight female_age_5:lmple-_weight

ma1e_age_.samp1cs female_age_$;1!llples

•HighKhoolGrJduation:Highsrhs:tols:mlwuionMilli�fjg, hs_dcgreehs_dcgrt-e_malchs_dt-grec_fcmnlc

(2Unc-0mc;

•HouseholdIncome:'Jbta)incomeofP£OP1ea;sidinsiptbi;bouu:hold hi_nle-Mhi_medi;·ulhi_stdevhi_s:unple_weighthi_samples

•FamilyIncome:1,,,a1iUO'lllS'str«mls· rl'l·u<:slIQthebou�<:holdrr. famil)'_mcan.family_median.famil)·_stdc".familr_sampte_wl•ight.family_samples

�tosli!um

•Crossi:tcn:Contractrentplusthesstimatcdaveragemon1hlycostofutjlit)'foatmcs rent_me-:inrent_medi:i,lren1_s:tde,1 rent_s:imple_weightrent_s:imp1cs

• GrossRentasPercenlorIncome:Gtt'rt.(0·111MthePfUWDIdinromeveryinu:cruin£

rent_gt_l0rcnt_gt_l5rent_gt_20rent_gt_25rent_gt_J0rcnt_gt_35rent_gt_•lOrent_gt_S0universe_s.,mplcsused_s..i.mpJcs

•MortgageCosts:Statisticsreg:irdingmortgagepayments,homeequilyloans,utilitiesandproptr1ytaxes

•l-lomcOwnerCosts:Sum9(Ulili!i;;',(P©P:fCIYla¥<:$SlaiiMiC$ hc_mcanhc_mcdianhc_stdc\'hc_s.m1pleshc_sample_wcight

•hc_mortgage_mean=his3pfOOiced,•ariable.lhisj<:meanmooiblymortgageandown:erwitofsp:ecifiedflffiit;mhkallooUiOJ). hc_mor1gagl.'_meanhc_mortgage-_med1a.nhc_mor1gag�•-stdcvhc_mortgag?_samplc_\.,.cighthc_mor1gag.:_$implcs

•SecondMortgage:HOU<:l'holdswjthasecondmortgagestatjstics, home-_equi1y_sccon,-l_mor1gagesecond_mor1gagesecond_mor1g.ige_cdf

•HomeEquil}'Loan!Hru,�<:tx+hwith?Homet911il)'I-Oill1S!atb!in, honw..l•quityhomt.>_cquily_cdf

•Debt:HouseholdswjthanyJ)l):eofdebtslali_(tjcs. debtdel>L«lf

California Housing Premium Prediction

DatasetDescription:

Thedata isderived from the 1990 U.S.census, whereeachrecord corresponds to adistinct ctn• sus blockgroup-the smallest unit forwhichthe Census llureaupublishessampledata.These block groups generally have populations of600 to 3,000 people.

D:'11.l Exploration

�fondleMi�ingData(Un$upervisedLeaminglmpulation)

IIOe$crip1i<m:Imputemissingd,u.i usingun.supervisetile1tning1echniques.J

FeatureEngineering&Ou1lierDetection

Inthiscontext,a "household"denotes agroupof peopleliving togetherin onedwelling.It� noteworthy that in areaswitha sparsenumber of households) including vacation destinationswithmany unoccupied homes,theaveragecounts ofrooms andbedroomsperhousehold inthedatasetmay be higher than typical.

52.0 37.85 52.0 37.84 52.0 37.85 52.0 37.85 50.0 37.85 52.0 37.85 52.0 37.84 50.0 37.84 52.0

7099.0 JI06.0 1467.0 190.0 1274.0 235.0 1627.0 280.0 919.0 213.0 2535.0 489.0 3104.0 687.0 2555.0 665.0 3549.0 707.0 2202.0 434.0 3503.0 752.0 2491.0 474.0 696.0 191.0 2643.0 626.0 1120.0 283.0 1966.0 347.0 1228.0 293.0 2239.0 455.0 1503.0 298.0 1-St.O IM,O

The relationshipbetweenmedian_house_valueandmcdian_incorncap• pears to be predominantlylinear, albeit withsome noticeable deviations perpendicular to the linear trendline.Additionall)', it'sworth mentioning that thereisa discernible upperlimit forall values of·mcdian_incomc; whichappears somewhat anomalous when visualizedin two dimensions.

V V lden1i(rOutliers in 1hcDataset IfO..-scriplion:Dclccland handleoutliers in thcdatasl.'t.)

IIDescription:Sc.ilethefeatures10h:w<.·zerom<"anandunitvariance.I

V MOW:IDe\·dopm.1.·n1(Cat.80().!.t)

I10..-scriplion:Utilb:..-C'..at13oostasttk-chosen machine learningmodelfordcn:lopmcnt.J

V CrtatcYourOwn sklcam-CompatibleClass

IIDe$crip1i<m:Deveklpacustomskl�rn-comp:uiblecl.l.$$:ifneededforrnodd ,ue,gration.l

V Trnii,andfaaluate the Model

IIDescription:Tr-.1in th<:Cal8ooSl nl()(tl.inde\'aluateilSperf0rmance.l

IID�crip1i<m:Fine-tune1�model >;ir.unetcr:sfor op1i1nb,.-·uion.)

V Model Predic1ioo&Fine-Tuning

lksHiptinn

•Mcdlnc:medianinc:omcinblockgroup •HouseAge:medianhouseagein blockgroup

•A,,eRooms::weragenumb-erofro<unsJ>tthousehold

•A,·cBedrms:averagenumlx•rofbedroomsper hous..•hold

•Population: blockgrouppopulation

•A,•e()ccup:,werogenumberofhouseholdmembers

•Lalitudc:blockgrouplatitude

•1,ongitude:blockgrouplongitude

Inthe case of median_house_agcversus median_house_value, thedata ex• hibits a wide dispersion across the plot. Kernel Density Estimation (KDE) highlights twodistinct peaksseparatedb)' approximately 20 years. These peaks could potentially signify varying levels of affordabWty, particularly as theyare concentrated in the lower half ofthe plot. Moreover, anadditional peak near thepeak values of both featuresis observable.'Ihis relationshipis notabl) nonlinear, withdata points scattered throughout the graph.

Whenconsidering median_house_value inrelation 10 total_roomsand population,these features appear challenging to model due to theircom• plexity. The KDEanalysis indicates a heavy concentrationof dataat lower values for both features,witha notable presence ofdataal largervaluesand aconsiderable number of data pointsoutside the primary clusters, often classifiedas outliers.

Furthermore,it�essential to acknowledge that man)' ofour features have significant))'different axis scales, potentially implying varying levels of im• portance.·1herefore,scaling shouldbea crucialconsideration 10ensure that the features arcappropriate!)' weightedin our modeling process.

Mall of Saudi

Info: North

Buildingarea:

NumberofStory:

Programs: 19,000sq.m 2 Retail,Dining, Open/Public Space

Buildingarea:120,000sq.m

NumberofStory:5

Programs: Retail,Dining, Open/Public Space

ProjectDescription:

TheNorth£vent J>la101andSouth Event Plazaaretwo exceptionalcommercialprojects that aimto redefinetheconceptofshoppingandentertainmentexperiencesin their respective regions. Situated indifferent partsof the city.thesemallsoffer distinctatmospheresand tailoredofferings tocater 10thediverseneeds andpreferences ofvisitors.

TheNorth Event l'la1.aislocatedina tranquilandsereneselling,providingaquiet and peacefulenvironmentforshoppersandvisitors.Themalls designreflectsthe essenceof serenity, incorporating elementsthatpromoterelaxationandasenseof calm. With acarefullycuratedselectionofstores)diningoptions.andrecreational spaces,theNorthEvent Plazaoffersarefinedandsophisticated experiencefor those seekinga tranquilretailgetaway.

Ontheotherhand,theSouthEventPlazaispositionedinadynamicandenergetic district,providinganex_hilaratingandvibrantatmosphere.The1nall'sarchitecture andinteriordesignexudeasenseofexcitementandliveliness) capturingthespiritof thebustling southern region. Withawiderangeofretailoutlets, dining experiences, andentertainmentfacilities,theSouthEvent Plazaoffersa thrillingandimmersive environmentfor visitorswho seekadynamicandengagingshoppingexperience.

Grand narrative:

Thisexperiencecaptures present-day Saudi Arabia throughanextrapolationofdata. Bydrawing fromthe pastandretellingrelevantstoriesofcultureandheritage,thespaceextendsintoareimaginedvisionfor the future.1hejourneythroughthemallbecomesa timelinc.Thcscspacescanmutatethroughouttime:l>ccause they areinformed byrelevantdatapoints,they listento thelandscapearoundthem,andconstantly morph.This routecouldalso beinterpretedasa space thatmorphs

Highridge

ProjectDescription:

HighridgeResidenceisanexquisitearchitecturalmasterpiecethatshowcasesaspaciousandthoughtfullydesigned layout,providinganunparalleledlivingexperience.Withapproximately7.200squarefeetofmeticulouslycrafted livingspace,thisresidenceoffersanabundanceofroomforrelaxation,entertainment.andcherishedmoments withlovedones.

AsyoustepintoHighridgeResidence,youareinnnediatelywelcomedbyagrandfoyerthatsetsthetoneforthe luxuryandelegancethatawaitswithin.Thefoyerservesasacaptiv-Jtingentrypoint,adornedwithtastefulfinishes andimpeccableattentiontodetail.Fromthemomentyouenter.asenseofgrandeurandsophisticationenvelops you.

Theopen-conceptlivingarea,seamlesslyconnectedtothefoyer,unfoldsbeforeyouinallitssplendor.Thisexpansivespaceisdesignedtoaccommodateavarietyofactivities.fromintimatefamHygatheringstohostingextrav-•gantparties.Largewindowsgracethewalls,allowinganabundanceofnaturallighttobathethelivingarea, creatinganafryandinvitingatrnosphcre.Thesewindowsalsoprovidebreathtakingpanoramicviewsofthesurroundinglandscape,allowingresidentstoconnectwithnatureandenjoythebeautyoftheirsurroundings.

1heresidenceboastsfourwell-appointedbedrooms, includingaluxuriousmastersuite.Themastersuite isatruesanctuary,completewithaprivateensuite bathroomfeaturingaspa�likesoakingtub,awalk•in shower,andcontemporaryfixtures.Ampleclosetspace ensuresthatresidentshaveplentyofstoragefortheir personalbelongings.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.