Global Tool Deterioration Analysis Looks Beyond Machining Cutting tools are fundamental elements of the meta lcutting process. Depending on how the tools are chosen and applied, they offer the potential to maximise machining productivity or, on the other hand, create production bottlenecks. Much depends on how tool use is managed in relation to the overall manufacturing process.
Cutting tools are by their nature consumable; they wear until they are no longer effective. A traditional approach to metalcutting tool management employs wear analysis alone, focused on manipulating tool materials, geometries and application parameters to improve part output and tool life in a selected operation. Maximising the efficiency of a facility’s entire manufacturing process, however, involves consideration of a broad range factors in addition to tool wear. It is essential to examine cutting tool wear or, more broadly, tool deterioration, in light of the overall or “global” manufacturing process. Global Tool Deterioration Analysis (GTDA) goes beyond basic measurement of tool wear to include tooling-related considerations such as time spent in tool manipulation, problems other than wear, production economics, shop organization, personnel attitudes and assumptions, value stream management, and total manufacturing costs. GTDA is based on regular evaluation of a large number of a shop’s used cutting tools randomly selected to construct a comprehensive picture of their