Micromeritics and Powder Rheology

Page 1

CHAPTER·

2

•• •• •• •

Micromeritics

Micromeritics is the science and technology of small particles and includes the study of the fundamental and derived properties of individual as well as a collection of particles. The micromeritic properties of a drug can be related in a significant way to the physical, chemical and pharmacological properties of a drug. Clinically, the particle properties can affect its release from dosage forms that are administered orally, parenterally, topically and rectally. The product quality of tablets, capsules, suspensions and emulsions from the viewpoint of both uniformity and stability depends on the micromeritic properties such as particle size, shape, surface morphology, density and flowability. The study of the fundamental and derived properties of particles has a number of applications in the field of pharmacy, including the following: Dissolution: The surface area per unit weight, which is known as the specific surface, is increased by reduction in the particle size. The increase in surface area by particle size reduction increases the rate of drug dissolution. Appearance: Feel, texture and colour of certain excipients or drugs depend on the particle size. For example, the difference in colour of red and yellow mercuric oxide is due to the differences in their particle size. Particle size may also affect the texture, taste and rheology of oral suspensions. Elegance of emulsions and suspensions often depends on the particle size of the dispersed phase. Flowability: The flow properties of powders depend on the particle size, size distribution and the particle shape. Asymmetric and small particles have poor flow characteristics; therefore, granulation techniques are used to convert powders into granules of uniform size having good flow properties. Compressibility: Physical properties of powders such as compressibility, porosity and bulk density depend on particle size and size distribution. For example, the difference in bulk density of light and heavy magnesium carbonate is due to the difference in their particle size. Rheology: Maintaining a constant mass of particles in a suspension while reducing the particle size leads to increased number of particles. A higher number of smaller particles results in more particle-particle interactions and an increased resistance to flow.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Micromeritics and Powder Rheology by Abhijit Debnath - Issuu