Solutions for Introduction To Fourier Analysis 1st Us Edition by Herman

Page 1


FourierTrigonometricSeries

Chapter 2

1. Write y(t)= 3cos2t 4sin2t intheform y(t)= A cos(2π ft + φ) Wecandeterminetheconstantsbyexpandingthecosinefunction, y(t)= A cos(2π ft + φ)= A

Comparingthisto y(t)= 3cos2t 4sin2t,wesee2π f = 2and A cos φ = 3, A sin φ = 4.

Addingthesquaresoftheseequations, 25 = A2 cos2 φ + A2 sin2 φ = A2 ,

weobtain A = 5.Dividingthefirstequationintothesecond,tan φ = 4/3. So,wefind y(t)= 3cos2t 4sin2t = 5cos 2t + tan 1( 4 3 ) ≈ 5cos (2t + 0.927)

2. Determinetheperiodofthefollowingfunctions:

a. f (x)= cos x 3 T = 2π 1 3 = 6π

b. f (x)= sin2πx T = 2π 2π = 1.

c. f (x)= sin2πx 0.1cos3πx

Eachtermhasadifferentperiod:

Multiplesofeachgive nT = {1,2,3,4,5,6,...} nT = { 2 3 , 4 3 ,2, 8 3 , 10 3 ,4,...}.

Thesmallestcommonvalueistheperiodof f (x)= sin2πx 0.1cos3πx : T = 2.ThisisseeninFigure 2.1.

:Plotsof

Figure 2.2:Plotsof f (x)= 3sin πx 2 , f (x)= 2cos 3πx 4 ,and f (x)= 3sin πx 2 + 2cos 3πx 4

d. f (x)= | sin5πx|

Theperiodof f (x)= sin5πx is T = 2π 5π = 2 5 .However,thefrequencydoublesundertheabsolutevalue,so T = 1 5

e. f (x)= cot2πx.

Theperiodsofthetan x andcot x are T = π.So,forthisfunction wehave T = π 2π = 1 2

f. f (x)= cos2 x 2

Justliketheabsolutevalue,thefrequencyofthecosinefunction doubleswhenthefunctionissquared.So, T = π 1 2 = 2π.

g. f (x)= 3sin πx 2 + 2cos 3πx 4

Thisproblemissimilarto 2c.Eachtermhasadifferentperiod: T = 2π π 2 = 4and T = 2π 3π 4 = 8 3 .Multiplesofeachgive nT = {4,8,12,16,...} nT = { 8 3 , 16 3 ,8, 32 3 , 40 3 ,16,...}.

Thesmallestcommonvalueistheperiodof f (x)= 3sin πx 2 + 2cos 3πx 4 is T = 8.ThisisseeninFigure 2 2

(x) sin2πx 0.1cos3πx

3. Derivethecoefficients bn inEquation(5 24).

Thisderivationparallelsthatforthe an’s.WebeginwiththeFourier series

WemultiplythisFourierseriesbysin mx forsomepositiveinteger m and thenintegrate:

Integratingtermbyterm,therightsidebecomes

Wehaveshownthat 2

mxdx = 0,whichimpliesthatthefirstterm vanishes.Also,wehavethat

forintegers n and m

Westillneedtoevaluate 2π 0 sin nx sin mxdx whichwasnotdoneinthe book.Wecomputethisintegralbyusingtheproductidentityforsines.We havefor m = n that

For n = m,wehave

Now,wecanfinishthederivation.Wehaveshowntheorthogonalityof thesines,

Solvingfor bm,wehave

4. Let f (x) bedefinedfor x

.Parseval’sidentityisgivenby

AssumingtheFourierseriesof f (x) convergesuniformlyin ( L, L),prove Parseval’sidentitybymultiplyingtheFourierseriesrepresentationby f (x) andintegratingfrom x = L to x = L.[InSection 5.6.3,wewillencounter Plancherel’sFormulaforFouriertransforms,whichisacontinuousversion ofthisidentity.]

WebeginwiththeFourierseries

MultiplyingthisFourierseriesby f (x) andintegratingover x ∈ [ L, L],we obtain

RecalltheFouriercoefficientsaregivenby

ReplacingtheintegralsintheintegratedFourierserieswithFouriercoefficients,wehave

leadingtothesoughtresult,

5. Let f (x) bedefinedfor x ∈ [0, L].DerivetheParsevalidentities,similar toProblem 4,forthefollowingseries.

a. FortheFourierCosineseries,

MultiplytheFourierCosineseriesby

0to

b. FortheFourierSineseries,

MultiplytheFourierSineseriesby

andintegratefrom

Figure 2 3:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2.6.

6. Considerthesquarewavefunction

f (x)= 1,0 < x < π, 1, π < x < 2π

a. FindtheFourierseriesrepresentationofthisfunctionandplotthe first 50 terms.

Since f (x) isanoddfunctiononasymmetricinterval, an = 0, n = 0,1,....Weneedonlycomputethe bn’s.

TheFourierseriesisthen

)

Thefirst 50 terms (n = 50) areshowninFigure 2.3.

b. ApplyParseval’sidentityinProblem 5 totheresultinparta. Parseval’sidentitystates

Frompartawehave

Notingthat

Thus,wehave

c. Usetheresultofpartbtoshow π2 8 = ∞ ∑ n=1 1 (2n 1)2 . Multiplyingtheseriesinpartb,

by π2/16yieldsthisresult.

7. Forthefollowingsetsoffunctions:(i)showthateachisorthogonalon thegiveninterval,and(ii)determinethecorrespondingorthonormalset.

[Seepage 288.]

Orthogonalityandnormalizationcanbedoneusingsimplesubstitutions andrelatingtheintegralstothebasicorthogonalityrelationsbetweensines andcosines,

a. {sin2nx}, n = 1,2,3,...,0 ≤ x ≤ π

Let y = 2x, dy = 2 dx.Then,

Thesecanbenormalizedbyletting φn (x)=

So,wehave A = 2 π andtheorthonormalsetisgivenby { 2 π sin2nx}, n = 1,2,3,...,0 ≤ x ≤ π

b. {cos nπx}, n = 0,1,2,...,0 ≤ x ≤ 2.

Let y = πx, dy = π dx.Then, 2 0

Thesefunctionsarealreadyorthonormal.

c. {sin nπx L }, n = 1,2,3,..., x ∈ [ L, L].

Let y = πx/L, dy = π/Ldx.Then, L L sin nπx L

Thesecanbenormalizedbyletting

So,wehave A = 1 √L andtheorthonormalsetisgivenby { 1 √L sin nπx L }, n = 1,2,3,..., x ∈ [ L, L]

The a0’sarecomputedseparatelyfrom an ’swhendeterminingtheFouriercoefficients.

8. Consider f (x)= 4sin3 2x

a. Derivethetrigonometricidentitygivingsin3 θ intermsofsin θ and sin3θ usingDeMoivre’sFormula.

Wenotethat e3iθ =(eiθ )3.Writingbothsidesofthisequationin termsoftrigonometricfunctions,wehave e3iθ =(eiθ )3

cos3θ + i sin3θ =(cos θ + i sin θ)3 = cos3 θ + 3i

Equatingtherealandimaginarypartswehave cos3θ = cos3 θ 3cos θ sin2 θ, sin3θ = 3cos2 θ sin θ sin3 θ

Thesecondequationcanberearrangedtogettheresult. sin3θ = 3cos2 θ sin θ sin3 θ = 3(1 sin2 θ) sin θ sin3 θ = 3sin θ 4sin3 θ.

Therefore, sin3 θ = 3 4 sin θ 1 4 sin3θ.

b. FindtheFourierseriesof f (x)= 4sin3 2x on [0,2π] withoutcomputinganyintegrals.

Weneedonlylet θ = 2x inparta.Then, f (x)= 4sin3 2x = 3sin2x sin6x.

9. FindtheFourierseriesrepresentationsofthefollowing:

a. f (x)= x, x ∈ [0,2π]. WefirstcomputetheFouriercoefficients.Notethatwecompute a0 separatelyfrom an

TheFourierseriesisgivenby

AplotofthefirsttermsoftheseriesisgiveninFigure 2.4.

b. f (x)= x2 4 , |x| < π

(

) isanevenfunctionon

needthe an’s.

Figure 2 4:Aplotoffirsttermsofthe Fourierseriesof f (

Then,theFourierseriesisgivenas

Figure 2.5:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2 9b. c. f (

WefirstcomputetheFouriercoefficients.

Figure 2 6:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2 9

TheresultingFourierseriesis

AplotofthefirsttermsoftheseriesisgiveninFigure 2 8

WefirstcomputetheFouriercoefficients.

Figure 2 7:Aplotoffirsttermsofthe Fourierseriesof

TheresultingFourierseriesis

AplotofthefirsttermsoftheseriesisgiveninFigure

= π 2 an = 1 π 2π 0 f (x) cos nxdx = 1 π π 0 (π x) cos nxdx = 1 π 1 n (π x) sin nx 1 n2 cos nx π 0 = 1 cos nπ πn2 bn = 1 π 2π 0 f (x) sin nxdx = 1 π π 0 (π x) sin nxdx

= 1 n

TheresultingFourierseriesis

f (x) ∼ π 4 + ∞ ∑ n=1 1 cos nπ πn2 cos nx + 1 n sin nx

AplotofthefirsttermsoftheseriesisgiveninFigure ??.

10. FindtheFourierseriesrepresentationsofeachfunction f (x) ofperiod 2π.Foreachseries,plotthe Nthpartialsum, SN = a0 2 + N ∑ n=1 [an cos nx + bn sin nx] , for N = 5,10,50anddescribetheconvergence(Isitfast?Whatisitconvergingto?,etc.)[SomesimpleMaple,MATLAB,andPythoncodefor computingpartialsumsisshowninthenotes.]

a. f (x)= x, |x| < π.

Since f (x)= x isanoddfunctionon |x| < π,the an’svanishfor all n.So,wejustcomputethe bn’s. bn = 1 π π π x sin nxdx = 2 π π 0 x sin nxdx = 2 π 1 n

TheresultingFourierseriesis

f (x) ∼ 2 ∞ ∑ n=1 ( 1)n+1 sin nx n .

Figure 2 8:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2.9e.

Figure 2 9:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2 10a.

AsseeninFigure 2 9 theconvergenceisslowasthetermsdecay like 1 n .Thediscontinuitiesintheperiodicextensionalsoarean indication.

b. f (x)= |x|, |x| < π.

Since f (x)= |x| isanevenfunctionon |x| < π,the bn’svanishfor all n.Wecompute a0 and an. a0 = 1 π π π |x| dx = 2 π π 0 xdx = π an = 1 π π π |x| cos nxdx = 2 π π 0 x cos nxdx = 2 π 1 n x sin nx + 1 n2 cos nx π 0 = 2 πn2 (cos nπ 1)

TheresultingFourierseriesis f (x) ∼ π 2 + ∞ ∑ n=1 2(cos nπ 1) πn2 cos nx = π 2 4 π ∞ ∑ k=1 cos(2k 1)x (2k 1)2 .

Theconvergenceisfastasthetermsdecaylike 1 n2 .Therearenot discontinuitiesintheperiodicextension.SeeFigure 2.10.

c. f (x)= cos x, |x| < π. WhileonecancomputetheFouriercoefficientsbycarryingout integrations,itshouldbenoticedthatthisisatruncatedFourier seriesandnointegrationisneeded.Theresultis f (x)= cos x.

d. f (x)= 0, π < x < 0, 1,0 < x < π WeneedtocomputealloftheFouriercoefficients.

TheresultingFourierseriesis

Theconvergenceisslowasthetermsdecaylike 1 n .TherearediscontinuitiesintheperiodicextensionasseeninFigure 2.11.

11. FindtheFourierseriesrepresentationof f (x)= x onthegiveninterval. Plotthe Nthpartialsumsanddescribewhatyousee.

Figure 2 10:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2 10b.

Figure 2 11:Aplotoffirsttermsofthe

Fourierseriesof f (x) inProblem 2 10c. a. 0 < x < 2.

WecomputetheFouriercoefficients:

TheFourierseriesrepresentationisgivenby

Figure 2 12:Aplotoffirsttermsofthe

Fourierseriesof f (x) inProblem 2 11a.

AplotoftheFourierseriesisshowninFigure 2 12

b. 2 < x < 2.

Since f (x)= x isanoddfunctionon 2 < x < 2,weonlyneed the bn’s. bn = 2 4

TheFourierseriesis

AplotofthisFourierseriesisshowninFigure 2 13

c. 1 < x < 2. TheFouriercoefficientsarefoundas

Figure 2 13:Aplotoffirsttermsofthe Fourierseriesof f (

) inProblem 2 11b.

ThisgivestheFourierseries

AplotofthisFourierseriesisshowninFigure 2.14.

12. TheresultinProblem 9babovegivesaFourierseriesrepresentationof x2 4 .Bypickingtherightvaluefor x andalittlearrangementoftheseries, showthat[SeeExample

6.]

UsingtheresultsinProblem 5.12b,onehasthat

Figure 2.14:Aplotoffirsttermsofthe Fourierseriesof

inProblem 2 11c.

Letting x = π,wehave

Then,

Hint:Considerhowtheseriesinparta.canbeusedtodothis. Let

Notethat

Therefore,wehave

c. UsetheFourierseriesrepresentationresultinProblem 9e.toobtaintheseriesinpartb.

TheresultofProblem 9eis

Setting x = π,wehave

Therefore,

13. Sketch(byhand)thegraphsofeachofthefollowingfunctionsover fourperiods.Thensketchtheextensionseachofthefunctionsasbothan evenandoddperiodicfunction.DeterminethecorrespondingFouriersine andcosineseriesandverifytheconvergencetothedesiredfunctionusing Maple.

FortheseproblemswemakeuseoftheFouriercosineseries,

where

andtheFouriersineseries,

where

a. f (x)= x2,0 < x < 1.

ThegivenfunctionisshowninFigure 2 15.InFigure 2 16 thisfunctionisreflectedaboutthe y-axisandthenewfunctionisthenperiodicallyextendedtogivetheevenperiodicextension.InFigure 2 17 thefunctionisreflectedabouttheoriginandthenewfunction isthenperiodicallyextendedtogivetheoddperiodicextension. f (x) x 0 1

Figure 2 15:FunctiongiveninProblem 2 13a.

Figure 2 16:Sketchoftheevenperiodic extensionofthefunctiongiveninProblem 2 13a.

TheFouriercosineseriescoefficientsaregivenby

Figure 2 17:Sketchoftheoddperiodic extensionofthefunctiongiveninProblem 2 13a.

TheresultingFouriercosineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2.18. TheFouriersineseriescoefficientsaregivenby

TheresultingFouriersineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2 19

Figure 2 18:Aplotoffirsttermsofthe Fouriercosineseriesof f (x) inProblem

2 13a.

Figure 2 19:Aplotoffirsttermsofthe Fouriersineseriesof f (x) inProblem

2.13a.

b. f (x)= x(2 x),0 < x < 2. f (x) x 0 1 2

ThegivenfunctionisshowninFigure 2 20.InFigure 2 21 thisfunctionisreflectedaboutthe y-axisandthenewfunctionisthenperiodicallyextendedtogivetheevenperiodicextension.InFigure 2 22 thefunctionisreflectedabouttheoriginandthenewfunction isthenperiodicallyextendedtogivetheoddperiodicextension.

)

TheFouriercosineseriescoefficientsaregivenby

Figure 2 20:FunctiongiveninProblem 2 13b.

Figure 2 21:Sketchoftheevenperiodic extensionofthefunctiongiveninProblem 2 13b.

Figure 2 22:Sketchoftheoddperiodic extensionofthefunctiongiveninProblem 2 13b.

TheresultingFouriercosineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2 23

Figure 2 23:Aplotoffirsttermsofthe Fouriercosineseriesof f (x) inProblem 2 13b.

Figure 2 24:Aplotoffirsttermsofthe Fouriersineseriesof f (x) inProblem 2 13b.

TheFouriersineseriescoefficientsaregivenby

Figure 2 25:FunctiongiveninProblem 2.13c.

TheresultingFouriersineseriesisgivenby

Figure 2 26:Sketchoftheevenperiodic extensionofthefunctiongiveninProblem 2 13c.

AplotofthisseriesrepresentationisshowninFigure 2.24.

Figure 2 27:Sketchoftheoddperiodic extensionofthefunctiongiveninProblem 2 13c.

ThegivenfunctionisshowninFigure 2 25.InFigure 2 26 thisfunctionisreflectedaboutthe y-axisandthenewfunctionisthenperiodicallyextendedtogivetheevenperiodicextension.InFigure 2 27 thefunctionisreflectedabouttheoriginandthenewfunction isthenperiodicallyextendedtogivetheoddperiodicextension.

TheFouriercosineseriescoefficientsaregivenby

TheresultingFouriercosineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2 28

TheFouriersineseriescoefficientsaregivenby

TheresultingFouriersineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2 29

Figure 2 28:Aplotoffirsttermsofthe Fouriercosineseriesof f (x) inProblem 2 13c.

Figure 2 29:Aplotoffirsttermsofthe Fouriersineseriesof f (x) inProblem

2 13c.

(x)

Figure 2 30:FunctiongiveninProblem

2.13d.

Figure 2 31:Sketchoftheevenperiodic extensionofthefunctiongiveninProblem 2 13d.

ThegivenfunctionisshowninFigure 2 30.InFigure 2 31 thisfunctionisreflectedaboutthe y-axisandthenewfunctionisthenperiodicallyextendedtogivetheevenperiodicextension.InFigure 2 32 thefunctionisreflectedabouttheoriginandthenewfunction isthenperiodicallyextendedtogivetheoddperiodicextension.

Figure 2 32:Sketchoftheoddperiodic extensionofthefunctiongiveninProblem 2 13d.

TheFouriercosineseriescoefficientsaregivenby

TheresultingFouriercosineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2 33

TheFouriersineseriescoefficientsaregivenby

TheresultingFouriersineseriesisgivenby

AplotofthisseriesrepresentationisshowninFigure 2 34

. Considerthefunction

Showthat

TheFouriersineseriescoefficientsare

Figure 2 33:Aplotoffirsttermsofthe Fouriercosineseriesof f (x) inProblem 2 13d.

Figure 2 34:Aplotoffirsttermsofthe Fouriersineseriesof f (x) inProblem 2 13d.

ThisgivestheFouriersineseriesrepresentation f (x) ∼ 2 ∞ ∑ n=1 ( 1)n+1 sin nx n

b. Integratetheseriesinpartaandshowthat x

For f (x)= x,weconsidertheintegral

Integratingtheseriesaswell,wehave

Therefore,

Westillneedtoevaluate C.WecanusetheresultsinProblem 15 todothis.

Therefore,wehavethat

c. FindtheFouriercosineseriesof f (x)= x2 on [0, π] andcompare totheresultinpartb. WefirstdeterminetheFouriercosineseriescoefficients.

ThisgivestheFouriercosineseriesrepresentation

d. ApplyParseval’sidentityinProblem 5 totheseriesinparta.for f (x)= x on π < x < π.Thisgivesanothermeanstofindingthe value ζ (4),wheretheRiemannzetafunctionisdefinedby

FromtheParsevalidentity,wehave

Thisgives

15. Considerthefunction

a. FindtheFouriersineseriesrepresentationofthisfunctionandplot thefirst 50 terms.

TheFouriersineseriescoefficientsare

Figure 2 35:Aplotoffirsttermsofthe Fouriersineseriesof f (x) inProblem 2 15a.

ThisgivestheFouriersineseriesrepresentation

ThefirstfewtermsofthisseriesareshowninFigure 2 35

Figure 2 36:Aplotoffirsttermsofthe Fouriercosineseriesof f (x) inProblem 2 15b.

b. FindtheFouriercosineseriesrepresentationofthisfunctionand plotthefirst 50 terms.

TheFouriercosineseriescoefficientsare

ThisgivestheFouriercosineseriesrepresentation

ThefirstfewtermsofthisseriesareshowninFigure 2 36

c. ApplyParseval’sidentityinProblem 5 totheresultinpartb. Parseval’sidentitycanbeextendedtoFouriercosineseriesby slightlymodifyingthederivationinProblem 5.8.

WebeginwiththeParsevalidentity

Applyingthisresultto f (

)= x, x ∈ [0,2].Frompartb,wehave a0 = 2and

Then,

Thisgivesthesum

d. Usetheresultofpartc.tofindthesum

Theresultinpartcisnotquitethesumweseekastheterms involveonlytheoddterms.Wecanrearrangetheseriestomake useoftheresultinpartcandsolvefor

Therefore,wehaveshownthat

Figure 2 37:Plotoffirst 50 termsof(left) theFouriersineseriesof f (x)= x and (right)thederivativeofthesetermsfrom Problem 2 16

16. DifferentiatetheFouriersineseriesterm-by-terminthelastproblem. Showthattheresultisnotthederivativeof f (x)= x.. TheFouriersineseriesisgivenby

Asimpletermbytermdifferentiationgives

However,thisisadivergentseriesandcannotsumto f (x)= 1.

17. Considerthefunction f (x)= x sin x

a. FindtheFourierseriesrepresentationofthisfunctionif f (x) is definedon [0,2π] andplotthefirst 50 terms. WecomputetheFouriercoefficients:

TheFourierseriesrepresentationisgivenby

TheFourierseriesrepresentationisshowninFigure

.

b. FindtheFourierseriesrepresentationofthisfunctionif f (x) is definedon [ π, π] andplotthefirst 50 terms. WecomputetheFouriercoefficients:

Figure 2.38:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2

Figure 2 39:Aplotoffirsttermsofthe Fourierseriesof f (x) inProblem 2 17b.

TheFourierseriesrepresentationisgivenby

TheFourierseriesrepresentationisshowninFigure 2 39

18 Considerthefunction

a. FindtheFourierseriesrepresentationofthisfunctionandplotthe first 50 terms.

WecomputetheFouriercoefficients:

wehave

19. Thetemperature, u(x, t),ofaone-dimensionalrodoflength L satisfies theheatequation,

a. Showthatthegeneralsolution,

(x, t)=

satisfiestheone-dimensionalheatequationandtheboundaryconditions u(0, t)= 0and u(L, t)= 0.

Computing ut and uxx,wehave

Comparingthesederivatives,weseethat ut = kuxx.Notethat thevanishingofthefunctionattheintervalendpointsallowsthe differentiationofthesineseries.

Furthermore,wehave

u(0, t)= ∞

/L2 = 0, u(L, t)= ∞

/L2 = 0.

b. For k = 1and L = π,findthesolutionsatisfyingtheinitialcondition u(x,0)= sin x.Plotsixsolutionsonthesamesetofaxesfor t ∈ [0,1].

For k = 1and L = π,thegeneralsolutionis

u(x, t)= ∞ ∑ n=1 bn sin nxe n2t .

Usingtheinitialcondition, u(x,0)= sin x,wehave

sin x = ∞ ∑ n=1 bn sin nx.

TheFouriercoefficientsareeasilyfoundwithoutintegrationas b1 = 1and bn = 0, n > 1.Then,thesolutiontotheinitial-boundary valueproblemis

u(x, t)= sin xe t .

ThissolutionatsixtimesisshowninFigure 2.41.

c. For k = 1and L = 1,findthesolutionsatisfyingtheinitialcondition u(x,0)= x(1 x).Plotsixsolutionsonthesamesetofaxes for t ∈ [0,1]

For k = 1and L = 1,thegeneralsolutionis

Usingtheinitialcondition, u

),wehave

WeneedtodeterminetheFouriersinecoefficients:

Figure 2 41:Aplotofsolutionsforthe heatequationinProblem 2.19bfor t = 0,1/6,...,1.

Thesolutiontotheinitial-boundaryvalueproblemis

ThissolutionatsixtimesisshowninFigure 2.42.

20. Theheight, u(x, t),ofaone-dimensionalvibratingstringoflength L satisfiesthewaveequation,

Figure 2 42:Aplotofsolutionsforthe heatequationinProblem 2 19cfor t = 0,1/6,...,1.

a. Showthatthegeneralsolution,

satisfiestheone-dimensionalwaveequationandtheboundaryconditions u(0, t)= 0and u(L, t)= 0.

Inordertoverifythatthisisasolution,wecomputeafewderivatives:

Comparingderivatives,wehave utt = c2uxx.

Notethatthevanishingofthefunctionattheintervalendpoints allowsthedifferentiationofthesineseries. Wealsocanverifytheboundaryconditions: u(0, t)= ∞

n=1 An cos nπct L sin0 +Bn sin nπct L sin0 = 0. u(L, t)= ∞

n=1 An cos nπct L sin nπ +Bn sin nπct L sin nπ = 0.

b. For c = 1and L = 1,findthesolutionsatisfyingtheinitialconditions u(x,0)= x(1 x) and ut (x,0)= 0.Plotfivesolutionsfor t ∈ [0,1].

Forthisproblem,thegeneralsolutiontakestheform

Theinitialconditionsgive

Thesecondequationgives

Fromthepreviousproblemwehave

Therefore,thesolutiontotheinitial-boundaryvalueproblemis

ThissolutionatfivetimesisshowninFigure 2 43

c. For c = 1and L = 1,findthesolutionsatisfyingtheinitialcondition

and ut (x,0)= 0.Plotfivesolutionsfor t ∈ [0,0.5]

Forthisproblem,thegeneralsolutiontakestheform

Theinitialconditionsgive

Thesecondequationgives Bn = 0, n = 1,2,....

TheremainingFouriersinecoefficientscanbecomputedusing

Figure 2 43:Aplotofsolutionsforthe waveequationinProblem 2 20bfor t = 0,1/8,...,1/2.

Thus,

So,thesolutiontotheinitial-boundaryvalueproblemis

ThissolutionatfivetimesisshowninFigure 2.44.

21. Showthat

Figure 2 44:Aplotofsolutionsforthe waveequationinProblem 2 20cfor t = 0,1/8,...,1/2.

satisfiesthetwo-dimensionalwaveequation

andtheboundaryconditions,

Computingtheneededsecondparitalderivativesof

,wehave

Insertingthesederivativesintothethetwo-dimensionalwaveequation,we find

Thesolutioneasilysatisfiestheboundaryconditions.Forexample,

Theboundaryconditions, u(x,0, t)= 0, u(x, H, t)= 0,followinthesame way.

22 FindthedoubleFouriersineseriesrepresentationofthefollowing:

Afunction f (x, y) definedontherectangularregion [0, L] × [0, H] has adoubleFouriersineseriesrepresentation,

where

=

Thisrepresentationwillbeusedtoobtaintheseriesinthisproblem.

a. f (x, y)= sin πx sin2πy on [0,1] × [0,1].

Theseriesexpansionforthisproblemisgivenby

Itiseasytoseethattheisonlynonzeroterm,for n = 1and m = 2.

Thus, b12 = 1and bnm = 0,for n = 1and m = 2.

b. f (x, y)= x(2 x) sin y on [0,2] × [0, π].

Theseriesexpansionforthisproblemisgivenby

Here bnm = 0for m = 1.Weneedonlycomputethe bn1 terms. bn1 = 2

Thisgivestheseriesexpansion

c. f (x, y)= x2y3 on [0,1] × [0,1]

Theseriesexpansionforthisproblemisgivenby

TheFouriercoefficientscanbecomputeddirectly:

Eachintegralcanbecomputedseparately:

Thisgives

TheresultingFourierseriesis

23. DerivetheFouriercoefficientsinthedoubleFouriertrigonometricseries inEquation(2.124).

ThedoubleFouriertrigonometricseriesinEquation(2 124)isgivenby

Inordertoprovethis,oneneedstoconsidertheFourierbasisontherectangularregion [0, L] × [0, H],

φ00 = 1,

φn0 = cos

φ0n =

φ

Samplecomputationsarebelow,usingtheorthogonalityofthetrigonometricfunctions.

ThisgivestheFouriercoefficientsas

2.1: Plots of y(t) = A sin(2π ft) on [0, 5] for f = 2 Hz and f = 5 Hz.

Figure

Figure 2.2: Problems can occur while plotting. Here we plot the function y(t) = 2 sin 4 πt using N = 201, 200, 100, 101 points.

Figure 2.3: Superposition of several sinusoids.

Figure 2.4: Plot of the functions y(t) = 2 sin(4 π t) and y(t) = 2 sin(4 πt + 7π/8) and their sum.

2.5: Plot of the function f (t) defined on [0, 2π] and its periodic extension.

Figure

2.6: Plot of discontinuous function in Example 2.3.

002x006.eps

Figure

CLICK HERE TO ACCESS THE COMPLETE Solutions

Figure 2.7: A sketch of the transformation between intervals x ∈ [0, 2π] and t ∈ [0, L]. 002x007.eps

Figure 2.8: Plot of the first fifty terms of the Fourier series representation for f (x) = sin x, x ∈ [0, π].

Figure 2.9: Area under an even function on a symmetric interval, [–a, a].

Figure 2.10: Area under an odd function on a symmetric interval, [–a, a].

Figure 2.11: Plot of the first partial sums of the Fourier series representation for f (x) = |x| on the interval x ∈[–π, π].

CLICK HERE TO ACCESS THE COMPLETE Solutions

Figure 2.12: Plot of the first 10 terms of the Fourier series representation for f (x) = |x| on the interval x ∈ [–2π, 4π].

Figure 2.13: Plot of the first 10 terms and 200 terms of the Fourier series representation for f (x) = x on the interval x ∈ [–2π, 4 π].

2.14: Plot of f (x) = 9 – x 2 for x ∈ [–3, 3].

Figure

Figure 2.15: Plot of the first fifty terms of the Fourier series representation of f (x) = 9 – x 2 for x ∈[–3,3].

CLICK HERE TO ACCESS THE COMPLETE Solutions

Figure 2.16: Plot of the periodic extension of the Fourier series representation of f (x) = 9 – x 2 for x ∈[–3,3].

Figure 2.17: Plot of the first fifty terms of the Fourier series representation for f (x) = x, x ∈ [1, 2].

Figure 2.18: This is a sketch of a function and its various extensions. The original function f (x) is defined on [0, 1] and graphed in the upper left corner. To its right is the periodic extension, obtained by adding replicas. The two lower plots are obtained by first making the original function even or odd and then creating the periodic extensions of the new function.

2.19: The periodic extension of f (x) = x 2 on [0, 1].

Figure

Figure 2.20: The even periodic extension of f (x) = x 2 on [0, 1].

Figure 2.21: The odd periodic extension of f (x) = x 2 on [0, 1].

Figure 2.22: Plot of the first fifty terms of the Fourier Cosine Series representation for Example 2.14.

Figure 2.23: Plot of the first fifty terms of the Fourier Cosine Series representation for Example 2.14 for x ∈ [–6, 6]..

Figure 2.24: Plot of the first fifty terms of the Fourier Sine Series representation for Example 2.15.

Figure 2.25: Plot of the first fifty terms of the Fourier Sine Series representation for Example 2.15 for x ∈ [–6, 6].

Figure 2.26: The Fourier series representation of a step function on [π, π] for N = 10.

Figure 2.27: The Fourier series representation of a step function on [– π, π] for N = 10 plotted on [–3π, 3π] displaying the periodicity.

Figure 2.28: The Fourier series representation of a step function on [– π, π] for N = 20.

Figure 2.29: The Fourier series representation of a step function on [– π, π] for N = 100.

Figure 2.30: The Fourier series representation of a step function on [– π, π] for N = 500. 002x030.eps

Figure 2.31: The rectangular membrane of length L and width H. There are fixed boundary conditions along the edges.

Figure 2.32: Nth Dirichlet Kernel for N=25.
Figure 2.33: Nth Dirichlet Kernel for N=50.
Figure 2.34: Nth Dirichlet Kernel for N=100.
Figure 2.35: Nth Partial Sum in Maple.
Figure 2.36: Nth Partial Sum done in MATLAB.
Figure 2.37: Nth Partial Sum.

Figure 2.38: Nth Partial Sum for f (x) = x 2 on x ∈ [0,1] as found in MATLAB using symbolic computation of the Fourier coefficients.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solutions for Introduction To Fourier Analysis 1st Us Edition by Herman by 6alsm - Issuu