Solutions for Standard Model And Beyond 2nd Us Edition by Langacker

Page 1


ReviewofPerturbativeField

Theory

2.1PROBLEMS

2.1 From(A.7),theHamiltonianforafreecomplexscalarfieldis

Showthat

Assumethat H isnormalordered.

Solution:From(2.93)andusing

wefind

2.2 TheCMdifferentialandtotalcrosssectionsfortheelasticscatteringofaHermitian scalarofmass m withpotential(2.22)isgivenin(2.59)and(2.61).Choose m =0 5GeV, λ =0 3,and κ =1 2GeV.PlottheCMdifferentialcrosssection dσ/d cos θ inunitsof fm2 =10 26 cm2 asafunctionofcos θ for s =5m2,6m2,and7m2,andplotthetotalcross sectionasafunctionof √s for2m< √s< 3m.Useanyconvenientplottingprogram.

Solution:Wehave t = 2p 2(1 cos θ),u = 2p 2(1+cos θ) with p = s 4m2/2

Also,

TheStandardModelandBeyond

Thesemustbemultipliedby ( c)2 =(0 197 GeV-fm)2,toconvertfromGeV 2 tofm2

Left: dσ/d cos θ inunitsoffm2 asafunctionof cos θ for s =5m2 , 6m2,and 7m2 (from uppertolower).Right: σ(s) inunitsoffm2 asafunctionof √s

2.3 Derive(2.64)forthespecialcase m1 = m3 =0and m2 = m4 byLorentztransforming (2.57).Hint:usethefactthat σ, s,and t areinvariant.

Solution:Inthelab,using(2.42)and(2.46),

and

whileintheCM

But σ isinvariant,so

fromwhichtheresultfollowseasily.

2.4 Considertheprocess π+(p1)π (p2) → π+(p3)π (p4),with p1 = p3 and p2 = p4,in thetheoryofacomplexscalarfieldwithLagrangiandensitygivenin(2.88)with VI = λ 4 (φ†φ)2 .

AsshowninAppendixB,thetree-levelamplitude Mfi isgivenby

Calculatethisexplicitlyusingthefree-fieldexpressionfor φ0,andshowthat Mfi = iλ.

Solution:ThisissimilartothecalculationfortheHermitianscalarfieldinAppendixB. Here,therelevantmatrixelementis

wherethefree-fieldexpressionsfor φ0 and φ† 0 aregivenin(2.93).Similarto(B.7)onecan movethe a’sand b’sfromthefieldstotheright,andthe a†’sand b†’stotheleft.Theonly survivingtermsinvolvethecommutatorswiththe a3,b4,a† 1,and b† 2.The δ3(p ) functions eliminatethemomentumintegrals,andthe (2π)32Ep factorsfromthecommutatorscancel thedenominatorsinthefields.Therearetwowaystoassociatethe a’sfromthe φ0’swith a† 1,andtwowaystoassociatethe a†’sfromthe φ† 0’swith a3,sooneobtains

2.5 ConsidertheLagrangiandensityin(2.84)for3non-identicalHermitianfields.Calculatethelowestorderdifferentialcrosssectioninthecenterofmassfor φ1(p1 )φ2(p2 ) → φ1(p3 )φ2(p4 )asafunctionof s andtheCMscatteringangle θ forthespecialcase m1 = m2 = m3.

Solution:Therearetwodiagrams,involving φ3 exchangeinthe s and u channels.The scatteringamplitudeis

fi =( iκ)2

and

where(forequalexternalmasses)

and

= 2p2(1+cos

2.6 Supposethattheinteractionpotentialforacomplexscalarfieldwere

(ratherthan λ(φ†φ)2/4),whichis not U (1)invariant.Showthatchargeisnotconserved andcalculatethelowestorderamplitudefor

Solution:Bothoperatorsin φ0 lowerchargebyoneunit,whilethosein φ† 0 raiseitbyone. Thus,thefirsttermlowersthechargeby4.Therelevantmatrixelementis

Thereare 4! waystoassociatethefour φ0 fieldswiththeexternalstates,so Mfi = 24iσ4.

TheStandardModelandBeyond

2.7 ConsiderchargedpionQEDwitha massive photon,i.e.,addtheterm 1 2 M 2 AAµAµ to theLagrangiandensityin(2.133)(with(VI =0).Assume MA > 2m.(Thephotonmass termisnotgaugeinvariant,butthemodelstillmakessenseattreelevel.)

(a)Calculatethedecayratefor γ → π+π inthephotonrestframeattreelevelforan unpolarizedmassivephoton.

(b)Calculatethe π+ angulardistribution dΓ/d cos θ forapolarizedphoton,where θ isthe anglebetweenthephotonpolarizationdirectionintherestframeandthe π+ direction.

(c)Showthatonerecoverstheresultin(a)when dΓ/d cos θ isintegratedovercos θ.

Solution:(a)Definemomentaby γ(k ) → π+(p1) π (p2).Intherestframe, k = p1 + p2 =(MA, 0),p1 =(Ef , pf ),and p2 =(

),where Ef = MA/2 and pf ≡|pf | = M 2 A 4m2/2.Justasforamasslessphoton,thetree-levelamplitudeis Mfi = ie(p1 p2) · (k,λ).Thus,thespin-averagedsquaredamplitudeis

Foramassivevector,

But k · (p1 p2)=0,and (p1 p

Chooseaxessothat =(0, 0, 0, 1),p1

Then,

(c)Integrating +1 1

from(a),i.e.,thedecayrateisindependentof thespindirection.

2.8 Consider π+(p1)π (p2) → π+(p3)π (p4)in massivescalarelectrodynamics,i.e.,with

where A,theanalogoftheelectromagneticfield,isaHermitianspin-0fieldwithmass µ =0. Theanalogofthechargeis g,whichnowhasdimensionsofmass. (a)FindexpressionsforthedifferentialandtotalcrosssectionsintheCMtolowestnontrivialorder,intermsof s, m, µ, g,andcos θ. (b)Definethedimensionlessvariable x = s/m2 ≥ 4,andspecializetothevalues m = g =1

GeV, µ =0 5GeV.Plot dσ/d cos θ vscos θ inunitsof1fm2 =10 26 cm2 for x =4, 4 2, and4.4.Useanyotherplottingprogram.

(c)Plot σ inunitsof1fm2 vs x forthesameparametervaluesandtherange4 ≤ x ≤ 5.

Solution:(a)The ππA vertexis ig ∝−iVI .Thescalarphotoncanbeexchangedin the s or t channels,so Mfi =( ig)2 i s µ2 + i t µ2 , where t = 2p 2(1

4

2 2 ,E = √s 2 , and θ istheCMscatteringangle.Then

(b,c)Plugginginthenumericalvalues,andmultiplyingby ( c)2 =(0 197 GeV-fm)2 to converttheunitsfromGeV 2 tofm2 onecanevaluateandplotthesefunctionsnumerically.

Left: dσ/d cos θ inunitsoffm2 for

and4.4.Right: σ inunitsoffm2 vs x

2.9 Provedirectlyfromthedefiningrelationsthat

Solution:Using(2.155),

γ5 mustbeoftheform C

from example,e.g.,

2.10 Provethe Gordondecomposition formulas

TheStandardModelandBeyond

where u1,2 aretwoDirac u spinorsforaparticleofmass m

Solution:Using(2.161)and(2.170),

andsimilarlyforotheridentities.

2.11 Provetheidentity

Solution:Any 4 × 4 matrixcanbeexpandedintermsof I,γ

and

.Inthis case,only γσ and γ

5 willcontribute,sincewehaveanoddnumberof γ matrices.Thus

where A and B dependon µ,ν, and ρ.Clearly,

Theresultfollowsusing(2.172).

2.12 ShowbyexplicitconstructionthatthePauli-Diracandchiralrepresentationsare relatedbyaunitarytransformation,i.e.,thatthereexistsaunitarymatrix U suchthat

(Theextrasigninthe v-spinortransformationisduetoasignconvention.)

Solution: U mustcommutewith γi butnot γ0,soitshouldbeofform

, wheretheexplicitformisobainedbythetransformationof γ0.Thecorrecttransformation ofthespinorsfollowsbyinspection.

2.13 TheangularmomentumoperatorforaDiracfieldcanbewrittenas

(x)+orbital, wherenormalorderingisimplied.Show,inthefreefieldlimit,that J 3 hastheexpected behavior J 3|ψ (p,s1,2) = ± 1 2 |ψ (p,s1,2) ,J 3|ψc (p,s1,2) = ± 1 2 |ψc (p,s1,2) , where ψ and ψc representparticleandantiparticlestates, p isintheˆ z direction(sothat

theorbitaltermsdonotenter),and s = s1 or s2 representspinsinthe ±ˆ z direction.

Solution:Onehas

Usingtheexpression(2.159)forthefreefermionfield

sothat

.Thecalculationissimilarfor ψc exceptfortwocompensatingsigns:

wherethe signisbecause b and b† hadtobeanticommuted.Butthisis

2.14 Derivetheresultsin(2.181)forthehelicityprojectionsinthemasslesslimit.

Solution:Write

Similarly, (

2.15 Weakchargedcurrenttransitionsinvolvethechiralspinors uL(p,s)and vL(p,s)definedin(2.203).Showthatintherelativisticlimitsuchtransitionsmainlyinvolvenegative helicityparticlesorpositivehelicityantiparticles,andestimatethesuppressionfactorfor transitionsinvolvingthe“wrong”helicity.

Solution:Expressionsforthehelicityspinorsinthechiralrepresentationaregivenin (2.193).For E m, λ+ → m/E and λ → 2.Then,applying PL = I 0 00 ,

sotheratesforthewronghelicityaresuppressedby m2/4E2 .

2.16 Showintwowaysthat |u(p2, +)u(

,where u(p, ±)arethehelicity spinorsforamasslessfermion:(a)directlyfromtheformofthespinorsinthechiralrepresentation,(b)usingtracetechniques.

Solution:(a)From(2.195)andTable2.1,

sothat

(b)From(2.181)

2.17 ProvetheFierzidentityin(2.216).

Solution:Expand

Onlythe cν surviveswheninsertedbackinthel.h.s.of(2.216),yielding

But

(Thelaststepwouldyieldanextraminussignforanticommutingfields.)

2.18 Supposeafermion ψ ofmass m interactswithaHermitianscalar φ ofmass µ with LI = hψψφ, where h issmall.

(a)Calculatethespin-averageddifferentialcrosssectionfor ψ(p1)ψ(p2) → ψ(p

)ψ(p4)in theCMintermsoftheinvariants s, t,and u.

(b)Specializeto m = µ =0.Showthatthescatteringisisotropicinthatlimitandcalculate thetotalcrosssection.

Solution:(a)

sothat

(b)

Therefore,

2.19 Consider e (k1) π+(p1) → e (k2) π+(p2)elasticscattering.Showthatthespinaverageddifferentialcrosssectioninthepionrestframeis

where θL istheelectronscatteringangleandwehaveneglectedtheelectronmass.Hint:use (2.224).

Solution:From(2.65)and(2.46),

Butfrom(2.224)andusing

But

sothat

2.20 CalculatetheCMdifferentialcrosssectionfortheprocess e (p1)µ+(k1) → e (p2)µ+(k2)intermsof s = E2 CM ,theCMscatteringangle θ,andthemuonmass mµ. Neglecttheelectronmass.

Solution:Similarto(2.225),

wherethe u spinorsreferto

. Then,

IntheCM,thefour-momentaare

Therefore,

sothat

2.21 VerifytheexpressionsforBhabhascatteringin(2.234)and(2.235).Rewritethefinal resultintermsof s andcos θ

Solution:From(2.233)and(2.208),

whichyields(2.234).Thefirsttermis

andsimilarlyforthesecond.Using(2.174),thethirdtermis

andthesameforthelastterm.Formasslessparticles,

leadingto

whichdisplaysthesingularityfromthe t-channelpoleintheforwarddirection.

TheStandardModelandBeyond

2.22 CalculatethedifferentialcrosssectionforunpolarizedMøllerscattering, e e → e e ,bothintermsoftheinvariantsand θ

Solution:Fromthe t and u-channeldiagramsinFigure2.14

ByacalculationessentiallyidenticaltotheoneforBhabhascattering,

showingthesingularitiesfor θ =0 and π

2.23 Calculatethespin-averagedifferentialcrosssection dσ/d cos θ inthecenterofmass for e (p1)e+(p2) → π (

)π+(p4),andthetotalcrosssection¯ σ.Neglecttheelectronmass butnotthepionmass.Ignorestronginteractioneffects.Theangulardistributionshouldbe proportionaltosin2 θ.Interpretthisresult.

Solution:Thecalculationissimilarto e π+ scatteringand e e+ → ff inSection2.8. Thedifferentialcrosssectionisthesameasin(2.226),withthekinematicvariablesgiven in(2.229)(with mf = mπ).Theamplitudeduetothe s channelphotondiagramis

sothat

wherewehaveused(2.229)and(2.230).Then,

Becauseoftheirvectorcouplings,theinitial e and e+ haveoppositehelicitiesintherelativisticlimit.Thus,the z componentofangularmomentumis ±1.Thepionshavenospin andthereisnoorbitalangularmomentuminthedirectionofmotion,sotheycannotmove inthe ±z direction.Equivalently,theirangulardistributionshouldbe ∝ (|Y 1 1 |2 + |Y 1 1 |2) ∼ sin2 θ,where Y m l isasphericalharmonic.

2.24 (a)ConsidertheMottscatteringprocessinwhichanelectronofmomentum p = βE scattersfromastaticCoulombpotentialofcharge Ze,

Showthattheunpolarized(Mott)crosssectionforscatteringangle θ is

ThelastformulaisthetheRutherfordcrosssection.

(b)SupposetheCoulombpotentialforanelectroninanuclearfieldtransformedasascalar ratherthanasthetimecomponentofafour-vector,i.e.,

Calculatetheunpolarizeddifferentialcrosssection,andcompareitwiththeMottformula.

Solution:(a)Thisisanexampleofscatteringfromastaticsource,with LI (x) in(2.66) givenby

Therefore,from(2.74)

fromwhichtheresultfollows.

(b)CalculationisidenticaltoMottscattering,except

isreplacedby

2.25 Theinteractionofthe Z (amassiveneutralvectorbosonintheelectroweaktheory) withafermion f is

where G,gV , and gA arerealconstants.Calculatethewidthfor Z → ff .Let MZ and m bethe Z and f masses,andset G =1.

Solution:Theamplitudefor Z(p1) → f (p2)f (p3) is

From(2.82)thedifferentialdecayrateis

with 1 3

2.26 TheΛisaheavyspin- 1 2 hyperonthatdecaysinto pπ viathenon-leptonicweak interactions.Thedecayinteractioncanbemodeledby

where gS and gP arecomplexconstantsthatleadrespectivelyto S and P -wavefinalstates.

(a)CalculatethewidthΓandthedifferentialwidth dΓ/d cos θ intheΛrestframefora polarizedΛ,where θ istheanglebetweenˆ sΛ andtheprotonmomentum pp.Usetrace techniques.

(b)Showthat dΓ/d cos θ isnotreflectioninvariantfor e (gP g∗ S ) =0,i.e.,thatitisnot invariantunder pp →−pp, ˆ sΛ → ˆ sΛ

(c)Repeat(a),butuseexplicitexpressionsfortheΛand p spinorsinthePauli-Diracrepresentation.Justifytheclaimthat gS and gP generate S and P -waveamplitudes.

Solution:(a,b)Thedecayamplitudeanddifferentialwidthare

where pf isthefinalstatemomentuminthe Λ restframe,givenbyaformsimilarto(2.83). Summingovertheprotonspin,

ReviewofPerturbativeFieldTheory

whereweused pΛ · sΛ =0.But pp · pΛ = EpmΛ and pp · sΛ = pf cos θ,where θ istheangle between pp and ˆ sΛ.Therefore,

Thisisclearly not invariantunder cos θ →− cos θ (c)TheDiracspinorsinthePauli-Diracrepresentationare

Usingtheexpressionsin(2.164)for

and

whichareobviously S and P wave.Therefore,

wherewehaveused

= I.Taking

wehave

whichreproducestheresultobtainedfromthetracecalculation.

2.27 Avectorresonance Vµ ofmass MV andwidthΓV couplestomasslessfermions a and b withtheinteractionin(F.12)ofAppendixF.Calculatethetotalspin-averagedcross sectionfor aa → bb.Assumethatthepropagatorin(2.129)ismodifiedtotheBreit-Wigner form

andexpresstheresultinaformsimilarto(F.11).

TheStandardModelandBeyond

Solution:The kµkν /M 2 V terminthepropagatorvanisheswhencontractedwiththemassless fermionbilinears.Thetotalcrosssectioncalculationisthenalmostidenticaltotheonefor e+e → ff .Applyingtheobviousmodificationsto(2.232)onefinds

Toputthisintotheform(F.11)wecalculatethespin-averagetotalwidthfor V

withasimilarformfor Γaa.Therefore

wherethebranchingratiointo

2.28 Considertheinteraction

betweendistinctfermions ψa and ψb,where φ isacomplexscalarand g isreal.Showthat theLagrangianviolates P and C,butis CP invariant.

Solution:Underspacereflection

I (t, x )

where ηP isaparityphasefromthe3fields,the (t, x ) → (t, x ) dependenceisimplicit,and wehaveusedTable2.2.Thisis = LI (t, x ) forany ηP .Similarly,underchargeconjugation

However,under CP = PC,

, whichisequalto LI (t, x ) forthephasechoice ηC ηP =1.

2.29 Consider e (k1) π+(p1) → e (k2) π+(p2)scattering,asinFigure2.15.UsethetwocomponentformalismofSection2.11tocalculatetheamplitudes M ( , )and M (+, +)for me =0and mπ =0.Expressyourresultsintermsof α, βπ,andtheCMscatteringangle θ (Thetwoamplitudesshouldbeequaluptoapossiblesignby(2.278).)

Solution:From(2.342),(2.207),andFigure2.10,

( , )= ie

M (+, +) isthesameexcept φ (ki) →

+(

i) and σ

→ σµ,where σµ and σµ aredefined in(2.167).But,

ThespinorsaregiveninTable2.1,i.e.,

2.30 Considerthenon-relativisticlimitofthematrixelement(2.356)foran e inastatic externalfield.

(a)Computethelimittolinearorderinthemomenta.Hint:usetheexplicitformsforthe spinorsinthePauli-Diracrepresentation.Itsimplifiesthecalculationtorewrite¯

usingtheGordondecomposition.

(b)SupposethatΓµ(p2,p1)in(2.352)containedaterm iσ

G2(q2).Thisviolates P and T butinprinciplecouldbegeneratedbyanewinteraction.Showhow G2(0)isrelated totheelectricdipolemoment de oftheelectron,whichisdefinedbythenon-relativistic interaction HEDM = de E(x ),where E isanexternalelectricfield.NotethattheHermiticitycondition(2.354)requiresthat G2 ispureimaginary.

Solution:(a)UsingthefirstGordonidentityinProblem2.10,ther.hs.of(2.356)is

Fromtheexplicitformsforthe γ matricesin(2.164)andforthespinorsin(2.184),only theuppertwocomponentscontributetolinearorder,yielding

forthefirstterm.Onlythespacecomponentscontributeat O(q ) inthesecondterm,giving

since ijkqj Ai(q )= iBk(q ) (b)The σi0q0 and σij qj termsaresecondorderinthemomenta,whilethe σ0iqi termreduces to

TheStandardModelandBeyond

where E(q )= iqA0(q ) istheFouriertransformoftheelectricfield E(x )= ∇A0(x ). Thiscorrespondstothecovariantlynormalizedmomentumspacematrixelementof HEDM for de = ieG2(0) 2m σ.

2.31 Supposethereisasmallelectriccharge-violatingcouplingbetweentheelectronand amasslessleft-chiralneutrino νL,with

Calculatethelifetimefor e → νLγ,andfindthevalueof δ correspondingtothelimitin Table2.3.

Solution:Thedecayamplitudeis

From(2.178)and(2.181),

inthemasslesslimit,with PL ≡ (1 γ5)/2 Therefore,

with pe pν = m2 e/2.Therefore,

Using =6 6 × 10 22 MeV-sand me ∼ 0 51 MeVfromTable1.1,thelimit τ> 6 6 × 1022 yr =2.1 × 1036 scorrespondsto δ< 5.8 × 10 28 .

2.32 Considertheprotonmatrixelement¯ u(p2)Γµ Q(q)u(p1)oftheelectromagneticcurrent in(2.393),withΓµ Q givenby(2.397).CalculatethisexplicitlyintheBreitframe,inwhich q0 =0,i.e., q =(0, 0, 0, Q2),p1 =(E, 0, 0, Q2/2),p2 =(

Expressthetimeandspacecomponentsintermsoftheelectricandmagneticformfactors definedin(2.398)andinterprettheresults.

Solution:UsingtheGordonidentity,

But (p1 + p

i =0.Writingoutthespinorsand γ matricesinthePauli-Diracrepresentation,

where φ1,2 arethePaulispinorsandweused p2 = p1 = q/2.Then,similarto(2.356)(but fortheprotonwithcharge +e),

sothat GE,M canbeinterpretedastheFouriertransformsoftheelectricandmagnetic distributionsoftheproton.

2.33 Let V (x1 x2)bethepotentialbetweentwonon-identicalspin- 1 2 particlesinnonrelativisticquantummechanics(NRQM).(V mayalsodependontheirspinandmomentum operators).Oneshowsintime-dependentperturbationtheorythatthetransitionamplitude Ufi from |

where φi isatwo-componentPaulispinor,and V containsappropriatespinmatrices.Note thatthesestatesareinourcovariantnormalizationconvention,whichhasanextrafactor 2π)32Ei ∼ 2π)32mi forthe ith externalparticlecomparedtotheusualconventionsof NRQM.Thecorrespondingformulainfieldtheoryis

where M isthescatteringamplitudewiththephaseconventionofAppendixB.Comparing theseresults,wecanreadofftheequivalentnon-relativisticpotentialcorrespondingtoa givenscatteringamplitude.Specifically,for

Non-leadingtermsin p canbeinterpretedasthenon-relativisticmomentumoperator. (a)Calculatethepotentialcorrespondingtotheeffectivefour-fermiHamiltoniandensity HI = λψ1ψ1 ψ2ψ2 (b)Considertheinteraction

betweentwofermionsandaHermitianscalarofmass mφ.Calculatethepotentialbetween ψ1 and ψ2 generatedby t-channel φ exchange,andshowthatitisattractivefor g1g2 > 0. (c)Calculatethepotentialgeneratedby

where Vµ isaspin-1particleofmass MV .Showthatitisrepulsivefor g1g2 > 0. (d)Repeatparts(b)and(c)forthecase g1g2 > 0,butforthepotentialbetweenantiparticle 1andparticle2andinterprettheresults.Hint:itisslightlyeasiertousethecharge

TheStandardModelandBeyond

conjugationformalismofSection2.10.

(e)Considertheinteractionin(2.269)ofa π0 withprotonsandneutrons.Calculatethe tree-levelamplitudefor p(p1) n(p2) → p(p3) n(p4)by t-channel π0 exchange,andshowthat itleadstothenon-relativisticpotential

where mp ∼ mn, σp(σn)arethePaulimatricesactingonthe p (n)spin, x = mπr,and S is thetensoroperator

Solution:(a)Wehave

wherewehaveusedtheexplicitexpressionsforthe u spinorsinthePauli-Diracrepresentation.Theabsolutesignfollowsfromexplicitlywritingoutthefieldsandusing

Thus, V (q )= λ and V (r )= λδ3(r ). (b)

wherethesecondformisthenon-relativisticlimitintheCM.Thus

theYukawapotential.Itisattractivefor g1g2 > 0 andrepulsivefor g1g2 < 0 (c)Thecalculationissimilartopart(b),exceptthepropagatorhas igµν inthenumerator. Onlythe µ = ν =0 termssurviveintheNRlimit,yielding

whichisrepulsiveforsamesignchargesandattractiveforoppositesignsasexpected.For MV → 0 and gi = eQi,werecovertheCoulombpotential V (r)= αQ1Q2/r,with α = e2/4π (d)From(2.296)andTable2.2,wehavethat

Thus,thescalarexchangepotentialisunchangedfor 1 → 1 (i.e.,itremainsattractive), whilethevectorexchangechangessignandbecomesattractive.Onecanalsowriteoutthe matrixelementsusingtheoriginal ψ1 field.Inbothcasesthereisanextraminussignfrom anticommutingthe b and b† operators,andanotherminussignforthescalarcasebecause ofthe γ0 in ψ,e.g.,

ReviewofPerturbativeFieldTheory

(e)The p and n verticesarerespectively iL = ∓gπγ5,so

But γ0γ5 = 0 I I 0 ,so

Therefore,

wherewehavetaken mp ∼ mn.Notethat σp and σn actontheirownspinors.Usingcontour integration,theintegralisjusttheYukawaform

Also, ∇ = mπ∇x where ∇x = d d

But

Therefore,

Thesecondtermreducesto

yieldingtheresultafteraslightrearrangement.

2.34 Supposethatanewlepton-flavorviolatinginteractionleadstotheeffectiveinteraction

TheStandardModelandBeyond

where A and B arerespectivelymagneticandelectricdipoletransitionmoments.Calculate thedecayratefor µ → eγ,neglecting me

Solution: Leff leadstothematrixelement

where q = pµ pe isthephotonmomentum, isthepolarizationvector,andwehaveused q ∗ =0.But pµ ∗ =0 also,andonecanchoosealinearpolarizationbasissothat is real.Then

and

Figure 2.1 Three- and four-point interactions of a Hermitian scalar field ϕ. The factor is the coefficient of ϕ n/n! in iL , as described in Appendix B. 002x001.eps

Figure 2.2 Diagrams with additional factors of 1/2! (left) and 1/3! (right), required because not all of the (4!)2 ways of associating the four fields at each vertex with four lines lead to distinct diagrams.

Figure 2.3 Tree level diagrams for =〉MppMpp fi

|| 34 12 for a Hermitian scalar field. The arrows label the directions of momentum flow, and pij ≡ pi–pj . The arrangement of lines in the last diagram is modied to allow the diagram to be drawn without crossing lines.

Figure 2.4 Scattering kinematics in (i) the center of mass, (ii) the lab, and (iii) the Breit frames.

Figure 2.5 The 2 → n scattering process p1 p 2 → pf1 … pf n (left); 1 → n scattering p1 → pf1 … pf n from a potential, represented by a cross (middle); and the 1 → n decay process p1 → pf1 … pf n (right).

Figure 2.6 The two-body decay of the spin-0 scalar 1 into 2 + 3, and the associated Feynman diagram corresponding to (2.84).

Figure 2.7 Examples of one-loop diagrams contributing to the process p1p 2 → p 3 p 4.

Figure 2.8 Left: A typical one-loop diagram, with the momenta flowing through each line labeled. Right: Divergent (sub)diagrams in the super-renormalizable ϕ 3 theory. The second (tadpole) diagram contributes to the d1 term in (2.21) and must be included in the field redenition that eliminates it.

Figure 2.9 Left: Tree-level diagram for ππ

pppp

() () () (), 1 –23 –4 where p  1, 2 p  () 3, 4 are the physical initial (final) momenta. Right: An example of a one-loop diagram. ΔF (k) is dened in (2.29).

Figure 2.10 Vertices involving charged pions and one or two photons. In the onephoton diagrams the initial pions enter from the bottom and the final leave from the top. Antiparticle (p –) vertices are obtained from particle ones by twisting the lines and replacing p by ≡ pp–, where p is the physical four-momentum and p follows the direction of the arrow. The wavy lines represent photons.

2.11 Feynman diagrams for ππ ππ ππ ++→→ ++ ++ KK (top), (middle), and ππ ππ → +− +− (bottom).

Figure

Figure 2.14 Left and center: relative minus signs between diagrams involving exchanged fermion lines, with ≡ uups iii

(, ). Right: a closed loop diagram, with an extra factor of −1.

Figure 2.15 Left: lowest order diagram for

22 Right: diagram for

Figure 2.16 Feynman diagrams for

The relative minus sign between the two diagrams is independent of state conventions.

Figure 2.17 Electron-photon vertex (top left), and one-loop corrections, corresponding to the vertex correction(top middle), the vacuum polarization (or photon self-energy) correction (top right), and electron self-energy corrections (bottom).

2.18 One photon exchange and one-loop vacuum polarization “bubble.”

Figure

Figure 2.19 One-loop and typical two-loop diagrams contributing to the anomalous magnetic moment of the electron.

2.20 One-loop electroweak contributions to =− µµag(2)/ 2.

Figure

Figure 2.21 Two-loop hadronic vacuum polarization (left) and hadronic light by light (right) diagrams.The shaded blobs represent hadronic states.

Figure 2.22 New contributions to αμ in the supersymmetric extension of the SM . µ

 and v  are the spin-0 superpartners of the μ and ν, while χ ±  ,0 are spin –1 2 superpartners of the electroweak gauge bosons and Higgs fields.

Figure 2.23 Top: interaction vertices described by (2.381). Middle: representative strong interaction diagrams contributing to ππ 〈〉 µ ++ J Q || involving nucleons, pions, and the ρ 0 resonance. Bottom left: diagrams in the quark model description in which the π+ is a ud bound state. Bottom right: parametrization of the strong interaction effects by a form factor, represented by a shaded circle.

Figure 2.24 Top: tree-level amplitude for for a point proton and with proton form factors (shaded circle). Bottom: representative strong interaction corrections in terms of virtual hadrons (three left diagrams) or in terms of quark constituents (right).

Figure 2.25 t-channel diagrams for ψψ ψψ → , 12 34 treating the m12 2 term in (2.410) as a perturbative mass insertion.

There are additional u channel diagrams with (3 ↔ 4).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.