COMPLETE SOLUTIONS MANUAL
for Stewart’s
SINGLE VARIABLE CALCULUS
CONCEPTS AND CONTEXTS
FOURTH EDITION
JEFFERY A. COLE Anoka Ramsey Community
TIMOTHY J. FLAHERTY Carnegie
NOT FOR SALE
2010 Brooks/Cole, Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.
For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to permissionrequest@cengage.com.
ISBN-13: 978-0-495-56060-9
ISBN-10: 0-495-56060-X
Brooks/Cole Davis Drive
Belmont, CA 94002-3098
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/
Cengage Learning products are represented in Canada by Nelson Education, Ltd.
To learn more about Brooks/Cole, visit www.cengage.com/brookscole
Purchase any of our products at your local college store or at our preferred online store www..com.
NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.
Dear Professor or Other Supplement Recipient:
READ IMPORTANT LICENSE INFORMATION
Cengage Learning has provided you with this product (the “Supplement”) for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the “Course”), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.
Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third
party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.
All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an “as is” basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State’s conflict of law rules.
Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.
INSTRUCTOR USE ONLY
NOT FOR SALE
PREFACE
This Complete Solutions Manual contains solutions to all exercises in the texts Single Variable Calculus:Concepts and Contexts, Fourth Edition,and Chapters 1–8 of Calculus:Concepts and Contexts, Fourth Edition,by James Stewart. A student version of this manual is also available; it contains solutions to the odd-numbered exercises in each chapter section,the review sections,the True-False Quizzes,and the Focus on Problem Solving sections,as well as solutions to all the exercises in the Concept Checks. No solutions to the Projects appear in the student version. It is our hope that by browsing through the solutions,professors will save time in determining appropriate assignments for their particular classes.
Some nonstandard notation is used in order to save space. If you see a symbol that you don’t recognize,refer to the Table of Abbreviations and Symbols on page v.
We appreciate feedback concerning errors,solution correctness or style,and manual style. Any comments may be sent directly to us at jeff.cole@anokaramsey.edu or tim@andrew.cmu.edu,or in care of the publisher:Cengage Learning Brooks/Cole,0 Davis Drive,Belmont,CA 94002.
2
We would like to thank Jim Stewart,for his guidance; Brian Betsill,Kathi Townes,and Rebekah Million,of TECH-arts,for their production services; and Richard Stratton and Jeannine Lawless,of Cengage Learning Brooks/Cole,for entrusting us with this project as well as for their patience and support.
Jeffery A. Cole Anoka Ramsey Community College
Timothy J. Flaherty Carnegie Mellon University
NOT FOR SALE
ABBREVIATIONS AND SYMBOLS
CDconcavedownward
CUconcaveupward
Dthedomainof
FDTFirstDerivativeTest
HAhorizontalasymptote(s)
Iintervalofconvergence
I/DIncreasing/DecreasingTest
IPin ectionpoint(s)
Rradiusofconvergence
VAverticalasymptote(s)
CAS = indicatestheuseofacomputeralgebrasystem.
H = indicatestheuseofl’Hospital’sRule.
= indicatestheuseofFormula intheTableofIntegralsinthebackendpapers.
s = indicatestheuseofthesubstitution { =sin =cos }
c = indicatestheuseofthesubstitution { =cos = sin }.
NOT FOR SALE
CONTENTS ■ DIAGNOSTIC TESTS1
1 ■ FUNCTIONS AND MODELS9
1.1 Four Ways to Represent a Function9
1.2 Mathematical Models:A Catalog of Essential Functions20
1.3 New Functions from Old Functions26
1.4 Graphing Calculators and Computers38
1.5 Exponential Functions45
1.6 Inverse Functions and Logarithms51
1.7 Parametric Curves59
Laboratory Project ■ Running Circles Around Circles71 Review73
Principles of Problem Solving83
2 ■ LIMITS AND DERIVATIVES 87
2.1 The Tangent and Velocity Problems87
2.2 The Limit of a Function90
2.3 Calculating Limits Using the Limit Laws96
2.4 Continuity104
2.5 Limits Involving Infinity 113
2.6 Derivatives and Rates of Change123
2.7 The Derivative as a Function134
2.8 What Does Say about ?146 Review152
Focus on Problem Solving163
3 ■ DIFFERENTIATION RULES 167
3.1 Derivatives of Polynomials and Exponential Functions167 Applied Project ■ Building a Better Roller Coaster177
3.2 The Product and Quotient Rules179 f f
NOT FOR SALE
3.3 Derivatives of Trigonometric Functions188
3.4 The Chain Rule194
Laboratory Project ■ Bézier Curves207
Applied Project ■ Where Should a Pilot Start Descent?208
3.5 Implicit Differentiation209
3.6 Inverse Trigonometric Functions and Their Derivatives219
3.7 Derivatives of Logarithmic Functions225
Discovery Project ■ Hyperbolic Functions230
3.8 Rates of Change in the Natural and Social Sciences232
3.9 Linear Approximations and Differentials241
Laboratory Project ■ Taylor Polynomials247 Review249
Focus on Problem Solving261
4 ■ APPLICATIONS OF DIFFERENTIATION 271
4.1 Related Rates271
4.2 Maximum and Minimum Values278
Applied Project ■ The Calculus of Rainbows288
4.3 Derivatives and the Shapes of Curves289
4.4 Graphing with Calculus and Calculators310
4.5 Indeterminate Forms and l’Hospital’s Rule328
4.6 Optimization Problems340
Applied Project ■ The Shape of a Can358
4.7 Newton’s Method359
4.8 Antiderivatives368 Review375
Focus on Problem Solving393
5 ■ INTEGRALS 403
5.1 Areas and Distances403
5.2 The Definite Integral412
5.3 Evaluating Definite Integrals421
Discovery Project ■ Area Functions428
5.4 The Fundamental Theorem of Calculus430
5.5 The Substitution Rule436
5.6 Integration by Parts444
Parts444
NOT FOR SALE
5.7 Additional Techniques of Integration452
5.8 Integration Using Tables and Computer Algebra Systems459
Discovery Project ■ Patterns in Integrals465
5.9 Approximate Integration467
5.10 Improper Integrals479
Review491
Focus on Problem Solving505
6 ■ APPLICATIONS OF INTEGRATION 513
6.1 More about Areas513
6.2 Volumes523
Discovery Project ■ Rotating on a Slant537
6.3 Volumes by Cylindrical Shells538
6.4 Arc Length546
Discovery Project ■ Arc Length Contest554
6.5 Average Value of a Function554
Applied Project ■ Where To Sit at the Movies557
6.6 Applications to Physics and Engineering557
Discovery Project ■ Complementary Coffee Cups568
6.7 Applications to Economics and Biology569
6.8 Probability572
Review575
Focus on Problem Solving585
7 ■ DIFFERENTIAL EQUATIONS 593
7.1 Modeling with Differential Equations593
7.2 Direction Fields and Euler’s Method596
7.3 Separable Equations604
Applied Project ■ How Fast Does a Tank Drain?616
Applied Project ■ Which Is Faster, Going Up or Coming Down?618
7.4 Exponential Growth and Decay619
Applied Project ■ Calculus and Baseball624
7.5 The Logistic Equation625
7.6 Predator-Prey Systems635 Review640
Focus on Problem Solving647
F ocus on Problem Solvin g 647Solving6
NOT FOR SALE
8 ■ INFINITE SEQUENCES AND SERIES 653
8.1 Sequences653
Laboratory Project ■ Logistic Sequences661
8.2 Series665
8.3 The Integral and Comparison Tests; Estimating Sums678
8.4 Other Convergence Tests684
8.5 Power Series691
8.6 Representations of Functions as Power Series698
8.7 Taylor and Maclaurin Series707
Laboratory Project ■ An Elusive Limit721
8.8 Applications of Taylor Polynomials722
Applied Project ■ Radiation from the Stars733 Review735
Focus on Problem Solving747
■ APPENDIXES 753
A Intervals,Inequalities,and Absolute Values753
B Coordinate Geometry756
C Trigonometry762
D Precise Definitions of Limits766
F Sigma Notation771
G Integration of Rational Functions by Partial Fractions774
H Polar Coordinates785
Discovery Project ■ Conic Sections in Polar Coordinates808
I Complex Numbers809
NOT FOR SALE
DIAGNOSTICTESTS
TestAAlgebra
1. (a) ( 3)4 =( 3)( 3)( 3)( 3)=81 (b) 34 = (3)(3)(3)(3)= 81 (c) 3 4 = 1 34 = 1
2. (a)Notethat
3.
Or: Usetheformulaforthedifferenceoftwosquarestoseethat +
Note: Aquickerwaytoexpandthisbinomialistousetheformula ( + )
(e)SeeReferencePage1forthebinomialformula ( + )3 = 3
.Usingit,weget (
(a)Usingthedifferenceoftwosquaresformula,
Thislastexpressionwasobtainedusingthesumoftwocubesformula,
and =3.[SeeReferencePage1inthetextbook.]
is
2 ,sowewillfactorout
,wehave
5.
Inintervalnotation,theansweris [ 4 3). (b)
NOT FOR SALE INSTRUCTOR
4)
.Now, (
4) willchangesignatthecritical values = 2 and =4.Thusthepossibleintervalsofsolutionare ( 2), ( 2 4),and (4 ).Bychoosinga singletestvaluefromeachinterval,weseethat ( 2 4) istheonlyintervalthatsatis estheinequality.
NOT FOR SALE
(c)Theinequality ( 1)( +2) 0 hascriticalvaluesof 2 0 and 1.Thecorrespondingpossibleintervalsofsolution are ( 2), ( 2 0), (0 1) and (1 ).Bychoosingasingletestvaluefromeachinterval,weseethatbothintervals ( 2 0) and (1 ) satisfytheinequality.Thus,thesolutionistheunionofthesetwointervals: ( 2 0) (1 )
(d) | 4| 3 3 4 3 1 7.Inintervalnotation,theansweris (1 7)
(e) 2 3 +1 1 2 3
Now,theexpression 4 +1 maychangesignsatthecriticalvalues = 1 and =4,sothepossibleintervalsofsolution are ( 1), ( 1 4],and [4 ).Bychoosingasingletestvaluefromeachinterval,weseethat ( 1 4] istheonly intervalthatsatis estheinequality.
10. (a)False.Inorderforthestatementtobetrue,itmustholdforallrealnumbers,so,toshowthatthestatementisfalse,pick =1 and =2 andobservethat (1+2)2 =12 +22 .Ingeneral, ( + )2 = 2 +2 + 2
(b)Trueaslongas and arenonnegativerealnumbers.Toseethis,thinkintermsofthelawsofexponents: =( )1
(c)False.Toseethis,let =1 and =2,then 1
(d)False.Toseethis,let =1 and =2,then 1+1(2)
(e)False.Toseethis,let
and
(f)Truesince 1 = 1 ,aslongas =0 and =0
TestBAnalyticGeometry
1. (a)Usingthepoint (2 5) and = 3 inthepoint-slopeequationofaline, 1 = ( 1 ),weget ( 5)= 3( 2) +5= 3 +6 = 3 +1
(b)Alineparalleltothe -axismustbehorizontalandthushaveaslopeof 0.Sincethelinepassesthroughthepoint (2 5), the -coordinateofeverypointonthelineis 5,sotheequationis = 5.
(c)Alineparalleltothe -axisisverticalwithunde nedslope.Sothe -coordinateofeverypointonthelineis2andsothe equationis =2
(d)Notethat 2 4 =3 4 = 2 +3 = 1 2 3 4 .Thustheslopeofthegivenlineis = 1 2 .Hence,the slopeofthelinewe’relookingforisalso 1 2 (sincethelinewe’relookingforisrequiredtobeparalleltothegivenline).
Sotheequationofthelineis ( 5)= 1 2 ( 2) +5= 1 2 1 = 1 2 6
2. Firstwe’ll ndthedistancebetweenthetwogivenpointsinordertoobtaintheradius, ,ofthecircle: = [3 ( 1)]2 +( 2 4)2 = 42 +( 6)2 = 52.Nextusethestandardequationofacircle, ( )2 +( )2 = 2 ,where ( ) isthecenter,toget ( +1)2 +( 4)2 =52.
NOT FOR SALE
3. Wemustrewritetheequationinstandardforminordertoidentifythecenterandradius.Notethat 2 + 2 6 +10 +9=0 2 6 +9+ 2 +10 =0.Fortheleft-handsideofthelatterequation,we factorthe rstthreetermsandcompletethesquareonthelasttwotermsasfollows: 2 6 +9+ 2 +10 =0 ( 3)2 + 2 +10 +25=25 ( 3)2 +( +5)2 =25.Thus,thecenterofthecircleis (3 5) andtheradiusis 5.
4. (a) ( 7 4) and (5 12) = 12 4 5 ( 7) = 16 12 = 4 3 (b) 4= 4 3 [ ( 7)] 4= 4 3 28 3 3 12= 4 28 4 +3 +16=0.Putting =0, weget 4 +16=0,sothe -interceptis 4,andsubstituting 0 for resultsina -interceptof 16 3 .
(c)Themidpointisobtainedbyaveragingthecorrespondingcoordinatesofbothpoints: 7+5 2 4+( 12) 2 =( 1 4). (d) = [5 ( 7)]2 +( 12 4)2 = 122 +( 16)2 = 144+256= 400=20
(e)Theperpendicularbisectoristhelinethatintersectsthelinesegment atarightanglethroughitsmidpoint.Thusthe perpendicularbisectorpassesthrough ( 1 4) andhasslope 3 4 [theslopeisobtainedbytakingthenegativereciprocalof theanswerfrompart(a)].Sotheperpendicularbisectorisgivenby +4= 3 4 [ ( 1)] or 3 4 =13.
(f)Thecenteroftherequiredcircleisthemidpointof ,andtheradiusishalfthelengthof ,whichis 10.Thus,the equationis ( +1)2 +( +4)2 =100.
5. (a)Graphthecorrespondinghorizontallines(givenbytheequations = 1 and =3)assolidlines.Theinequality 1 describesthepoints ( ) thatlie onor above theline = 1.Theinequality 3 describesthepoints ( ) thatlieonor below theline =3.Sothepairofinequalities 1 3 describesthepointsthatlieonor between thelines = 1 and =3
(b)Notethatthegiveninequalitiescanbewrittenas 4 4 and 2 2, respectively.Sotheregionliesbetweentheverticallines = 4 and =4 and betweenthehorizontallines = 2 and =2.Asshowninthegraph,the regioncommontobothgraphsisarectangle(minusitsedges)centeredatthe origin.
(c)We rstgraph =1 1 2 asadottedline.Since 1 1 2 ,thepointsinthe regionlie below thisline.
INSTRUCTOR USE ONLY
NOT FOR SALE
(d)We rstgraphtheparabola = 2 1 usingasolidcurve.Since 2 1, thepointsintheregionlieonor above theparabola.
(e)Wegraphthecircle 2 + 2 =4 usingadottedcurve.Since 2 + 2 2,the regionconsistsofpointswhosedistancefromtheoriginislessthan2,thatis, thepointsthatlie inside thecircle.
(f)Theequation 9 2 +16 2 =144 isanellipsecenteredat (0 0).Weputitin standardformbydividingby 144 andget 2 16 + 2 9 =1.The -interceptsare locatedatadistanceof 16=4 fromthecenterwhilethe -interceptsarea distanceof 9=3 fromthecenter(seethegraph).
TestCFunctions
1. (a)Locate 1 onthe -axisandthengodowntothepointonthegraphwithan -coordinateof 1.Thecorresponding -coordinateisthevalueofthefunctionat = 1,whichis 2.So, ( 1)= 2
(b)Usingthesametechniqueasinpart(a),weget (2) 2 8
(c)Locate 2 onthe -axisandthengoleftandrightto ndallpointsonthegraphwitha -coordinateof 2.Thecorresponding -coordinatesarethe -valueswearesearchingfor.So = 3 and =1
(d)Usingthesametechniqueasinpart(c),weget 2 5 and 0 3
(e)Thedomainisallthe -valuesforwhichthegraphexists,andtherangeisallthe -valuesforwhichthegraphexists. Thus,thedomainis [ 3 3],andtherangeis [ 2 3]
2. Notethat (2+ )=(2+ )3 and (2)=23 =8.Sothedifferencequotientbecomes (2+ ) (2) = (2+ )3 8 =
= (12+6 + 2 ) =12+6 + 2 .
3. (a)Setthedenominatorequalto0andsolveto ndrestrictionsonthedomain: 2 + 2=0 ( 1)( +2)=0 =1 or = 2.Thus,thedomainisallrealnumbersexcept 1 or 2 or,ininterval notation, ( 2) ( 2 1) (1 )
(b)Notethatthedenominatorisalwaysgreaterthanorequalto 1,andthenumeratorisde nedforallrealnumbers.Thus,the domainis ( )
(c)Notethatthefunction isthesumoftworootfunctions.So isde nedontheintersectionofthedomainsofthesetwo rootfunctions.Thedomainofasquarerootfunctionisfoundbysettingitsradicandgreaterthanorequalto 0.Now,
4 0 4 and 2 1 0 ( 1)( +1) 0 1 or 1.Thus,thedomainof is ( 1] [1 4]
4. (a)Re ectthegraphof aboutthe -axis.
(b)Stretchthegraphof verticallybyafactorof 2,thenshift 1 unitdownward.
(c)Shiftthegraphof right 3 units,thenup 2 units.
5. (a)Makeatableandthenconnectthepointswithasmoothcurve:
2 1 0 1 2 8 1 0 1 8
(b)Shiftthegraphfrompart(a)left 1 unit.
(c)Shiftthegraphfrompart(a)right 2 unitsandup 3 units.
(d)Firstplot = 2 .Next,togetthegraphof ( )=4 2 , re ect aboutthe x-axisandthenshiftitupward 4 units.
(e)Makeatableandthenconnectthepointswithasmoothcurve: 0 1 4 9 0 1 2 3
(f)Stretchthegraphfrompart(e)verticallybyafactoroftwo.
NOT FOR SALE T
(g)Firstplot =2 .Next,getthegraphof = 2 byre ectingthegraphof =2 aboutthe x-axis.
(h)Notethat =1+ 1 =1+1 .So rstplot =1 andthenshiftit upward 1 unit.
6. (a) ( 2)=1 ( 2)2 = 3 and (1)=2(1)+1=3
(b)For 0 plot ( )=1 2 and,onthesameplane,for 0 plotthegraph of ( )=2 +1
( )( )= ( ( ))= ( 2 +2 1)=2( 2 +2
( )(
TestDTrigonometry
(a)
2. (a) 5 6 =
3. Wewillusethearclengthformula, = ,where isarclength, istheradiusofthecircle,and isthemeasureofthe centralangleinradians.First,notethat 30 =30 180 = 6 .So =(12) 6 =2 cm.
4. (a) tan( 3)= 3 Youcanreadthevaluefromarighttrianglewithsides1,2,and 3
(b)Notethat 7 6 canbethoughtofasanangleinthethirdquadrantwithreferenceangle 6.Thus, sin(7 6)= 1 2 , sincethesinefunctionisnegativeinthethirdquadrant.
(c)Notethat 5 3 canbethoughtofasanangleinthefourthquadrantwithreferenceangle 3.Thus, sec(5 3)= 1 cos(5 3) = 1 1 2 =2,sincethecosinefunctionispositiveinthefourthquadrant.
5. sin = 24 =24sin and cos = 24 =24cos
= 24 sin =24
NOT FOR SALE
So,usingthesumidentityforthesine,wehave
9. We rstgraph =sin2 (bycompressingthegraphof sin byafactorof2)andthenshiftitupward 1 unit.
NOT FOR SALE
1
FUNCTIONSANDMODELS
1.1FourWaysToRepresentaFunction
Inexercisesrequiringestimationsorapproximations,youranswersmayvaryslightlyfromtheanswersgivenhere.
1. (a)Thepoint (1 3) isonthegraphof ,so (1)=3
(b)When = 1, isabout 0 2,so ( 1) 0 2.
(c) ( )=1 isequivalentto =1 When =1,wehave =0 and =3
(d)Areasonableestimatefor when =0 is = 0 8
(e)Thedomainof consistsofall -valuesonthegraphof .Forthisfunction,thedomainis 2 4,or [ 2 4]
Therangeof consistsofall -valuesonthegraphof .Forthisfunction,therangeis 1 3,or [ 1 3].
(f)As increasesfrom 2 to 1, increasesfrom 1 to 3.Thus, isincreasingontheinterval [ 2 1]
2. (a)Thepoint ( 4 2) isonthegraphof ,so ( 4)= 2.Thepoint (3 4) isonthegraphof ,so (3)=4
(b)Wearelookingforthevaluesof forwhichthe -valuesareequal.The -valuesfor and areequalatthepoints ( 2 1) and (2 2),sothedesiredvaluesof are 2 and 2
(c) ( )= 1 isequivalentto = 1.When = 1,wehave = 3 and =4.
(d)As increasesfrom 0 to 4, decreasesfrom 3 to 1.Thus, isdecreasingontheinterval [0 4]
(e)Thedomainof consistsofall -valuesonthegraphof .Forthisfunction,thedomainis 4 4,or [ 4 4]
Therangeof consistsofall -valuesonthegraphof .Forthisfunction,therangeis 2 3,or [ 2 3]
(f)Thedomainof is [ 4 3] andtherangeis [0 5 4]
3. FromFigure1inthetext,thelowestpointoccursatabout ( )=(12 85).Thehighestpointoccursatabout (17 115). Thus,therangeoftheverticalgroundaccelerationis 85 115.Writteninintervalnotation,weget [ 85 115]
4. Example1: Acarisdrivenat 60 mi hfor 2 hours.Thedistance traveledbythecarisafunctionofthetime .Thedomainofthe functionis { | 0 2},where ismeasuredinhours.Therange ofthefunctionis { | 0 120},where ismeasuredinmiles.
Example2: Atacertainuniversity,thenumberofstudents on campusatanytimeonaparticulardayisafunctionofthetime after midnight.Thedomainofthefunctionis { | 0 24},where is measuredinhours.Therangeofthefunctionis { | 0 }, where isanintegerand isthelargestnumberofstudentson campusatonce.
NOT FOR SALE
Example3: Acertainemployeeispaid $8 00 perhourandworksa maximumof 30 hoursperweek.Thenumberofhoursworkedis roundeddowntothenearestquarterofanhour.Thisemployee’s grossweeklypay isafunctionofthenumberofhoursworked Thedomainofthefunctionis [0 30] andtherangeofthefunctionis
5. No,thecurveisnotthegraphofafunctionbecauseaverticallineintersectsthecurvemorethanonce.Hence,thecurvefails theVerticalLineTest.
6. Yes,thecurveisthegraphofafunctionbecauseitpassestheVerticalLineTest.Thedomainis [ 2 2] andtherange is [ 1 2].
7. Yes,thecurveisthegraphofafunctionbecauseitpassestheVerticalLineTest.Thedomainis [ 3 2] andtherange is [ 3 2) [ 1 3].
8. No,thecurveisnotthegraphofafunctionsincefor =0, ±1,and ±2,therearein nitelymanypointsonthecurve.
9. Theperson’sweightincreasedtoabout 160 poundsatage 20 andstayedfairlysteadyfor 10 years.Theperson’sweight droppedtoabout 120 poundsforthenext 5 years,thenincreasedrapidlytoabout 170 pounds.Thenext 30 yearssawagradual increaseto 190 pounds.Possiblereasonsforthedropinweightat 30 yearsofage:diet,exercise,healthproblems.
10. First,thetubwas lledwithwatertoaheightof15 in.Thenapersongotintothetub,raisingthewaterlevelto20 in.At around12minutes,thepersonstoodupinthetubbutthenimmediatelysatdown.Finally,ataround17minutes,thepersongot outofthetub,andthendrainedthewater.
11. Thewaterwillcooldownalmosttofreezingastheicemelts.Then,when theicehasmelted,thewaterwillslowlywarmuptoroomtemperature.
12. RunnerAwontherace,reachingthe nishlineat 100 metersinabout 15 seconds,followedbyrunnerBwithatimeofabout 19 seconds,andthenbyrunnerCwho nishedinaround 23 seconds.Binitiallyledtherace,followedbyC,andthenA. CthenpassedBtoleadforawhile.ThenApassed rstB,andthenpassedCtotaketheleadand nish rst.Finally, BpassedCto nishinsecondplace.Allthreerunnerscompletedtherace.
13. (a)Thepowerconsumptionat6 AM is 500MW whichisobtainedbyreadingthevalueofpower when =6 fromthe graph.At6 PM wereadthevalueof when =18 obtainingapproximately 730MW
(b)Theminimumpowerconsumptionisdeterminedby ndingthetimeforthelowestpointonthegraph, =4 or 4 AM.The maximumpowerconsumptioncorrespondstothehighestpointonthegraph,whichoccursjustbefore =12 orright beforenoon.Thesetimesarereasonable,consideringthepowerconsumptionschedulesofmostindividualsand businesses.
NOT FOR SALE CTI
14. Thesummersolstice(thelongestdayoftheyear)is aroundJune21,andthewintersolstice(theshortestday) isaroundDecember22.(Exchangethedatesforthe southernhemisphere.)
16. Thevalueofthecardecreasesfairlyrapidlyinitially,then somewhatlessrapidly.
15. Ofcourse,thisgraphdependsstronglyonthe geographicallocation!
18. Thetemperatureofthepiewouldincreaserapidly,level offtooventemperature,decreaserapidly,andthenlevel offtoroomtemperature.
17. Asthepriceincreases,theamountsolddecreases.
21. (a)
(b)Fromthegraph,weestimatethenumberofUScell-phone subscriberstobeabout126millionin2001and207million in2005.
22. (a)
(b)Fromthegraphinpart(a),weestimatethetemperatureat 11:00 AM tobeabout81 F.
)
24. Asphericalballoonwithradius +1 hasvolume ( +1)= 4 3 ( +1)3 =
.Wewishto ndthe amountofairneededtoin atetheballoonfromaradiusof to +1.Hence,weneedto ndthedifference ( +1) ( )=
. 25. ( )=4+3 2 ,so (3+ )=4+3(3+ ) (3+ )2 =4+9+3 (9+6 + 2 )=4 3 2 , and (3+ ) (3) = (4 3 2 ) 4 = ( 3 ) = 3
NOT FOR SALE
26. ( )= 3 ,so ( + )=( + )3 = 3 +3 2 +3 2 + 3 , and ( + ) ( ) = ( 3 +3 2 +3 2 + 3 ) 3 = (3 2 +3 + 2 ) =3 2 +3 + 2
27. ( ) ( ) = 1 1 = = ( ) = 1( ) ( ) = 1
28. ( ) (1) 1 =
= +1 ( +1)( 1) = ( 1) ( +1)( 1) = 1 +1
29. ( )=( +4) ( 2 9) isde nedforall exceptwhen 0= 2 9 0=( +3)( 3) = 3 or 3,sothe domainis { R | = 3 3} =( 3) ( 3 3) (3 ).
30. ( )=(2 3 5) ( 2 + 6) isde nedforall exceptwhen 0= 2 + 6 0=( +3)( 2) = 3 or 2,sothedomainis { R | = 3 2} =( 3) ( 3 2) (2 )
31. ( )= 3 2 1 isde nedforallrealnumbres.Infact 3 ( ),where ( ) isapolynomial,isde nedforallrealnumbers. Thus,thedomainis R or ( )
32. ( )= 3 2+ isde nedwhen 3 0 3 and 2+ 0 2.Thus,thedomainis 2 3,or [ 2 3]
33. ( )=1 4 2 5 isde nedwhen 2 5 0 ( 5) 0.Notethat 2 5 =0 sincethatwouldresultin divisionbyzero.Theexpression ( 5) ispositiveif 0 or 5.(SeeAppendixAformethodsforsolving inequalities.)Thus,thedomainis ( 0) (5 )
34. ( )= 4 2 .Now = 4 2 2 =4 2 2 + 2 =4,so thegraphisthetophalfofacircleofradius 2 withcenterattheorigin.Thedomain is | 4 2 0 = | 4 2 = { | 2 | |} =[ 2 2].Fromthegraph, therangeis 0 2,or [0 2]
35. ( )=2 0 4 isde nedforallrealnumbers,sothedomainis R, or ( ) Thegraphof isalinewithslope 0 4 and -intercept 2
36. ( )= 2 2 +1=( 1)2 isde nedforallrealnumbers,sothe domainis R,or ( ).Thegraphof isaparabolawithvertex (1 0).
NOT FOR SALE
37. ( )=2 + 2 isde nedforallrealnumbers,sothedomainis R,or ( ).Thegraphof isaparabolaopeningupwardsincethe coef cientof 2 ispositive.To ndthe -intercepts,let =0 andsolve for 0=2 + 2 = (2+ ) =0 or = 2.The -coordinateof thevertexishalfwaybetweenthe -intercepts,thatis,at = 1.Since ( 1)=2( 1)+( 1)2 = 2+1= 1,thevertexis ( 1 1)
38. ( )= 4 2 2 = (2+ )(2 ) 2 ,sofor =2, ( )=2+ .Thedomain is { | =2}.Sothegraphof isthesameasthegraphofthefunction ( )= +2 (aline)exceptfortheholeat (2 4)
39. ( )= 5 isde nedwhen 5 0 or 5,sothedomainis [5 )
Since = 5 2 = 5 = 2 +5,weseethat isthe tophalfofaparabola.
40. ( )= |2 +1| = 2 +1 (2 +1) if 2 +1 0 if 2 +1 1 = 2 +1 2 1 if 1 2 if 1 2
Thedomainis R,or ( )
41. ( )= 3 + | | .Since | | = if 0 if 0 ,wehave ( )=
Notethat isnotde nedfor =0.Thedomainis ( 0) (0 )
42. ( )= | | = if 0 if 0 = 0 if 0 2 if 0 .
Thedomainis R,or ( )
43. ( )= +2 if 0 1 if 0
Thedomainis R.
44. ( )= 3 1 2 if 2 2 5 if 2
Thedomainis R.
45. ( )= +2 if 1 2 if 1
Notethatfor = 1,both +2 and 2 areequalto1.Thedomainis R
46. ( )= +9 if 3 2 if | | 3 6 if 3
Notethatfor = 3,both +9 and 2 areequalto 6;andfor =3,both 2 and 6 areequalto 6.Thedomainis R.
47. Recallthattheslope ofalinebetweenthetwopoints ( 1 1 ) and ( 2 2 ) is = 2 1 2 1 andanequationoftheline connectingthosetwopointsis 1 = ( 1 ).Theslopeofthelinesegmentjoiningthepoints (1 3) and (5 7) is 7 ( 3) 5 1 = 5 2 ,soanequationis ( 3)= 5 2 ( 1).Thefunctionis ( )= 5 2 11 2 , 1 5
48. Theslopeofthelinesegmentjoiningthepoints ( 5 10) and (7 10) is 10 10 7 ( 5) = 5 3 ,soanequationis 10= 5 3 [ ( 5)].Thefunctionis ( )= 5 3 + 5 3 , 5 7
49. Weneedtosolvethegivenequationfor . +( 1)2 =0 ( 1)2 = 1= ± =1 ± .Theexpressionwiththepositiveradicalrepresentsthetophalfoftheparabola,andtheonewiththenegative radicalrepresentsthebottomhalf.Hence,wewant ( )=1 .Notethatthedomainis 0
NOT FOR SALE
50. 2 +( 2)2 =4 ( 2)2 =4 2 2= ± 4 2 =2 ± 4 2 .Thetophalfisgivenby thefunction ( )=2+ 4 2 , 2 2.
51. For 0 3,thegraphisthelinewithslope 1 and -intercept 3,thatis, = +3.For 3 5,thegraphistheline withslope 2 passingthrough (3 0);thatis, 0=2( 3),or =2 6.Sothefunctionis ( )= +3 if 0 3 2 6 if 3 5
52. For 4 2,thegraphisthelinewithslope 3 2 passingthrough ( 2 0);thatis, 0= 3 2 [ ( 2)],or = 3 2 3.For 2 2,thegraphisthetophalfofthecirclewithcenter (0 0) andradius 2.Anequationofthecircle is 2 + 2 =4,soanequationofthetophalfis = 4 2 .For 2 4,thegraphisthelinewithslope 3 2 passing through (2 0);thatis, 0= 3 2 ( 2),or = 3 2 3.Sothefunctionis ( )= 3 2 3 if 4 2
53. Letthelengthandwidthoftherectanglebe and .Thentheperimeteris 2 +2 =20 andtheareais = . Solvingthe rstequationfor intermsof gives = 20 2 2 =10 .Thus, ( )= (10 )=10 2 .Since lengthsarepositive,thedomainof is 0 10.Ifwefurtherrestrict tobelargerthan ,then 5 10 wouldbe thedomain.
54. Letthelengthandwidthoftherectanglebe and .Thentheareais =16,sothat =16 .Theperimeteris =2 +2 ,so ( )=2 +2(16 )=2 +32 ,andthedomainof is 0,sincelengthsmustbepositive quantities.Ifwefurtherrestrict tobelargerthan ,then 4 wouldbethedomain.
55. Letthelengthofasideoftheequilateraltrianglebe .ThenbythePythagoreanTheorem,theheight ofthetrianglesatis es 2 + 1 2 2 = 2 ,sothat 2 = 2 1 4 2 = 3 4 2 and = 3 2 .Usingtheformulaforthearea ofatriangle, = 1 2 (base)(height),weobtain ( )= 1 2 ( ) 3 2 = 3 4 2 ,withdomain 0
56. Letthevolumeofthecubebe andthelengthofanedgebe .Then = 3 so = 3 ,andthesurfaceareais ( )=6 3 2 =6 2 3 ,withdomain 0.
57. Leteachsideofthebaseoftheboxhavelength ,andlettheheightoftheboxbe .Sincethevolumeis 2,weknowthat 2= 2 ,sothat =2 2 ,andthesurfaceareais = 2 +4 .Thus, ( )= 2 +4 (2 2 )= 2 +(8 ),with domain 0.
NOT FOR SALE
58. Theareaofthewindowis
,where istheheightoftherectangularportionofthewindow.
Sincethelengths and mustbepositivequantities,wehave 0 and 0.For 0,wehave 2 0
59. Theheightoftheboxis andthelengthandwidthare =20 2 , =12 2 .Then = andso ( )=(20 2 )(12 2 )( )=4(10 )(6 )(
Thesides , ,and mustbepositive.Thus, 0
;and
60. Forthe rst 1200kWh, ( )=10+0 06
.Combiningtheserestrictionsgivesusthedomain 0 6
Forusageover 1200kWh,thecostis ( )=10+0 06(1200)+0 07( 1200)=82+0 07( 1200)
Thus, ( )= 10+0 06 if 0 1200 82+0 07( 1200) if 1200
61. (a)
(b)On $14,000,taxisassessedon $4000,and 10%($4000)=$400 On $26,000,taxisassessedon $16,000,and 10%($10,000)+15%($6000)=$1000+$900=$1900
(c)Asinpart(b),thereis$1000taxassessedon$20,000ofincome,so thegraphof isalinesegmentfrom (10,000 0) to (20,000 1000)
Thetaxon$30,000is$2500,sothegraphof for 20,000 is theraywithinitialpoint (20,000 1000) thatpassesthrough (30,000 2500).
62. Oneexampleistheamountpaidforcableortelephonesystemrepairinthehome,usuallymeasuredtothenearestquarterhour. Anotherexampleistheamountpaidbyastudentintuitionfees,ifthefeesvaryaccordingtothenumberofcreditsforwhich thestudenthasregistered.
63. isanoddfunctionbecauseitsgraphissymmetricabouttheorigin. isanevenfunctionbecauseitsgraphissymmetricwith respecttothe -axis.
64. isnotanevenfunctionsinceitisnotsymmetricwithrespecttothe -axis. isnotanoddfunctionsinceitisnotsymmetric abouttheorigin.Hence, is neither evennorodd. isanevenfunctionbecauseitsgraphissymmetricwithrespecttothe -axis.
65. (a)Becauseanevenfunctionissymmetricwithrespecttothe -axis,andthepoint (5 3) isonthegraphofthisevenfunction, thepoint ( 5 3) mustalsobeonitsgraph.
(b)Becauseanoddfunctionissymmetricwithrespecttotheorigin,andthepoint (5 3) isonthegraphofthisoddfunction, thepoint ( 5 3) mustalsobeonitsgraph.
66. (a)If iseven,wegettherestofthegraphbyre ecting aboutthe -axis.
(b)If isodd,wegettherestofthegraphbyrotating 180 abouttheorigin.
NOT FOR SALE
69. ( )= +1 ,so ( )= +1 = 1
Sincethisisneither ( ) nor ( ),thefunction is neitherevennorodd.
71. ( )=1+3 2 4 .
( )=1+3( )2 ( )4 =1+3 2 4 = ( ).
So isanevenfunction.
70. ( )= | | ( )=( ) | | =( ) | | = ( | |) = ( )
So isanoddfunction.
72. ( )=1+3 3 5 ,so ( )=1+3( )3 ( )5 =1+3( 3 ) ( 5 ) =1 3 3 + 5
Sincethisisneither ( ) nor ( ),thefunction is neitherevennorodd.
73. (i)If and arebothevenfunctions,then ( )= ( ) and ( )= ( ).Now
( + )( )= ( )+ ( )= ( )+ ( )=( + )( ),so + isan even function.
(ii)If and arebothoddfunctions,then ( )= ( ) and ( )= ( ).Now
( + )( )= ( )+ ( )= ( )+[ ( )]= [ ( )+ ( )] = ( + )( ),so + isan odd function.
(iii)If isanevenfunctionand isanoddfunction,then ( + )( )= ( )+ ( )= ( )+[ ( )]= ( ) ( ), whichisnot ( + )( ) nor ( + )( ),so + is neither evennorodd.(Exception:if isthezerofunction,then + willbe odd.If isthezerofunction,then + willbe even.)
74. (i)If and arebothevenfunctions,then ( )= ( ) and ( )= ( ).Now ( )( )= ( ) ( )= ( ) ( )=( )( ),so isan even function.
(ii)If and arebothoddfunctions,then ( )= ( ) and ( )= ( ).Now ( )( )= ( ) ( )=[ ( )][ ( )]= ( ) ( )= ( )( ),so isan even function.
(iii)If isanevenfunctionand isanoddfunction,then
( )( )= ( ) ( )= ( )[ ( )]= [ ( ) ( )]= ( )( ),so isan odd function.
NOT FOR SALE
1.2MathematicalModels:A CatalogofEssentialFunctions
1. (a) ( )=log 2 isalogarithmicfunction.
(b) ( )= 4 isarootfunctionwith =4
(c) ( )= 2 3 1 2 isarationalfunctionbecauseitisaratioofpolynomials.
(d) ( )=1 1 1 +2 54 2 isapolynomialofdegree 2 (alsocalleda quadraticfunction).
(e) ( )=5 isanexponentialfunction.
(f) ( )=sin cos 2 isatrigonometricfunction.
2. (a) = isanexponentialfunction(noticethat isthe exponent).
(b) = isapowerfunction(noticethat isthe base).
(c) = 2 (2 3 )=2 2 5 isapolynomialofdegree 5.
(d) =tan cos isatrigonometricfunction.
(e) = (1+ ) isarationalfunctionbecauseitisaratioofpolynomials.
(f) = 3 1 (1+ 3 ) isanalgebraicfunctionbecauseitinvolvespolynomialsandrootsofpolynomials.
3. Wenoticefromthe gurethat and areevenfunctions(symmetricwithrespecttothe -axis)andthat isanoddfunction (symmetricwithrespecttotheorigin).So(b) = 5 mustbe .Since is atterthan neartheorigin,wemusthave
(c) = 8 matchedwith and(a) = 2 matchedwith .
4. (a)Thegraphof =3 isaline(choice ).
(b) =3 isanexponentialfunction(choice ).
(c) = 3 isanoddpolynomialfunctionorpowerfunction(choice ).
(d) = 3 = 1 3 isarootfunction(choice ).
5. (a)Anequationforthefamilyoflinearfunctionswithslope 2 is = ( )=2 + ,where isthe -intercept.
NOT FOR SALE
(b) (2)=1 meansthatthepoint (2 1) isonthegraphof .Wecanusethe point-slopeformofalinetoobtainanequationforthefamilyoflinear functionsthroughthepoint (2 1) 1= ( 2),whichisequivalent to = +(1 2 ) inslope-interceptform.
(c)Tobelongtobothfamilies,anequationmusthaveslope =2,sotheequationinpart(b), = +(1 2 ), becomes =2 3.Itisthe only functionthatbelongstobothfamilies.
6. Allmembersofthefamilyoflinearfunctions ( )=1+ ( +3) have graphsthatarelinespassingthroughthepoint ( 3 1).
7. Allmembersofthefamilyoflinearfunctions ( )= havegraphs thatarelineswithslope 1.The -interceptis
8. Thevertexoftheparabolaontheleftis (3 0),soanequationis = ( 3)2 +0.Sincethepoint (4 2) isonthe parabola,we’llsubstitute 4 for and 2 for to nd . 2= (4 3)2 =2,soanequationis ( )=2( 3)2 . The -interceptoftheparabolaontherightis (0 1),soanequationis = 2 + +1.Sincethepoints ( 2 2) and (1 2 5) areontheparabola,we’llsubstitute 2 for and 2 for aswellas 1 for and 2 5 for toobtaintwoequations withtheunknowns and ( 2 2): 2=4 2 +1 4 2 =1 (1) (1 2 5): 2 5= + +1 + = 3 5 (2) 2 · (2) + (1) givesus 6 = 6 = 1.From (2), 1+ = 3 5 = 2 5,soanequation is ( )= 2 2 5 +1.
9. Since ( 1)= (0)= (2)=0, haszerosof 1, 0,and 2,soanequationfor is ( )= [ ( 1)]( 0)( 2), or ( )= ( +1)( 2).Because (1)=6,we’llsubstitute 1 for and 6 for ( ). 6= (1)(2)( 1) 2 =6 = 3,soanequationfor is ( )= 3 ( +1)( 2)
NOT FOR SALE
10. (a)For =0 02 +8 50,theslopeis 0 02,whichmeansthattheaveragesurfacetemperatureoftheworldisincreasingata rateof 0 02 C peryear.The -interceptis 8 50,whichrepresentstheaveragesurfacetemperaturein C intheyear1900.
(b) =2100 1900=200 =0 02(200)+8 50=12 50 C
11. (a) =200,so =0 0417 ( +1)=0 0417(200)( +1)=8 34 +8 34.Theslopeis 8 34,whichrepresentsthe changeinmgofthedosageforachildforeachchangeof1yearinage.
(b)Foranewborn, =0,so =8 34 mg.
12. (a)
13. (a)
(b)Theslopeof 4 meansthatforeachincreaseof 1 dollarfora rentalspace,thenumberofspacesrented decreases by 4.The -interceptof 200 isthenumberofspacesthatwouldbeoccupied iftherewerenochargeforeachspace.The -interceptof 50 isthe smallestrentalfeethatresultsinnospacesrented.
(b)Theslopeof 9 5 meansthat increases 9 5 degreesforeachincrease of 1 C.(Equivalently, increasesby 9 when increasesby 5 and decreasesby 9 when decreasesby 5.)The -interceptof 32 istheFahrenheittemperaturecorrespondingtoaCelsius temperatureof 0
14. (a)Let = distancetraveled(inmiles)and = timeelapsed(inhours).At =0, =0 andat =50 minutes =50 · 1 60 = 5 6 h, =40.Thuswe havetwopoints: (0 0) and 5 6 40 ,so = 40 0 5 6 0 =48 andso =48 . (b)
(c)Theslopeis 48 andrepresentsthecar’sspeedinmi h.
15. (a)Using inplaceof and inplaceof ,we ndtheslopetobe
.Soalinear equationis
(b)Theslopeof 1 6 meansthatthetemperatureinFahrenheitdegreesincreasesone-sixthasrapidlyasthenumberofcricket chirpsperminute.Saiddifferently,eachincreaseof 6 cricketchirpsperminutecorrespondstoanincreaseof 1 F.
(c)When =150,thetemperatureisgivenapproximatelyby = 1 6 (150)+ 307 6 =76 16 F 76 F
NOT FOR SALE
16. (a)Let denotethenumberofchairsproducedinonedayand theassociated cost.Usingthepoints (100 2200) and (300 4800),wegettheslope
4800 2200 300 100 = 2600 200 =13.So 2200=13( 100) =13 +900
(b)Theslopeofthelineinpart(a)is 13 anditrepresentsthecost(indollars) ofproducingeachadditionalchair.
(c)The -interceptis 900 anditrepresentsthe xeddailycostsofoperating thefactory.
17. (a)Wearegiven changeinpressure 10 feetchangeindepth = 4 34 10 =0 434.Using forpressureand fordepthwiththepoint ( )=(0 15),wehavetheslope-interceptformoftheline, =0 434 +15
(b)When =100,then 100=0 434 +15 0 434 =85 = 85 0 434 195 85 feet.Thus,thepressureis 100lb in2 atadepthofapproximately 196 feet.
18. (a)Using inplaceof and inplaceof ,we ndtheslopetobe
Soalinearequationis 460= 1 4 ( 800)
(b)Letting =1500 weget = 1 4 (1500)+260=635
Thecostofdriving1500milesis$635.
(c) Theslopeofthelinerepresentsthecostpermile, $0 25
(d)The -interceptrepresentsthe xedcost,$260.
(e)Alinearfunctiongivesasuitablemodelinthissituationbecauseyouhave xedmonthlycostssuchasinsuranceandcar payments,aswellascoststhatincreaseasyoudrive,suchasgasoline,oil,andtires,andthecostoftheseforeach additionalmiledrivenisaconstant.
19. (a)Thedataappeartobeperiodicandasineorcosinefunctionwouldmakethebestmodel.Amodeloftheform ( )= cos( )+ seemsappropriate.
(b)Thedataappeartobedecreasinginalinearfashion.Amodeloftheform ( )= + seemsappropriate.
20. (a)Thedataappeartobeincreasingexponentially.Amodeloftheform ( )= or ( )= + seemsappropriate.
(b)Thedataappeartobedecreasingsimilarlytothevaluesofthereciprocalfunction.Amodeloftheform ( )= seems appropriate.
INSTRUCTOR USE ONLY
NOT FOR SALE
Exercises21 – 24:Somevaluesaregiventomanydecimalplaces.Thesearetheresultsgivenbyseveralcomputeralgebrasystems roundingisleft tothereader.
21. (a)
(b)Usingthepoints (4000 14 1) and (60,000 8 2),weobtain
14 1= 8 2 14 1 60,000 4000 ( 4000) or,equivalently, 0 000105357 +14 521429
Alinearmodeldoesseemappropriate.
(c)Usingacomputingdevice,weobtaintheleastsquaresregressionline = 0 0000997855 +13 950764
Thefollowingcommandsandscreensillustratehowto ndtheleastsquaresregressionlineonaTI-84Plus. Enterthedataintolistone(L1)andlisttwo(L2).Press toentertheeditor.
FindtheregessionlineandstoreitinY1 .Press .
Notefromthelast gurethattheregressionlinehasbeenstoredinY1 andthatPlot1hasbeenturnedon(Plot1is highlighted).YoucanturnonPlot1fromtheY=menubyplacingthecursoronPlot1andpressing orby pressing
Nowpress toproduceagraphofthedataandtheregression line.Notethatchoice9oftheZOOMmenuautomaticallyselectsawindow thatdisplaysallofthedata.
(d)When =25,000, 11 456;orabout 11 5 per 100 population.
NOT FOR SALE
(e)When =80,000, 5 968;orabouta 6% chance.
(f)When =200,000, isnegative,sothemodeldoesnotapply.
22. (a) (b)
(c)When =100 F, =264 7 265 chirps min.
23. (a)Alinearmodelseemsappropriateoverthetimeinterval considered.
Usingacomputingdevice,weobtaintheleastsquares regressionline =4 856 220 96
(b)Usingacomputingdevice,weobtaintheleastsquares regressionline 0 027 47 758
(c)When =2004, =6 35,whichishigherthantheactualwinningheightof 5 95m
(d)No,sincethetimesappeartobelevelingoffandgettingfurtherawayfromthemodel.
24. Bylookingatthescatterplotofthedata,weruleout thepowerandlogarithmicmodels.
Wetryvariousmodels:
Linear = 0 4305454545 +870 1836364
Quadratic: =0 0048939394 2 19 78607576 +20006 95485
Scatterplot
Cubic: = 0 00007319347 3 +0 4391142191 2 878 4298718 +585960 983
Quartic: =0 0000079020979 4 0 0625787879 3 +185 8422838 2 245290 9304 +121409472 7
Exponential: =2 6182302 × 1021 (0 9767893094) [continued]
25.
Linearmodel
NOT FOR SALE
Quarticmodel Exponentialmodel
Cubicmodel
Afterexaminingthegraphsofthese models,weseethatallthemodels aregoodandthequarticmodelis thebest.
Usingthismodel,weobtainestimates 13 6% and 10 2% fortheruralpercentagesin1988and2002respectively.
Usingacomputingdevice,weobtainthecubicfunction
= 3 + 2 + + with =0 0012937, = 7 06142, =12,823,and = 7,743,770.When =1925, 1914 (million).
26. (a) =1 000431227 1 499528750
(b)Thepowermodelinpart(a)isapproximately = 1 5 .Squaringbothsidesgivesus 2 = 3 ,sothemodelmatches
Kepler’sThirdLaw, 2 = 3
1.3NewFunctionsfromOldFunctions
1. (a)Ifthegraphof isshifted 3 unitsupward,itsequationbecomes = ( )+3
(b)Ifthegraphof isshifted 3 unitsdownward,itsequationbecomes = ( ) 3
(c)Ifthegraphof isshifted 3 unitstotheright,itsequationbecomes = ( 3).
(d)Ifthegraphof isshifted 3 unitstotheleft,itsequationbecomes = ( +3).
(e)Ifthegraphof isre ectedaboutthe -axis,itsequationbecomes = ( )
(f)Ifthegraphof isre ectedaboutthe -axis,itsequationbecomes = ( )
(g)Ifthegraphof isstretchedverticallybyafactorof 3,itsequationbecomes =3 ( )
(h)Ifthegraphof isshrunkverticallybyafactorof 3,itsequationbecomes = 1 3 ( )
INSTRUCTOR USE ONLY
NOT FOR SALE
2. (a)Toobtainthegraphof = ( )+8 fromthegraphof = ( ),shiftthegraph 8 unitsupward.
(b)Toobtainthegraphof = ( +8) fromthegraphof = ( ),shiftthegraph 8 unitstotheleft.
(c)Toobtainthegraphof =8 ( ) fromthegraphof = ( ),stretchthegraphverticallybyafactorof 8
(d)Toobtainthegraphof = (8 ) fromthegraphof = ( ),shrinkthegraphhorizontallybyafactorof 8
(e)Toobtainthegraphof = ( ) 1 fromthegraphof = ( ), rstre ectthegraphaboutthe -axis,andthenshiftit 1 unitdownward.
(f)Toobtainthegraphof =8 ( 1 8 ) fromthegraphof = ( ),stretchthegraphhorizontallyandverticallybyafactor of 8.
3. (a)(graph3)Thegraphof isshifted 4 unitstotherightandhasequation = ( 4).
(b)(graph1)Thegraphof isshifted 3 unitsupwardandhasequation = ( )+3
(c)(graph4)Thegraphof isshrunkverticallybyafactorof 3 andhasequation = 1 3 ( ).
(d)(graph5)Thegraphof isshifted 4 unitstotheleftandre ectedaboutthe -axis.Itsequationis = ( +4)
(e)(graph2)Thegraphof isshifted 6 unitstotheleftandstretchedverticallybyafactorof 2.Itsequationis =2 ( +6).
4. (a)Tograph = ( ) 2,weshiftthegraphof , 2 unitsdownward.Thepoint (1 2) onthegraphof correspondstothepoint (1 2 2)=(1 0).
(b)Tograph = ( 2),weshiftthegraphof , 2 unitstotheright.Thepoint (1 2) onthegraphof correspondstothepoint (1+2 2)=(3 2).
(c)Tograph = 2 ( ),were ectthegraphaboutthe -axisandstretchthegraphverticallybyafactorof 2 Thepoint (1 2) onthegraphof correspondstothe point (1 2 2)=(1 4).
(d)Tograph = ( 1 3 )+1,westretchthegraph horizontallybyafactorof 3 andshiftit 1 unitupward. Thepoint (1 2) onthegraphof correspondstothe point (1 3 2+1)=(3 3).
NOT FOR SALE
5. (a)Tograph = (2 ) weshrinkthegraphof horizontallybyafactorof 2
(b)Tograph = 1 2 westretchthegraphof horizontallybyafactorof 2.
Thepoint (4 1) onthegraphof correspondstothe point 1 2 · 4 1 =(2 1)
(c)Tograph = ( ) were ectthegraphof about the -axis.
Thepoint (4 1) onthegraphof correspondstothe point (2 · 4 1)=(8 1)
(d)Tograph = ( ) were ectthegraphof about the -axis,thenaboutthe -axis.
Thepoint (4 1) onthegraphof correspondstothe point ( 1 · 4 1)=( 4 1)
Thepoint (4 1) onthegraphof correspondstothe point ( 1 4 1 1)=( 4 1)
6. Thegraphof = ( )= 3 2 hasbeenshifted 2 unitstotherightandstretchedverticallybyafactorof 2. Thus,afunctiondescribingthegraphis
7. Thegraphof = ( )= 3 2 hasbeenshifted 4 unitstotheleft,re ectedaboutthe -axis,andshifteddownward 1 unit.Thus,afunctiondescribingthegraphis
Thisfunctioncanbewrittenas
8. (a)Thegraphof =2sin canbeobtainedfromthegraph of =sin bystretchingitverticallybyafactorof 2
(b)Thegraphof =1+ canbeobtainedfrom thegraphof = byshiftingitupward 1 unit.
NOT FOR SALE
9. = 3 :Startwiththegraphof = 3 andre ectaboutthe -axis.Note:Re ectingaboutthe -axisgivesthesameresult sincesubstituting for givesus =( )3 = 3 .
10. =1 2 = 2 +1:Startwiththegraphof = 2 ,re ectaboutthe -axis,andthenshift 1 unitupward.
11. =( +1)2 :Startwiththegraphof = 2 andshift 1 unittotheleft.
12. = 2 4 +3=( 2 4 +4) 1=( 2)2 1:Startwiththegraphof = 2 ,shift 2 unitstotheright, andthenshift 1 unitdownward.
13. =1+2cos :Startwiththegraphof =cos ,stretchverticallybyafactorof 2,andthenshift 1 unitupward.
14. =4sin3 :Startwiththegraphof =sin ,compresshorizontallybyafactorof 3,andthenstretchverticallybya factorof 4.
15. =sin( 2):Startwiththegraphof =sin andstretchhorizontallybyafactorof 2
16. =1 ( 4):Startwiththegraphof =1 andshift 4 unitstotheright.
17. = +3 :Startwiththegraphof = andshift 3 unitstotheleft. 18. = | | 2:Startwiththegraphof = | | andshift 2 unitsdownward.
NOT FOR SALE
19. = 1 2 ( 2 +8 )= 1 2 ( 2 +8 +16) 8= 1 2 ( +4)2 8:Startwiththegraphof = 2 ,compressverticallybya factorof 2,shift 4 unitstotheleft,andthenshift 8 unitsdownward. 0 0 0 0
20. =1+ 3 1 :Startwiththegraphof = 3 ,shift 1 unittotheright,andthenshift 1 unitupward.
21. = | 2|:Startwiththegraphof = | | andshift 2 unitstotheright.
22. = 1 4 tan( 4 ):Startwiththegraphof =tan ,shift 4 unitstotheright,andthencompressverticallybyafactorof 4
23. = | 1|:Startwiththegraphof = ,shiftit 1 unitdownward,andthenre ecttheportionofthegraphbelowthe -axisaboutthe -axis.
NOT FOR SALE
24. = |cos |:Startwiththegraphof =cos ,shrinkithorizontallybyafactorof ,andre ectallthepartsofthegraph belowthe -axisaboutthe -axis.
25. ThisisjustlikethesolutiontoExample4excepttheamplitudeofthecurve(the30 NcurveinFigure9onJune21)is
14 12=2.Sothefunctionis ( )=12+2sin 2 365 ( 80) .March31isthe 90thdayoftheyear,sothemodelgives (90) 12 34 h.Thedaylighttime(5:51 AM to6:18 PM)is 12 hoursand 27 minutes,or 12 45 h.Themodelvaluediffers fromtheactualvalueby 12 45 12 34 12 45 0 009,lessthan 1%.
26. UsingasinefunctiontomodelthebrightnessofDeltaCepheiasafunctionoftime,wetakeitsperiodtobe 5 4 days,its amplitudetobe 0 35 (onthescaleofmagnitude),anditsaveragemagnitudetobe 4 0.Ifwetake =0 atatimeofaverage brightness,thenthemagnitude(brightness)asafunctionoftime indayscanbemodeledbytheformula
( )=4 0+0 35sin 2 5 4
27. (a)Toobtain = (| |),theportionofthegraphof = ( ) totherightofthe -axisisre ectedaboutthe -axis. (b) =sin | | (c) = | |
28. Themostimportantfeaturesofthegivengrapharethe -interceptsandthemaximum andminimumpoints.Thegraphof =1 ( ) hasverticalasymptotesatthe -values wherethereare -interceptsonthegraphof = ( ).Themaximumof 1 onthegraph of = ( ) correspondstoaminimumof 1 1=1 on =1 ( ).Similarly,the minimumonthegraphof = ( ) correspondstoamaximumonthegraphof =1 ( ).Asthevaluesof getlarge(positivelyornegatively)onthegraphof = ( ),thevaluesof getclosetozeroonthegraphof =1 ( ).
29. ( )= 3 +2 2 ; ( )=3 2 1 = R forboth and (a) ( + )( )=( 3 +2 2 )+(3 2 1)= 3 +5
( )(
( )( )=(
( )= 3 +2 2 3 2 1 , = | = ± 1 3 since 3 2 1 =0.
NOT FOR SALE
30. ( )= 3 , =( 3]; ( )= 2 1, =( 1] [1 )
(a) ( + )( )= 3 + 2 1, =( 1] [1 3],whichistheintersectionofthedomainsof and (b) ( )( )= 3 2 1, =( 1] [1 3]
(c) ( )( )= 3 2 1, =( 1] [1 3]
(d) ( )= 3 2 1 , =( 1) (1 3].Wemustexclude = ±1 sincethesevalueswouldmake unde ned.
31. ( )= 2 1, = R; ( )=2 +1, = R
(a) ( )( )= ( ( ))= (2 +1)=(2 +1)2 1=(4 2 +4 +1) 1=4 2 +4 , = R
(b) ( )( )= ( ( ))= ( 2 1)=2( 2 1)+1=(2 2 2)+1=2 2 1, = R
(c) ( )( )= ( ( ))= ( 2 1)=( 2 1)2 1=( 4 2 2 +1) 1= 4 2 2 , = R
(d) ( )( )= ( ( ))= (2 +1)=2(2 +1)+1=(4 +2)+1=4 +3, = R
32. ( )= 2; ( )= 2 +3 +4. = R forboth and ,andhencefortheircomposites.
(a) ( )( )= ( ( ))= ( 2 +3 +4)=( 2 +3 +4) 2= 2 +3 +2 (b) ( )( )= ( ( ))= ( 2)=( 2)2 +3( 2)+4= 2 4 +4+3 6+4= 2 +2
(c) ( )( )= ( ( ))= ( 2)=( 2) 2= 4
(d) ( )( )= ( ( ))= ( 2 +3 +4)=( 2 +3 +4)2 +3(
33. ( )=1 3 ; ( )=cos = R forboth and ,andhencefortheircomposites.
(a) ( )( )= ( ( ))= (cos )=1 3cos .
(b) ( )( )= ( ( ))= (1 3 )=cos(1 3 ).
(c) ( )( )= ( ( ))= (1 3 )=1 3(1 3 )=1 3+9 =9 2.
(d) ( )( )= ( ( ))= (cos )=cos(cos ) [Notethatthisis not cos cos .]
34. ( )= , =[0 ); ( )= 3 1 , = R.
(a) ( )( )= ( ( ))= 3 1 = 3 1 = 6 1 .
Thedomainof is { | 3 1 0} = { | 1 0} = { | 1} =( 1]
(b) ( )( )= ( ( ))= ( )= 3 1 .
Thedomainof is { | isinthedomainof and ( ) isinthedomainof }.Thisisthedomainof , thatis, [0 ).
(c) ( )( )= ( ( ))= ( )= = 4 .Thedomainof is { | 0 and 0} =[0 ).
(d) ( )( )= ( ( ))= 3 1 = 3 1 3 1 ,andthedomainis ( )
35. ( )= + 1 , = { | =0}; ( )= +1 +2 , = { | = 2}
(a) ( )( )= ( ( ))= +1
Since ( ) isnotde nedfor = 2 and ( ( )) isnotde nedfor = 2 and = 1, thedomainof( )( ) is = { | = 2 1}.
(b) ( )( )= ( ( ))= + 1 =
Since ( ) isnotde nedfor =0 and ( ( )) isnotde nedfor = 1, thedomainof ( )( ) is = { | = 1 0}
(c) ( )( )= ( ( ))= + 1 = + 1 + 1
4 +3 2 +1 ( 2 +1) = { | =0}
(d) ( )( )= ( ( ))= +1 +2 = +1 +2 +1 +1 +2 +2 = +1+1( +2) +2 +1+2( +2) +2 = +1+ +2
Since ( ) isnotde nedfor = 2 and ( ( )) isnotde nedfor = 5 3 , thedomainof ( )( ) is = | = 2 5 3
36. ( )= 1+ , = { | = 1}; ( )=sin2 , = R.
(a) ( )( )= ( ( ))= (sin2 )= sin2 1+sin2
Domain: 1+sin2 =0 sin2 = 1 2 = 3 2 +2 = 3 4 + [ aninteger].
(b) ( )( )= ( ( ))= 1+ =sin 2 1+ .
Domain: { | = 1}
(c) ( )( )= ( ( ))= 1+ = 1+ 1+ 1+ = 1+ · (1+ ) 1+ 1+
Since ( ) isnotde nedfor = 1,and ( ( )) isnotde nedfor = 1 2 , thedomainof ( )( ) is = { | = 1 1 2 }
(d) ( )( )= ( ( ))= (sin2 )=sin(2sin2 )
Domain: R
INSTRUCTOR USE ONLY
NOT FOR SALE
37. ( )( )= ( ( ( )))= ( ( 1))= (2( 1))=2( 1)+1=2 1
38. ( )( )= ( ( ( )))= ( (1 ))= ((1 )2 )=2(1 )2 1=2 2 4 +1
39. ( )( )= ( ( ( )))= ( ( 3 +2))= [( 3 +2)2 ] = ( 6 +4 3 +4)= ( 6 +4 3 +4) 3= 6
40. ( )( )= ( ( ( )))= ( ( 3 ))= 3 3 1 =tan 3 3 1
41. Let ( )=2 + 2 and ( )= 4 .Then ( )( )= ( ( ))= (2 + 2 )=(2 + 2 )4 = ( ).
42. Let ( )=cos and ( )= 2 .Then ( )( )= ( ( ))= (cos )=(cos )2 =cos 2 = ( ).
43. Let ( )= 3 and ( )= 1+ .Then ( )( )= ( ( ))= ( 3 )= 3 1+ 3 = ( )
44. Let ( )= 1+ and ( )= 3 .Then ( )( )= ( ( ))= 1+ = 3 1+ = ( )
45. Let ( )=cos and ( )= .Then ( )( )= ( ( ))= (cos )= cos = ( )
46. Let ( )=tan and ( )= 1+ .Then ( )( )= ( ( ))= (tan )= tan 1+tan = ( )
47. Let ( )= 2 , ( )=3 ,and ( )=1 .Then ( )( )= ( ( ( )))= ( ( 2 ))= 3 2 =1 3 2 = ( )
48. Let ( )= | |, ( )=2+ ,and ( )= 8 .Then ( )( )= ( ( ( )))= ( (| |))= (2+ | |)= 8 2+ | | = ( ).
49. Let ( )= , ( )=sec ,and ( )= 4 .Then ( )( )= ( ( ( )))= ( ( ))= (sec )=(sec )4 =sec 4 ( )= ( ).
50. (a) ( (1))= (6)=5
(b) ( (1))= (3)=2
(c) ( (1))= (3)=4 (d) ( (1))= (6)=3
(e) ( )(3)= ( (3))= (4)=1 (f) ( )(6)= ( (6))= (3)=4
51. (a) (2)=5,becausethepoint (2 5) isonthegraphof .Thus, ( (2))= (5)=4,becausethepoint (5 4) isonthe graphof .
(b) ( (0))= (0)=3
(c) ( )(0)= ( (0))= (3)=0
(d) ( )(6)= ( (6))= (6).Thisvalueisnotde ned,becausethereisnopointonthegraphof thathas -coordinate 6.
(e) ( )( 2)= ( ( 2))= (1)=4
(f) ( )(4)= ( (4))= (2)= 2
INSTRUCTOR
NOT FOR SALE
52. To ndaparticularvalueof ( ( )),sayfor =0,wenotefromthegraphthat (0) 2 8 and (2 8) 0 5.Thus, ( (0)) (2 8) 0 5.Theothervalueslistedinthetablewereobtainedinasimilarfashion.
( ) ( ( )) 5 0 2 4
53. (a)Usingtherelationship distance = rate · time withtheradius asthedistance,wehave ( )=60
(b) = 2 ( )( )= ( ( ))= (60 )2 =3600 2 .Thisformulagivesustheextentoftherippledarea (incm2 )atanytime
54. (a)Theradius oftheballoonisincreasingatarateof 2cm s,so ( )=(2cm s)( s)=2 (in cm).
(b)Using = 4 3 3 ,weget ( )( )= ( ( ))= (2 )= 4 3 (2 )3 = 32 3 3 Theresult, = 32 3 3 ,givesthevolumeoftheballoon(in cm 3 )asafunctionoftime(in s).
55. (a)Fromthe gure,wehavearighttrianglewithlegs 6 and ,andhypotenuse BythePythagoreanTheorem, 2 +62 = 2 = ( )= 2 +36
(b)Using = ,weget =(30 km h)( hours)=30 (inkm).Thus, = ( )=30
(c) ( )( )= ( ( ))= (30 )= (30 )2 +36= 900 2 +36.Thisfunctionrepresentsthedistancebetweenthe lighthouseandtheshipasafunctionofthetimeelapsedsincenoon.
56. (a) = ( )=350
(b)ThereisaPythagoreanrelationshipinvolvingthelegswithlengths and 1 andthehypotenusewithlength : 2 +12 = 2 .Thus, ( )= 2 +1
(c) ( )( )= ( ( ))= (350 )= (350 )2 +1
57. (a) ( )= 0 if 0 1 if 0 (b) ( )= 0 if 0 120 if 0 so ( )=120 ( )
(c) Startingwiththeformulainpart(b),wereplace 120 with 240 tore ectthe differentvoltage.Also,becausewearestarting 5 unitstotherightof =0, wereplace with 5.Thus,theformulais ( )=240 ( 5)
NOT FOR SALE
58. (a) ( )= ( ) = 0 if 0 if 0 (b) ( )= 0 if 0 2 if 0 60 so ( )=2 ( ), 60. (c) ( )= 0 if 7 4( 7) if 7 32 so ( )=4( 7) ( 7), 32.
59. If ( )= 1 + 1 and ( )= 2 + 2 ,then
( )( )= ( ( ))= ( 2 + 2 )= 1 ( 2 + 2 )+ 1 = 1 2 + 1 2 + 1
So isalinearfunctionwithslope 1 2
60. If ( )=1 04 ,then
( )( )= ( ( ))= (1 04 )=1 04(1 04 )=(1 04)2 , ( )( )= (( )( ))= ((1 04)2 )=1 04(1 04)2 =(1 04)3 ,and ( )( )= (( )( ))= ((1 04)3 )=1 04(1 04)3 =(1 04)4
Thesecompositionsrepresenttheamountoftheinvestmentafter2,3,and4years. Basedonthispattern,whenwecompose copiesof ,wegettheformula ( ··· ) 0 s ( )=(1 04)
61. (a)Byexaminingthevariabletermsin and ,wededucethatwemustsquare togettheterms 4 2 and 4 in .Ifwelet ( )= 2 + ,then ( )( )= ( ( ))= (2 +1)=(2 +1)2 + =4 2 +4 +(1+ ).Since ( )=4 2 +4 +7,wemusthave 1+ =7.So =6 and ( )= 2 +6.
(b)Weneedafunction sothat ( ( ))=3( ( ))+5= ( ).But ( )=3 2 +3 +2=3( 2 + )+2=3( 2 + 1)+5,soweseethat ( )= 2 + 1
62. Weneedafunction sothat ( ( ))= ( +4)= ( )=4 1=4( +4) 17.Soweseethatthefunction mustbe ( )=4 17
63. Weneedtoexamine ( ). ( )=( )( )= ( ( ))= ( ( )) [because iseven] = ( ) Because ( )= ( ), isanevenfunction.
64. ( )= ( ( ))= ( ( )).Atthispoint,wecan’tsimplifytheexpression,sowemighttryto ndacounterexampleto showthat isnotanoddfunction.Let ( )= ,anoddfunction,and ( )= 2 + .Then ( )= 2 + whichisneither evennorodd.
Nowsuppose isanoddfunction.Then ( ( ))= ( ( ))= ( ).Hence, ( )= ( ),andso isoddif both and areodd.
Nowsuppose isanevenfunction.Then ( ( ))= ( ( ))= ( ).Hence, ( )= ( ),andso isevenif is oddand iseven.
INSTRUCTOR
NOT FOR SALE
1.4GraphingCalculatorsandComputers
1. ( )= 3 5 2
(a) [ 5 5] by [ 5 5] (Thereisnographshown.)
(b) [0 10] by [0 2] (c) [0 10] by [0 10]
Themostappropriategraphisproducedinviewingrectangle(c).
2. ( )= 4 16 2 +20
(a) [ 3 3] by [ 3 3]
(b) [ 10 10] by [ 10 10]
(c) [ 50 50] by [ 50 50]
(d) [ 5 5] by [ 50 50]
Themostappropriategraphisproducedinviewingrectangle(d).
3. Sincethegraphof ( )= 2 36 +32 isaparabolaopeningupward, anappropriateviewingrectangleshouldincludetheminimumpoint.
Completingthesquare,weget ( )=( 18)2 292,andsothe minimumpointis (18 292)
4. Anappropriateviewingrectanglefor ( )= 3 +15 2 +65 should includethehighandlowpoints.
5. ( )= 4 81 4 isde nedwhen 81 4 0 4 81 | | 3,sothedomainof is [ 3 3].Also 0 4 81 4 4 81=3, sotherangeis [0 3]
6. ( )= 0 1 +20 isde nedwhen 0 1 +20 0 200, sothedomainof is [ 200 ).
7. Thegraphof ( )= 3 225 issymmetricwithrespecttotheorigin.
Since ( )= 3 225 = ( 2 225)= ( +15)( 15),there are -interceptsat 0, 15,and 15. (20)=3500.
8. Thegraphof ( )= ( 2 +100) issymmetricwithrespecttothe origin.
9. Theperiodof ( )=sin(1000 ) is 2 1000 0 0063 anditsrangeis [ 1 1].Since ( )=sin2 (1000 ) isthesquareof ,itsrangeis [0 1] andaviewingrectangleof [ 0 01 0 01] by [0 1 1] seems appropriate.
10. Theperiodof ( )=cos(0 001 ) is 2 0 001 6300 anditsrange is [ 1 1],soaviewingrectangleof [ 10,000 10,000] by [ 1 5 1 5] seemsappropriate.
11. Thedomainof = is 0,sothedomainof ( )=sin is [0 ) andtherangeis [ 1 1].Withalittletrial-and-errorexperimentation,we nd thatanXmaxof100illustratesthegeneralshapeof ,soanappropriate viewingrectangleis [0 100] by [ 1 5 1 5]
NOT FOR SALE
12. Oneperiodof =sec occursontheinterval 2 2 2 3 2 2 20 3 2 1 40 3 40 ,orequivalently, 0 025 0 075.
13. The rstterm, 10sin ,hasperiod 2 andrange [ 10 10].Itwillbethedominantterminany“large”graphof =10sin +sin100 ,asshowninthe rst gure.Thesecondterm, sin100 ,hasperiod 2 100 = 50 andrange [ 1 1]
Itcausesthebumpsinthe rst gureandwillbethedominantterminany“small”graph,asshownintheviewnearthe origininthesecond gure.
14. = 2 +0 02sin(50 )
15. (a)The rst gureshowsthe"big picture"for ( )=( 10)3 2 . Thesecond gureshowsamaximum near =10
(b)Youneedmorethanonewindowbecausenosinglewindowcanshowwhatthefunctionlookslikeglobally andthedetailofthefunctionnear =10
16. Thefunction ( )= 2 30 hasdomain ( 30].Itsgraphisvery steepnear =30,sopartofthegraphmayappeartobemissing.
INSTRUCTOR
NOT FOR SALE
COMPLETE SOLUTIONS MANUAL for Stewart’s
MULTIVARIABLE CALCULUS: CONCEPTS AND CONTEXTS
FOURTH EDITION
©
2010 Brooks/Cole, Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.
For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to permissionrequest@cengage.com.
ISBN-13: 978-0-495-56056-2
ISBN-10: 0-495-56056-1
Brooks/Cole 10 Davis Drive Belmont, CA 94002-3098 USA
Dear Professor or Other Supplement Recipient:
Cengage Learning has provided you with this product (the “Supplement”) for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the “Course”), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.
Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third
NOT FOR SALE INSTRUCTOR
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/international.
Cengage Learning products are represented in Canada by Nelson Education, Ltd.
To learn more about Brooks/Cole, visit www.cengage.com/brookscole
Purchase any of our products at your local college store or at our preferred online store www.ichapters.com.
party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.
All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an “as is” basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State’s conflict of law rules.
Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.
NOT FOR SALE
PREFACE
This Complete Solutions Manual contains detailed solutions to all exercises in the text Multivariable Calculus:Concepts and Contexts, Fourth Edition (Chapters 8–13 of Calculus: Concepts and Contexts, Fourth Edition) by James Stewart. A Student Solutions Manual is also available,which contains solutions to the odd-numbered exercises in each chapter section,review section,True-False Quiz,and Focus on Problem Solving section as well as all solutions to the Concept Check questions. (It does not,however,include solutions to any of the projects.)
While I have extended every effort to ensure the accuracy of the solutions presented,I would appreciate correspondence regarding any errors that may exist. Other suggestions or comments are also welcome,and can be sent to me at the email address or mailing address below.
I would like to thank James Stewart for entrusting me with the writing of this manual and offering suggestions,Kathi Townes,Stephanie Kuhns,and Rebekah Steele of TECH-arts for typesetting and producing this manual,and Brian Betsill of TECH-arts for creating the illustrations. Brian Karasek prepared solutions for comparison of accuracy and style in addition to proofreading manuscript; his assistance and suggestions were very helpful and much appreciated. Finally, I would like to thank Richard Stratton and Elizabeth Neustaetter of Brooks/Cole,Cengage Learning for their trust,assistance,and patience.
DANCLEGG
dclegg@palomar.edu
Palomar College Department of Mathematics 1140 West Mission Road San Marcos,CA 92069
NOT FOR SALE
CONTENTS
8 ■ INFINITE SEQUENCES AND SERIES 1
8.1 Sequences1
Laboratory Project ■ Logistic Sequences9
8.2 Series13
8.3 The Integral and Comparison Tests; Estimating Sums26
8.4 Other Convergence Tests32
8.5 Power Series39
8.6 Representations of Functions as Power Series46
8.7 Taylor and Maclaurin Series55
Laboratory Project ■ An Elusive Limit69
8.8 Applications of Taylor Polynomials70
Applied Project ■ Radiation from the Stars81 Review83
Focus on Problem Solving95
9 ■ VECTORS AND THE GEOMETRY OF SPACE101
9.1 Three-Dimensional Coordinate Systems101
9.2 Vectors108
9.3 The Dot Product115
9.4 The Cross Product122
Discovery Project ■ The Geometry of a Tetrahedron130
9.5 Equations of Lines and Planes132
Laboratory Project ■ Putting 3D in Perspective141
9.6 Functions and Surfaces143
9.7 Cylindrical and Spherical Coordinates151
Laboratory Project ■ Families of Surfaces156 Review158
Focus on Problem Solving169
NOT FOR SALE
10 ■ VECTOR FUNCTIONS175
10.1 Vector Functions and Space Curves175
10.2 Derivatives and Integrals of Vector Functions185
10.3 Arc Length and Curvature195
10.4 Motion in Space:Velocity and Acceleration208
Applied Project ■ Kepler’s Laws218
10.5 Parametric Surfaces219 Review225
Focus on Problem Solving231
11 ■ PARTIAL DERIVATIVES239
11.1 Functions of Several Variables239
11.2 Limits and Continuity249
11.3 Partial Derivatives256
11.4 Tangent Planes and Linear Approximations272
11.5 The Chain Rule280
11.6 Directional Derivatives and the Gradient Vector290
11.7 Maximum and Minimum Values302
Applied Project ■ Designing a Dumpster318
Discovery Project ■ Quadratic Approximations and Critical Points320
11.8 Lagrange Multipliers323
Applied Project ■ Rocket Science333
Applied Project ■ Hydro-Turbine Optimization335 Review338
Focus on Problem Solving351
12 ■ MULTIPLE INTEGRALS357
12.1 Double Integrals over Rectangles357
12.2 Iterated Integrals362
12.3 Double Integrals over General Regions368
12.4 Double Integrals in Polar Coordinates380
12.5 Applications of Double Integrals386
12.6 Surface Area395
NOT FOR SALE
12.7 Triple Integrals400
Discovery Project ■ Volumes of Hyperspheres416
12.8 Triple Integrals in Cylindrical and Spherical Coordinates417
Applied Project ■ Roller Derby425
Discovery Project ■ The Intersection of Three Cylinders427
12.9 Change of Variables in Multiple Integrals429 Review435
Focus on Problem Solving447
13 ■ VECTOR CALCULUS453
13.1 Vector Fields453
13.2 Line Integrals458
13.3 The Fundamental Theorem for Line Integrals466
13.4 Green’s Theorem471
13.5 Curl and Divergence478
13.6 Surface Integrals486
13.7 Stokes’Theorem497
13.8 The Divergence Theorem501 Review505
Focus on Problem Solving515
■ APPENDIXES 519
D Precise Definitions of Limits519
H Polar Coordinates519
Discovery Project ■ Conic Sections in Polar Coordinates543
I Complex Numbers544
NOT FOR SALE INSTRUCTOR
INFINITESEQUENCESANDSERIES
8.1Sequences
1. (a)Asequenceisanorderedlistofnumbers.Itcanalsobedefinedasafunctionwhosedomainisthesetofpositiveintegers.
(b)Theterms approach 8 as becomeslarge.Infact,wecanmake ascloseto 8 aswelikebytaking sufficiently large.
(c)Theterms becomelargeas becomeslarge.Infact,wecanmake aslargeaswelikebytaking sufficientlylarge.
2. (a)FromDefinition1,aconvergentsequenceisasequenceforwhich lim exists.Examples: {1 }, {1 2 }
(b)Adivergentsequenceisasequenceforwhich lim doesnot exist.Examples: { }, {sin }
3. Thefirstsixtermsof =
4. {cos( 3)}
1 .Thesequencedoesnotappeartohavealimit.Thevalueswillcycle throughthefirstsixnumbersinthesequence—neverapproachingaparticularnumber.
5. 1 1 3 1 5 1 7 1 9 .Thedenominatorofthe nthtermisthe nthpositiveoddinteger,so = 1 2 1
7. {2 7 12 17 }.Eachtermislargerthantheprecedingoneby 5,so = 1 + ( 1)=2+5( 1)=5 3.
8. 1 4 2 9 3 16 4 25 .Thenumeratorofthe thtermis anditsdenominatoris ( +1)2 .Includingthealternatingsigns, weget =( 1) ( +1)2 . 9.
10. {5 1 5 1 5 1 }.Theaverageof 5 and 1 is 3,sowecanthinkofthesequenceasalternatelyadding 2 and 2 to 3. Thus, =3+( 1) +1 2
13. =1 (0 2) ,so lim =1 0=1 by(7).Converges
NOT FOR SALE
14. = 3 +1 = 3 ( +1) = 2 1+1 2 ,so as since lim 2 = and lim (1+1 2 )=1.Diverges
15. Becausethenaturalexponentialfunctioniscontinuousat 0,Theorem5enablesustowrite lim =lim 1 = lim (1 ) = 0 =1 Converges
.Converges
17. If = 2 1+8 ,then lim =lim (2 ) (1+8 ) =lim 2 1 +8 = 2 8 = 4 .Since tan iscontinuousat 4 ,by Theorem5, lim tan 2 1+8
.Converges
18. Usingthelastlimitlawforsequencesandthecontinuityofthesquarerootfunction,
19. = ( 1) 1 2 +1 = ( 1) 1 +1 ,so 0 | | = 1 +1 1
Theorem4.Converges
,butthetermsofthesequence { } alternateinsign,sothesequence 1 3 5 convergesto 1 andthesequence 2 4 6 convergesto +1 Thisshowsthatthegivensequencedivergessinceitstermsdon’tapproachasinglerealnumber.
21. = + 2 1
because 1+ 2
and .Converges
=cos(2 ).As , 2 0,so cos(2 ) cos0=1 because cos iscontinuous.Converges
= 2 = 2 .Since lim 2 H =lim 2
=lim
=0,itfollowsfromTheorem2that lim =0.Converges
2 as ,sosince lim arctan = 2 ,wehave lim arctan2 = 2 .Converges
2 2 1 2 [since 0 cos 2 1],sosince lim 1 2 =0, cos 2 2 convergesto 0 bytheSqueezeTheorem. 26. = cos = ( 1) .Since | | = as ,thegivensequencediverges.
lim 1+ 2 =lim ln = 2 ,sobyTheorem2, lim 1+ 2 = 2 .Convergent
29.
NOT FOR SALE
,so lim =8lim 21 =8 2lim (1 ) =8 20 =8 byTheorem5,sincethefunction ( )=2 iscontinuousat 0. Convergent
.Converges
=0 bythe SqueezeTheorem.Converges
31. {0 1 0 0 1 0 0 0 1 } divergessincethesequencetakesononlytwovalues,0and1,andneverstaysarbitrarilycloseto eitherone(oranyothervalue)for sufficientlylarge.
34. 0 | | = 3 ! = 3 1 3 2 3 3 3 ( 1) 3 3 1 3 2 3 [for 2] = 27 2 0 as ,sobytheSqueeze
TheoremandTheorem4, {( 3) !} convergesto 0
35. Fromthegraph,itappearsthatthesequenceconvergesto 1 {( 2 ) } convergesto 0 by(7),andhence {1+( 2 ) } convergesto 1+0=1
36. Fromthegraph,itappearsthatthesequenceconvergestoanumber greaterthan 3 lim =lim sin =lim sin =lim 0+ sin = =1 =
37.
NOT FOR SALE
Fromthegraph,itappearsthatthesequenceconvergesto 1 2 As , =
so lim = 1 2
38.
Fromthegraph,itappearsthatthesequenceconvergesto 5
Hence, 5 bytheSqueezeTheorem.
39.
Alternatesolution: Let =(3 +5 )1 .Then
lim ln =lim ln(3 +5 ) H =lim 3 ln3+5 ln5 3 +5 =lim 3 5 ln3+ln5 3 5 +1 =ln5,
so lim = ln5 =5,andso 3 +5 convergesto 5
Fromthegraph,itappearsthatthesequence { } = 2 cos 1+ 2 is divergent,sinceitoscillatesbetween 1 and 1 (approximately).To provethis,supposethat { } convergesto .If = 2 1+ 2 ,then { } convergesto 1,and lim = 1 = .But =cos ,so lim doesnotexist.Thiscontradictionshowsthat { } diverges. 40.
Fromthegraph,itappearsthatthesequenceapproaches 0
(a)
convergesto 0.
,and
. (b) lim =1000lim (1 06) ,sothesequencedivergesby(7)with =1 06 1.
NOT FOR SALE
42. (a)Substitute 1 to 6 for in =100 1 0025 1 0 0025 toget 1 =$0, 2 =$0 25, 3 =$0 75, 4 =$1 50, 5 =$2 51,and 6 =$3 76
(b)Fortwoyears,use 2 12=24 for toget $70 28
43. (a)Wearegiventhattheinitialpopulationis 5000,so 0 =5000.Thenumberofcatfishincreasesby 8% permonthandis decreasedby 300 permonth,so 1 = 0 +8% 0 300=1 08 0 300, 2 =1 08 1 300,andsoon.Thus, =1 08 1 300.
(b)Usingtherecursiveformulawith 0 =5000,weget 1 =5100, 2 =5208, 3 =5325 (roundinganyportionofa catfish), 4 =5451, 5 =5587,and 6 =5734,whichisthenumberofcatfishinthepondaftersixmonths.
44. +1 = 1 2 if isanevennumber 3 +1 if isanoddnumber When 1 =11,thefirst 40 termsare 11, 34, 17, 52, 26,
,
ThefamousCollatzconjectureisthatthissequencealwaysreaches 1,regardlessofthestartingpoint 1 .
45. (a) 1 =1,
3=1, 4 =4 3 =4 1=3, 5 =4 4 =4 3=1.Sincethetermsofthesequencealternatebetween 1 and 3, thesequenceisdivergent.
(b)
2=2.Sinceallofthetermsare 2, lim =2 andhence,the sequenceisconvergent.
46. (a)Since lim = ,theterms approach as becomeslarge.Becausewecanmake ascloseto aswewish, +1 willalsobeclose,andso lim +1 = (b) 1 =1,
(c)If =lim then lim +1 = also,so mustsatisfy
;hence,thesequenceisconvergent.
(since hastobenon-negativeifitexists).
NOT FOR SALE
47. (a)Let bethenumberofrabbitpairsinthe nthmonth.Clearly 1 =1= 2 .Inthe nthmonth,eachpairthatis 2 ormoremonthsold(thatis, 2 pairs)willproduceanewpairtoaddtothe 1 pairsalreadypresent.Thus, = 1 + 2 ,sothat { } = { },theFibonaccisequence. (b)
then =lim 1 and =lim 2 ,so mustsatisfy
[since mustbepositive]. 48. For 2, 2 2, 2 2 2, ,
Alternatesolution:Let =lim .(Wecouldshowthelimitexistsbyshowingthat { } isboundedandincreasing.)
Then mustsatisfy = 2 2 =2 ( 2)=0. =0 sincethesequenceincreases,so =2.
50. = 2 3 3 +4 definesanincreasingsequencesincefor ( )=
3 3 +4 , 0 ( )= (3 +4)(2) (2 3)(3) (3 +4)2 = 17 (3 +4)2 0.Thesequenceisboundedsince 1 = 1 7 for 1, and 2 3 3 2 3 = 2 3 for 1.
51. Thetermsof = ( 1) alternateinsign,sothesequenceisnotmonotonic.Thefirstfivetermsare 1, 2, 3, 4,and 5. Since lim | | =lim = ,thesequenceisnotbounded.
52. = + 1 definesanincreasingsequencesincethefunction ( )= + 1 isincreasingfor 1 [ 0 ( )=1 1 2 0 for 1.]Thesequenceisunboundedsince as .(Itis,however,boundedbelowby 1 =2.)
53. Since { } isadecreasingsequence, +1 forall 1.Becauseallofitstermsliebetween 5 and 8, { } isa boundedsequence.BytheMonotonicSequenceTheorem, { } isconvergent;thatis, { } hasalimit mustbelessthan 8 since { } isdecreasing,so 5 8
54. (a)Let bethestatementthat +1 and 3 1 isobviouslytrue.Wewillassumethat istrueand thenshowthatasaconsequence +1 mustalsobetrue. +2 +1 2+ +1 2+
2+ +1 2+ +1 ,whichistheinductionhypothesis. +1 3 2+ 3 2+ 9 7,whichiscertainlytruebecauseweareassumingthat 3.So istrueforall ,andso 1 3 (showingthatthesequenceisbounded),andhencebytheMonotonicSequenceTheorem, lim exists.
(b)If =lim ,then lim +1 = also,so = 2+ 2 =2+ 2 2=0 ( +1)( 2)=0 =2 [since can’tbenegative].
55. 1 =1, +1 =3 1 .Weshowbyinductionthat { } isincreasingandboundedaboveby 3.Let betheproposition that +1 and 0 3.Clearly 1 istrue.Assumethat istrue.Then +1
1 1 +1 1 .Now
=3
3 1 = +1 +1 .Thisprovesthat { } isincreasingandbounded aboveby 3,so 1= 1 3,thatis, { } isbounded,andhenceconvergentbytheMonotonicSequenceTheorem. If =lim ,then lim +1 = also,so mustsatisfy =3 1 2 3 +1=0
But 1,so = 3+ 5 2 .
56. 1 =2, +1 = 1 3 .Weuseinduction.Let bethestatementthat 0 +1 2.Clearly 1 istrue,since 2 =1 (3 2)=1.Nowassumethat istrue.Then
bytheinduction hypothesis,so +1 istrue.Tofindthelimit,weusethefactthat
,sowemusthave
57. (0 8) 0 000001 ln(0 8) ln(0 000001) ln(0 8)
000001)
8) 61 9,so mustbeatleast 62 tosatisfythegiveninequality.
58. (a)If iscontinuous,then ( )= lim =lim ( )=lim +1 =lim = byExercise46(a). (b)Byrepeatedlypressingthecosinekeyonthecalculator(thatis,takingcosineofthepreviousanswer)untilthedisplayed valuestabilizes,weseethat 0 73909
59. (a)Suppose { } convergesto .Then +1 = + lim +1 =
+lim = + 2 + = ( + )=0 =0 or = . (b) +1 = + = 1+ since 1+ 1
INSTRUCTOR
NOT FOR SALE
(c)Bypart(b), 1 0 , 2 1 2 0 , 3 2 3 0 ,etc.Ingeneral, 0 ,
so lim lim · 0 =0 since By(7) lim =0 if 1 1.Here = (0 1)
(d)Let .Wefirstshow,byinduction,thatif 0 ,then and +1 For =0,wehave 1 0 = 0 +
Nowwesupposetheassertionistruefor = ,thatis, and +1 .Then +1 = + = ( )+ + = ( ) + 0 because .So +1 .And +2
( +1 ) + +1 0 since +1 .Therefore, +2 +1 .Thus,theassertionistruefor = +1.Itisthereforetrueforall bymathematicalinduction.
Asimilarproofbyinductionshowsthatif 0 ,then and { } isdecreasing.
Ineithercasethesequence { } isboundedandmonotonic,soitisconvergentbytheMonotonicSequenceTheorem. Itthenfollowsfrompart(a)that lim =
.Noticethat
8 .Itappearsthattheoddterms areincreasingandtheeventermsaredecreasing.Let’sprovethat 2
bymathematical induction.Supposethat
Wehavethusshown,byinduction,that theoddtermsareincreasingandtheeventermsaredecreasing.Alsoalltermslie between 1 and 2,soboth { } and { } areboundedmonotonicsequencesandthereforeconvergentbythe MonotonicSequenceTheorem.Let
2 .Takinglimitsofboth sides,weget =
[since 0].Thus, lim 2 = 2
Similarly,wefindthat lim 2
= 2.Sincetheeventermsapproach 2 andtheoddtermsalsoapproach 2,it followsthatthesequenceasawholeapproaches 2,thatis, lim = 2
NOT FOR SALE
LABORATORYPROJECTLogisticSequences
1. TowritesuchaprograminMapleitisbesttocalculateallthepointsfirstandthengraphthem.Onepossiblesequenceof commands[taking 0 = 1 2 and =1 5 forthedifferenceequation]is
t:=’t’;p(0):=1/2;k:=1.5; forjfrom1to20dop(j):=k*p(j-1)*(1-p(j-1))od; plot([seq([t,p(t)]t=0..20)],t=0..20,p=0..0.5,style=point);
InMathematica,wecanusethefollowingprogram:
p[0]=1/2
k=1.5
p[j ]:=k*p[j-1]*(1-p[j-1])
P=Table[p[t],{t,20}]
ListPlot[P]
With 0 = 1 2 and =1 5:
0 0 5 7 0 3338465076 14 0 3333373303
1 0 375 8 0 3335895255 15 0 3333353318
2 0 3515625 9 0 3334613309 16 0 3333343326
3 0 3419494629 10 0 3333973076 17 0 3333338329
4 0 3375300416 11 0 3333653143 18 0 3333335831
5 0 3354052689 12 0 3333493223 19 0 3333334582
6 0 3343628617 13 0 3333413274 20 0 3333333958
With 0 = 1 2 and =2 5:
0 0 5 7 0 6004164790 14 0 5999967417
1 0 625 8 0 5997913269 15 0 6000016291
2 0 5859375 9 0 6001042277 16 0 5999991854
3 0 6065368651 10 0 5999478590 17 0 6000004073
4 0 5966247409 11 0 6000260637 18 0 5999997964
5 0 6016591486 12 0 5999869664 19 0 6000001018
6 0 5991635437 13 0 6000065164 20 0 5999999491
Bothofthesesequencesseemtoconverge thefirsttoabout 1 3 ,thesecondtoabout0.60 .
INSTRUCTOR USE ONLY
Both of thesesequencesseemtoconverge the firsttoabout rsttoaboutR,thesecond toabout0.60 esecondtoabout0.60
With 0 = 7 8 and =1 5:
NOT FOR SALE
0 0 875 7 0 3239166554 14 0 3332554829
1 0 1640625 8 0 3284919837 15 0 3332943990
2 0 2057189941 9 0 3308775005 16 0 3333138639
3 0 2450980344 10 0 3320963702 17 0 3333235980
4 0 2775374819 11 0 3327125567 18 0 3333284655
5 0 3007656421 12 0 3330223670 19 0 3333308994
6 0 3154585059 13 0 3331777051 20 0 3333321164
With 0 = 7 8 and =2 5:
0 0 875 7 0 6016572368 14 0 5999869815
1 0 2734375 8 0 5991645155 15 0 6000065088
2 0 4966735840 9 0 6004159972 16 0 5999967455
3 0 6249723374 10 0 5997915688 17 0 6000016272
4 0 5859547872 11 0 6001041070 18 0 5999991864
5 0 6065294364 12 0 5999479194 19 0 6000004068
6 0 5966286980 13 0 6000260335 20 0 5999997966
Thelimitofthesequenceseemstodependon ,butnoton 0
2. With 0 = 7 8 and =3 2:
0 0 875 7 0 5830728495 14 0 7990633827
1 0 35 8 0 7779164854 15 0 5137954979
2 0 728 9 0 5528397669 16 0 7993909896
3 0 6336512 10 0 7910654689 17 0 5131681132
4 0 7428395416 11 0 5288988570 18 0 7994451225
5 0 6112926626 12 0 7973275394 19 0 5130643795
6 0 7603646184 13 0 5171082698 20 0 7994538304
Itseemsthateventuallytheterms fluctuatebetweentwovalues(about 0 5 and 0 8 inthiscase).
NOT FOR SALE
3. With 0 = 7 8 and =3 42:
0 0 875 7 0 4523028596 14 0 8442074951
1 0 3740625 8 0 8472194412 15 0 4498025048
2 0 8007579316 9 0 4426802161 16 0 8463823232
3 0 5456427596 10 0 8437633929 17 0 4446659586
4 0 8478752457 11 0 4508474156 18 0 8445284520
5 0 4411212220 12 0 8467373602 19 0 4490464985
6 0 8431438501 13 0 4438243545 20 0 8461207931
With 0 = 7 8 and =3 45:
0 0 875 7 0 4670259170 14 0 8403376122
1 0 37734375 8 0 8587488490 15 0 4628875685
2 0 8105962830 9 0 4184824586 16 0 8577482026
3 0 5296783241 10 0 8395743720 17 0 4209559716
4 0 8594612299 11 0 4646778983 18 0 8409445432
5 0 4167173034 12 0 8581956045 19 0 4614610237
6 0 8385707740 13 0 4198508858 20 0 8573758782
Fromthegraphsabove,itseemsthatfor between 3 4 and 3 5,thetermseventuallyfluctuatebetweenfourvalues.Inthe graphbelow,thepatternfollowedbythetermsis 0 395 0 832 0 487 0 869 0 395 .Notethatevenfor =3 42 (asinthe firstgraph),therearefourdistinct“branches”;evenafter 1000 terms,thefirstandthirdtermsinthepatterndifferbyabout 2 × 10 9 ,whilethefirstandfifthtermsdifferbyonly 2 × 10 10 .With 0 = 7 8 and =3 48:
NOT FOR SALE
Fromthegraphs,itseemsthatif 0 ischangedby 0 001,thewholegraphchangescompletely.(Note,however,thatthismight bepartiallyduetoaccumulatedround-offerrorintheCAS.ThesegraphsweregeneratedbyMaplewith100-digitaccuracy, anddifferentdegreesofaccuracygivedifferentgraphs.)Thereseemtobesomesomefleetingpatternsinthesegraphs,buton thewholetheyarecertainlyverychaotic.As increases,thegraphspreadsoutvertically,withmoreextremevaluescloseto 0 or 1
NOT FOR SALE
8.2Series
1. (a)Asequenceisanorderedlistofnumberswhereasaseriesisthe sum ofalistofnumbers.
(b)Aseriesisconvergentifthesequenceofpartialsumsisaconvergentsequence.Aseriesisdivergentifitisnotconvergent.
2. =1 =5 meansthatbyaddingsufficientlymanytermsoftheserieswecangetascloseasweliketothenumber 5
Inotherwords,itmeansthat lim =5,where isthe thpartialsum,thatis, =1
3.
4.
1 2 40000
2 1 92000
3 2 01600
4 1 99680
5 2 00064
6 1 99987
7 2 00003
8 1 99999
9 2 00000
10 2 00000
Fromthegraphandthetable,itseemsthattheseriesconvergesto 2.Infact,itisageometric
serieswith = 2 4 and = 1 5 ,soitssumis
Notethatthedotcorrespondingto =1 ispartofboth { } and { }
TI-86Note: Tograph { } and { },setyourcalculatortoParammodeandDrawDotmode.(DrawDotisunder
GRAPH,MORE,FORMT(F3).)Nowunder E(t)= maketheassignments: xt1=t,yt1=12/(-5)ˆt,xt2=t, yt2=sumseq(yt1,t,1,t,1). (sumandseqareunderLIST,OPS(F5),MORE.)UnderWINDuse 1,10,1,0,10,1,-3,1,1 toobtainagraphsimilartotheoneabove.ThenuseTRACE(F4)toseethevalues.
1 0 54030
2 0 12416
3 0 86584
4 1 51948
5 1 23582
6 0 27565
7 0 47825
8 0 33275
9 0 57838
10 1 41745
Theseries =1 cos diverges,sinceitstermsdonotapproach 0
1 0 44721
2 1 15432
3 1 98637
4 2 88080
5 3 80927
6 4 75796
7 5 71948
8 6 68962
9 7 66581
10 8 64639
NOT FOR SALE
Theseries =1 2 +4 diverges,sinceitstermsdonotapproach 0
1 4 90000
2 8 33000 3 10 73100
4 12 41170
5 13 58819
6 14 41173
7 14 98821
8 15 39175
9 15 67422
10 15 87196
Fromthegraphandthetable,weseethatthetermsaregettingsmallerandmayapproach 0, andthattheseriesapproachesavaluenear 16.Theseriesisgeometricwith 1 =4 9 and =0 7,soitssumis
1 0 29289
2 0 42265
3 0 50000
4 0 55279
5 0 59175
6 0 62204
7 0 64645
8 0 66667
9 0 68377
10 0 69849
Fromthegraphandthetable,itseemsthattheseriesconverges.
NOT FOR SALE
2 0 12500
3 0 19167
4 0 23333
5 0 26190
6 0 28274
7 0 29861
8 0 31111
9 0 32121
10 0 32955
11 0 33654
Fromthegraphandthetable,itseemsthattheseriesconverges.
9. (a) lim =lim 2 3 +1 = 2 3 ,sothe sequence { } isconvergentby(8.1.1).
(b)Since lim = 2 3 =0,the series =1 isdivergentbytheTestforDivergence.
10. (a)Both =1 and =1 representthesumofthefirst termsofthesequence { },thatis,the thpartialsum. (b) =1 = + + + terms = ,which,ingeneral,isnotthesameas =1 =
11. 3 4+ 16 3 64 9 + isageometricserieswithratio = 4 3 .Since | | = 4 3 1,theseriesdiverges.
12. 4+3+ 9 4 + 27 16 + isageometricserieswithratio 3 4 .Since | | = 3 4 1,theseriesconvergesto 1 = 4 1 3 4 =16
13. 10 2+0 4 0 08+ isageometricserieswithratio 2 10 = 1 5 .Since | | = 1 5 1,theseriesconvergesto 1 = 10 1 ( 1 5) = 10 6 5 = 50 6 = 25 3
14. 1+0 4+0 16+0 064+ ··· isageometricserieswithratio =0 4= 2 5 .Since | | = 2 5 1,theseriesconvergesto 1 = 1 1 2 5 = 5 3 .
15. =1 6(0 9) 1 isageometricserieswithfirstterm =6 andratio =0 9.Since | | =0 9 1,theseriesconvergesto 1 = 6 1 0 9 = 6 0 1 =60
Converges.
NOT FOR SALE
.Thefirstseriesisaconvergent geometricseries (| | = 1 2 1),butthesecondseriesisadivergentgeometricseries (| | = 3 2 1),sotheoriginalseries isdivergent. 25. =1 2=2+ 2+ 3 2+ 4 2+ divergesbytheTestforDivergencesince lim =lim 2=lim 21 =2
=1 =0 26. =1 (cos1) isageometricserieswithratio =cos1 0 540302.Itconvergesbecause | | 1.Itssumis
divergesbytheTestforDivergencesince lim =lim arctan = 2 =0
NOT FOR SALE INSTRUCTOR
28. =1 (0 8) 1 (0 3) = =1 (0 8) 1 =1 (0 3) [differenceoftwoconvergentgeometricseries] = 1 1 0 8 0 3 1
29. =1 1 = =1 1 isageometricserieswithfirstterm = 1 andratio = 1 .Since | | = 1 1,theseriesconverges to 1 1 1 = 1 1 1 = 1 1 .ByExample6, =1 1 ( +1) =1.Thus,byTheorem8(ii), =1 1 + 1 ( +1) = =1
30. =1 3 5 + 2 divergesbecause =1 2 =2 =1 1 diverges.(Ifitconverged,then
2 · 2 =1 1 wouldalsoconvergeby
Theorem8(i),butweknowfromExample7thattheharmonicseries =1 1 diverges.)Ifthegivenseriesconverges,thenthe difference =1 3 5 + 2 =1 3 5 mustconverge(since =1 3 5 isaconvergentgeometricseries)andequal =1 2 ,but wehavejustseenthat =1 2 diverges,sothegivenseriesmustalsodiverge.
31. Usingpartialfractions,thepartialsumsoftheseries =2
32. Fortheseries
33. Fortheseries
[usingpartialfractions].Thelattersumis
[usingpartialfractions].Thelattersumis
NOT FOR SALE
34. Fortheseries =1 ln +1 , =(ln1 ln2)+(ln2 ln3)+(ln3 ln4)+ +[ln ln( +1)]=ln1 ln( +1)= ln( +1) [telescopingseries]
Thus, lim = ,sotheseriesisdivergent.
35. (a)Manypeoplewouldguessthat 1,butnotethat consistsofaninfinitenumberof 9s.
(b) =0 99999 = 9 10 + 9 100 + 9 1000 + 9 10,000 + = =1 9 10 ,whichisageometricserieswith 1 =0 9 and =0 1.Itssumis 0 9 1 0 1 = 0 9 0 9 =1,thatis, =1
(c)Thenumber 1 hastwodecimalrepresentations, 1 00000 and 0 99999
(d)Exceptfor 0,allrationalnumbersthathaveaterminatingdecimalrepresentationcanbewritteninmorethanoneway.For example, 0 5 canbewrittenas 0 49999 aswellas 0 50000
36.
NOT FOR SALE
43. =0 cos 2 isageometricserieswithfirstterm1andratio = cos 2 ,soitconverges | | 1.But | | = |cos | 2
forall .Thus,theseriesconvergesforallrealvaluesof andthesumoftheseriesis 1 1 (cos ) 2 = 2 2 cos
44. Because 1 0 and ln iscontinuous,wehave lim ln 1+ 1 =ln1=0
Wenowshowthattheseries =1 ln 1+ 1 = =1 ln +1 = =1 [ln( +1) ln ] diverges. =(ln2 ln1)+(ln3 ln2)+ +(ln( +1) ln )=ln( +1) ln1=ln( +1)
As , =ln( +1) ,sotheseriesdiverges.
45. Afterdefining ,Weuse convert(f,parfrac); inMaple, Apart inMathematica,or ExpandRational and Simplify inDerivetofindthatthegeneraltermis
3 1 (
3 .Sothe nthpartialsumis
Theseriesconvergesto lim =1.Thiscanbeconfirmedbydirectlycomputingthesumusing sum(f,1..infinity); (inMaple), Sum[f,{n,1,Infinity}] (inMathematica),or CalculusSum (from 1 to )and Simplify (inDerive).
46. SeeExercise45forspecificCAScommands.
Theseriesconvergesto lim = 1 4 .
NOT FOR SALE
49. (a)Afterthefirstpillistaken, 100mg ofthedrugisinthebody.Afterthesecondpillistaken, 100mg plus 100(5%)mg remainsinthebody.Afterthethirdpillistaken 100mg plus 100(5%)mg plus [100(5%)](5%)mg remainsinthebody. Thisgivesus 100+100(0 05)+100(0 05)2 =105 25mg ofthedrugremaininginthebodyafterthepatienttakesthree pills.
(b)Continuingthepatternestablishedinpart(a),weget 100+100(0 05)+100(0 05)2 + +100(0 05) 1 mg after pillsaretaken.By(3),thissumis 100(1 0 05 ) 1 0 05 .
(c)Theamountofthedrugremaininginthebodyinthelongruncanbeapproximatedbysummingtheinfiniteserieswith 1 =100 and =0 05.Thissumis 100 1 0 05 = 100 0 95 105 26mg
50. (a)Westartwith fliesbeingreleased.After 1 day,wehave 1 fliesplusanewreleaseof flies.After 2 days,wehave 2 + 1 + flies.After days,wehave + 1 + + 1 + = =0 = (1 +1 ) 1 by(3).In thelongrun,wehaveageometricserieswith 1 = and = ,soitssumis 1
(b)Wewantthesumtobe 10,000,so 10,000= 1 0 9 [frompart(a)] =10,000(0 1)=1000
51. (a)Thefirststepinthechainoccurswhenthelocalgovernmentspends dollars.Thepeoplewhoreceiveitspendafraction ofthose dollars,thatis, dollars.Thosewhoreceivethe dollarsspendafraction ofit,thatis, 2 dollars. Continuinginthisway,weseethatthetotalspendingafter transactionsis = + + 2 + + –1
by(3).
(b)
= [since + =1] = [since =1 ] If =0 8,then =1 =0 2 andthemultiplieris =1 =5
52. (a)Initially,theballfallsadistance ,thenreboundsadistance ,falls ,rebounds 2 ,falls 2 ,etc.Thetotal distanceittravelsis
(b)FromExample3inSection2.1,weknowthataballfalls 1 2 2 metersin seconds,where isthegravitational acceleration.Thus,aballfalls metersin = 2 seconds.Thetotaltraveltimeinsecondsis
NOT FOR SALE
(c)Itwillhelptomakeachartofthetimeforeachdescentandeachreboundoftheball,togetherwiththevelocityjustbefore andjustaftereachbounce.Recallthatthetimeinsecondsneededtofall metersis 2 .Theballhitsthegroundwith velocity 2 = 2 (takingtheupwarddirectiontobepositive)andreboundswithvelocity 2 = 2 ,takingtime 2 toreachthetopofitsbounce,whereitsvelocityis 0.Atthatpoint, itsheightis 2 .Alltheseresultsfollowfromtheformulasforverticalmotionwithgravitationalacceleration :
Thetotaltraveltimeinsecondsis
Anothermethod: Wecouldusepart(b).Atthetopofthebounce,theheightis 2 = ,so = andtheresultfollows frompart(b).
53. =2 (1+ ) isageometricserieswith =(1+ ) 2 and =(1+ ) 1 ,sotheseriesconvergeswhen (1+ ) 1
.Wecalculatethesumofthe
.However,thenegativerootisinadmissiblebecause
54. =0 = =0 ( ) isageometricserieswith =( )0 =1 and = .If 1,ithassum 1 1 ,so 1 1 =10 1 10 =1 = 9 10 =ln 9 10 .
NOT FOR SALE
55. = 1+ 1 2 + 1 3 + + 1 = 1 1 2
Thus, +1 and lim = .Since { } isincreasing, lim = ,implyingthattheharmonicseriesis divergent.
56. Theareabetween = 1 and = for 0 1 is
Wecanseefromthediagramthatas ,thesumoftheareas betweenthesuccessivecurvesapproachestheareaoftheunitsquare, thatis, 1.So =1 1 ( +1) =1
57. Let bethediameterof .Wedrawlinesfromthecentersofthe to thecenterof (or ),andusingthePythagoreanTheorem,wecanwrite
Similarly,
,andingeneral,
.Ifweactuallycalculate 2 and 3 fromtheformulasabove,wefindthattheyare 1 6 = 1 2 · 3 and 1 12 = 1 3 · 4 respectively,sowesuspectthatingeneral, = 1 ( +1) .Toprovethis,weuseinduction:Assumethatforall , =
[telescopingsum].Substitutingthisintoour formulafor +1 ,weget
,andtheinductioniscomplete.
Now,weobservethatthepartialsums =1 ofthediametersofthecirclesapproach 1 as ;thatis, =1 = =1 1 ( +1) =1,whichiswhatwewantedtoprove.
NOT FOR SALE
58. | | = sin , | | = | | sin = sin2 , | | = | | sin = sin3 , .Therefore, | | + | | + | | + | | + = =1 sin = sin 1 sin sincethisisageometricserieswith =sin and |sin | 1 because 0 2 .
59. Theseries 1 1+1 1+1 1+ diverges(geometricserieswith = 1)sowecannotsaythat 0=1 1+1 1+1 1+ .
60. If =1 isconvergent,then lim =0 byTheorem6,so lim 1 =0,andso =1 1 isdivergentbytheTestfor Divergence.
61. Supposeonthecontrarythat ( + ) converges.Then ( + ) and areconvergentseries.Soby Theorem8(iii), [( + ) ] wouldalsobeconvergent.But [( + ) ]= ,acontradiction,since isgiventobedivergent.
62. No.Forexample,take = and = ( ),whichbothdiverge,yet ( + )= 0,whichconverges withsum 0
63. Thepartialsums { } formanincreasingsequence,since 1 = 0 forall .Also,thesequence { } isbounded since 1000 forall .SobytheMonotonicSequenceTheorem,thesequenceofpartialsumsconverges,thatis,theseries isconvergent.
64. (a)RHS
[frompart(a)]
[asabove]
NOT FOR SALE
65. (a)Atthefirststep,onlytheinterval 1 3 2 3 (length 1 3 )isremoved.Atthesecondstep,weremovetheintervals 1 9 2 9 and 7 9 8 9 ,whichhaveatotallengthof 2 · 1 3 2 .Atthethirdstep,weremove 22 intervals,eachoflength 1 3 3 .Ingeneral, atthe nthstepweremove 2 1 intervals,eachoflength 1 3 ,foralengthof 2 1 · 1 3 = 1 3 2 3 1 .Thus,thetotal lengthofallremovedintervalsis =1 1 3 2 3 1 = 1 3 1 2 3 =1 geometricserieswith = 1 3 and = 2 3 .Noticethatat the thstep,theleftmostintervalthatisremovedis 1 3 2 3 ,soweneverremove 0,and 0 isintheCantorset.Also, therightmostintervalremovedis 1
,so 1 isneverremoved.SomeothernumbersintheCantorset are
(b)Thearearemovedatthefirststepis 1 9 ;atthesecondstep, 8 · 1 9 2 ;atthethirdstep, (8)2 · 1 9 3 .Ingeneral,thearea removedatthe thstepis (8) 1 1 9 = 1 9 8 9 1 ,sothetotalareaofallremovedsquaresis
Thelimitsseemtobe 5 3 , 8 3 , 2, 3, 667,and 334.Notethatthelimitsappeartobe“weighted”moretoward 2 .Ingeneral,we guessthatthelimitis
atotalof 1 timesinthiscalculation,onceforeach between 3 and +1.Nowwecanwrite
NOT FOR SALE
67. (a)For =1 ( +1)! , 1 = 1 1 2 = 1 2 , 2 = 1 2 + 2 1 2 3 = 5 6 , 3 = 5 6 + 3 1 2 3 4 = 23 24 , 4 = 23 24 + 4 1 2 3 4 5 = 119 120 .Thedenominatorsare ( +1)!,soaguesswouldbe = ( +1)! 1 ( +1)!
(b)For =1, 1 = 1 2 = 2! 1 2! ,sotheformulaholdsfor =1.Assume = ( +1)! 1 ( +1)! .Then +1 = ( +1)! 1 ( +1)! + +1 ( +2)! = ( +1)! 1 ( +1)! + +1 ( +1)!( +2) = ( +2)! ( +2)+ +1 ( +2)! = ( +2)! 1 ( +2)!
Thus,theformulaistruefor = +1.Sobyinduction,theguessiscorrect.
(c) lim =lim ( +1)! 1 ( +1)! =lim 1 1 ( +1)! =1 andso =1 ( +1)! =1.
68. Let 1 = radiusofthelargecircle, 2 = radiusofnextcircle,andsoon. Fromthefigurewehave =60 and cos60 = 1 | |,so | | =2 1 and | | =2 2 .Therefore,
1 =3 2 .Ingeneral,wehave +1 = 1 3 ,sothetotalareais
Sincethesidesofthetrianglehavelength
.Theareaofthetriangleis 3 4 ,sothecirclesoccupyabout 83 1% oftheareaofthetriangle.
NOT FOR SALE
8.3TheIntegralandComparison Tests;EstimatingSums
1. Thepictureshowsthat 2 = 1 21 3 2 1 1 1 3 , 3 = 1 31 3 3 2 1 1 3 ,andsoon,so =2 1 1 3 1 1 1 3 .The integralconvergesby(5.10.2)with =1 3 1,sotheseriesconverges.
2. Fromthefirstfigure,weseethat
6 1 ( ) 5 =1 .Fromthesecondfigure, weseethat 6 =2 6 1 ( ) .Thus,we have 6 =2 6 1 ( ) 5 =1
3. (a)Wecannotsayanythingabout .If forall and isconvergent,then couldbeconvergentor divergent.(SeethenoteafterExample2.)
(b)If forall ,then isconvergent.[Thisispart(i)oftheComparisonTest.]
4. (a)If forall ,then isdivergent.[Thisispart(ii)oftheComparisonTest.]
(b)Wecannotsayanythingabout .If forall and isdivergent,then couldbeconvergentor divergent.
5. =1 isa -serieswith = =1 isageometricseries.By(1),the -seriesisconvergentif 1.Inthiscase, =1 = =1 1 ,so 1 1 arethevaluesforwhichtheseriesconverge.Ageometricseries
6. Thefunction ( )=1
iscontinuous,positive,anddecreasingon [1 ),sotheIntegralTestapplies.
Sincethisimproperintegralisconvergent,theseries =1 1 5 isalsoconvergentbytheIntegralTest.
7. Thefunction ( )=1 5 = 1 5 iscontinuous,positive,anddecreasingon [1 ),sotheIntegralTestapplies.
NOT FOR SALE
SECTION8.3 THEINTEGRALANDCOMPARISONTESTS;ESTIMATINGSUMS
8. Thefunction ( )=1 +4=( +4) 1 2 iscontinuous,positive,anddecreasingon [1 ),sotheIntegralTestapplies. 1 ( +4) 1 2 =lim 1 ( +4) 1 2 =lim 2( +4)1 2 1 =lim 2 +4 2 5 = ,sotheseries =1 1 +4 diverges.
9. 2 3 +1 2 3 = 1 2 2 1 2 forall 1,so =1 2 3 +1 convergesbycomparisonwith =1 1 2 ,whichconverges becauseitisa p-serieswith =2 1.
10. 3 4 1 3 4 = 1 forall 2,so =2 3 4 1 divergesbycomparisonwith =2 1 ,whichdivergesbecauseitisa p-series with =1 1 (theharmonicseries).
11. Theseries =1 1 0 85 isa -serieswith =0 85 1,soitdivergesby(1).Therefore,theseries =1 2 0 85 mustalsodiverge, forifitconverged,then =1 1 0 85 wouldhavetoconverge[byTheorem8(i)inSection8.2].
12. =1 1 4 and =1 1 2 are -serieswith 1,sotheyconvergeby(1).Thus, =1 3 1 2 convergesbyTheorem8(i)in
Section8.2.ItfollowsfromTheorem8(ii)thatthegivenseries =1 ( 1 4 +3 1 2 ) alsoconverges.
13. 1+ 1 8 + 1 27 + 1 64 + 1 125 + = =1 1 3 .Thisisa -serieswith =3 1,soitconvergesby(1).
14. 1+
3 2 .Thisisa -serieswith = 3 2 1,soitconvergesby(1).
15. ( )= iscontinuousandpositiveon [1 ). 0 ( )= + = (1 ) 0 for 1,so isdecreasing on [1 ).Thus,theIntegralTestapplies. 1 =lim 1 =lim 1 [byparts] =lim [ + 1 + 1 ]=2 since lim =lim ( ) H =lim (1 )=0 and lim =0.Thus, =1 converges.
16. ( )= 2 3 +1 iscontinuousandpositiveon [2 ),andalsodecreasingsince 0 ( )= (2 3 ) ( 3 +1)2 0 for 2, sowecanusetheIntegralTest[notethat is not decreasingon [1 )] 2
ln9 = ,sotheseries =2 2 3 +1 diverges,andsodoes thegivenseries,
NOT FOR SALE
17. ( )= 1 ln iscontinuousandpositiveon [2 ),andalsodecreasingsince 0 ( )= 1+ln 2 (ln )2 0 for 2,sowecan
usetheIntegralTest. 2 1 ln =lim [ln(ln )]2 =lim [ln(ln ) ln(ln2)]= ,sotheseries =2 1 ln diverges.
Anothersolution: Thefunction ( )=1 ( 2 +9) iscontinuous,positive,anddecreasingon [1 ),sotheIntegralTest applies.
.Sincetheintegralconverges,sodoestheseries.
aconstantmultipleofaconvergent -series[ =2 1].Thetermsofthegivenseriesarepositivefor 1,whichisgood enough.
NOT FOR SALE
25. UsetheLimitComparisonTestwith = 1+4 1+3 and = 4 3 :
diverges,sodoes =1
orusetheTestforDivergence.
.Alternatively,usetheComparisonTestwith
convergesbycomparisonwiththeconvergent -series
27. 2+( 1) 3 ,and =1 3 convergesbecauseitisaconstantmultipleoftheconvergent -series =1 1 = 3 2 1 ,sothegivenseriesconvergesbytheComparisonTest.
28.
,sothegivenseriesconvergesbycomparisonwithaconstantmultipleofa convergentgeometricseries.
29. UsetheLimitComparisonTestwith =sin 1 and = 1 .Then and areserieswithpositivetermsand lim =lim sin(1 ) 1 =lim 0 sin =1 0.Since =1 isthedivergentharmonicseries, =1 sin(1 ) alsodiverges.[Notethatwecouldalsousel’Hospital’sRuletoevaluatethelimit: lim sin(1 ) 1 H =lim cos(1 ) · 1 2 1 2 =lim cos 1 =cos0=1.]
30. If =
and =
,then
, so =1 2 5 3 + +1 divergesbytheLimitComparisonTestwiththedivergentharmonicseries =1 1 (Notethat 0 for 6.)
31. Wehavealreadyshown(inExercise17)thatwhen =1 theseries =2 1 (ln ) diverges,soassumethat =1. ( )= 1 (ln ) iscontinuousandpositiveon [2 ),and 0 ( )= +ln 2 (ln ) +1 0 if ,sothat iseventually decreasingandwecanusetheIntegralTest. 2 1 (ln ) =lim (ln )1
Thislimitexistswhenever 1 0 1,sotheseriesconvergesfor 1
NOT FOR SALE
32. (a) ( )=1 4 ispositiveandcontinuousand 0 ( )= 4 5 isnegativefor 0,andsotheIntegralTestapplies.
1 082037+0 000250=1 082287 1 082037+0 000333=1 082370,soweget 1 08233 with error 0 00005 (c) 1 4 =
thatis,for 32.
33. (a) ( )= 1 2 ispositiveandcontinuousand 0 ( )= 2 3 isnegativefor 0,andsotheIntegralTestapplies.
1 549768+0 090909=1 640677 1 549768+0 1=1 649768,soweget 1 64522 (theaverageof 1 640677 and 1 649768)witherror 0 005 (themaximumof 1 649768 1 64522 and 1 64522 1 640677,roundedup). (c) 1 2 =
35. ( )=1 (2 +1)6 iscontinuous,positive,anddecreasingon [1 ),sotheIntegralTestapplies.Using(3), (2 +1) 6 =lim 1 10(2 +1)5 = 1 10(2 +1)5 .Tobecorrecttofivedecimalplaces,wewant
NOT FOR SALE
36. ( )= 1 (ln )2 ispositiveandcontinuousand 0 ( )= ln
)3 isnegativefor 1,sotheIntegralTestapplies. Using(3),weneed 0
,sowewouldhavetotakethis manyterms,whichwouldbeproblematicbecause
(b)Bypart(a), 106 1+ln106 14 82 15 and 109 1+ln10
41. Since 10 9
foreach ,andsince =1 9
willalwaysconvergebytheComparisonTest.
isaconvergentgeometricseries |
42. Firstweobservethat,byl’Hospital’sRule, lim 0 ln(1+ ) =lim 0 1 1+ =1.Also,if converges,then lim =0 by
Theorem8.2.6.Therefore, lim ln(1+ ) =lim 0 ln(1+ ) =1 0.Wearegiventhat isconvergentand 0
Thus, ln(1+ ) isconvergentbytheLimitComparisonTest.
NOT FOR SALE
43. Yes.Since isaconvergentserieswithpositiveterms, lim =0 byTheorem8.2.6,and = sin( ) isa serieswithpositiveterms(forlargeenough ).Wehave lim =lim sin( ) =1 0 byTheorem3.3.2.Thus, isalsoconvergentbytheLimitComparisonTest.
44. ln = ln ln = ln ln = ln = 1 ln .Thisisa -series,whichconvergesforall suchthat ln 1 ln 1 1 1 [with 0].
45. lim =lim 1 ,soweapplytheLimitComparisonTestwith = 1 .Since lim 0 weknowthateitherboth
seriesconvergeorbothseriesdiverge,andwealsoknowthat =1 1 diverges[ -serieswith =1].Therefore, mustbe divergent.
46. Fortheseries
Thus, =1 1 +1 =lim
.Sinceaconstantmultipleofadivergentseries isdivergent,thelastlimitexistsonlyif 1=0,sotheoriginalseriesconvergesonlyif =1
8.4OtherConvergenceTests
1. (a)Analternatingseriesisaserieswhosetermsarealternatelypositiveandnegative.
(b)Analternatingseries =1 = =1 ( 1) 1 ,where = | |,convergesif 0 +1 forall and lim =0. (ThisistheAlternatingSeriesTest.)
(c)Theerrorinvolvedinusingthepartialsum asanapproximationtothetotalsum istheremainder = andthe sizeoftheerrorissmallerthan +1 ;thatis, | | +1 .(ThisistheAlternatingSeriesEstimationTheorem.)
2. (a)Since lim +1 =8 1,part(b)oftheRatioTesttellsusthattheseries isdivergent.
(b)Since lim +1 =0 8 1,part(a)oftheRatioTesttellsusthattheseries isabsolutelyconvergent(and thereforeconvergent).
(c)Since lim +1 =1,theRatioTestfailsandtheseries mightconvergeoritmightdiverge.