Solutions for Calculus Early Transcendentals 9th Us Edition by Stewart

Page 1


1

FUNCTIONSANDMODELS

1.1FourWaystoRepresentaFunction

1. Thefunctions  ()=  + √2  and  ()=  + √2  giveexactlythesameoutputvaluesforeveryinputvalue,so  and  areequal.

2.  ()=  2   1 = ( 1)  1 =  for  1 =0,so  and  [where  ()= ]arenotequalbecause  (1) isundefinedand  (1)=1.

3. (a)Thepoint ( 2 2) liesonthegraphof  ,so  ( 2)=2.Similarly,  (0)= 2,  (2)=1,and  (3)  2 5.

(b)Onlythepoint ( 4 3) onthegraphhasa  ­valueof 3,sotheonlyvalueof  forwhich  ()=3 is 4

(c)Thefunctionoutputs  () arenevergreaterthan3,so  () ≤ 3 fortheentiredomainofthefunction.Thus,  () ≤ 3 for 4 ≤  ≤ 4 (or,equivalently,ontheinterval [ 4 4]).

(d)Thedomainconsistsofall ­valuesonthegraphof  : { | 4 ≤  ≤ 4} =[ 4 4].Therangeof  consistsofallthe  ­valuesonthegraphof  : { | 2 ≤  ≤ 3} =[ 2 3]

(e)Forany 1 2 intheinterval [0 2],wehave  (1 )  (2 ).[Thegraphrisesfrom (0 2) to (2 1).]Thus,  () is increasingon [0 2]

4. (a)Fromthegraph,wehave  ( 4)= 2 and  (3)=4

(b)Since  ( 3)= 1 and  ( 3)=2,orbyobservingthatthegraphof  isabovethegraphof  at  = 3,  ( 3) islarger than  ( 3)

(c)Thegraphsof  and  intersectat  = 2 and  =2,so  ()=  () atthesetwovaluesof .

(d)Thegraphof  liesbeloworonthegraphof  for 4 ≤  ≤−2 andfor 2 ≤  ≤ 3.Thus,theintervalsonwhich  () ≤  () are [ 4 2] and [2 3].

(e)  ()= 1 isequivalentto  = 1,andthepointsonthegraphof  with  ­valuesof 1 are ( 3 1) and (4 1),so thesolutionoftheequation  ()= 1 is  = 3 or  =4.

(f)Forany 1 2 intheinterval [ 4 0],wehave  (1 )  (2 ).Thus,  () isdecreasingon [ 4 0]

(g)Thedomainof  is { | 4 ≤  ≤ 4} =[ 4 4].Therangeof  is { | 2 ≤  ≤ 3} =[ 2 3].

(h)Thedomainof  is { | 4 ≤  ≤ 3} =[ 4 3].Estimatingthelowestpointofthegraphof  ashavingcoordinates (0 0 5),therangeof  isapproximately { | 0 5 ≤  ≤ 4} =[0 5 4].

5. FromFigure1inthetext,thelowestpointoccursatabout ()=(12 85).Thehighestpointoccursatabout (17 115). Thus,therangeoftheverticalgroundaccelerationis 85 ≤  ≤ 115.Writteninintervalnotation,therangeis [ 85 115]

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. 9

6. Example1: Acarisdrivenat 60 mihfor 2 hours.Thedistance  traveledbythecarisafunctionofthetime .Thedomainofthe functionis { | 0 ≤  ≤ 2},where  ismeasuredinhours.Therange ofthefunctionis { | 0 ≤  ≤ 120},where  ismeasuredinmiles.

Example2: Atacertainuniversity,thenumberofstudents  on campusatanytimeonaparticulardayisafunctionofthetime  after midnight.Thedomainofthefunctionis { | 0 ≤  ≤ 24},where  is measuredinhours.Therangeofthefunctionis { | 0 ≤  ≤  }, where  isanintegerand  isthelargestnumberofstudentson campusatonce.

Example3: Acertainemployeeispaid $8 00 perhourandworksa maximumof 30 hoursperweek.Thenumberofhoursworkedis roundeddowntothenearestquarterofanhour.Thisemployee’s grossweeklypay  isafunctionofthenumberofhoursworked  Thedomainofthefunctionis [0 30] andtherangeofthefunctionis

{

.Sincetheequationdeterminesexactly onevalueof  foreachvalueof ,theequationdefines  asafunctionof 

8. Wesolve

.Sincetheequationdetermines exactlyonevalueof  foreachvalueof ,theequationdefines  asafunctionof 

9. Wesolve  2 +( 3)

 =3 ± √5 2 .Someinputvalues  correspondtomorethanoneoutput  .(Forinstance,  =1 correspondsto  =1 and to  =5.)Thus,theequationdoes not define  asafunctionof 

(usingthequadraticformula).Someinput values  correspondtomorethanoneoutput  .(Forinstance,  =4 correspondsto  = 2 andto  =25.)Thus,the equationdoes not define  asafunctionof  11. Wesolve (

 = 3+ 3 √2 1.Sincetheequationdeterminesexactlyonevalueof  foreachvalueof ,theequationdefines  asa functionof .

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

12. Wesolve 2 | | =0 for  : 2 | | =0 ⇔ | | =2 ⇔  = ±2.Someinputvalues  correspondtomorethan oneoutput  .(Forinstance,  =1 correspondsto  = 2 andto  =2.)Thus,theequationdoes not define  asafunction of 

13. Theheight60in ( =60) correspondstoshoesizes7and8 ( =7 and  =8).Sinceaninputvalue  correspondstomore thanoutputvalue  ,thetabledoes not define  asafunctionof .

14. Eachyear  correspondstoexactlyonetuitioncost  .Thus,thetabledefines  asafunctionof .

15. No,thecurveisnotthegraphofafunctionbecauseaverticallineintersectsthecurvemorethanonce.Hence,thecurvefails theVerticalLineTest.

16. Yes,thecurveisthegraphofafunctionbecauseitpassestheVerticalLineTest.Thedomainis [ 2 2] andtherange is [ 1 2].

17. Yes,thecurveisthegraphofafunctionbecauseitpassestheVerticalLineTest.Thedomainis [ 3 2] andtherange is [ 3 2) ∪ [ 1 3].

18. No,thecurveisnotthegraphofafunctionsincefor  =0, ±1,and ±2,thereareinfinitelymanypointsonthecurve.

19. (a)When  =1950,  ≈ 13 8◦ C,sotheglobalaveragetemperaturein1950wasabout 13 8◦ C

(b)When  =14 2◦ C,  ≈ 1990

(c)Theglobalaveragetemperaturewassmallestin1910(theyearcorrespondingtothelowestpointonthegraph)andlargest in2000(theyearcorrespondingtothehighestpointonthegraph).

(d)When  =1910,  ≈ 13 5◦ C,andwhen  =2000,  ≈ 14 4◦ C.Thus,therangeof  isabout [13 5, 14 4].

20. (a)Theringwidthvariesfromnear 0mm toabout 1 6mm,sotherangeoftheringwidthfunctionisapproximately [0 1 6]

(b)Accordingtothegraph,theearthgraduallycooledfrom 1550to1700,warmedintothelate1700s,cooledagainintothe late1800s,andhasbeensteadilywarmingsincethen.Inthemid­19thcentury,therewasvariationthatcouldhavebeen associatedwithvolcaniceruptions.

21. Thewaterwillcooldownalmosttofreezingastheicemelts.Then,when theicehasmelted,thewaterwillslowlywarmuptoroomtemperature.

22. Thetemperatureofthepiewouldincreaserapidly,levelofftooven temperature,decreaserapidly,and thenlevelofftoroomtemperature.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

¤ CHAPTER1 FUNCTIONSANDMODELS

23. (a)Thepowerconsumptionat6 AM is 500MW whichisobtainedbyreadingthevalueofpower  when  =6 fromthe graph.At6 PM wereadthevalueof  when  =18 obtainingapproximately 730MW

(b)Theminimumpowerconsumptionisdeterminedby findingthetimeforthelowestpointonthegraph,  =4 or 4 AM .The maximumpowerconsumptioncorrespondstothehighestpointonthegraph,whichoccursjustbefore  =12 orright beforenoon.Thesetimesarereasonable,consideringthe powerconsumptionschedulesofmostindividualsand businesses.

24. RunnerAwontherace,reachingthe finishlineat 100 metersinabout 15 seconds,followedbyrunnerBwithatimeofabout 19 seconds,andthenbyrunnerCwho finishedinaround 23 seconds.Binitiallyledtherace,followedbyC,andthenA. CthenpassedBtoleadforawhile.ThenApassed firstB,andthenpassedCtotaketheleadand finish first.Finally, BpassedCto finishinsecondplace.Allthreerunnerscompletedtherace.

25. Ofcourse,thisgraphdependsstronglyonthe geographicallocation!

26. Thesummersolstice(thelongestdayoftheyear)is aroundJune21,andthewintersolstice(theshortestday) isaroundDecember22.(Exchangethedatesforthe southernhemisphere.)

27. Asthepriceincreases,theamountsolddecreases.

28. Thevalueofthecardecreasesfairlyrapidlyinitially,then somewhatlessrapidly. 29.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

30. (a) (b) (c) (d)

31. (a)

(b)9:00 AM correspondsto  =9.When  =9,the temperature  isabout 74◦ F

32. (a)

33.  ()=3 2  +2

 (2)=3(2)2 2+2=12 2+2=12

 ( 2)=3( 2)2 ( 2)+2=12+2+2=16

 ()=3 2  +2.  ( )=3( )2 (

2 ()=2 ·  ()=2(3

(b)Thebloodalcoholconcentrationrisesrapidly,thenslowly decreasestonearzero.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

Note: Wemayalsorationalizethenumerator:

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

40. Thefunction  ()=  2 +1 2 +4 21 isdefinedforallvaluesof  exceptthoseforwhich  2 +4 21=0 ⇔ ( +7)( 3)=0 ⇔  = 7 or  =3.Thus,thedomainis { ∈

∞).

41.  ()= 3 √2 1 isdefinedforallrealnumbers.Infact 3 (),where () isapolynomial,isdefinedforallrealnumbers. Thus,thedomainis  or (−∞ ∞)

42.  ()= √3  √2+  isdefinedwhen 3

3 and 2+ 

 ≥−2.Thus,thedomainis 2 ≤  ≤ 3,or [ 2 3]

43. ()=1  4 √2 5 isdefinedwhen  2 5 0 ⇔ ( 5)  0.Notethat

=0 sincethatwouldresultin divisionbyzero.Theexpression (

5) ispositiveif

0 or  5.(SeeAppendixAformethodsforsolving inequalities.)Thus,thedomainis (−∞ 0) ∪ (5 ∞)

44.  ()=  +1 1+ 1  +1 isdefinedwhen 

45.  ()=

46. Thefunction ()= √2 4 5 isdefinedwhen  2 4 5 ≥ 0

.Thepolynomial ()=  2 4 5 maychangesignsonlyatitszeros,sowetestvaluesof  ontheintervalsseparatedby  = 1 and  =5: ( 2)=7  0,

(0)= 5  0,and (6)=7  0.Thus,thedomainof ,equivalenttothesolutionintervals of

(

=4,so thegraphisthetophalfofacircleofradius 2 withcenterattheorigin.Thedomain is

.Fromthegraph, therangeis

48. Thefunction  ()=  2 4  2 isdefinedwhen  2 =0 ⇔  =2,sothe domainis { |  =2} =(−∞ 2) ∪ (2 ∞).Onitsdomain,  ()=  2 4  2 = (

2)( +2)  2 =  +2.Thus,thegraphof  isthe line  =  +2 withaholeat (2 4) c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

16 ¤ CHAPTER1 FUNCTIONSANDMODELS

54.

55.

Sowecanwrite

59. Recallthattheslope  ofalinebetweenthetwopoints (1 1 ) and (2 2 ) is  = 2 1 2

1 andanequationoftheline connectingthosetwopointsis  1 = ( 1 ).Theslopeofthelinesegmentjoiningthepoints (1 3) and (5 7) is 7 ( 3) 5 1 = 5 2 ,soanequationis  ( 3)= 5 2 ( 1).Thefunctionis  ()= 5 2  11 2 , 1 ≤  ≤ 5

60. Theslopeofthelinesegmentjoiningthepoints

( 5)].Thefunctionis

61. Weneedtosolvethegivenequationfor

and

,soanequationis

 =1 ± √ .Theexpressionwiththepositiveradicalrepresentsthetophalfoftheparabola,andtheonewiththenegative radicalrepresentsthebottomhalf.Hence,wewant  ()=1 √ .Notethatthedomainis  ≤ 0.

62.

.Thetophalfisgivenby thefunction

63. For 0 ≤  ≤ 3,thegraphisthelinewithslope 1 and  ­intercept 3,thatis,  =  +3.For 3  ≤ 5,thegraphistheline withslope 2 passingthrough (3 0); thatis,  0=2( 3),or

()=

=2 6.Sothefunctionis

 +3 if 0 ≤  ≤ 3 2 6 if 3

64. For 4 ≤  ≤−2,thegraphisthelinewithslope 3 2 passingthrough ( 2 0); thatis,  0= 3 2 [ ( 2)],or  = 3 2  3.For 2  2,thegraphisthetophalfofthecirclewithcenter (0 0) andradius 2.Anequationofthecircle is  2 +  2 =4,soanequationofthetophalfis

≤ 4,thegraphisthelinewithslope 3 2 passing through (2 0); thatis,  0= 3

( 2),or  =

 3.Sothefunctionis

()=

65. Letthelengthandwidthoftherectanglebe  and  .Thentheperimeteris 2 +2 =20 andtheareais  =  . Solvingthe firstequationfor  intermsof  gives  = 20 2 2 =10 .Thus, ()= (10 )=10 2 .Since lengthsarepositive,thedomainof  is 0  10.Ifwefurtherrestrict  tobelargerthan  ,then 5  10 wouldbe thedomain.

66. Letthelengthandwidthoftherectanglebe  and  .Thentheareais  =16,sothat  =16.Theperimeteris  =2 +2 ,so  ()=2 +2(16)=2 +32,andthedomainof  is  0,sincelengthsmustbepositive quantities.Ifwefurtherrestrict  tobelargerthan  ,then  4 wouldbethedomain.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

67. Letthelengthofasideoftheequilateraltrianglebe .ThenbythePythagoreanTheorem,theheight  ofthetrianglesatisfies

.Usingtheformulaforthearea  ofatriangle,  = 1 2 (base)(height),weobtain

,withdomain  0

68. Letthelength,width,andheightoftheclosedrectangularboxbedenotedby ,  ,and  ,respectively.Thelengthistwice thewidth,so  =2 .Thevolume  oftheboxisgivenby  =  .Since  =8,wehave 8=(2 ) ⇒

2

69. Leteachsideofthebaseoftheboxhavelength ,andlettheheightoftheboxbe .Sincethevolumeis 2,weknowthat 2= 2 ,sothat  =22 ,andthesurfaceareais  =  2 +4.Thus,  ()=  2 +4(22 )=  2 +(8),with domain  0

70. Let  and  denotetheradiusandtheheightoftherightcircularcylinder,respectively.Thenthevolume  isgivenby  =  2 ,andforthisparticularcylinderwehave  2  =25 ⇔  2 = 25  .Solvingfor  andrejectingthenegative solutiongives  = 5 √ ,so  =  ()= 5 √ in.

71. Theheightoftheboxis  andthelengthandwidthare  =20 2

Thesides ,  ,and  mustbepositive.Thus,

72. Theareaofthewindowis

Sincethelengths  and  mustbepositivequantities,wehave

73. Wecansummarizetheamountofthe finewitha piecewisedefinedfunction.

74. Forthe first 1200kWh,  ()=10+0 06

Forusageover 1200kWh,thecostis

 ()=10+0 06(1200)+0 07( 1200)=82+0 07( 1200) Thus,  ()= 10+006 if 0 ≤  ≤ 1200 82+0 07( 1200) if  1200

75. (a)

(b)On $14,000,taxisassessedon $4000,and 10%($4000)=$400. On $26,000,taxisassessedon $16,000,and 10%($10,000)+15%($6000)=$1000+$900=$1900

(c)Asinpart(b),thereis$1000taxassessedon$20,000ofincome,so thegraphof  isalinesegmentfrom (10,000 0) to (20,000 1000). Thetaxon$30,000is$2500,sothegraphof  for  20,000 is theraywithinitialpoint (20,000 1000) thatpassesthrough (30,000 2500).

76. (a)Becauseanevenfunctionissymmetricwithrespecttothe  ­axis,andthepoint (5 3) isonthegraphofthisevenfunction, thepoint ( 5 3) mustalsobeonitsgraph.

(b)Becauseanoddfunctionissymmetricwithrespecttotheorigin,andthepoint (5 3) isonthegraphofthisoddfunction, thepoint ( 5 3) mustalsobeonitsgraph.

77.  isanoddfunctionbecauseitsgraphissymmetricabouttheorigin.  isanevenfunctionbecauseitsgraphissymmetricwith respecttothe  ­axis.

78.  isnotanevenfunctionsinceitisnotsymmetricwithrespecttothe  ­axis.  isnotanoddfunctionsinceitisnotsymmetric abouttheorigin.Hence,  is neither evennorodd.  isanevenfunctionbecauseitsgraphissymmetricwithrespecttothe  ­axis.

79. (a)Thegraphofanevenfunctionissymmetricaboutthe  ­axis.Wereflectthe givenportionofthegraphof  aboutthe  ­axisinordertocompleteit.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(b)Foranoddfunction,  ( )=  ().Thegraphofanoddfunctionis symmetricabouttheorigin.Werotatethegivenportionofthegraphof  through 180◦ abouttheorigininordertocompleteit.

80. (a)Thegraphofanevenfunctionissymmetricaboutthe  ­axis.Wereflectthe givenportionofthegraphof  aboutthe  ­axisinordertocompleteit.

(b)Thegraphofanoddfunctionissymmetricabouttheorigin.Werotatethe givenportionofthegraphof  through 180◦ abouttheorigininorderto completeit.

81.  ()=  2 +1 .

Since  ( )=  (),  isanoddfunction. 82.  ()=  2 4 +1 .  ( )= ( )2 ( )4 +1 =  2 4 +1 =  ().

Since  ( )=  (),  isanevenfunction.

83.  ()=   +1 ,so  ( )=   +1 =   1

Sincethisisneither  () nor  (),thefunction  is neitherevennorodd. 84.  ()=  ||  ( )=( ) | | =( ) || = ( ||) =  ()

Since  ( )=  (),  isanoddfunction.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

85.  ()=1+3 2  4

 ( )=1+3( )2 ( )4 =1+3 2  4 =  ()

Since  ( )=  (),  isanevenfunction.

86.  ()=1+3 3  5 ,so  ( )=1+3( )3 ( )5 =1+3(  3 ) (  5 ) =1 3 3 +  5

Sincethisisneither  () nor  (),thefunction  is neitherevennorodd.

87. (i)If  and  arebothevenfunctions,then  ( )=  () and  ( )=  ().Now ( +  )(

isan even function.

(ii)If  and  arebothoddfunctions,then  ( )=  () and  ( )=  ().Now (

(

)]= (

+  )(),so  +  isan odd function.

(iii)If  isanevenfunctionand  isanoddfunction,then ( +  )( )=  ( )+  ( )=  ()+[  ()]=  ()  (), whichisnot ( +  )() nor ( +  )(),so  +  is neither evennorodd.(Exception:if  isthezerofunction,then  +  willbe odd.If  isthezerofunction,then  +  willbe even.)

88. (i)If  and  arebothevenfunctions,then  ( )=  () and  ( )=  ().Now ( )( )=  ( ) ( )=  () ()=( )(),so  isan even function.

(ii)If  and  arebothoddfunctions,then  ( )=  () and  ( )=  ().Now ( )( )=  ( ) ( 

isan even function.

(iii)If  isanevenfunctionand  isanoddfunction,then ( )( )=  ( ) ( )=  ()[

1.2MathematicalModels:ACatalogofEssentialFunctions

1. (a)  ()=  3 +3 2 isapolynomialfunctionofdegree 3.(Thisfunctionisalsoanalgebraicfunction.)

(b)  ()=cos2  sin  isatrigonometricfunction.

(c)  ()= √3 isapowerfunction.

(d)  ()=8 isanexponentialfunction.

(e)  = √ 2 +1 isanalgebraicfunction.Itisthequotientofa rootofapolynomialandapolynomialofdegree 2

(f)  ()=log10  isalogarithmicfunction.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

2. (a)  ()= 32 +2  isarationalfunction.(Thisfunctionisalsoanalgebraicfunction.)

(b) ( )=2 3 isanexponentialfunction.

(c) ()= √ +4 isanalgebraicfunction.Itisarootofapolynomial.

(d)  =  4 +5 isapolynomialfunctionofdegree 4

(e)  ()= 3 √ isarootfunction.Rewriting  () as  13 ,werecognizethefunctionalsoasapowerfunction. (Thisfunctionis,further,analgebraicfunctionbecauseitisa rootofapolynomial.)

(f)  = 1 2 isarationalfunction.Rewriting  as  2 ,werecognizethefunctionalsoasapowerfunction. (Thisfunctionis,further,analgebraicfunction becauseitisthequotientoftwopolynomials.)

3. Wenoticefromthe figurethat  and  areevenfunctions(symmetricwithrespecttothe  ­axis)andthat  isanoddfunction (symmetricwithrespecttotheorigin).So(b)  =  5  mustbe  .Since  is flatterthan  neartheorigin,wemusthave

(c)  =  8  matchedwith  and(a)  =  2  matchedwith 

4. (a)Thegraphof  =3 isaline(choice  ).

(b)  =3 isanexponentialfunction(choice  ).

(c)  =  3 isanoddpolynomialfunctionorpowerfunction(choice  ).

(d)  = 3 √ =  13 isarootfunction(choice  ).

5. Thedenominatorcannotequal0,so 1 sin  =0 ⇔ sin  =1 ⇔  =  2 +2 .Thus,thedomainof

6. Thedenominatorcannotequal0,so 1 tan  =0 ⇔ tan  =1 ⇔  =  4 +  .Thetangentfunctionisnotdefined if  =  2 +  .Thus,thedomainof

7. (a)Anequationforthefamilyoflinearfunctionswithslope 2 is  =  ()=2 + ,where  isthe  ­intercept.

(b)  (2)=1 meansthatthepoint (2 1) isonthegraphof  .Wecanusethe point­slopeformofalinetoobtainanequationforthefamilyoflinear functionsthroughthepoint (2 1)  1= ( 2),whichisequivalent to  =  +(1 2) inslope­interceptform.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(c)Tobelongtobothfamilies,anequationmusthaveslope  =2,sotheequationinpart(b),  =  +(1 2), becomes  =2 3.Itisthe only functionthatbelongstobothfamilies.

8. Allmembersofthefamilyoflinearfunctions  ()=1+ ( +3) have graphsthatarelinespassingthroughthepoint ( 3 1)

9. Allmembersofthefamilyoflinearfunctions  ()=   havegraphs thatarelineswithslope 1.The  ­interceptis 

10. Wegraph  ()=

(

) hastwo ­intercepts, 0 and .Thecurvehas onedecreasingportionthatbeginsorendsattheoriginandincreasesin lengthas || increases; thedecreasingportionisinquadrantIIfor  0 and inquadrantIVfor  0

11. Because  isaquadraticfunction,weknowitisoftheform  ()=  2 +  + .The  ­interceptis 18,so  (0)=18 ⇒  =18 and  ()=  2 +  +18.Sincethepoints (3 0) and (4 2) lieonthegraphof  ,wehave

 (3)=0 ⇒ 9 +3 +18=0 ⇒ 3 +  = 6 (1)

 (4)=2 ⇒ 16 +4 +18=2 ⇒ 4 +  = 4 (2) Thisisasystemoftwoequationsintheunknowns  and ,andsubtracting (1) from (2) gives  =2.From (1), 3(2)+  = 6 ⇒  = 12,soaformulafor  is  ()=2 2 12 +18

12.  isaquadraticfunctionso  ()=  2 +  + .The y­interceptis 1,so  (0)=1 ⇒  =1 and  ()=  2 +  +1 Sincethepoints ( 2 2) and (1 2 5) lieonthegraphof  ,wehave

( 2)=2

(1)=

=

(2) Then (1) +2 (2) givesus 6 = 6 ⇒  = 1 andfrom (2),wehave 1+  = 3

 = 25,soaformulafor  is  ()=  2 2 5 +1

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

13. Since  ( 1)=  (0)=  (2)=0,  haszerosof 1, 0,and 2,soanequationfor  is  ()= [ ( 1)]( 0)( 2), or  ()= ( +1)( 2).Because  (1)=6,we’llsubstitute 1 for  and 6 for  ()

6= (1)(2)( 1) ⇒−2 =6 ⇒  = 3,soanequationfor  is  ()= 3( +1)( 2)

14. (a)For  =0 02 +8 50,theslopeis 0 02,whichmeansthattheaveragesurfacetemperatureoftheworldisincreasingat arateof 0 02 ◦ C peryear.The  ­interceptis 8 50,whichrepresentstheaveragesurfacetemperaturein ◦ C inthe year1900.

(b)  =2100 1900=200 ⇒  =0 02(200)+8 50=12 50 ◦ C

15. (a)  =200,so  =0 0417 ( +1)=0 0417(200)( +1)=8 34 +8 34.Theslopeis 8 34,whichrepresentsthe changeinmgofthedosageforachildforeachchangeof1yearinage.

(b)Foranewborn,  =0,so  =834 mg.

16. (a)

17. (a)

(b)Theslopeof 4 meansthatforeachincreaseof 1 dollarfora rentalspace,thenumberofspacesrented decreases by 4.The  ­interceptof 200 isthenumberofspacesthatwouldbeoccupied iftherewerenochargeforeachspace.The ­interceptof 50 isthe smallestrentalfeethatresultsinnospacesrented.

(b)Theslopeof 9 5 meansthat  increases 9 5 degreesforeachincrease of 1◦ C.(Equivalently,  increasesby 9 when  increasesby 5 and  decreasesby 9 when  decreasesby 5.)The  ­interceptof 32 istheFahrenheittemperaturecorrespondingtoaCelsius temperatureof 0

18. (a)JariistravelingfastersincethelinerepresentingherdistanceversustimeissteeperthanthecorrespondinglineforJade.

(b)At  =0,Jadehastraveled 10miles.At  =6,Jadehastraveled 16miles.Thus,Jade’sspeedis

16miles 10miles 6minutes 0minutes =1mimin.Thisis 1mile 1minute × 60minutes 1hour =60mih At  =0,Jarihastraveled 0miles.At  =6,Jarihastraveled 7miles.Thus,Jari’sspeedis

7miles 0miles 6minutes 0minutes = 7 6 mimin or 7miles 6minutes × 60minutes 1hour =70mih

(c)Frompart(b),wehaveaslopeof 1 (mileminute)forthelinearfunction  modelingthedistancetraveledbyJadeand fromthegraphthe  ­interceptis 10.Thus,  ()=1 +10=  +10.Similarly,wehaveaslopeof 7 6 milesminute for

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

Jarianda  ­interceptof 0.Thus,thedistancetraveledbyJariasafunctionoftime  (inminutes)ismodeledby  ()= 7 6  +0= 7 6 

19. (a)Let  denotethenumberofchairsproducedinonedayand  theassociated cost.Usingthepoints (100 2200) and (300 4800),wegettheslope

4800 2200 300 100 = 2600 200 =13.So  2200=13( 100) ⇔  =13 +900

(b)Theslopeofthelineinpart(a)is 13 anditrepresentsthecost(indollars) ofproducingeachadditionalchair.

(c)The  ­interceptis 900 anditrepresentsthe fixeddailycostsofoperating thefactory.

20. (a)Using  inplaceof  and  inplaceof  ,we findtheslopetobe

Soalinearequationis

(b)Letting  =1500 weget  = 1 4 (1500)+260=635 Thecostofdriving1500milesis$635. (c)

(d)The  ­interceptrepresentsthe fixedcost,$260.

(e)Alinearfunctiongivesasuitablemodelinthissituationbecauseyou have fixedmonthlycostssuchasinsuranceandcarpayments,aswell ascoststhatincreaseasyoudrive,suchasgasoline,oil,andtires,and thecostoftheseforeachadditionalmiledrivenisaconstant.

Theslopeofthelinerepresentsthecostper mile, $0 25

21. (a)Wearegiven changeinpressure 10 feetchangeindepth = 4 34 10 =0 434.Using  forpressureand  fordepthwiththepoint ( )=(0 15),wehavetheslope­interceptformoftheline,  =0434 +15.

(b)When  =100,then 100=0 434 +15 ⇔ 0 434 =85 ⇔  = 85 0 434 ≈ 195 85 feet.Thus,thepressureis 100lbin2 atadepthofapproximately 196 feet.

22. (a) ()=  2 and  (0 005)=140,so 140=  (0 005) 2 ⇔  =140(0 005)2 =0 0035 (b) ()=00035 2 ,soforadiameterof 0008m theresistanceis (0008)=00035(0008) 2 ≈ 547ohms.

23. If  istheoriginaldistancefromthesource,thentheilluminationis  ()=  2 = 2 .Movinghalfwaytothelampgives anilluminationof

),sothelightisfourtimesasbright.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

24. (a)  =  and  =39kPa when  =0 671m3 ,so 39= 0 671 ⇔  =39(0 671)=26 169

(b)When

=0916,

=26

6,sothepressureisreducedtoapproximately 286kPa

25. (a)  =  3 sodoublingthewindspeed  gives  = (2 )3 =8( 3 ).Thus,thepoweroutputisincreasedbyafactor ofeight.

(b)Theareasweptoutbythebladesisgivenby  =  2 ,where  isthebladelength,sothepoweroutputis  =  3 =  2  3 .Doublingthebladelengthgives

)2  3 =4(2  3 ).Thus,thepoweroutputisincreased byafactoroffour.

(c)Frompart(b)wehave  =  2

,and

3 ,  =30m gives

For  =10ms,wehave

26. (a)Wegraph  ( )=(567 × 10 8 ) 4 for 100 ≤  ≤ 300:

(b)Fromthegraph,weseethatastemperatureincreases,energyincreases—slowlyat first,butthenatanincreasingrate.

27. (a)Thedataappeartobeperiodicandasineorcosine functionwouldmakethebestmodel.Amodeloftheform  ()=  cos()+  seemsappropriate.

(b)Thedataappeartobedecreasinginalinearfashion.Amodeloftheform  ()=  +  seemsappropriate.

28. (a)Thedataappeartobeincreasingexponentially.Amodeloftheform  ()=  ·  or  ()=  ·  +  seems appropriate.

(b)Thedataappeartobedecreasingsimilarlytothevaluesofthereciprocalfunction.Amodeloftheform  ()=  seemsappropriate.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

28 ¤ CHAPTER1 FUNCTIONSANDMODELS

Exercises29 – 33:Somevaluesaregiventomanydecimalplaces.Theresultsmaydependonthetechnologyused roundingislefttothereader. 29. (a)

(b)Usingthepoints (4000 14 1) and (60,000 8 2),weobtain

( 4000) or,equivalently,

Alinearmodeldoesseemappropriate.

(c)Usingacomputingdevice,weobtaintheregressionline  = 0 0000997855 +13 950764

Thefollowingcommandsandscreensillustratehowto findtheregressionlineonaTI­84Pluscalculator.

Enterthedataintolistone(L1)andlisttwo(L2).Press toentertheeditor.

FindtheregessionlineandstoreitinY1 .Press

Notefromthelast figurethattheregressionlinehasbeenstoredinY1 andthatPlot1hasbeenturnedon(Plot1is highlighted).YoucanturnonPlot1fromtheY=menubyplacingthecursoronPlot1andpressing orby pressing

Nowpress toproduceagraphofthedataandtheregression line.Notethatchoice9oftheZOOMmenuautomaticallyselectsawindow thatdisplaysallofthedata.

(d)When  =25,000,  ≈ 11456; orabout 115 per 100 population.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(e)When  =80,000,  ≈ 5 968; orabouta 6% chance.

(f)When  =200,000,  isnegative,sothemodeldoesnotapply.

30. (a)Usingacomputingdevice,weobtaintheregressionline  =0 01879 +0 30480

(b)Theregressionlineappearstobeasuitablemodelforthedata.

(c)The  ­interceptrepresentsthepercentageoflaboratoryratsthat developlungtumorswhen not exposedtoasbestos fibers.

31. (a)

(b)Usingacomputingdevice,weobtaintheregressionline  =1 88074 +82 64974

(c)When  =53cm,  ≈ 182 3cm.

32. (a)Seethescatterplotinpart(b).Alinearmodelseemsappropriate.

(b)Usingacomputingdevice,weobtaintheregressionline

 =0 31567 +8 15578.

(c)For2005,  =5 and  ≈ 9 73centskWh.For2017,  =17 and  ≈ 13 52centskWh.

33. (a)Seethescatterplotinpart(b).Alinearmodelseemsappropriate.

(b)Usingacomputingdevice,weobtaintheregressionline

 =112486 +60,11986.

(c)For2002,  =17 and  ≈ 79,242 thousandsofbarrelsperday. For2017,  =32 and  ≈ 96,115 thousandsofbarrelsperday.

34. (a)  =1 000431227 1 499528750

(b)Thepowermodelinpart(a)isapproximately  = 1 5 .Squaringbothsidesgivesus  2 =  3 ,sothemodelmatches Kepler’sThirdLaw,  2 =  3

35. (a)If  =60,then  =070 3  239,soyouwouldexpectto find2speciesofbatsinthatcave.

(b)  =4 ⇒ 4=0

 333 6,soweestimatethesurfaceareaofthecave tobe 334m2

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

36. (a)Usingacomputingdevice,weobtainapowerfunction  =  ,where   3 1046 and   0 308

(b)If  =291,then  =   17 8,soyouwouldexpectto find18speciesofreptilesandamphibiansonDominica.

37. Wehave

1.3NewFunctionsfromOldFunctions

1. (a)Ifthegraphof  isshifted 3 unitsupward,itsequationbecomes  =  ()+3.

(b)Ifthegraphof  isshifted 3 unitsdownward,itsequationbecomes  =  () 3

(c)Ifthegraphof  isshifted 3 unitstotheright,itsequationbecomes  =

( 3)

(d)Ifthegraphof  isshifted 3 unitstotheleft,itsequationbecomes  =  ( +3)

(e)Ifthegraphof  isreflectedaboutthe ­axis,itsequationbecomes  =  ()

(f)Ifthegraphof  isreflectedaboutthe  ­axis,itsequationbecomes  =  ( )

(g)Ifthegraphof  isstretchedverticallybyafactorof 3,itsequationbecomes  =3 ()

(h)Ifthegraphof  isshrunkverticallybyafactorof 3,itsequationbecomes  = 1 3  ()

2. (a)Toobtainthegraphof  =  ()+8 fromthegraphof  =  (),shiftthegraph 8 unitsupward.

(b)Toobtainthegraphof  =  ( +8) fromthegraphof  =  (),shiftthegraph 8 unitstotheleft.

(c)Toobtainthegraphof  =8 () fromthegraphof  =  (),stretchthegraphverticallybyafactorof 8

(d)Toobtainthegraphof  =  (8) fromthegraphof  =  (),shrinkthegraphhorizontallybyafactorof 8

(e)Toobtainthegraphof  =  () 1 fromthegraphof  =  (), firstreflectthegraphaboutthe ­axis,andthenshiftit 1 unitdownward.

(f)Toobtainthegraphof  =8 ( 1 8 ) fromthegraphof  =  (),stretchthegraphhorizontallyandverticallybyafactor of 8.

3. (a) Graph3: Thegraphof  isshifted 4 unitstotherightandhasequation  =  ( 4)

(b) Graph1: Thegraphof  isshifted 3 unitsupwardandhasequation  =  ()+3

(c) Graph4: Thegraphof  isshrunkverticallybyafactorof 3 andhasequation  = 1 3  () (d) Graph5: Thegraphof  isshifted 4 unitstotheleftandreflectedaboutthe ­axis.Itsequationis  =  ( +4) (e) Graph2: Thegraphof  isshifted 6 unitstotheleftandstretchedverticallybyafactorof 2.Itsequationis

 =2 ( +6)

4. (a)  =  () 3:Shiftthegraphof  3 unitsdown. (b)  =  ( +1):Shiftthegraphof  1 unittotheleft.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(c)  = 1 2  ():Shrinkthegraphof  verticallybya factorof 2

5. (a)Tograph  =  (2) weshrinkthegraphof  horizontallybyafactorof 2

SECTION1.3 NEWFUNCTIONSFROMOLDFUNCTIONS

(d)  =  ():Reflectthegraphof  aboutthe ­axis.

Thepoint (4 1) onthegraphof  correspondstothe point  1 2 · 4 1 =(2 1)

(c)Tograph  =  ( ) wereflectthegraphof  about the  ­axis.

(b)Tograph  =   1 2  westretchthegraphof  horizontallybyafactorof 2

Thepoint (4 1) onthegraphof  correspondstothe point ( 1 4 1)=( 4 1)

Thepoint (4 1) onthegraphof  correspondstothe point (2 4 1)=(8 1)

(d)Tograph  =  ( ) wereflectthegraphof  about the  ­axis,thenaboutthe ­axis.

Thepoint (4 1) onthegraphof  correspondstothe point ( 1 4 1 1)=( 4 1)

6. Thegraphof  =  ()= √3 2 hasbeenshifted 2 unitstotherightandstretchedverticallybyafactorof 2 Thus,afunctiondescribingthegraphis

=2 ( 2)=2 3( 2) ( 2)2

7. Thegraphof  =  ()= √3 2 hasbeenshifted 4 unitstotheleft,reflectedaboutthe ­axis,andshifteddownward 1 unit.Thus,afunctiondescribingthegraphis

Thisfunctioncanbewrittenas

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

32 ¤ CHAPTER1 FUNCTIONSANDMODELS

8. (a)Thegraphof  =1+ √ canbeobtainedfromthegraphof  = √ by shiftingitupward 1 unit.

(b)Thegraphof  =sin  canbeobtainedfromthegraphof  =sin  bycompressinghorizontallybyafactorof  ,giving aperiodof 2 =2.Thegraphof  =5sin  isthenobtainedbystretchingverticallybyafactorof 5

9.  =1+  2 .Startwiththegraphof  =  2 andshift1unitupward

10.  =( +1)2 .Startwiththegraphof  =  2 andshift 1 unittotheleft.

11.  = | +2|.Startwiththegraphof  = || andshift 2 unitstotheleft.

12.  =1  3 .Startwiththegraphof  =  3 ,reflectaboutthe ­axis,andthenshift 1 unitupward.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

13.  = 1  +2.Startwiththegraphof  = 1  andshift 2 unitsupward.

14.  = √ 1.Startwiththegraphof  = √,reflectaboutthe ­axis,andthenshift 1 unitdownward.

15.  =sin4.Startwiththegraphof  =sin  andcompresshorizontallybyafactorof 4.Theperiodbecomes 24= 2.

16.  =1+ 1 2 .Startwiththegraphof  = 1 2 andshift 1 unitupward.

17.  =2+  +1.Startwiththegraphof  = √,shift 1 unittotheleft,andthenshift 2 unitsupward.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

18.  = ( 1)2 +3.Startwiththegraphof  =  2 ,shift 1 unittotheright,reflectaboutthe ­axis,andthenshift 3 units upward.

19.  =  2 2 +5=( 2 2 +1)+4=( 1)2 +4.Startwiththegraphof  =  2 ,shift 1 unittotheright,andthen shift 4 unitsupward.

20.  =( +1)3 +2.Startwiththegraphof  =  3 ,shift 1 unittotheleft,andthenshift 2 unitsupward.

21.  =2 ||.Startwiththegraphof  = ||,reflectaboutthe ­axis,andthenshift2unitsupward.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

22.  =2 2cos .Startwiththegraphof  =cos ,reflectaboutthe ­axis,stretchverticallybyafactorof 2,andthenshift 2 unitsupward.

23.  =3sin 1 2  +1.Startwiththegraphof  =sin ,stretchhorizontallybyafactorof 2,stretchverticallybyafactorof 3, andthenshift 1 unitupward.

24.  = 1 4 tan  4 .Startwiththegraphof  =tan ,shift  4 unitstotheright,andthencompressverticallybya factorof 4

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

25.  = |cos |.Startwiththegraphof  =cos ,shrinkhorizontallybyafactorof  ,andreflectallthepartsofthegraph belowthe ­axisaboutthe ­axis.

26.  =    √ 1  .Startwiththegraphof  = √,shift 1 unitdownward,andthenreflecttheportionofthegraphbelowthe ­axisaboutthe ­axis.

27. ThisisjustlikethesolutiontoExample4excepttheamplitudeofthecurve(the30◦ NcurveinFigure9onJune21)is

14 12=2.Sothefunctionis ()=12+2sin 2 365 ( 80).March31isthe 90thdayoftheyear,sothemodelgives

(90) ≈ 12 34 h.Thedaylighttime(5:51 AM to6:18 PM )is 12 hoursand 27 minutes,or 12 45 h.Themodelvaluediffers fromtheactualvalueby 12 45 12 34 12 45 ≈ 0009,lessthan 1%

28. UsingasinefunctiontomodelthebrightnessofDeltaCepheiasafunctionoftime,wetakeitsperiodtobe 54 days,its amplitudetobe 0 35 (onthescaleofmagnitude),anditsaveragemagnitudetobe 4 0.Ifwetake  =0 atatimeof averagebrightness,thenthemagnitude(brightness)asafunctionoftime  indayscanbemodeledbytheformula  ()=4

29. Thewaterdepth  () canbemodeledbyacosinefunctionwithamplitude 12 2 2 =5m,averagemagnitude 12+2 2 =7m, andperiod 12 hours.Hightideoccurredattime6:45 AM ( =6 75h),sothecurvebeginsacycleattime  =6 75h (shift 6.75unitstotheright).Thus,  ()=5cos  2 12 ( 6 75) +7=5cos   6 ( 6 75) +7,where  isinmetersand  isthe numberofhoursaftermidnight.

30. Thetotalvolumeofair  () inthelungscanbemodeledbyasinefunctionwithamplitude 2500 2000 2 =250mL,average volume 2500+2000 2 =2250mL,andperiod 4 seconds.Thus,  ()=250sin 2 4  +2250=250sin  2  +2250,where  isin mL and  isinseconds.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

31. (a)Toobtain  =  (||),theportionofthegraphof  =  () totherightofthe  ­axisisreflectedaboutthe  ­axis. (b)  =sin || (c)  = ||

32. Themostimportantfeaturesofthegivengrapharethe ­interceptsandthemaximum andminimumpoints.Thegraphof  =1 () hasverticalasymptotesatthe ­values wherethereare ­interceptsonthegraphof  =  ().Themaximumof 1 onthegraph of  =  () correspondstoaminimumof 11=1 on  =1 ().Similarly,the minimumonthegraphof  =  () correspondstoamaximumonthegraphof  =1 ().Asthevaluesof  getlarge(positivelyornegatively)onthegraphof  =  (),thevaluesof  getclosetozeroonthegraphof  =1 ()

33.  ()= √25 2 isdefinedonlywhen 25  2 ≥ 0 ⇔  2 ≤ 25 ⇔−5 ≤  ≤ 5,sothedomainof  is [ 5 5] For  ()= √ +1,wemusthave  +1 ≥ 0 ⇔  ≥−1,sothedomainof  is [ 1 ∞)

(a) ( +  )()= √25 2 + √ +1.Thedomainof  +  isfoundbyintersectingthedomainsof  and  : [ 1 5]

(b) (  )()= √25 2 √ +1.Thedomainof   isfoundbyintersectingthedomainsof  and  : [ 1 5]

(c) ( )()= √25 2 √ +1= √ 3 2 +25 +25.Thedomainof  isfoundbyintersectingthedomainsof  and  : [ 1 5]

(d)  

inadditiontoanypreviousrestrictions. Thus,thedomainof  is ( 1 5]

34. For  ()= 1  1 ,wemusthave  1 =0 ⇔ 

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

35.  ()=  3 +5 and  ()= 3 √.Thedomainofeachfunctionis (−∞ ∞)

+1.Wemusthave  =0,sothedomainis (−∞ 0) ∪ (0 ∞).

( ◦  )()=  ( ())=   1   = 1 1 = .Since  requires

(d) ( ◦  )()=  ( ())=  (2 +1)=2(2 +1)+1=4 +3.Thedomainis (−∞ ∞)

37.  ()= 1 √ and  ()=  +1.Thedomainof  is (0 ∞).Thedomainof  is (−∞ ∞).

(a) ( ◦  )()=  ( ())=  ( +1)= 1 √ +1 .Wemusthave  +1  0,or  1,sothedomainis ( 1 ∞)

( ◦  )()=  ( ())=   1

(c) ( ◦  )()=  ( (

 = 1 √ +1.Wemusthave  0,sothedomainis (0 ∞)

.Wemusthave  0,sothedomain is (0 ∞).

(d) ( ◦  )()=  ( ())= 

)=2 1.Thedomainof  is (−∞ 1) ∪ ( 1 ∞).Thedomainof  is (−∞ ∞). (a) ( ◦

.Wemusthave 2 =0 ⇔  =0.Thus,thedomain is (−∞ 0) ∪ (0 ∞)

(b) ( ◦  )()=  (

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

39.  ()= 2  and  ()=sin .Thedomainof  is (−∞ 0) ∪ (0 ∞).Thedomainof  is (−∞ ∞)

(a) ( ◦  )()=  ( ())=  (sin )= 2 sin  =2csc .Wemusthave sin  =0,sothedomainis { |  =  ,  aninteger}

(b) ( ◦  )()=  ( ())=   2   =sin 2  .Wemusthave  =0,sothedomainis (−∞ 0) ∪ (0 ∞) (c) ( ◦ 

givesadomain of

Intersectingtherestrictionson  givesadomainof

.Intersectingtherestrictonson

2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

48.

49.

50.

53. Let

54. Let ()=tan ,  ()= √ +1,and  ()=cos .Then (

)=

)

55. (a)  ( (3))=  (4)=6.(b)  ( (2))=  (1)=5 (c) ( ◦  )(5)=  ( (5))=  (3)=5.(d) ( ◦  )(5)=  ( (5))=  (2)=3

56. (a)  ( ( (2)))=  ( (3))=  (4)=1.(b) ( ◦  ◦  )(1)=  ( ( (1)))=  ( (3))=  (5)=2 (c) ( ◦  ◦  )(1)=  ( ( (1)))=  ( (5))=  (2)=1.(d) ( ◦  ◦  )(3)=  ( ( (3)))=  ( (4))=  (6)=2

57. (a)  (2)=5,becausethepoint (2 5) isonthegraphof  .Thus,  ( (2))=  (5)=4,becausethepoint (5 4) isonthe graphof 

(b)  ( (0))=  (0)=3

(c) ( ◦  )(0)=  ( (0))=  (3)=0 (d) ( ◦  )(6)=  ( (6))=  (6).Thisvalueisnotdefined,becausethereisnopointonthegraphof  thathas ­coordinate 6

(e) ( ◦  )( 2)=  ( ( 2))=  (1)=4 (f) ( ◦  )(4)=  ( (4))=  (2)= 2

58. To findaparticularvalueof  ( ()),sayfor  =0,wenotefromthegraphthat  (0) ≈ 2 8 and  (2 8) ≈−0 5.Thus,

 ( (0)) ≈  (2 8) ≈−0 5.Theothervalueslistedinthetablewereobtainedinasimilarfashion.

))

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

59. (a)Usingtherelationship distance = rate time withtheradius  asthedistance,wehave  ()=60

(b)  =  2 ⇒ (

2 .Thisformulagivesustheextentoftherippledarea (incm2 )atanytime 

60. (a)Theradius  oftheballoonisincreasingatarateof 2cms,so  ()=(2cms)( s)=2 (in cm).

(b)Using

Theresult,  = 32 3 3 ,givesthevolumeoftheballoon(in cm 3 )asafunctionoftime(in s).

61. (a)Fromthe figure,wehavearighttrianglewithlegs 6 and ,andhypotenuse 

BythePythagoreanTheorem,

(b)Using  = ,weget  =(30 kmh)( hours)=30 (inkm).Thus,  =  ()=30.

(c) ( ◦  )()=  ( ())=  (30)= (30

)2 +36= √900

2 +36.Thisfunctionrepresentsthedistancebetweenthe lighthouseandtheshipasafunctionofthetimeelapsedsincenoon.

62. (a)  =  ⇒ ()=350

(b)ThereisaPythagoreanrelationshipinvolvingthelegswithlengths  and 1 andthehypotenusewithlength :

2 +12 =  2 .Thus, ()= √ 2 +1

(c) ( ◦ )()= (())= (350)= (350)2 +1

63. (a)  ()=

0 if  0 1 if  ≥ 0 (b)  ()= 0 if  0 120 if  ≥ 0 so  ()=120 () (c) Startingwiththeformulainpart(b),wereplace 120 with 240 toreflectthe differentvoltage.Also,becausewearestarting 5 unitstotherightof  =0, wereplace  with  5.Thus,theformulais  ()=240 ( 5)

64. (a) ()=  () = 0 if  0  if  ≥ 0 (b)  ()= 0 if  0 2 if 0 ≤  ≤ 60 so  ()=2 (),  ≤ 60

(c)  ()= 0 if  7 4( 7) if 7 ≤  ≤ 32 so  ()=4( 7) ( 7),  ≤ 32

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

65. If

So  ◦  isalinearfunctionwithslope 1 2

66. If ()=1 04,then

Thesecompositionsrepresenttheamount oftheinvestmentafter2,3,and4years. Basedonthispattern,whenwecompose  copiesof ,wegettheformula

67. (a)Byexaminingthevariabletermsin  and ,wededucethatwemustsquare  togettheterms

.Ifwelet

()=3 2 +3 +2=3( 2 + )+2=3( 2 +  1)+5,soweseethat  ()=  2 +  1.

68. Weneedafunction  sothat  ( ())=  ( +4)= ()=4 1=4( +4) 17.Soweseethatthefunction  mustbe  ()=4 17.

69. Weneedtoexamine ( ) ( )=( ◦  )( )=  ( ( ))=  ( ()) [because  iseven] = () Because ( )= (),  isanevenfunction.

70. ( )=  ( ( ))=  (  ()).Atthispoint,wecan’tsimplifytheexpression,sowemighttryto findacounterexampleto showthat  isnotanoddfunction.Let  ()= ,anoddfunction,and  ()=  2 + .Then ()=  2 +  whichisneither evennorodd.

Nowsuppose  isanoddfunction.Then  (  ())=  ( ())= ().Hence, ( )= (),andso  isoddif both  and  areodd.

Nowsuppose  isanevenfunction.Then  (  ())=  ( ())= ().Hence, ( )= (),andso  isevenif  is oddand  iseven.

71. (a)  ()=  ()+  ( ) ⇒  ( )=

).Since  ( )=  (),  isan evenfunction. (b)  ()=  ()  (

(

)  (

)]=

(

). Since  ( )=  (),  isanoddfunction.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(c)Foranyfunction  withdomain ,definefunctions  and  asinparts(a)and(b).Then 1 2  iseven, 1 2  isodd,andwe showthat

asdesired.

1.4ExponentialFunctions 1.

3. (a)  ()=  ,  0 (b)  (c) (0 ∞) (d)SeeFigures4(c),4(b),and4(a),respectively.

4. (a)Thenumber  isthevalueof  suchthattheslopeofthetangentlineat  =0 onthegraphof  =  isexactly 1. (b)  ≈ 2 71828 (c)  ()=   c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

5. Allofthesegraphsapproach 0 as  →−∞,allofthempassthroughthepoint (0 1),andallofthemareincreasingandapproach ∞ as  →∞.Thelargerthe base,thefasterthefunctionincreasesfor  0,andthefasteritapproaches 0 as  →−∞

Note: Thenotation“ →∞”canbethoughtofas“ becomeslarge”atthispoint. MoredetailsonthisnotationaregiveninChapter2.

6. Thegraphof   isthereflectionofthegraphof   aboutthe  ­axis,andthe graphof 8  isthereflectionofthatof 8 aboutthe  ­axis.Thegraphof 8 increasesmorequicklythanthatof  for  0,andapproaches 0 faster as  →−∞.

7. Thefunctionswith basegreaterthan 1 (3 and 10 )areincreasing,whilethose withbaselessthan 1  1 3  and  1 10   aredecreasing.Thegraphof  1 3  isthe reflectionofthatof 3 aboutthe  ­axis,andthegraphof  1 10  isthereflectionof thatof 10 aboutthe  ­axis.Thegraphof 10 increasesmorequicklythanthatof 3 for  0,andapproaches 0 fasteras  →−∞.

8. Eachofthegraphsapproaches ∞ as  →−∞,andeachapproaches 0 as  →∞.Thesmallerthebase,thefasterthefunctiongrowsas  →−∞,and thefasteritapproaches 0 as  →∞

9. Westartwiththegraphof  =3 (Figure15)andshift 1 unitupwardtogetthegraphof  ()=3 +1

10. Westartwiththegraphof  =  1 2  (Figure3)andstretchverticallybyafactorof 2 toobtainthegraphof  =2 1 2  .Then weshiftthegraph 3 unitsdownwardtogetthegraphof ()=2 1 2  3

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

11. Westartwiththegraphof  =   (Figure15)andreflectaboutthe y­axistogetthegraphof  =   .Thenwereflectthe graphaboutthe x­axistogetthegraphof  =  

12. Westartwiththegraphof  =4 (Figure3)andshift 2 unitstothelefttogetthegraphof  =4+2

13. Westartwiththegraphof  =   (Figure15)andreflectaboutthe  ­axistogetthegraphof  =   .Thenwecompress thegraphverticallybyafactorof 2 toobtainthegraphof  = 1 2   andthenreflectaboutthe ­axistogetthegraph of  = 1 2   .Finally,weshiftthegraphoneunitupwardtogetthegraphof  =1 1 2   .

14. Westartwiththegraphof  =  (Figure15)and reflecttheportionofthegraphinthe firstquadrant aboutthe  ­axistoobtainthegraphof  = ||

15. (a)To findtheequationofthegraphthatresultsfromshiftingthegraphof  =  twounitsdownward,wesubtract 2 fromthe originalfunctiontoget  =   2

(b)To findtheequationofthegraphthatresultsfromshiftingthegraphof  =  twounitstotheright,wereplace  with  2 intheoriginalfunctiontoget  =  2 .

(c)To findtheequationofthegraphthatresultsfromreflectingthegraphof  =  aboutthe x­axis,wemultiplytheoriginal functionby 1 toget  =   .

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(d)To findtheequationofthegraphthatresultsfromreflectingthegraphof  =   aboutthe y­axis,wereplace  with  in theoriginalfunctiontoget  =   .

(e)To findtheequationofthegraphthatresultsfromreflectingthegraphof  =  aboutthe x­axisandthenaboutthe y­axis, we firstmultiplytheoriginalfunctionby 1 (toget  =   )andthenreplace  with  inthisequationto get  =  

16. (a)Thisreflectionconsistsof firstreflectingthegraphaboutthe ­axis(givingthegraphwithequation  =   ) andthenshiftingthisgraph 2 4=8 unitsupward.Sotheequationis  =   +8

(b)Thisreflectionconsistsof firstreflectingthegraphaboutthe  ­axis(givingthegraphwithequation  =   ) andthenshiftingthisgraph 2 2=4 unitstotheright.Sotheequationis  =  ( 4)

17. (a)Thedenominatoriszerowhen

thefunction

(b)Thedenominatorisneverequaltozero,sothefunction

18. (a)Thefunction

(b)Thesineandexponentialfunctionshavedomain ,so  ()=sin(  1)

19. Use  =  withthepoints (1

20. Use  =  withthepoints (

.Usingthisand thepoint

.The functionis  ()=2( 2 3 ) .

21. If  ()=5 ,then  (

22. SupposethemonthisFebruary.Yourpaymentonthe28thdaywouldbe 228 1 =227 =134,217,728 cents,or $1,342,177.28.Clearly,thesecondmethodofpaymentresultsinalargeramountforanymonth.

23. 2 ft =24 in,  (24)=242 in =576 in =48 ft.  (24)=224 in =224 (12 5280) mi ≈ 265 mi

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

24. Weseefromthegraphsthatfor  lessthanabout 1 8,  ()=5  ()=  5 ,andthennearthepoint (1 8 17 1) thecurves intersect.Then  ()  () from  ≈ 1 8 until  =5.At (5 3125) thereisanotherpointofintersection,andfor  5 we seethat  ()  ().Infact,  increasesmuchmorerapidlythan  beyondthatpoint.

25. Thegraphof  finallysurpassesthatof  at  ≈ 35 8

26. Wegraph  =  and  =1,000,000,000 anddeterminewhere

 =1 × 109 .Thisseemstobetrueat  ≈ 20 723,so   1 × 109 for  20 723

27. (a)

(b)Usingagraphingcalculator,weobtaintheexponential curve  ()=36 89301(1 06614)

(c)UsingtheTRACEandzoomingin,we findthatthebacteriacount doublesfrom 37 to 74 inabout 1087 hours.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

28. Let  =0 correspondto1900togetthemodel  =  ,where   80 8498 and   1 01269.Toestimatethepopulationin 1925,let  =25 toobtain   111 million.Topredictthepopulationin2020,let  =120 toobtain   367 million.

29. (a)Threehoursrepresents6doublingperiods (onedoublingperiodis30minutes).Thus, 500 26 =32,000.

(b)In  hours,therewillbe 2 doublingperiods.Theinitialpopulationis 500, sothepopulation  attime  is  =500 22

(c)  = 40 60 = 2 3 ⇒  =500 · 22(23) ≈ 1260

(d)Wegraph 1 =500 22 and 2 =100,000.Thetwocurvesintersectat  ≈ 3 82,sothepopulationreaches 100,000 inabout 3 82 hours.

30. (a)Let  betheinitialpopulation.Since 18 yearsis 3 doublingperiods,  · 23 =600 ⇒  = 600 8 =75.Theinitial squirrelpopluationwas 75.

(b)Aperiodof  yearscorrespondsto 6 doublingperiods,sotheexpectedsquirrelpopulation  yearsafterintroduction is  =75 26

(c)Tenyearsfromnowwillbe 18+10=28 yearsfromintroduction.The populationisestimatedtobe  =75 · 2286 ≈ 1905 squirrels.

31. Halfof 76 0 RNAcopiespermL,correspondingto  =1,is 38 0 RNAcopiespermL.Usingthegraphof  inFigure11,we estimatethatittakesabout 3 5 additionaldaysforthepatient’sviralloadtodecreaseto 38 RNAcopiespermL.

32. (a)Theexponentialdecaymodelhastheform  ()=  1 2 1 5 ,where  isthe numberofhoursaftermidnightand  () istheBAC.Wearegiventhat

 (0)=014,so  =014,andthemodelis  ()=014

(b)Fromthegraph,weestimatethattheBACis 0 08gdL when  ≈ 1 2 hours.

33. Fromthegraph,itappearsthat  isanoddfunction( isundefinedfor  =0). Toprovethis,wemustshowthat  ( )=  ()

so  isanoddfunction.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

34. We’llstartwith  = 1 andgraph  ()= 1 1+  for  =0 1, 1,and 5

Fromthegraph,weseethatthereisahorizontalasymptote  =0 as  →−∞ andahorizontalasymptote  =1 as  →∞.If  =1,the y­interceptis 0 1 2 

As  getssmaller(closeto 0),thegraphof  movesleft.As  getslarger,thegraph of  movesright.

As  changesfrom 1 to 0,thegraphof  isstretchedhorizontally.As  changesthroughlargenegativevalues,thegraphof  iscompressedhorizontally. (Thistakescareofnegativesvaluesof .)

If  ispositive,thegraphof  isreflectedthroughthe y­axis.

Last,if  =0,thegraphof  isthehorizontalline  =1(1+ )

35. Wegraphthefunction  ()=  2 ( +   ) for  =1, 2,and 5.Because

 (0)= ,the y­interceptis ,sothe y­interceptmovesupwardas  increases. Noticethatthegraphalsowidens,becoming flatternearthe y­axisas  increases.

1.5InverseFunctionsandLogarithms

1. (a)SeeDefinition1. (b)ItmustpasstheHorizontalLineTest.

2. (a)  1 ( )=  ⇔  ()=  forany  in  .Thedomainof  1 is  andtherangeof  1 is . (b)SeethestepsinBox5.

(c)Reflectthegraphof  abouttheline  = .

3.  isnotone­to­onebecause 2 =6,but  (2)=2 0=  (6).

4.  isone­to­onebecauseitnevertakesonthesamevaluetwice.

5. Wecoulddrawahorizontallinethatintersectsthegraphinmorethanonepoint.Thus,bytheHorizontalLineTest,the functionisnotone­to­one.

6. Nohorizontallineintersectsthegraphmorethanonce. Thus,bytheHorizontalLineTest,thefunctionisone­to­one.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

7. Nohorizontallineintersectsthegraphmorethanonce. Thus,bytheHorizontalLineTest,thefunctionisone­to­one.

8. Wecoulddrawahorizontallinethatintersectsthegraphinmorethanonepoint.Thus,bytheHorizontalLineTest,the functionisnotone­to­one.

9. Thegraphof  ()=2 3 isalinewithslope 2.ItpassestheHorizontalLineTest,so  isone­to­one.

Algebraicsolution: If 1 = 2 ,then 2

to­one.

10. Thegraphof  ()=  4 16 issymmetricwithrespecttothe  ­axis.Pickany ­valuesequidistantfrom0to findtwoequal functionvalues.Forexample,  ( 1)= 15 and  (1)= 15,so  isnotone­to­one.

11. Nohorizontallineintersectsthegraphof  ()= 3 +4 morethanonce.Thus,bytheHorizontalLineTest,thefunctionis one­to­one.

Algebraicsolution: If 1 =

,then

12. Thegraphof  ()= 3 √ passestheHorizontalLineTest,so  isone­to­one.

13.  ()=1 sin   (0)=1 and  ( )=1,so  isnotone­to­one.

14. Thegraphof  ()=  4 1 passestheHorizontalLineTestwhen  isrestrictedtotheinterval [0,10],so  isone­to­one.

15. Afootballwillattaineveryheight  uptoitsmaximumheighttwice:onceonthewayup,andagainonthewaydown. Thus,evenif 1 doesnotequal 2 ,  (1 ) mayequal  (2 ),so  isnot 1­1

16.  isnot 1­1 becauseeventuallyweallstopgrowingandtherefore,therearetwotimesatwhichwehavethesameheight.

17. (a)Since  is1­1,  (6)=17 ⇔  1 (17)=6. (b)Since  is1­1,  1 (3)=2 ⇔  (2)=3

18. First,wemustdetermine  suchthat  ()=3.Byinspection,weseethatif  =1,then  (1)=3.Since  is 1­1 ( isan increasingfunction),ithasaninverse,and  1 (3)=1.If  isa 1­1 function,then  ( 1 ())= ,so  ( 1 (2))=2.

19. First,wemustdetermine  suchthat  ()=4.Byinspection,weseethatif  =0,then  ()=4.Since  is 1­1 ( isan increasingfunction),ithasaninverse,and  1 (4)=0

20. (a)  is1­1becauseitpassestheHorizontalLineTest.

(b)Domainof  =[ 3 3]= Rangeof  1 .Rangeof  =[ 1 3]= Domainof  1

(c)Since  (0)=2,  1 (2)=0

(d)Since  ( 1 7) ≈ 0,  1 (0) ≈−1 7

21. Wesolve  = 5 9 ( 32) for  : 9 5  =  32 ⇒  = 9 5  +32.Thisgivesusaformulafortheinversefunction,that is,theFahrenheittemperature  asafunctionoftheCelsiustemperature   ≥−45967 ⇒ 9

+32 ≥−45967 ⇒ 9 5  ≥−491 67 ⇒  ≥−273 15,thedomainoftheinversefunction.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

22.

Thisformulagivesusthespeed

23. Firstnotethat

24. Completingthesquare,wehave

oftheparticleintermsofitsmass

25. Firstwrite

Wewrite

32.  =  ()=1+   ⇒   =  1 ⇒− =ln( 1) ⇒  = ln( 1).Interchange  and  :  = ln( 1)

So  1 ()= ln( 1).Fromthegraph,weseethat  and  1 are reflectionsabouttheline  = 

33. Reflectthegraphof  abouttheline  = .Thepoints ( 1 2), (1 1), (2 2),and (3 3) on  arereflectedto ( 2

1

34. Reflectthegraphof  abouttheline  = 

35. (a)  =  ()= √1 2 (0 ≤  ≤ 1 andnotethat  ≥ 0) ⇒  2 =1  2 ⇒  2 =1  2

1 ()= √1 2 , 0 ≤  ≤ 1.Weseethat  1 and  arethesame function.

(b)Thegraphof  istheportionofthecircle  2 +  2 =1 with 0 ≤  ≤ 1 and 0 ≤  ≤ 1 (quarter­circleinthe firstquadrant).Thegraphof  issymmetric withrespecttotheline  = ,soitsreflectionabout  =  isitself,thatis,  1 = 

36. (a)  =  ()= 3 √1

3 ⇒  3 =1

3 ⇒  3

3 ⇒  = 3 1  3 .So  1 ()= 3 √1 3 .Weseethat  and  1 arethe samefunction.

(b)Thegraphof  issymmetricwithrespecttotheline  = ,soitsreflection about  =  isitself,thatis,  1 = 

37. (a)Itisdefinedastheinverseoftheexponentialfunctionwithbase ,thatis, log  =  ⇔  =  (b) (0 ∞) (c)  (d)SeeFigure11.

38. (a)Thenaturallogarithmisthelogarithmwithbase ,denoted ln  (b)Thecommonlogarithmisthelogarithmwithbase 10,denoted log  (c)SeeFigure13.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

39. (a)

40.

41. (a)

48. (a) log3 12= ln12 ln3 ≈ 2 261860 (b) log12 6= ln6 ln12 ≈ 0 721057

49. Tographthesefunctions,weuse log1 5  = ln  ln1 5 and log50  = ln  ln50

Thesegraphsallapproach −∞ as  → 0+ ,andtheyallpassthroughthe point (1 0).Also,theyareallincreasing,andallapproach ∞ as  →∞

Thefunctionswithlargerbasesincreaseextremelyslowly,andtheoneswith smallerbasesdososomewhatmorequickly.Thefunctionswithlargebases approachthe  ­axismorecloselyas  → 0+

50. Weseethatthegraphof ln  isthereflectionofthegraphof  aboutthe line  = ,andthatthegraphof log8  isthereflectionofthegraphof 8 aboutthesameline.Thegraphof 8 increasesmorequicklythanthatof 

Alsonotethat log8  →∞ as  →∞ moreslowlythan ln 

51. 3 ft =36 in,soweneed  suchthat log2  =36 ⇔ 

.Inmiles,thisis 68,719,476,736 in 1 ft 12 in 1 mi 5280 ft ≈ 1,084,587 7 mi.

,

,

,

52.

Fromthegraphs,weseethat  ()=  0 1  ()=ln  forapproximately 0  3 06,andthen  ()  () for 3 06  3 43 × 1015 (approximately).Atthatpoint,thegraphof  finallysurpassesthegraphof  forgood.

53. (a)Shiftthegraphof  =log10  fiveunitstotheleftto obtainthegraphof  =log10 ( +5).Notethevertical asymptoteof  = 5

 =log10   =log10 ( +5)

(b)Reflectthegraphof  =ln  aboutthe ­axistoobtain thegraphof  = ln   =ln   = ln 

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

54. (a)Reflectthegraphof  =ln  aboutthe  ­axistoobtain thegraphof  =ln( )  =ln   =ln( )

55. (a)Thedomainof  ()=ln  +2 is  0 andtherangeis 

(b)  =0 ⇒ ln

(c)Weshiftthegraphof  =ln  twounitsupward.

(b)Reflecttheportionofthegraphof  =ln  totheright ofthe  ­axisaboutthe  ­axis.Thegraphof  =ln || isthatreflectioninadditiontotheoriginalportion.  =ln   =ln ||

56. (a)Thedomainof  ()=ln( 1) 1 is  1 andtherangeis 

(b)  =0 ⇒ ln( 1) 1=0 ⇒ ln( 1)=1 ⇒  1= 

(c)Weshiftthegraphof  =ln  oneunittotherightandoneunitdownward.

57. (a) ln(4 +2)=3

63. (a)Wemusthave

+3  0 ⇒

=ln( +3),so  1 ()=ln( +3)

3,whichistrueforanyreal ,sothedomainof  1 is 

64. (a)By(9),  ln300 =300 and ln( 300 )=300 (b)Acalculatorgives  ln300 =300 andanerrormessagefor ln( 300 ) because  300 islargerthanmostcalculatorscan evaluate.

65. Weseethatthegraphof  =  ()= √3 + 2 +  +1 isincreasing,so  is 1­1 Enter  =  3 +  2 +  +1 anduseyourCAStosolvetheequationfor  .You willlikelygettwo(irrelevant)solutions involvingimaginaryexpressions,aswell asonewhichcanbesimplifiedto

66. (a)Dependingonthesoftwareused,solving  = 

4 for  maygivesixsolutionsoftheform  =

∈ 0 4 27 . Ifwesolve  =  6 +  4 for  usingMaple,wegetthetworealsolutions ±

 13 (

23 2

13 +4)  13 , where  =108 +12 √3 (27 4),andtheinversefor  =  6 +  4 ( ≥ 0)isthepositivesolution,whosedomain is  4 27  ∞

[continued]

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

(a)

Mathematicaalsogivestworealsolutions,equivalenttothoseofMaple.

Thepositiveoneis

.Althoughthisexpressionalsohasdomain

,Mathematicaismysteriouslyabletoplotthesolutionforall 

Formula,wecanwritethisas

bacteria(giventhenumber

68. (a)Wewrite  = 0 (1   ) andsolvefor : 

.UsingtheChangeofBase

.Thisfunctiontellsushowlongitwilltaketoobtain

.Thisformulagivesthetime(inseconds)neededafteradischargeto obtainagivencharge 

(b)Weset  =0 90 and  =50 toget  = 50ln

= 50ln(0 1) ≈ 115 1 seconds.Itwilltake approximately 115 seconds—justshyoftwominutes—torechargethecapacitorsto 90% ofcapacity.

69. (a) cos 1 ( 1)=  because cos  = 1 and  isintheinterval [0 ] (therangeof cos 1 ). (b)sin 1 (05)=  6 because sin  6 =05 and  6 isintheinterval   2   2  (therangeof sin 1 ).

70. (a) tan 1 √3=  3 because tan  3 = √3 and  3 isintheinterval   2   2  (therangeof tan 1 ). (b) arctan( 1)=  4 because tan  4  = 1 and  4 isintheinterval   2   2  (therangeof arctan).

71. (a) csc 1 √2=  4 because csc 

(therangeof csc 1 ). (b) arcsin1=  2 because sin  2 =1 and

(therangeof arcsin).

(a)

(b)Let  =sin 1  5 13  [seethe figure]. cos2sin 1  5 13  =cos2

75. Let  =sin 1 .Then  2

76. Let  =sin 1 .Then sin  = ,sofromthetriangle(which illustratesthecase  0),weseethat

tan(sin 1 )=tan  = 

77. Let  =tan 1 .Then tan  = ,sofromthetriangle(which illustratesthecase  0),weseethat

sin(tan 1 )=sin  = 

78. Let  =arccos .Then cos  = ,sofromthetriangle(which illustratesthecase  0),weseethat

sin(2arccos )=sin2 =2sin  cos  =2(

79. Thegraphof sin 1  isthereflectionofthegraphof sin  abouttheline  = 

80. Thegraphof tan 1  isthereflectionofthegraphof tan  abouttheline  = 

81.  ()=sin 1 (3 +1)

Domain ( )= { | 1 ≤ 3 +1 ≤ 1} = { | 2 ≤ 3

Range (

82. (a)  ()=sinsin 1 

Sinceonefunctionundoeswhattheotheronedoes,wegetthe identityfunction,  = ,ontherestricteddomain 1 ≤  ≤ 1

(b)  ()=sin 1 (sin )

Thisissimilartopart(a),butwithdomain 

Equationsfor  onintervalsoftheform

 2 +   2 + ,foranyinteger ,canbe foundusing  ()=( 1)  +( 1)+1 

Thesinefunctionismonotoniconeachoftheseintervals,andhence,sois  (butinalinearfashion).

83. (a)Ifthepoint ( ) isonthegraphof  =  (),thenthepoint (  ) isthatpointshifted  unitstotheleft.Since  is 1­1,thepoint () isonthegraphof  =  1 () andthepointcorrespondingto (  ) onthegraphof  is ( ) onthegraphof  1 .Thus,thecurve’sreflectionisshifted down thesamenumberofunitsasthecurveitselfis shiftedtotheleft.Soanexpressionfortheinversefunctionis  1 ()=  1 () 

(b)Ifwecompress(orstretch)acurvehorizontally,thecurve’sreflectionintheline  =  iscompressed(orstretched) vertically bythesamefactor.Usingthisgeometricprinciple,weseethattheinverseof ()=  () canbeexpressedas  1 ()=(1)  1 ()

1Review

1. False.Let

2. False.Let  ()=  2 .Then  ( 2)=4=  (2),but 2 =2

3. False.Let  ()=  2 .Then

4. True.Theinversefunction  1 ofaone­to­onefunction  is defined by  1 ( )=  ⇔  ()= 

5. True.SeetheVerticalLineTest.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

6. False.Let  ()=  2 and  ()=2.Then (

7. False.Let  ()=  3 .Then  isone­to

8. True.Wecandivideby  since  =0 forevery 

9. True.Thefunction ln  isanincreasingfunctionon (0

10. False.Let

1=6 =1=(ln )6 .What is true,however, isthat ln( 6 )=6ln  for  0

11. False.Let  =  2 and  = 

 =ln  =1,soingeneralthestatement isfalse.What is true,however,isthat ln   =ln  ln 

12. False.Itistruethat tan 3 4 = 1,butsincetherangeof

13. False.Forexample, tan 1 20 isdefined; sin 1 20 and cos 1 20 arenot.

14. False.Forexample,if  = 3,then ( 3)2 = √9=3,not 3

1. (a)When  =2,  ≈ 27.Thus,  (2) ≈ 27.

(b)  ()=3 ⇒  ≈ 23, 56

(c)Thedomainof  is 6 ≤  ≤ 6,or [ 6 6]

(d)Therangeof  is 4 ≤  ≤ 4,or [ 4 4]

(e)  isincreasingon [ 4 4],thatis,on 4 ≤  ≤ 4

(f)  isnotone­to­onebecauseitfailstheHorizontalLineTest.

(g)  isoddbecauseitsgraphissymmetricabouttheorigin.

2. (a)When  =2,  =3.Thus,  (2)=3

(b)  isone­to­onebecauseitpassestheHorizontalLineTest.

(c)When  =2,  ≈ 02.So  1 (2) ≈ 02

(d)Therangeof  is [ 1 3 5],whichisthesameasthedomainof  1

(e)Wereflectthegraphof  throughtheline  =  toobtainthegraphof  1

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

4. Therewillbesomeyieldwithnofertilizer,increasingyieldswithincreasing fertilizeruse,aleveling­offofyieldsatsomepoint,anddisasterwithtoo muchfertilizeruse.

5.  ()=2(3 1).Domain:

Range:allrealsexcept 0 ( =0 isthehorizontalasymptotefor  .)

6.

8.  =  ()=3+cos2.Domain:   =(−∞ ∞)

takesonallrealnumbersand,hence,therangeis 

9. (a)Toobtainthegraphof  =  ()+5,weshiftthegraphof  =  ()5 unitsupward.

(b)Toobtainthegraphof  =  ( +5),weshiftthegraphof  =  ()5 unitstotheleft.

(c)Toobtainthegraphof  =1+2 (),westretchthegraphof  =  () verticallybyafactorof 2,andthenshiftthe resultinggraph 1 unitupward.

(d)Toobtainthegraphof  =  ( 2) 2,weshiftthegraphof  =  ()2 unitstotheright(forthe“ 2”insidethe parentheses),andthenshifttheresultinggraph 2 unitsdownward.

(e)Toobtainthegraphof  =  (),wereflectthegraphof  =  () aboutthe ­axis.

(f)Toobtainthegraphof  =  1 (),wereflectthegraphof  =  () abouttheline  =  (assuming  isone–to­one).

10. (a)Toobtainthegraphof  =  ( 8),weshiftthe graphof  =  () right 8 units.

(b)Toobtainthegraphof  =  (),wereflectthe graphof  =  () aboutthe ­axis.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

62 ¤ CHAPTER1 FUNCTIONSANDMODELS

(c)Toobtainthegraphof  =2  (),wereflectthe graphof  =  () aboutthe ­axis,andthenshiftthe resultinggraph 2 unitsupward.

(d)Toobtainthegraphof  = 1 2  () 1,weshrinkthe graphof  =  () byafactorof 2,andthenshiftthe resultinggraph 1 unitdownward.

(e)Toobtainthegraphof  =  1 (),wereflectthe graphof  =  () abouttheline  = 

11.  ()=  3 +2.Startwiththegraphof  =  3 and shift 2 unitsupward.

(f)Toobtainthegraphof  =  1 ( +3),wereflectthe graphof  =  () abouttheline  =  [seepart(e)], andthenshifttheresultinggraphleft 3 units.

12  ()=( 3)2 .Startwiththegraphof  =  2 and shift 3 unitstotheright.

13.  = √ +2.Startwiththegraphof  = √ andshift 2 unitstotheleft.

14  =ln( +5).Startwiththegraphof  =ln  and shift 5 unitstotheleft.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

15.  ()=1+cos2.Startwiththegraphof  =cos ,compresshorizontallybyafactorof 2,andthenshift 1 unitupward.

16. ()=  +2.Startwiththegraphof  =  ,reflectaboutthe x­axis,andthenshift 2 unitsupward.

17. ()=1+0 5 .Startwiththegraphof  =0 5 =  1 2  andshift 1 unitupward.

18.  ()=   if  0  1 if  ≥ 0

On (−∞ 0),graph  =  (thelinewithslope 1 and  ­intercept 0)

withopenendpoint (0 0)

On [0 ∞),graph  =   1 (thegraphof  =   shifted 1 unitdownward) withclosedendpoint (0 0).

19. (a)  ()=2 5 3 2 +2 ⇒  ( )=2( )5

and  ( ) =  (),  isneitherevennorodd. (b)  (

()=1+sin  ⇒  ( )=1+sin( )=1 sin .Now

( ) =  () and  ( ) =  (),so  isneither evennorodd.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

 ()=1 cos2

.Since

(

iseven.

) =  () and  ( ) =  (),  isneitherevennorodd.

20. Forthelinesegmentfrom

equivalently,

positive  ).Thus,

21.  ()=ln

(

0 =1,or (1 ∞) (d) ( ◦  )()=  ( ())=  ( 2 9)=( 2 9)2 9.Domain:

22. Let ()=  + √,  ()= √,and  ()=1.Then ( ◦  ◦ )()= 1  + √ =  ()

23.

Morethanonemodelappearstobeplausible.Yourchoiceofmodeldepends onwhetheryouthinkmedicaladvanceswillkeepincreasinglifeexpectancy,or ifthereisboundtobeanaturalleveling­offoflifeexpectancy.Alinearmodel,  =0 2441 413 3960,givesusanestimateof 82 1 yearsforthe year 2030

24. (a)Let  denotethenumberoftoasterovensproducedinoneweekand  theassociatedcost.Usingthepoints (1000 9000) and (1500 12,000),wegetanequationofaline:

 9000= 12,000 9000 1500 1000 ( 1000) ⇒

 =6( 1000)+9000 ⇒  =6 +3000

(b)Theslopeof 6 meansthateachadditionaltoasterovenproducedadds $6 totheweeklyproductioncost.

(c)The  ­interceptof 3000 representstheoverheadcost—thecostincurredwithoutproducinganything.

25. Thevalueof  forwhich  ()=2 +4 equals 6 willbe  1 (6).Tosolve 2 +4 =6,weeitherobservethatletting  =1 givesusequality,orwegraph 1 =2 +4 and 2 =6 to findtheintersectionat  =1.Since  (1)=6,  1 (6)=1.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

29. (a)  2ln5 =  ln52 =52 =25

(b) log

(c)Let  =arcsin 4 5 ,so sin  = 4 5 .Drawarighttrianglewithangle  asshown inthe figure.BythePythagoreanTheorem,theadjacentsidehaslength 3, and tanarcsin 4 5  =tan  = opp adj = 4 3

30. (a) ln 1 3 =ln  3 = 3 (b) sin(tan 1 1)=sin  4 = √2 2 (c) 10 3log4 =10log4 3 =4 3 = 1 43 = 1 64 31.

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

37. (a)Thehalf

lifeoftheviruswiththistreatmentiseightdaysand

(b)Theviralloadishalvedevery

(c)

lives,sotheviralloadafter 24 daysis

RNAcopies

(d)Usingthefunctionfrompart(c),wehave

38. (a) Thepopulationwouldreach 900 inabout 4 4 years.

(b) 

thisisthetimerequiredforthepopulationtoreachagivennumber  (c)

PRINCIPLESOFPROBLEMSOLVING

1. Byusingtheareaformulaforatriangle, 1 2 (base)(height),intwoways,weseethat

2. RefertoExample1,whereweobtained  =  2 100 2 .The 100 camefrom 4 timestheareaofthetriangle.Inthiscase,theareaofthetriangleis

.Thus,

3.

(Equation1)or 4

| +1| =3 (Equation2). If  +1

If  ≥ 3,wemusthave  1 ( 3) ≥ 5 ⇔ 2 ≥ 5,whichisfalse. Allthreecasesleadtofalsehoods,sotheinequalityhasnosolution.

5.

(

Case(i): If 0  ≤ 1,then  ()=  2 4 +3

Case(ii): If 1  ≤ 3,then  ()= ( 2 4 +3)=  2 +4 3

Case(iii): If  3,then  ()=  2 4

Thisenablesustosketchthegraphfor  ≥ 0.Thenweusethefactthat  isaneven functiontoreflectthispartofthegraphaboutthe  ­axistoobtaintheentiregraph.Or,we couldconsideralsothecases 

Wewillconsidertheequation  + || =  + | | infourcases. (1)  ≥ 0

Case 1 givesustheline  =  withnonnegative  and  .

Case 2 givesustheportionofthe  ­axiswith  negative.

Case 3 givesustheportionofthe ­axiswith  negative.

Case 4 givesustheentirethirdquadrant. 8. |  | + || | | ≤ 2 [callthisinequality()]

Case(i):  ≥  ≥ 0.Then() ⇔

Case(ii):  ≥  ≥ 0.Then()

Case(iii): 

2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

Note: Insteadofconsideringcases(iv),(v),and(vi),wecouldhavenotedthat theregionisunchangedif  and  arereplacedby  and  ,sotheregionis symmetricabouttheorigin.Therefore,weneedonlydrawcases(i),(ii),and (iii),androtatethrough 180◦ abouttheorigin.

9. (a)Tosketchthegraphof  ()=max { 1}, we firstgraph  ()=  and ()=1 onthe samecoordinateaxes.Thencreatethegraphof  byplottingthelargest  ­valueof  and  for everyvalueof 

(b)

(c)

OntheTI­84Plus,maxisfoundunder LIST,thenunder MATH. Tograph  ()=max

,use Y =max( 2  max(2+  2 ))

10. (a)If max { 2 } =1,theneither  =1 and 2 ≤ 1   ≤ 1 and 2 =1.Thus,weobtainthesetofpointssuchthat  =1 and  ≤ 1 2 [averticallinewithhighestpoint (1 1 2 )   ≤ 1 and  = 1 2 ahorizontallinewithrightmostpoint (1 1 2 )

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

¤ CHAPTER1 PRINCIPLESOFPROBLEMSOLVING

(b)Thegraphof max{ 2 } =1 isshowninpart(a),andthegraphof max{ 2 } = 1 canbefoundinasimilarmanner.The inequalitiesin 1 ≤ max{ 2 } ≤ 1 giveusallthepointsonor insidetheboundaries.

(c) max{ 2 } =1 ⇔  =1 and  2 ≤ 1 [ 1

 ≤ 1 and  2 =1 [ = ±1].

≤ 1]

11. 1 log2  + 1 log3  + 1 log5  = 1 log  log2 + 1 log  log3 + 1 log  log5

[ChangeofBaseformula] = log2 log  + log3 log  + log5 log  = log2+log3+log5 log  = log(2 3 5) log 

[Law1ofLograithms] = log30 log  = 1 log  log30 = 1 log30 

[ChangeofBaseformula]

12. Wenotethat 1 ≤ sin  ≤ 1 forall .Thus,anysolutionof sin  = 100 willhave 1 ≤ 100 ≤ 1,or 100 ≤  ≤ 100.Wenextobservethattheperiodof sin  is 2 ,and sin  takesoneachvalueinitsrange,exceptfor 1 and 1,twiceeachcycle.Weobservethat  =0 isasolution.Finally,wenotethatbecause sin  and 100 arebothodd functions,everysolutionon 0 ≤  ≤ 100 givesusacorrespondingsolutionon 100 ≤  ≤ 0

1002 ≈ 15 9,sothere 15 fullcyclesof sin  on [0 100] Eachofthe 15 intervals [0 2 ], [2 4 ], , [28 30 ] must containtwosolutionsof sin  = 100,asthegraphof sin  willintersectthegraphof 100 twiceeachcycle.Wemust becarefulwiththenext(16th)interval [30 32 ],because 100 iscontainedintheinterval.Agraphof 1 =sin  and 2 = 100 overthisintervalrevealsthattwointersectionsoccurwithintheintervalwith  ≤ 100 Thus,thereare 16 2=32 solutionsof sin  = 100 on [0 100].Therearealso 32 solutionsoftheequationon [ 100 0].Beingcarefultonotcountthesolution  =0 twice,we findthatthereare 32+32 1=63 solutionsofthe equation sin  = 100

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

13. Byrearrangingterms,wewritethegivenexpressionas

Eachgroupedsumisoftheform

to

Multiplicationoftheleftandrightmembersofthisequalityby 2 givesthesum­to­productidentity

.Usingthissum

to­productidentity,wehaveeachgroupedsumequalto 0,since sin  +  2  =sin  =0 isalwaysafactoroftherightside.Since sin

 100 =sin  =0

=sin2 =0,the

sumofthegivenexpressionis 0.

Anotherapproach: Sincethesinefunctionisodd, sin( )= sin .Becausetheperiodofthesinefunctionis 2 ,wehave sin(  +2 )= sin .Multiplyingeachsideby 1 andrearranging,wehave sin  = sin(2 ).Thismeansthat

,andsoon,untilwehave

.Asbeforewerearrangetermstowritethegivenexpressionas

Eachsuminparenthesesis 0 sincethetwotermsareopposites,andthelasttwotermsagainreduceto sin  and sin2 , respectively,eachalso 0.Thus,thevalueoftheoriginalexpressionis 0

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

15. ln 2 2

Sincetheargumentmustbepositive,

.Theintersectionoftheseintervalsis

16. Assumethat log2 5 isrational.Then log2 5=  fornaturalnumbers  and .Changingtoexponentialformgivesus 2 =5 andthenraisingbothsidestothe

thpowergives 2 =5

.But 2 isevenand 5 isodd.Wehavearrivedata contradiction,soweconcludethatourhypothesis,that log2 5 isrational,isfalse.Thus, log2 5 isirrational.

17. Let  bethedistancetraveledoneachhalfofthetrip.Let 1 and 2 bethetimestakenforthe firstandsecondhalvesofthetrip. Forthe firsthalfofthetripwehave 1 = 30 andforthesecondhalfwehave 2 = 60.Thus,theaveragespeedforthe entiretripis totaldistance totaltime =

=40.Theaveragespeedfortheentiretrip is 40 mih.

18. Let  ()=sin ,  ()= ,and ()= .Thentheleft­handsideoftheequationis

[ ◦ ( + )]()=sin( + )=sin2 =2sin  cos ; andtheright­handsideis ( ◦  )()+( ◦ )()=sin  +sin  =2sin .Thetwosidesarenotequal,sothegivenstatementisfalse.

19. Let  bethestatementthat 7 1 isdivisibleby 6

• 1 istruebecause 71 1=6 isdivisibleby 6

• Assume  istrue,thatis, 7 1 isdivisibleby 6.Inotherwords, 7 1=6 forsomepositiveinteger .Then 7+1 1=7 · 7 1=(6 +1) · 7 1=42 +6=6(7 +1),whichisdivisibleby 6,so +1 istrue.

• Therefore,bymathematicalinduction, 7 1 isdivisibleby 6 foreverypositiveinteger 

20. Let  bethestatementthat 1+3+5+ +(2 1)=  2 .

• 1 istruebecause [2(1) 1]=1=12

• Assume  istrue,thatis, 1+3+5+ +(2 1)=  2 .Then 1+3+5+ +(2 1)+[2( +1) 1]=1+3+5+ +(2

2 whichshowsthat +1 istrue.

• Therefore,bymathematicalinduction, 1+3+5+ +(2

foreverypositiveinteger 

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

Thus,weconjecturethatthegeneralformulais

Toprovethis,weusethePrincipleofMathematicalInduction.Wehavealreadyveri

Assumethattheformulaistruefor

Thisshowsthattheformulafor  istruefor  =  +1.Therefore,bymathematicalinduction,theformulaistrueforall positiveintegers 

(b)Fromthegraph,wecanmakeseveralobservations:

• Thevaluesateach fixed  =  keepincreasingas  increases.

• Theverticalasymptotegetscloserto  =1 as  increases.

• Thehorizontalasymptotegetscloserto  =1 as  increases.

• The ­interceptfor +1 isthevalueofthe verticalasymptotefor 

• The  ­interceptfor  isthevalueofthe horizontalasymptotefor +1 .

c ° 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,or duplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.