Solutions for Advanced Engineering Mathematics Si Edition 8th Us Edition by Oneil

Page 1


Chapter2

Second-OrderDifferential Equations

2.1TheLinearSecond-OrderEquation

1.Itisaroutineexerciseindifferentiationtoshowthat y1(x)and y2(x)are solutionsofthehomogeneousequation,while yp(x)isasolutionofthe nonhomogeneousequation.TheWronskianof y1(x)and y2(x)is

(x)= sin(6x)cos(6x) 6cos(6x) 6sin(6x)

andthisisnonzeroforall x,sothesesolutionsarelinearlyindependent ontherealline.Thegeneralsolutionofthenonhomogeneousdifferential equationis

Fortheinitialvalueproblem,weneed

so c2 = 179/36.And

(0)=2=6

so c1 =71/216.Theuniquesolutionoftheinitialvalueproblemis

2.TheWronskianof e4x and e 4x is

40 CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

sothesesolutionsoftheassociatedhomogeneousequationareindependent.Withtheparticularsolution yp(x)ofthenonhomogeneousequation, thisequationhasgeneralsolution

Fromtheinitialconditionsweobtain

and

Solvethesetoobtain c1 =409/64and c2 =361/64toobtainthesolution

3.Theassociatedhomogeneousequationhassolutions e 2x and e x.Their Wronskianis

andthisisnonzeroforall x.Thegeneralsolutionofthenonhomogeneous differentialequationis

Fortheinitialvalueproblem,solve

(0)= 3= c

+ 15 2 and y (0)= 1= 2

c2 toget c1 =23/2,c2 = 22.Theinitialvalueproblemhassolution

(x)= 23

4.Theassociatedhomogeneousequationhassolutions

TheWronskianofthesesolutionsis

2.1.THELINEARSECOND-ORDEREQUATION

forall x.Thegeneralsolutionofthenonhomogeneousequationis

Tosatisfytheinitialconditions,itisrequiredthat

and

Solvethesetoobtain c1 = 7/8and c2 =15/8.Thesolutionoftheinitial valueproblemis

5.Theassociatedhomogeneousequationhassolutions

ThesehaveWronskian

sothesesolutionsareindependent.Thegeneralsolutionofthenonhomogeneousdifferentialequationis

Weneed

and

Solvethesetoget

6.Suppose y1 and y2 aresolutionsofthehomogeneousequation(2.2).Then

and

CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

Multiplythefirstequationby y2 andthesecondby y1 andaddthe resultingequationstoobtain

WewanttorelatethisequationtotheWronskianofthesesolutions,which is

Thisisalinearfirst-orderdifferentialequationfor W .Multiplythisequationbytheintegratingfactor

toobtain We p(x) dx + pWe p(x) dx =0, whichwecanwriteas

We p(x) dx =0

Integratethistoobtain

We p(x) dx = k, with k constant.Then

Thisshowsthat W (x)=0forall x (if k =0),and W (x) =0forall x (if k =0).

Nowsupposethat y1 and y2 areindependentandobservethat

If k =0,then W (x)=0forall x andthequotient y2/y1 haszeroderivative andsoisconstant:

forsomeconstant c.Butthen y2(x)= cy1(x),contradictingtheassumptionthatthesesolutionsarelinearlyindependent.Therefore k =0and W (x) = forall x,aswastobeshown.

2.2.THECONSTANTCOEFFICIENTHOMOGENEOUSEQUATION 43

7.TheWronskianof x2 and x3 is W (x)= x2 x3 2x 3x2 = x 4

Then W (0)=0,while W (x) =0if x =0.Thisisimpossibleif x2 and x3 aresolutionsofequation(2.2)forsomefunctions p(x)and q(x).We concludethatthesefunctionsarenotsolutionsofequation(2.2).

8.Itisroutinetoverifythat y1(x)and y2(x)aresolutionsofthedifferential equation.Compute W (x)= xx2 12x = x 2 .

Then W (0)=0but W (x) > 0if x =0.However,towritethedifferential equationinthestandardformofequation(2.2),wemustdivideby x2 to obtain y 2 x y + 2 x2 y =0.

Thisisundefinedat x =0,whichisintheinterval 1 << 1,sothe theoremdoesnotapply.

9.If y2(x)and y2(x)bothhavearelativeextremum(maxormin)atsome x0 within(a,b),then y (x0)= y2(x0)=0

ButthentheWronskianofthesefunctionsvanishesat0,andthesesolutionsmustbeindependent.

10.Byassumption, ϕ(x)istheuniquesolutionoftheinitialvalueproblem y + py + qy =0; y(x0)=0.

Butthefunctionthatisidenticallyzeroon I isalsoasolutionofthisinitial valueproblem.Thereforethesesolutionsarethesame,and ϕ(x)=0for all x in I

11.If y1(x0)= y2(x0)=0,thentheWronskianof y1(x)and y2(x)iszeroat x0,andthesetwofunctionsmustbelinearlydependent.

2.2TheConstantCoefficientHomogeneousEquation

1.Fromthedifferentialequationwereadthecharacteristicequation λ2 λ 6=0, whichhasroots 2and3.Thegeneralsolutionis y(x)= c1e 2x + c2e 3x .

2.Thecharacteristicequationis

2 2λ +10=0

withroots1 ± 3i.Wecanwriteageneralsolution y(x)= c1ex cos(3x)+ c2ex sin(3x)

3.Thecharacteristicequationis

withrepeatedroots 3, 3.Then

isageneralsolution.

4.Thecharacteristicequationis

withroots0, 3,and y(x)= c1 +

isageneralsolution.

5.characteristicequation λ2 +10λ +26=0,withroots 5 ± i;general solution y(x)= c

6.characteristicequation λ2 +6λ 40=0,withroots4, 10;generalsolution

7.characteristicequation λ2 +3λ+18=0,withroots 3/2±3√7i/2;general solution

8.characteristicequation λ2 +16λ +64=0,withrepeatedroots 8, 8; generalsolution

9.characteristicequation λ2 14λ +49=0,withrepeatedroots7, 7;general solution y(x)= e 7x(c1 + c2x).

2.2.THECONSTANTCOEFFICIENTHOMOGENEOUSEQUATION 45

10.characteristicequation λ2 6λ+7=0,withroots3±√2i;generalsolution

(x)= c1e 3x cos(√2x)+ c2e 3x sin(√2x)

IneachofProblems11–20thesolutionisfoundbyfindingageneralsolution ofthedifferentialequationandthenusingtheinitialconditionstofindthe particularsolutionoftheinitialvalueproblem.

11.Thedifferentialequationhascharacteristicequation λ2 +3λ =0,with roots0, 3.Thegeneralsolutionis y(x)= c1 + c2e 3x

Choose c1 and c2 tosatisfy:

Then c2 = 2and c1 =5,sotheuniquesolutionoftheinitialvalue problemis

)=5

12.characteristicequation λ2 +2λ 3=0,withroots1, 3;generalsolution y(x)= c1ex

Solve

toget c1 =4and c2 =2.Thesolutionis

13.Theinitialvalueproblemhasthesolution y(x)=0forall x.Thiscan beseenbyinspectionorbyfindingthegeneralsolutionofthedifferential equationandthensolvingfortheconstantstosatisfytheinitialconditions.

14. y(x)= e2x(3 x)

15.characteristicequation λ2 + λ 12=0,withroots3, 4.Thegeneral solutionis

Weneed

and

Solvethesetoobtain

CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

Thesolutionoftheinitialvalueproblemis

Thiscanalsobewritten

16.

17.

18.

19.

20.

21.(a)Thecharacteristicequationis

asarepeated root.Thegeneralsolutionis

(b)Thecharacteristicequationis

)=0,withroots α + ,α .Thegeneralsolutionis

Wecanalsowrite

Note,however,thatthecoefficientsinthedifferentialequationsin(a)and (b)canbemadearbitrarilyclosebychoosing sufficientlysmall.

2.2.THECONSTANTCOEFFICIENTHOMOGENEOUSEQUATION 47

22.With a2 =4b,onesolutionis y1(x)= e ax/2.Attemptasecondsolution y2(x)= u(x)e ax/2.Substitutethisintothedifferentialequationtoget

Because a2 4b =0,thisreducesto

(x)=0

Then u(x)= cx + d,with c and d arbitraryconstants,andthefunctions (cx + d)e ax/2 arealsosolutionsofthedifferentialequation.Ifwechoose c =1and d =0,weobtain y2(x)= xe ax/2 asasecondsolution.Further, thissolutionisindependentfrom y1(x),becausetheWronskianofthese solutionsis

andthisisnonzero.

23.Therootsofthecharacteristicequationare

Because a2 4b<a2 byassumption, λ1 and λ2 arebothnegative(if a2 4b ≥ 0),orcomplexconjugates(if a2 4b< 0).Therearethree cases.

Case1-Suppose λ1 and λ2 arerealandunequal.Thenthegeneral solutionis

)=

andthishaslimitzeroas x →∞ because λ1 and λ2 arenegative.

Case2-Suppose λ1 = λ2.Nowthegeneralsolutionis y(x)=(c1 + c2x)e λ1 x , andthisalsohaslimitzeroas x →∞

Case3-Suppose λ1 and λ2 arecomplex.Nowthegeneralsolutionis y(x)= c1 cos( 4b a2x/2)+

e ax/2 , andthishaslimitzeroas x →∞ because a> 0. If,forexample, a =1and b = 1,thenonesolutionis e( 1+√5)x/2,and thistendsto ∞ as x →∞.

2.3ParticularSolutionsoftheNonhomogeneous Equation

1.Twoindependentsolutionsof y + y =0are y1(x)=cos(x)and y2(x)= sin(x),withWronskian W (x)= cos(x)sin(x) sin(x)cos(x) =1 Let f (x)=tan(x)anduseequations(2.7)and(2.8).First,

x)sin(x) dx

sin2(x) cos(x) dx

1 cos2(x) cos(x) dx = cos(x) dx sec(x) dx =sin(x) ln | sec(x)+tan(x)| Next,

Thegeneralsolutionis

2.Twoindependentsolutionsoftheassociatedhomogeneousequationare

2.3.PARTICULARSOLUTIONSOFTHENONHOMOGENEOUSEQUATION49 and

Thegeneralsolutionis

Morecompactly,thegeneralsolutionis

(

)=

ForProblems3–6,somedetailsofthecalculationsareomitted.

3.Theassociatedhomogeneousequationhasindependentsolutions y1(x)= cos(3x)and y2(x)=sin(3x),withWronskian3.Thegeneralsolutionis y(x)= c1 cos(3x)+ c2 sin(3x)+4x sin(3x)+ 4 3 cos(3x)ln | cos(3x)|

4. y1(x)= e3x and y2(x)= e x,with W (x)= 4e 2x.With f (x)=2sin2(x)=1 cos(2x)

wefindthegeneralsolution y(x)= c1e 3x + c2e x 1 3 + 7 65 cos(2x)+ 4 65 sin(2x)

5. y1(x)= ex and y2(x)= e2x,withWronskian W (x)= e3x.With f (x)= cos(e x),wefindthegeneralsolution

y(x)= c1ex + c2e 2x e 2x cos(e x)

6. y1(x)= e3x and y2(x)= e2x,withWronskian W (x)= e 5x.Usethe identity 8sin2(4x)=4cos(8x) 1

indetermining u1(x)and u2(x)towritethegeneralsolution

y(x)= c1e 3x + c2e 2x + 2 3 + 58 1241 cos(8x)+ 40 1241 sin(8x)

InProblems7–16themethodofundeterminedcoefficientsisusedtofind aparticularsolutionofthenonhomogeneousequation.Detailsareincluded forProblems7and8,andsolutionsareoutlinedfortheremainderofthese problems.

7.Theassociatedhomogeneousequationhasindependentsolutions y1(x)= e2x and e x.Because2x2 +5isapolynomialofdegree2,attemptasecond degreepolynomial

yp(x)= Ax2 + Bx + C

forthenonhomogeneousequation.Substitute yp(x)intothisnonhomogeneousequationtoobtain

2A (2Ax + B) 2(Ax2 + Bx + C)=2x 2 +5.

Equatingcoefficientsoflikepowersof x ontheleftandright,wehavethe equations

2A =2(coefficientsof x 2) 2A 2B 0(coefficientsof x 2A 2B 2C =5(constantterm.)

Then A = 1,B =1and C = 4.Then yp(x)= x 2 + x 4

andageneralsolutionofthe(nonhomogeneous)equationis

8. y1(x)= e3x and y2(x)= e 2x areindependentsolutionsoftheassociated homogeneousequation.Because e2x isnotasolutionofthehomogeneous equation,attemptaparticularsolution yp(x)= Ae2x ofthenonhomogeneousequation.Substitutethisintothedifferentialequationtoget

4A 2A 6A =8, so A = 2andageneralsolutionis y(x)= c1

9. y1(x)= ex cos(3x)and y2(x)= ex sin(3x)areindependentsolutionsof theassociatedhomogeneousequation.Tryaparticularsolution yp(x)= Ax2 + Bx + C toobtainthegeneralsolution y(x)= c1ex cos(3x)+ c2ex sin(3x)+2x 2 + x 1.

2.3.PARTICULARSOLUTIONSOFTHENONHOMOGENEOUSEQUATION51

10.Fortheassociatedhomogeneousequation, y1(x)= e2x cos(x)and y2(x)= e2x sin(x).Try yp(x)= Ae2x toget A =21andobtainthegeneralsolution

(x)=

11.Fortheassociatedhomogeneousequation, y1(x)= e2x and y2(x)= e4x

Because ex isnotasolutionofthehomogeneousequation,attempta particularsolutionofthenonhomogeneousequationoftheform yp(x)= Aex.Weget A =1,soageneralsolutionis

(x)= c

12. y1(x)= e 3x and y2(x)= e 3x.Because f (x)=9cos(3x)(whichisnot asolutionoftheassociatedhomogeneousequation),attemptaparticular solution

yp(x)= A cos(3x)+ B sin(3x)

Thisattemptincludesbothasineandcosinetermeventhough f (x)has onlyacosineterm,becausebothtermsmaybeneededtofindaparticular solution.Substitutethisintothenonhomogeneousequationtoobtain A =0and B =1/2,soageneralsolutionis

y(x)=(c1 + c2x)e 3x + 1 2 sin(3x)

Inthiscase yp(x)containsonlyasineterm,although f (x)hasonlythe cosineterm.

13. y1(x)= ex and y2(x)= e2x.Because f (x)=10sin(x),attempt

yp(x)= A cos(x)+ B sin(x).

Substitutethisintothe(nonhomogeneous)equationtofindthat A =3 and B =1.Ageneralsolutionis

(x)= c1ex +

2

2x +3cos(x)+sin(x).

14. y1(x)=1and y2(x)= e 4x.Findingaparticularsolution yp(x)forthis problemrequiressomecare.First, f (x)containsapolynomialtermand anexponentialterm,sowearetemptedtotry yp(x)asaseconddegree polynomial Ax2 + Bx + C plusanexponentialterm De3x toaccountfor theexponentialtermintheequation.However,notethat y1(x)=1,a constantsolution,isonetermoftheproposedpolynomialpart,somultiply thispartby x totry

yp(x)= Ax3 + Bx2 + Cx + De3x

Substitutethisintothenonhomogeneousdifferentialequationtoget

6Ax +2B +9De3x 4(3Ax2 +2Bx + C +3De3x)=8x 2 +2e 3x .

CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

Matchingcoefficientsofliketerms,weconcludethat

2B 4C =0(fromtheconstantterms)

6A 8B =0(fromthe x terms), 12A =8(fromthe x 2 terms) 3D =2 Then D =

andageneralsolutionofthenonhomogeneousequationis

Thiswillworkbecauseneither e2x nor e3x isasolutionoftheassociated homogeneousequation.Substitute yp(x)intothedifferentialequationand obtain A =1/3,B = 1/2.Thedifferentialequationhasgeneralsolution

16. y1(x)= ex and y2(x)= xex.Try

p(x)= Ax + B + C cos(3

Thisleadstothegeneralsolution

InProblems17–24thestrategyistofirstfindageneralsolutionofthedifferentialequation,thensolvefortheconstantstofindasolutionsatisfyingthe initialconditions.Problems17–22arewellsuitedtotheuseofundeterminedcoefficients,whileProblems23and24canbesolvedfairlydirectlyusingvariation ofparameters.

17. y1(x)= e2x and y2(x)= e 2x.Because e2x isasolutionoftheassociatedhomogeneousequation,use xe2x inthemethodofundetermined coefficients,attempting

p(x)= Axe2x + Bx + C.

2.3.PARTICULARSOLUTIONSOFTHENONHOMOGENEOUSEQUATION53

Substitutethisintothenonhomogeneousdifferentialequationtoobtain

Then A = 7/4,B = 1/4and C =0,sothedifferentialequationhas thegeneralsolution

Weneed

and

Then c1 =7/4and c2 = 3/4.Theinitialvalueproblemhastheunique solution

18. y1 =1and y2(x)= e 4x areindependentsolutionsoftheassociated homogeneousequation.For yp(x),try

p(x)= Ax + B cos(x)+ C sin(x),

withtheterm Ax because1isasolutionofthehomogeneousequation. Thisleadstothegeneralsolution

Nowweneed

and

.

Then c1 =3and c2 =2,sotheinitialvalueproblemhasthesolution

19.Wefindthegeneralsolution

Thesolutionoftheinitialvalueproblemis

CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

20.1and e3x areindependentsolutionsoftheassociatedhomogeneousequation.Attemptaparticularsolution

yp(x)= Ae2x cos(x)+ Be2x sin(x)

ofthenonhomogeneousequationtofindthegeneralsolution

))

Thesolutionoftheinitialvalueproblemis

21. e4x and e 2x areindependentsolutionsoftheassociatedhomogeneous equation.Thenonhomogeneousequationhasgeneralsolution

Thesolutionoftheinitialvalueproblemis

22.Thegeneralsolutionofthedifferentialequationis

Itiseasiertofittheinitialconditionsspecifiedat x =1ifwewritethis generalsolutionas

Now

Solvethesetoobtain

3.Thesolutionof theinitialvalueproblemis

23.Thedifferentialequationhasgeneralsolution y(x)= c1ex + c2e x sin2(x) 2

Thesolutionoftheinitialvalueproblemis y(x)=4e x sin2(x) 2.

2.4.THEEULERDIFFERENTIALEQUATION

24.Thegeneralsolutionis

y(x)= c1 cos(x)+ c2 sin(x) cos(x)ln | sec(x)+tan(x)|, andthesolutionoftheinitialvalueproblemis

y(x)=4cos(x)+4sin(x) cos(x)ln | sec(x)+tan(x)|.

2.4TheEulerDifferentialEquation

DetailsareincludedwithsolutionsforProblems1–2,whilejustthesolutions aregivenforProblems3–10.Thesesolutionsarefor x> 0.

1.Readfromthedifferentialequationthatthecharacteristicequationis r 2 + r 6=0

withroots2, 3.Thegeneralsolutionis

2.Thecharacteristicequationis

withrepeatedroot 1, 1.Thegeneralsolutionis

Wecanalsowrite

for x> 0.

3.

8. y(x)= x 2(c1 cos(7ln(x))+ c2 sin(7ln(x)))

9. y(x)= 1 x12 (c1 + c2 ln(x))

10. y(x)= c1x 7 + c2x 5

11.Thegeneralsolutionofthedifferentialequationis

(x)= c1x 3 + c2x 7 .

Fromtheinitialconditions,weneed

(2)=8c1 +2 7 c2 =1and y (2)=3c122 7c22 8 =0

Solvefor c1 and c2 toobtainthesolutionoftheinitialvalueproblem y(x)= 7 10 x 2 3 + 3 10 x 2 7

12.Theinitialvalueproblemhasthesolution y(x)= 3+2x 2 .

13. y(x)= x2(4 3ln(x))

14. y(x)= 4x 12(1+12ln(x))

15. y(x)=3x6 2x4

16. y(x)= 11 4 x 2 + 17 4 x 2

17.With Y (t)= y(et),usethechainruletoget

(x)= dY dt dt dx = 1 x Y (t) andthen

Then x 2 y (x)= Y (t) Y (t).

SubstitutetheseintoEuler’sequationtoget Y (t)+(A 1)Y (t)+ BY (t)=0

Thisisaconstantcoefficientsecond-orderhomogeneousdifferentialequationfor Y (t),whichweknowhowtosolve.

18.If x< 0,let t =ln( x)=ln |x|.Wecanalsowrite x = et.Notethat dt dx = 1 x ( 1)= 1 x

justasinthecase x> 0.Nowlet y(x)= y( et)= Y (t)andproceedwith chainruledifferentiationsasinthesolutionofProblem17.First,

and

Then x 2 y (x)= Y (t) Y (t)

justaswesawwith x> 0.NowEuler’sequationtransformsto Y +(A 1)Y + BY =0.

Weobtainthesolutioninallcasesbysolvingthislinearconstantcoefficient second-orderequation.Omittingallthedetails,weobtainthesolutionof Euler’sequationfornegative x byreplacing x with |x| inthesolutionfor positive x.Forexample,supposewewanttosolve x 2 y + xy + y =0 for x< 0.Solvethisfor x> 0toget

y(x)= c1 cos(ln(x))+ c2 sin(ln(x))

Thesolutionfor x< 0is

y(x)= c1 cos(ln |x|)+ c2 sin(ln |x|).

19.Theproblemtosolveis

x 2 y 5dxy +10y =0; y(1)=4,y (1)= 6

Weknowhowtosolvethisproblem.Hereisanalternativemethod,usingthetransformation x = et,or t =ln(x)for x> 0(sincetheinitial conditionsarespecifiedat x =1).Euler’sequationtransformsto

However,alsotransformtheinitialconditions:

Y (0)= y(1)=4,Y (0)=(1)y (1)= 6.

Thisdifferentialequationfor Y (t)hasgeneralsolution

Y (t)= c1e 3t cos(t)+ c2e 3t sin(t).

(0)= c2 =4 and Y (0)=3c1 + c2 = 6, so c2 = 18.Thesolutionofthetransformedinitialvalueproblemis

Y (t)=4e 3t cos(t) 18e 3t sin(t).

Theoriginalinitialvalueproblemthereforehasthesolution

y(x)=4x 3 cos(ln(x)) 19x 3 sin(ln(x))

for x> 0.Thenewtwisthereisthattheentireinitialvalueproblem (includinginitialconditions)wastransformedintermsof t andsolvedfor Y (t),thenthissolution Y (t)intermsof t wastransformedbacktothe solution y(x)intermsof x

20.Suppose

x 2 y + Axy + By =0

hasrepeatedroots.Thenthecharacteristicequation

r 2 +(A 1)r + B =0

has(1 A)/2asarepeatedroot,andwehaveonlyonesolution y1(x)= x(1 A)/2 sofar.Foranothersolution,independentfrom y1,lookfora solutionoftheform y2(x)= u(x)y1(x).Then y2 = u y1 + uy1 and y2 = u y1 +2u y1 + uy1 .

2.4.THEEULERDIFFERENTIALEQUATION

Substitute y2 intothedifferentialequationtoget x 2(u y1 +2u y1 + uy1 )+ Ax(u y1 + uy1)+ Buy1 =0

Threetermsinthisequationcancel,because u(x 2 y1 + Axy1 + By1)=0

byvirtueof y1 beingasolution.Thisleaves x 2 u y1 +2x 2 u y1 + Axu y1 =0.

Assumingthat x> 0,divideby x toget xu y1 +2xu y1 + Au y1 =0.

Substitute y1(x)= x(1 A)/2 intothistoobtain xu x(1 A)/2 +2xu 1 A 2 x( 1 A)/2 + Au x(1 A)/2 =0

Dividethisby x(1 A)/2 toget xu +(1 A)u + Au =0, andthisreducesto

xu + u =0.

Let z = u toobtain xz + z =0, or (xz) =0.

Then xz = c,constant,so

z = u = c x

Then u(x)= c ln(x)+ d.Weonlyneedonesecondsolution,solet c =1 and d =0toget u(x)=ln(x).Asecondsolution,independentfrom y1(x), is

y2(x)= y1(x)ln(x), asgivenwithoutderivationinthechapter.

2.5SeriesSolutions

2.5.1PowerSeriesSolutions

1.Put y(x)= ∞ n

intothedifferentialequationtoobtain

Thisistherecurrencerelation.Ifweset

+1,weobtainthe coefficients

andsoon.Further,

andsoon.Thesolutioncanbewritten

2.Write

Therecurrencerelationis

with a0 arbitrary, a1 =4and a2 = a3 =0.Thisyieldsthesolution

3.Write

Therecurrencerelationis

4.Beginwith

Therecurrencerelationis

Taking a0 =1,a1 =0,weobtainthesolution

With a0 =0,a1 =1wegetasecond,linearlyindependentsolution

5.Write

Here a0 and a1 arearbitraryand a2 =(3 a0)/2.Therecurrencerelation is

Thisyieldsthegeneralsolution

6.Beginwith

Here a0 and a1 arearbitraryand a2 =0.Therecurrencerelationis

With a0 =0and a1 =1,weobtainasecond,linearlyindependentsolution

2.5.SERIESSOLUTIONS

7.Wehave

relationis

for n =4, 5, .Thegeneralsolutionhastheform

Notethat a0 = y(0)and a1 = y (0).Thethirdseriesrepresentsthe solutionobtainedsubjectto y(0)= y (0)=0.

8.UsingtheMaclaurinexpansionforcos(x),wehave

a0 isarbitraryand a1 =1.Therecurrencerelationis

CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

for n =1, 2, .Thisyieldsthesolution

9.Wehave

for n =5, 6, .Thegeneralsolutionis

Here a0 = y(0)and a1 = y (0).

10.UsingtheMaclaurinexpansionof ex,wehave

Then a0 and a1 arearbitrary, a2 =0and an = (n 2)an 2 1/(n 2)! n(n 1)

2.5.SERIESSOLUTIONS

for n =3, 4, .Thisleadstothesolution

Notethat a0 = y(0)and a1 = y (0).

2.5.2FrobeniusSolutions

1.Substitute

intothedifferentialequationtoget xy +(1

=0

Because c0 isassumedtobenonzero, r mustsatisfytheindicialequation r2 =0,so r1 = r2 =0.Onesolutionhastheform

whileasecondsolutionhastheform

Forthefirstsolution,choosethecoefficientstosatisfy c0 =1and cn = n 2 n2 cn 1 for n =1, 2,

Thisyieldsthesolution y1(x)=1 x.Thesecondsolutionistherefore y2(x)=(1 x)ln(x)+

CHAPTER2.SECOND-ORDERDIFFERENTIALEQUATIONS

Substitutethisintothedifferentialequationtoobtain x 2 x 1 x x2 +(1 x) ln(x)+ 1 x x

x)ln(

)+

Thecoefficientsaredeterminedby c∗ 1 =3, c∗ 2 = 1/4,and c ∗ n = n 2 n2 for n =3, 4, .

Asecondsolutionis y2(x)=(1 x)ln(x)+3x ∞ n=2 1 n(n 1) xn .

2.Omittingsomeroutinedetails,theindicialequationis r(r 1)=0,so r1 =1and r2 =0.Therearesolutions y1(x)= ∞ n=0 cnxn+1 and y2(x)= ky1(x)ln(x) ∞ n=0 c ∗ nxn

For y1,therecurrencerelationis

cn = 2(n + r 2) (n + r)(n + r 1) cn 1 for n =1, 2, .With r =1and c0 =1,thisyields

y1(x)= x, asolutionthatcanbeseenbyinspectionfromthedifferentialequation. Forthesecondsolution,substitute y2(x)intothedifferentialequationto get (2c ∗ 0 + k)+2(c ∗ 2 k)x + ∞ n=1 (n(n 1)c ∗ n 2(n 2)c ∗ n 1)xn 1 =0.

Choose c∗ 0 =1toobtain k = 2. c∗ 1 isarbitrary,andwewilltake c∗ 1 =0. Finally, c∗ 2 = 2and c ∗ n = 2(n 2) n(n 1) c ∗ n 1 for n =3, 4,

Thisyieldsthesecondsolution

3.Theindicialequationis r2 4r =0,so r1 =4and r2 =0.Thereare solutionsoftheform y1(x)= ∞ n=0 cnxn+4 and y2(x)= ky1(x)ln(x)+ ∞ n=0 c ∗ nxn

With r =4therecurrencerelationis cn = n +1 n cn 1 for n =1, 2, ···

Then

Usingthegeometricseries,wecanobservethat y1(x)= x 4 d dx (1+ x + x 2 + x 3 + )

Thisgivesusthesecondsolution

4.Theindicialequationis4r2 9=0,withroots r1 =3/2and r2 = 3/2. Therearesolutions

Uponsubstitutingtheseintothedifferentialequation,weobtain

5.Theindicialequationis4r2 2r =0,withroots r1 =1/2and r2 =0. Therearesolutionsoftheform

1(x)=

Substitutetheseintothedifferentialequationtoget

and

6.Theindicialequationis4r2 1=0,withroots r1 =1/2and r2 = 1/2.

Therearesolutions y1(x)=

n=0 cnxn+1/2 and y2(x)= ky1(x)ln(x)+

Aftersubstitutingtheseintothedifferentialequation,weobtainthesimple solutions y1(x)= x 1/2 and y2(x)= x 1/2

Thesesolutionsareconsistentwiththeobservationthat,upondivisionby 4,thedifferentialequationisanEulerequation.

7.Theindicialequationis r2 3r +2=0,withroots r1 =2and r2 =1. Therearesolutions y(x)= ∞ n=0

Substitutetheseinturnintothedifferentialequationtoobtainthesolutions

and

Wecanrecognizetheseseriesas

y1(x)= x sinh(x)and y2(x)= xe x .

8.Theindicialequationis r2 2r =0,withroots r1 =2,r2 =0.Thereare solutions y1(x)=

Therecurrencerelationforthe cns is

, 4, ··· andweobtain,with c0 =1,

Forthesecondsolution,substitute y2(x)intothedifferentialequationto get

Setting c∗ 0 =1forsimplicity,weobtain c∗ 1 =2,k = 2, c∗ 2 arbitrary(we takethistobezero),andtherecurrencerelation

for n =3, 4, .Weobtainthesecondsolution

9.Theindicialequationis2r2 =0,withroots r1 = r2 =0.Thereare solutions

Uponsubstitutingtheseintothedifferentialequation,weobtaintheindependentsolutions

(

)=1

and

10.Theindicialequationis r2 1=0,withroots r1 =1and r2 = 1.There aresolutions y1(x)= ∞ n=0 cnxn+1 and y2(x)= ky1(x)ln(x)+ ∞ n=0 c ∗ nxn 1

Substituteeachoftheseintothedifferentialequationtoget

=1 ( 1)n(1 4 7 (3n 2)) 3nn!(5 8 11 (3n +2)) x 3n and

1(x)= x 1+

2(x)= 1 x 1+

n=1 ( 1)n+1(1 · 2 · 5 ··· (3n 1)) 3nn!(4 7 (3n 2)) x 3n .

Table1:Sumsofpairsofdice,Problem1,Section2.

3.Themeanis

Themedianisthesixteenthnumberfromtheleft,or1(thelast1tothe rightintheorderedlist).

Thestandarddeviationis

Section2RandomVariablesandProbabilityDistributions

1.Ifwerolltwodice,therearethirty-sixpossibleoutcomes.Thesumsof thenumbersthatcancomeuponthetwodicearelistedinTable1.

Forexample,if o istheoutcomethatonediecomesup2andtheother3, thenthesumofthediceis5,so X (o)=5.

Thetablegivesallofthevaluesthat X (o)cantakeon,overalloutcomes o oftheexperiment.Eachvalueislistedasoftenasitoccursasavalueof X .Forexample,4occursthreetimes,because X (o)=4forthreedifferent outcomes(namely(2, 2),(1, 3)and(3, 1)).

Defineaprobabilitydistribution P on X bybyletting P (x)betheprobabilityof x,foreachvalue x that X canassume.

Forexample,since2occursonceoutof36entriesinthistable,assignto thisvalueof X theprobability

P (2)= 1 36

Similarly,11occurstwice,sogivethevalue11of X theprobability

P (11)= 2 36 3

Since3occurstwiceinthetable, P (3)=2/36,andsoon.

Calculating P (n)foreach n inthetable,weobtain

Noticethat x P (x)=1,asrequiredforaprobabilityfunction.

Themeanof X is

Thisisinterpretedtomeanthat,onaverage,weexpecttocomeupwith asevenifwerolltwodice.Thisisareasonableexpectationinviewofthe factthattherearemorewaystoroll7thananyothersumwithtwodice.

Thestandarddeviationis

Tocomputethis,firstcompute

2.Flipfourcoins,withsixteenpossibleoutcomes.If o isanoutcome, X (o) canhaveonlytwovalues,namely1iftwo,three,orfourtailsarein o,or 3otherwise(onetailornotailsin o).Therearefiveoutcomeswithone tailornotail,andelevenwithtwoormoretails,so P (1)= 11 16 and P (3)= 5 16 .

Themeanis

Forthestandarddeviationof X ,compute

3.Wehave X (1)=0, X (2)= X (3)= X (5)= X (7)= X (11)= X (13)= X (17)= X (19)=1, X (4)= X (6)= X (9)= X (10)= X (14)= X (15)=2, X (8)= X (12)= X (18)= X (20)=3, X (16)=4

Thevaluesassumedby X are0, 1, 2, 3, 4.Fromthelistofvalues,weget P (0)= 1

Thesearetheprobabilitiesofthevaluesoftherandomvariable X . Themeanof X is

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Table2:Outcomesofrollingtwodice,Problem4,Section2.

Forthestandarddeviationof X ,firstcompute

σ = (0 9600)=0 9798

4.TheoutcomesoftworollsofthedicearedisplayedinTable2. Then

X (n,n)= n for n =1, 2, 3, 4, 5, 6, X (1, 2)= X (2, 1)= X (2, 4)= X (4, 2)= X (3, 6)= X (6, 3)=2, X (1, 3)= X (3, 1)= X (2, 6)= X (6, 2)=3, X (1, 4)= X (4, 1)=4,X (1, 5)= X (5, 1)=5,X (1, 6)= X (6, 1)=6, X (2, 3)= X (3, 2)= X (4, 6)= X (6, 4)=3/2, X (2, 5)= X (5, 2)=5/2,X (3, 4)= X (4, 3)=4/3, X (5, 3)= X (3, 5)=5/3,X (4, 5)= X (5, 4)=5/4, X (5, 6)= X (6, 5)=6/5.

Usingthislisttocomputeprobabilities,wefindthat P (1)= 1 36 ,P (2)= 7 36 ,P (3)= 5 36 , P (4)= 3 36 ,P (5)= 3 36 ,P (6)= 3 36 6

Themeanof X is

Using μ,wecancomputethestandarddeviationof X :

5.Drawcardsfroma(fifty-twocard)deck.Thereare 52 C2 waystodothis, disregardingorder.If o isanoutcomeinwhichbothcardsarenumbered, then X (o)equalsthesumofthenumbersonthecards.Ifexactlyone ofthecardsisafacecardorace,then X (o)=11,andifbothcards arechosenfromthefacecardsoraces,then X (o)=12.Thereforethe valuesof X (o)forallpossibleoutcomesare4, 5, ··· , 20.Byaroutine buttediouscountingofthewaysthenumberedcardscantakeonvarious possibletotals,weobtain P (4)= 6 1326 ,P (5)= 16 1326 ,P (6)= 22 1326 ,P (7)= 32 1326 , P (8)= 38 1326 ,P (9)= 48 1326 ,P (10)= 54 1326 ,P (11)= 640 1326 , P (12)= 190 1326 ,P (13)= 64 1326 ,P (14)= 54 1326 ,P (15)= 48 1326 , P (16)= 38 1326 ,P (17)= 32 1326 ,P (18)= 22 1326 ,P (19)= 16 1326 , P (20)= 6 1326 . 7

Usingthese,computethemeanof X : μ = x xP (x)=11.566

andthestandarddeviationof X :

= x (x μ)2 P (x)= √5.4289=2.33.

6. X takesonvalues1, 2,π .Inparticular, X (1)= X (5)= X (7)= X (11)= X (13)= X (17) = X (19)= X (23)= X (25)= X (29)= π, X (2)= X (4)= ··· = X (eveninteger)=1, X (3)= X (9)= X (15)= X (21)= X (27)=2

Theseenableustowritetheprobabilitydistribution

(1)= 15 30 = 1 2 ,P (2)= 5 30 = 1 6 ,P (π )= 10 30 = 1 3 .

Themeanof X is

andthisisapproximately1.8805.

Thestandarddeviationof X isthesquarerootof

whichisapproximately0.92014.Then

σ = √92014=0.95924.

Section3TheBinomialandPoissonDistributions

Since x is H or T ineach,thereare8+6 +4+2=20outcomesofthis experiment.Then

Pr(dicetotalatleast9)= 20 72 = 5 18

(b)Supposethedicetotalatleast9andthecoincomesupheads.Now (from(a))thereare10outcomes,so

Pr(dicetotalatleast9,coinis H )= 10 72 = 5 36 .

(c)Nowsupposethecoinisatailandbothdicecomeupthesame.Now therearesixoutcomes,namely

(1, 1,T ), (2, 2,T ), , (6, 6,T ) so

Pr(tail,bothdicethesame)= 6 72 = 1 12 .

(d)Supposethedicebothcomeupevenandthecoinisatail.Nowthe outcomeshavetheappearance(x,y,T ),where x and y canindependently be2,4or6.Thereare9outcomesofthisform,so

Pr(tail,bothdiceeven)= 9 72 = 1 8

Section2FourCountingPrinciples

1.Thefactthatthesearelettersofthealphabetthatwearearrangingin orderisirrelevant.Theissueisthatthereareninedistinctobjects.The numberofarrangementsis9!,whichis362, 880.

2.Thereare26lettersintheEnglishslphabet.Theproblemisoneofdeterminingthenumberofwaysofchoosing17objectsfrom26objects,with ordertakenintoaccount.Thisis

3.Sinceanyofthenineintegerscanbeusedinanyofthenineplacesof theIDnumber,thereare9waysthefirstdigitcanbechosen,9waysthe seconddigitcanbechosen,andsoon.Thetotalnumberofcodesis99 , or 3.87420489(10)8 . 5

4.Thefirstplan(alldifferentsymbolsinthedifferentplaces)allowsfor 5!=120passwords.Thesecondplan(choosingwithreplacement)allows for55 =3, 125passwords.

5.These7symbolshave7!=5, 040permutationsorarrangements. If a isfixedasthefirstsymbol,thentherearesixsymbolstochoosein anyorderfortheothersixplaces,andthenumberofchoicesis6!=720.

If a isfixedasthefirstsymbol,and g asthefifth,thenwehavefivesymbols lefttochooseinanyorderfortheremainingfiveplaces.Thenumberof waysofdoingthisis5!=120.

6.Wewanttofind n sothat n! ≥ 20, 000.Clearlythereareinfinitelymany suchintegers n,butwewouldlikethesmallestpossible n.Withalittle experimentation,wefindthat8!=40, 320,morethanenough,while7!= 5040istoosmall,sochoose n =8.

For n! ≥ 100, 000,trysomevaluesof n.Wefindthat10!=3, 628, 800, morethanenough,while9!=362, 880istoosmall.Themostefficient choiceinthiscaseis n =10.

7.Thereare12!=479, 001, 600outcomes.

8.Thereare10lettersfrom a through l ,inclusive.Ifthreeoftheplacesare fixed(itdoesnotmatterwhichthree),therearesevenlettersavailableto putinanyorderintotheremainingsevenplaces.Thereare7!=5, 040 waystodothis.

9.Wewanttopick7objectsfrom25,takingorderintoaccount.Thenumber ofwaystodothisis

25 P7 = 25!

18! =(19)(20)(21)(22)(23)(24)(25)=2, 422, 728, 000

10.Thenumberofballotsis

16 P5 = 16! 11! =12(13)(14)(15)(16)=524, 160

11.Becauseorderisimportant,thenumberofpossibilitiesis

22 P6 = 22! 16! =53, 721, 360

12.(a)Thenumberofchoicesis

20 P3 = 20! 17! =6, 840

(b)Ifthelistbeginswith4,thereareonlytwonumberstochoosefrom theremainingnineteennumbers.Thereare

19 P 2 = 19! 17! =(18)(19)=342

waystodothis.Thisresultdoesnotdependonwhichnumberisfixedin thefirstposition.Thepercentageofchoicesbeginningwith4is100(342/6, 840), or5percent.Thisisreasonablefromacommonsensepointofview,since, with20numbertochoosefrom,wewouldexpect5percenttobeginwith anyparticularoneofthenumbers.

(c)Thisquestionisreallythesameasthequestionin(b),sinceitdoes notmatterwhichnumberisfixed.Theansweristhat5percentofthe choicesendsin9.

(d)Iftwoplacesarefixedat3and15,thenthereareeighteennumbers left,fromwhichwewanttochooseone.Thereare18suchchoices.

13.Withoutorder(and,weassume,withoutreplacement),thenumberoften cardhandsis

14.Disregardingorder,thenumberofninemanlineupsthatcanbeformed fromaseventeenpersonrosteris

Iftheordermakesadifference,thenthenumberis

15.Thenumberofcombinationsis

16.Thenumberis

C12 =

12!28! =5, 586, 853, 480

17.Thenumberofoutcomesofflippingfivecoinsis25 =32.

(a)Thenumberofwaysofgettingexactlytwoheadsfromthefiveflips is 5 C2 =5!/(2!3!)=10.Theprobabilityofgettingexactlytwoheads(or exactlytwotails)is

Pr(exactlytwoheads)= 10 32 = 5 16 .

(b)Wegetatleasttwoheadsifwegetexactlytwo,orexactlythree,or exactlyfour,orexactlyfiveheads.Thesumofthenumberofwaysof doingeachoftheseis

Pr(atleasttwoheads)= 26 32 = 13 16 .

18.Iffourdicearerolled,thenumberofoutcomesis64 =1, 296.

(a)Weneedthenumberofwaysthefourdicecancomeupwithexactly twoofthediceshowing4.Wegetexactlytwodiceshowing4bychoosing anytwoofthefourdicetocomeup4,andallowingtheothertwodiceto comeupanyof1, 2, 3, 5, 6,fivepossibilitiesfortheothertwo.Thenumber ofwaysthiscanhappen,bythemultiplicationprinciple,is

Theprobabilityofgettingexactlytwofour’sis

Pr(exactlytwofour’s)= 150 1296 = 23 216 .

(b)Thenumberofwaysofgettingexactlythreefour’sis5(4 C1 )=20,so

Pr(exactlythreefour’s)= 20 1296 = 5 324

(c)Wegetatleasttwofour’sifwegetexactlytwofour’s,exactlythree four’s,orallfourtossescomingup4.Thereare150waysofgetting exactlytwo,and20waysofgettingexactlythreefour’s.Clearlyinfour tossesthereisonewayofgettingfourfour’s.Therefore

Pr(atleasttwofour’s)= 150+20+1 1296 = 19 144

(d)Tototal22,thedicecouldcomeup6, 6, 6, 4,inanyorder(fourways), or6, 6, 5, 5inanyorder(sixways).Therefore

Pr(dicetotal22)= 10 1296 = 5 648

19.Thenumberofwaysofdrawingtwocardsoutof52cards,withoutregard toorder,is 52 C2 =1, 326.

(a)Wegettwokingsifwehappentogettwoofthefourkings,andthere are 4 C2 =6waysofdoingthis.Then

Pr(twokingsaredrawn)= 6 1326 = 1 221

(b)Theacesandfacecardsconstitute16ofthe52cards.Ifnoneofthe twocardsisdrawnfromthesesixteencards,thenthetwocardsaredrawn fromtheremaining36cards.Disregardingorder,thereare 36 C2 =630 waystodothis.Therefore

Pr(noaceorfacecard)= 630 1326 = 105 221 . 8

20.Thenumberofwaysofchoosingfourlettersfrom26letters,withorder,is

26 P4 = 26! (26 4)! = 26! 22! =(23)(24)(25)(26)=14, 950

(a)Ifthefirstletterissetat q ,thenwearelefttochoose,withorder, threelettersfromtheremaining25letters.Thereare 25 P3 =2, 300ways todothis,so

Pr(firstletterisq)= 2300 14950 = 2 13 .

(b)Suppose a and b aretwooftheletters.Howmanywayscanthisoccur? Imagineastringoffourboxes.Pickanytwo,andput a and b inthese boxes.Thereare 4 P2 =12waystodothis.Fortheothertwoboxes,put (keepingtrackoftheorder)anytwooftheremaining24letters.There are 24 P2 waystodothis.Thenumberoforderedstringsoffourletters with a and b twooftheletters,is (4 P2 )(24 P2 )= 4! 2! 24! 22! =564

Then

Pr(a and b werechosen)= 560 14950 = 7 187

(c)Theprobabilityof abdz occurringis1/14950,sincethisstringcan occurinexactlyoneway.

21.Thenumberofwaysofchoosing,withoutorder,threeoftheeightbowling ballsis 8 C3 =56.

(a)Fornoneoftheballstobedefective,theyhadtocomefromthesix nondefectiveones.Thereare 6 C3 =20waystodothis.Then

Pr(nonedefective)= 20 56 = 5 14

(b)Therearetwowaystotakeonedefectiveball.Theothertwowould havetobetakenfromthesixnondefectiveones,whichcanbedonein 6 C2 =15ways.Then

Pr(exactlyonedefectiveball)= 30 56 = 15 28

(c)Inchoosingthreebowlingballs,thereare3waysofpickingthetwo defectiveones.Thentherearesixwaysofchoosingthethirdballas nondefective.Therefore

Pr(bothdefectiveballsarechosen)= 6(3) 56 = 9 28

22.Thisprobleminvolvestossingdice,exceptnoweachdiehasonlyfour faces,numbered1, 2, 3, 4.Thenumberofoutcomesis47 =16, 384,since eachoftheseventosseshasfourpossibilities.

(a)Thereisonewayallsevendicecancomeup3,so

Pr(allcomeup3)= 1 16384

(b)Thereare 7 C5 =21waysofpickingfiveofthediceandimaginingthey comeup1,andimaginingtheothertwocomeup4.Therefore

Pr(fiveones,twofours)= 21 16384

(c)Theonlywaystorollatotalof26aretoroll(inanyorder),

4, 4, 4, 4, 4, 4, 2

andtherearesevenwaystodothis(sevenpossiblelocationsforthe2),or toroll

4, 4, 4, 4, 4, 3, 3

andthereare 7 C2 =21waystodothis.Therefore

Pr(total26)= 7+21 16384 = 7 4096 .

(d)Thesumisatleast26ifthesumis26,27,or,thelargestpossible,28. Wealreadyknowfrom(c)thatthereare28waystototalexactly26.To rolla27,wemustget(inanyorder),

4, 4, 4, 4, 4, 4, 3

andthereare7waystodothis.Toroll28,wemustgetallfour’s,and thereisonewaytodothis.Therefore

Pr(totalatleast26)= 28+7+1 16384 = 9 4096

23.Takingorderintoaccount,thereare

20 P5 = 20! 15! =(16)(17)(18)(19)(20)=1, 860, 480 waystochoose5oftheballs.

(a)Thereisonlyonewaytochoosetheballsnumbered1, 2, 3, 4, 5inthis order.theprobabilityis

Pr(select1, 2, 3, 4, 5inthisorder)= 1 1860480 .

(b)Wewanttheprobabilitythatballnumber3wasdrawn(somewherein thefivedrawings).Wethereforeneedthenumberoforderedchoicesoffive ofthetwentynumbers,thatincludethenumber3.Wecanthinkofthis aschoosing,inorder,fourofthenineteennumbers1, 2, 4, 5, , 18, 19, 20, andtheninserting3inanyofthepositionsfromthefirstthroughfifth numbersofthedrawing.Thiswillresultinallorderedsequencesoflength fivefromthetwentynumbers,andcontainingthenumber3insomeposition.Therearetherefore5(19 P4 )=465, 120suchsequences.Therefore

Pr(selectinga3)= 465120 1860480 = 1 4

(c)Wemustcountallthedrawings(sequences)thatcontainatleastone evennumber.Thiscouldmeanthesequencecontainsone,two,three, fourorfiveevennumbers.Thisisacomplicatedcountingproblemif approacheddirectly.Itiseasiertocountthesequencesthathavenoeven number,henceareformedjustfromthetenevenintegersfrom1through 20.Ifthisnumberis N0 ,thenthenumber X ofsequenceshavinganeven numberis

X =1, 860, 480 N0 .

Now N0 iseasytocompute,sincethisisthenumberoforderedfive-term sequencesofthetenoddnumbers.Thus

N0 =10 P5 =30, 240

Then X =1860480-30240=1830240.

Then

Pr(anevennumberwasdrawn)= 1830240 1860480 . Thisisapproximately0.984,soitisverylikelythatanevennumbered ballwasdrawn.

24.Weneedtobeclearwhatanoutcomeofthisexperimentlookslike.An outcomecanbewrittenasastring abc,witheachletterrepresenting(in someway)achosendraweroutofthenineavailabledrawers.Thenumber ofoutcomes,withoutregardtoorder,is 9 C3 =84.

(a)Apersongetsatleast1,000dollarsbypickingexactlyonedrawerwith thethousanddollarbillandtwowithout.Thereare2(7 C2 )waystodo this.Or,wecouldpickbothdrawerswiththethousanddollarbilland oneoftheothers.Thereare7waystodothis.Thenumberofwaysof gettingatleastathousanddollarsistherefore42+7,and

Pr(gettingatleastonethousanddollars)= 49 84 = 7 12

(b)Apersoncannotendupwithlessthanonedollar.Thisisnotan outcomeinthesamplespace.Wemayalsoassignaprobabilityofzeroto thisproposedoutcome.

(c)Thepayoffis1.50exactlywhenthepersonchoosesthreedrawers,each containingfiftycents.Thenumberofwaysthiscanhappenis 7 C3 =35, so

Pr(1.50payoff)= 35 84 = 5 12

Noticethatthesumoftheprobabilitiesof(a)and(c)is1.Thisisbecause, inchoosingthreedrawers,thepersonmusteitherchoosealldrawershaving fiftycents,ormustchooseatleastoneofthedrawershavingathousand dollarbill.

25.Thenumberoffive-cardhands(disregardingtheorderofthedeal)is

52 C5 =2, 598, 960.

(a)Thenumberofhandscontainingexactlyonejackandexactlyoneking is

4(4)(44 C3 )=211, 904

Thisisbecausetherearefourwaysofgettingonejack,fourwaysofgettingoneking,andthenwechoose(withoutorder)threecardsfromthe remaining44cards.Thus

Pr(exactlyonejackandexactlyoneking)= 211904 2598960

Thisisapproximately0 082,sothiseventisquitelikely.

(b)Thehandwillcontainatleasttwoacesifithasexactlytwoaces, exactlythreeaces,orexactlyfouraces.Thenumberofsuchhandsis

)=108, 336

Forthefirstterm,choosetwoacesoutoffour,thenthreecardsfrom theremainingforty-eightcards,andsimilarlyfortheothertwotermsfor drawingthreeacesordrawingfouraces.Then

Pr(drawatleasttwoaces)= 108336 2598960 .

Thisisapproximately0 042.Aswemightexpect,ahandwithatleast twoacesisnotverylikely.

26.Thereare101numberstochoosefrom,and 101 C2 =668, 324, 943, 343, 021, 950, 370

waystodothis(withoutregardtoorder).

(a)Therearetwenty-onenumbersinthe80to100range,inclusive.The numberofwaysofchoosingtwentyofthese(withoutorder)is 21 C20 =21. Therefore

Pr(allnumbersarelargerthan79)= 21 668324943343021950370 . 12

Thisisveryclosetozero.Intherealworldnosanepersonwouldbeton drawingallthetwentynumbersfromtheeightytoonehundredrange. (b)Thereare

100 C19 =132, 341, 52, 939, 212, 267, 400 waystochooseafive:chooseonefive,thennineteennumbersfromthe remainingonehundrednumbers.Therefore

Pr(chooseafive)= 132341572939212267400 668324943343021950370

Thisisapproximately0 190.Sincetwentynumbersisnearly1/5the101 numbers,itisnotsurprisingthattheprobabilityofgettinganyparticular numberiscloseto1/5.

Section3ComplementaryEvents

1.Therearemanywayssevendicecancomeupwithatleasttwofours(call thisevent E ).Wecancountthese,butitmaybeeasiertolookatthe complementaryevent E C ,whichisthatfewerthantwodicecomeup4. Thisistheeventthatexactlyonediecomesup4,ornoneofthemdo. Ifno4comesup,theneachofthesevendicehasfivepossiblenumbers showing,for57 possibilities.Ifexactlyonediecomesupwithafour,then theotherdicehavefivepossiblenumbersshowing,andthiscanoccurin 7(56 )ways.Thismeansthat E C has

57 +7(56 )=187, 500

outcomes.Then,sincethetotalnumberofoutcomesofsevenrollsis 67 =279, 939,wehave

Pr(E C )= 187500 279936 .

Theprobabilityweareinterestedinis

Pr(E )=Pr(atleastone4)=1 187500 279936

Thisisapproximately0.330.

2.Infourteencointosses,thereare214 =16, 384outcomes. Nowlet E betheeventthatatleastthreeofthefourteencoinscomeup heads. E hasmanyoutcomesinit.Itmaybeeasiertodealwith E C , whichistheeventthatfewerthanthreeofthefourteencoinscomeup heads. E C consistsoftheevents:noheadcomesup,oneheadcomesup, ortwoheadscomeup.

CompetingSpeciesPopulationModels

Inacompetingspeciesmodel,twopopulationscompetewitheachotherfor thesameresource.Wewilldeveloptwomodelsforanalyzingthebehaviorof thesepopulations.

ASimpleCompetingSpeciesModel

Arelativelysimplecompetingspeciesmodelcanbeobtainedbyassuming thatanincreaseineitherpopulationcausesareductionintheresourceforboth populations,henceshouldcontributetoadeclineofbothpopulations.The effectofthisinteractionismodeledastheproductofthepopulations,leading tothesystem

inwhich x(t)and y(t)arethepopulationsattime t andthecoefficientsare positiveconstants.Inmatrixform,

Thecriticalpointsare(0, 0)and(k/c,a/b).

Example1 Wewillanalyzethecompetingspeciesmodel

Thecriticalpointsare(0, 0)and( 40 7 , 20 3 ).

Firstlookat(0, 0).Thematrixofthelinearizedsystemis

A(0,0) = 20 04

witheigenvalues2, 4.Theoriginisanunstablenodalsourceforthissystem. Figure1isaphaseportraitshowingtrajectoriesmovingoutofandawayfrom theorigin.

Attheothercriticalpoint,thematrixofthelinearizedsystemis

(40/7,20/3) = 0 12 7 14 3 0 ,

witheigenvalues ±2√2.Thiscriticalpointisanunstablesaddlepointofthe linearizedmodel,hencealsooftheoriginalcompetingspeciesmodel.Figure2 isaphaseportraitofthiscompetingspeciessystem,showingsometrajectories

Figure1:TrajectoriesneartheorigininExample1.

Figure2:Trajectoriesnear(40/7, 20/3)inExample1.

nearthecriticalpoint( 40 7 , 20 3 ).Iftheinitialconditionsare“near”thiscritical point,say x(0)=15,y(0)=5

thenthe x populationprospersandgrowsindefinitelyas t increases,whilethe y populationdiesout.

Thisfirstcompetingspeciesmodelcanbereducedtoasingledifferential equationintermsof x and y.ForthesystemofExample1,firstwrite

andthevariablesseparatetoyield

Integrateandrearrangetermstoobtaintheimplicitlydefinedgeneralsolution

Initialconditions x(0)and y(0)determine k andthetrajectorythroughthis point.

Ingeneral,forthiscompetingspeciesmodel,theasymptotesofthetrajectoriesseparatethefirstquadrantintofourregions,labeled 1,2,3,4 inFigure3. Iftheinitialpopulationpoint(x(0),y(0))isinregion 1 or 4,thenthe x populationwillincreaseintimewhilethe y populationshrinkstozeroas t →∞.If theinitialpopulationpointisinregion 2 or 3,thenthe y populationsurvives andthe x populationbecomesextinct.

AnExtendedCompetingSpeciesModel

Thecompetingspeciesmodeljustconsideredleavesnoroomforcompromise ordiplomacy-onespeciessurvives,theotherdies.Wewouldlikeamore sophisticatedmodelallowingagreatervarietyofoutcomes(asoccurinthereal world).

Onewaytodothisistoaddatermtoeachequationthataccountsforfactors withineachpopulationthatmightlimititsgrowth,independentofinteractions withtheotherpopulation,whicharealreadytakenintoaccountbythe xy terms. Assumingthatsuchfactorsareproportionaltothesquareofthepopulation,we havethecompetingspeciesmodel X = Gx Dx2 Cxy, gy dy2 cxy

Unlikethepreviousmodel,theseequationsdonotadmitexponentialgrowthor decayintheabsenceoftheotherpopulation.Thinkof D and d astheinternal growth-limitingfactors,while C and c arethecompetitionfactors.

Figure3:Phaseportraitofasimplecompetingspeciesmodel.

Wewilllookattwoexamplesbeforemakingageneralanalysisofthismodel.

Example2 Themodel

= f (x,y) g(x,y) =

hasfourcriticalpointsinthefirstquadrant: (0, 0), (0, 4), ( 18 5 , 0), and( 6 5 , 8 5 )

Forbehavioroftrajectoriesnear(0, 0),lookat A(0,0) = fx(0, 0) fy (0, 0) gx(0, 0) gy (0, 0) = 3 5 0 01

Thishaseigenvalues1and 3 5 sotheoriginisanunstablenodalsource. For(0, 4),form A(0,4) = 2 5 0 2 1

Thishaseigenvalues 2 5 , 1,so(0, 4)isanasymptoticallystablenodalsink. Solutionsbeginning“near”(0, 4)tendtoward(0, 4)as t increases.Becausewe areonlyinterestedinintegervaluesof x(t)and y(t)aspopulationcounts,this

Figure4:PhaseportraitinExample2.

istheobviousresultthat,if x(0)=0,and y(0)=4,thenthepopulationstend toward x =0,y =4as t increases.

For( 18 5 , 0),compute

Thishaseigenvalues 3 5 , 4 5 andthiscriticalpointisalsoanasymptotically stablenodalsink.

Finally,forthecriticalpoint( 6 5 , 8 5 ),wefindthat

witheigenvalues 4 5 , 1 5 .Thiscriticalpointisanunstablesaddlepoint.

Figure4showsaphaseportraitforthissystem.Trajectoriesflowoutward fromtheoriginand,dependingonwheretheystartattimezero,flowtoward thecriticalpoint(0, 4)(so y survivesand x becomesextinct),ortoward( 18 5 , 0) (so x survivesand y becomesextinct).Someofthesetrajectoriesalsosuggest thebehaviorofthesystemnearthesaddlepoint( 6 5 , 8 5 ).Becausethispoint isunstable,itispossibletofindinitialpointsclosetothiscriticalpointfrom whichthe x speciessurvivesandthe y speciesdoesnot,orfromwhichthe y speciessurvivesandthe x speciesdiesout.

Example3 ContrasttheoutcomesofExample2withthoseofthemodel

Thecriticalpointsare (0, 0), (0, 4), (3, 0)and( 24 11 , 36 11 )

Analyzeeachcriticalpointasfollows.

For(0, 0),compute

(0,0) =

02 , witheigenvalues3, 2.Theoriginisanunstablenodalsource. For(0, 4),

witheigenvalues 2, 2.Then(0, 4)isanunstablesaddlepoint. For(3, 0),wehave

witheigenvalues 3, 3 2 .Then(3, 0)isalsoanunstablesaddlepoint.

Finally,at( 24 11 , 36 11 ),

witheigenvalues 21±3√5 11 .Thesenumbersarebothnegative,sothiscritical pointisanasymptoticallystablenodalsink.Figure5near(6/5, 8/5)showsa phaseportraitforthissystemwithsometrajectoriesnearthiscriticalpoint.

Itispossibletocarryoutageneralanalysisforthecompetingspeciesmodel X = Gx Dx2 Cxy, gy dy2 cxy

Firstlookatthecriticalpointsfromageometricpointofview.Thesecritical pointsaresimultaneoussolutionsof x(G Dx Cy)=0, y(g cx dy)=0,

Solutionsfor x and y arecoordinatesofpointsofintersectionofpairsoflines, namelythe x ,axis,the y axis,andthelines Dx + Cy = G cx + dy = g.

Figure5:PhaseportraitinExample3.

Figure6showsthefourpossiblerelativepositionsofthelasttwolinesinthe firstoctant.Thecriticalpointsare

(0, 0), ( G D , 0), (0, g d ), and

Nowconsiderthecriticalpointsinturn.

(0, 0)-Writethesystemas A(0,0) = G 0 0 K X + Dx2 Cxy dy2 cxy

.

Thematrixofthelinearparthaseigenvalues G,g,bothpositive.Iftheseare unequalthentheoriginisanunstablenode.If G = g thentheoriginisan unstablenode.

( G D , 0)-Nowcompute A(G/D,0) = G CG/D 0 cG/D

witheigenvalues g,g cG D .Certainly G< 0.If g c > G D thenthesecond eigenvalueispositiveandthiscriticalpointisanunstablenode.If g c < G D then botheigenvaluesarenegative.Iftheyaredistinct,thenthecriticalpointisan

asymptoticallystablenode.Iftheyareequal,thenthealmostlinearsystemhas anasymptoticallystablenodeorspiralpointat( G D , 0).

(0, g d )-Nowwefindthat

(0,g/d) = G Cg

,

witheigenvalues g,G Cg d .If G/C>g/d thenthesecondeigenvalueis positiveand(0,g/d)isanunstablenode.If G/C<g/d thenbotheigenvalues arenegative.Iftheseeigenvaluesaredistinct,then(0,g/d)isanasymptotically stablenode.Iftheseeigenvaluesareequal,thenthealmostlinearsystemasan asymptoticallystablenodeorspiralpointat(0,g/d).

((Gd Cg)/(dD cC), (Dg cG)/(dD cD))-Denotethispoint(˜x, y).

Thisisthepointofintersectionofthelines Dx + Cy = G,cx + dy = g.

Inthepresentcontext,lookatthecasethatthepointofintersectionfallsinthe firstquadrant(Figures6(3)andFigure6(4)).InFigure6(3),

whileinFigure6(4),

Nowcompute

Butrecallthat G = Dx + Cy and

+ dy. Then A(˜x,y) = Dx Cx cy dy , witheigenvalues 1 2 (Dx + dy) ± (Dx + dy)2 4(Dd Cc)˜xy .

Theseeigenvaluescanbewritten 1 2 (Dx + dy) ± (Dx dy)2 +4Ccxy .

Thisformulationmakesitclearsthattheseeigenvaluesarereal.Twocases occur.

Figure6:Relativepositionsoflines(1 ) Dx + Cy =0and(2 ) cx + dy =0.

If Dd = Cc< 0,thenoneeigenvalueispositiveandtheothernegative.In thiscase(˜x, y)isanunstablesaddlepoint.Ifthepopulationpoint(x(0),y(0)) startsnearenoughtothiscriticalpoint,onepopulationwilldieoutwithtime andtheotherwillsurvive.ThiscasecorrespondstoFigure6(3).Thecondition Dd<Cd)canbeinterpretedtomeanthattheproductoftheinternallimiting factorsislessthantheproductofthecompetitionfactors.Thecompetition factorstendingtoincreasethepopulationsaredominantinthemodelandonly onepopulationsurvives.

If Dd Cd> 0thenbotheigenvaluesarenegativeand(˜x, y)isanasymptoticallystablenode(Figure6(4)).If(x(0),y(0)issufficientlyclosetothisnode, trajectoriesthroughthisinitialpointapproachthenodeinthelimitandboth speciessurvive(coexistence).Now Cd<Dd andthecompetitionfactorsare lessimportantthaninternallimitingfactors.Withcompetitionplayinglessof aroleinthepopulation,mutualsurvivalcanoccur.

Problems

EachofProblems1–6dealswiththesimplecompetingspeciesmodeltreated firstinthissection.Ineach,(a)determinethecriticalpointsinthefirstoctant andclassifytheirtypeandstabilityproperties,(b)drawaphaseportraitfor

thesystem,(c)interpretthesurvivalprospectsforeachspecies,asdictatedby themodel.

1. x = x 4xy,yprime =3y 6xy

2. x =3x xy,y =4y 10xy

3. x =3x 2xy,y =6y 2xy

4. x =8x 3xy,y =2y 7xy

5. x =3x 7xy,y = y 4xy

6. x =4x 9xy,y =5y 2xy

Problems7–12dealwiththeextendedcompetingspeciesmodel.Ineach, (a)determinethecriticalpointsinthefirstoctantandthetypesandstability properties,(b)drawaphaseportraitforthesystem,(c)interpretthesurvival prospectsforeachspecies,asdictatedbythemodel.

7. x =7x 5x2 2xy,y =3y 4y2 xy

8. x =4x 7x2 xy,y = y 2y2 3xy

9. x =2x 3x2 xy,y =3y y2 2xy

10. x = x 9x2 3xy,y = y y2 xy

11. x =3x x2 2xy,y = y 2y2 xy

12. x = x 6x2 3xy,y =5y 2y2 8xy

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.