Solutions for Miller And Freunds Probability And Statistics for Engineers 9th Us Edition by Johnson

Page 1


Chapter2 ORGANIZATIONAND DESCRIPTIONOFDATA

2.1Paretochartoftheaccidentdata

Frequency05101520

2.2a)Paretochartofdamageduetobreakage(inthousandsofdollars)is

FingersEyesArmLeg

b)Percentofthelossthatoccursinmakingtoiletpaperis

c)Percentofthelossthatoccursinmakingtoiletpaperorhandtowelsis

2.3Thedotdiagramoftheenergyis

2.4Thedotdiagramofthepaperstrengthdatais

110115120125130135140

2.5Thedotdiagramofthesuspendedsolidsdatarevealsthatonereading,65ppm,isverylarge.Other readingstakenataboutthesametime,butnotgivenhere,confirmthatthewaterqualitywasbadat thattime.Thatis,65isareliablenumberforthatday.

2.6Thedotdiagramofthetimesforthepoweroutagesshowsonelargevalue,10.0hours.

Time(hours)

2.7(a)

Timebetweenarrivals(sec)

(b)Theoneextremelylargegapbetween2.0and7.3secondsisanoutlier.Thiscouldbedueto neutrinosthatweremissedorthepossibilitythattwoexplosionsoccurred.

2.8(a)Theclassmarksare150.0,170.0,190.0,210.0,230.0and250.0.

(b)Theclassintervalis20.

2.9(a)Yes.Thisisthenumberofobservationsintheclass[140.0,160.0).

(b)No.Itisnotpossibletodeterminehowmanyspecimenshavebreakingstrength160.

(c)Yes.Thisisthetotalnumberofobservationsinthetwoclasses[220.0,240.0) and[240.0,260.0).

(d)No.Itisnotpossibletodeterminehowmanyofthespecimenshavestrength240.

(e)No.Itisnotpossibletodeterminehowmanyofthespecimenshavestrength260.

2.10Thefrequencydistributionisgiveninthetablewheretheright-handendpointisincluded.

Thehistogramis

ClassFrequency

(60, 70]5

(70, 80]11

(80, 90]9

(90, 100]18

(100, 110]6

(110, 120]1

Frequency 60708090100110120

Diameter(nM)

2.11Wefirstconvertthedataintheprecedingexercisetoa“lessthanorequal”distribution.Theogiveis plottedbelow.

Number less than or equal

Diameter(nM)

2.12Thesedatacanbegroupedintothefollowingfrequencydistributionwheretherighthandendpointis excluded:

ClassClass limitsFrequencylimitsFrequency

[1.0, 2.0)10[7.0, 8.0)6

[2 0, 3 0)10[8 0, 9 0)4

[3 0, 4 0)9[9 0, 10 0)4

[4.0, 5.0)11[10.0, 11.0)1

[5 0, 6 0)12[11 0, 12 0)2 [6 0, 7 0)10[12 0, 13 0)1

Thehistogramis

Frequency

2.13Wefirstconvertthedataintheprecedingexercisetoa“lessthan”distribution.

xNo.lessthanxNo.lessthan 1.008.068 2.0109.072 3.02010.076 4.02911.077 5.04012.079 6.05213.080 7.062

Theogiveis 24681012

2.14Afterorderingthedataweobtainthefrequencydistribution.

Temperature(◦ C)Frequency

[1.10, 1.20)1

[1 20, 1 30)11

[1 30, 1 40)16

[1.40, 1.50)15

[1 50, 1 60)4

[1 60, 1 70)3 Total50

Therelativefrequencyhistogramis

2.15Thecumulativefrequenciesforlessthantheupperlimitoftheintervalare

2.16Thefrequencytableis:

2.17Theempiricalcumulativedistributionfunctionis

2.18Theempiricalcumulativedistributionis:

Empirical Distribution

Numberofaccidents

2.19No.Wetendtocompareareasvisually.Theareaofthelargesackisfarmorethandoubletheareaof thesmallsack.Thelargesackshouldbemodifiedsothatitsareaisslightlylessthandoublethatof thesmallsack.

2.20Thepiechartis

2.21Wefirstnotethattheclassesarenotofequallength.Ifthedistributionofthedatawereuniform overasingleintervalcoveringallofthedata,onewouldexpectthatlongerclasseswouldhavehigher counts.Tocorrectforthis,theareaofeachrectangleshouldbeproportionaltotheproportionof observationsintheclass.Ofcourse,whentheclasslengthsareequal,plottingtheheightequaltothe classfrequencyresultsinrectangleswithareaproportionaltothecorrespondingclassproportions.

Theincorrecthistogramis

Thecorrecthistogramusesheight=(relativefrequency)/width.Theheightofthefirstrectangleis (relativefrequency)/width=(3/50)/40=0.0015.

Thiscorrecthistogramis

2.22Thestemandleafdisplayis:

2.23Thestemandleafdisplayis:

2.24(a)Thedataare:11,12,13,14,15,17,18.

(b)Thedataare:230,230,231,234,236.

(c)Thedataare:203,218,235,257.

(d)Thedataare:3.21,3.23,3.24,3.24,3.27.

2.25Thestem-and-leafdisplayis:LeafUnit=0.010

2.26(a)Thestem-and-leafdisplayis:

(b)Thedataare:

534,534,534,534,535,535,536,536,536,537,538,539,541.

2.27(a)Wouldlikeahighsalary-outlierthatislarge.

(b)Wouldlikeahighscore-outlierthatislarge.

(c)Nearaverage.

2.28(a)Wouldlikefinishearly-outlierthatissmall.

(b)Nearaverage.

2.29Greateronthemean.Itwouldnotinfluencethemedianforsamplesize3ormore.

2.30GreaterontheRange.Itwouldinfluencethevalueoftherangebutnottheinterquartilerangeifthe samplesizeisatleast5.

2.31(a) x =( 6+1 4 3)/4= 3

(b)

(c)Themeanoftheobservationminusspecificationis 3so,onaverage,theobservationsarebelow thespecification.Onaverage,theholesaretoosmall.

2.32(a)

(c)Theaveragedropsbyover40meters,about8%,whentheoneverytallbuildingisexcluded.

2.33(a) x =(35+37+38+34+30+24+13)/7=211/7=30.14mm/min.

(b)Themeandoesnotprovideagoodsummary.Themostimportantfeatureisthedropinperformanceasillustratedintimeorderplotofdistanceversussamplenumber.Itislikelythetipof thelegbecamecoveredwithdebrisagain.Theearlytrialsindicatewhatcanbeexpectedifthis problemcanbeavoided.

2.34(a)Acomputercalculationgives

Samplenumber

Youmayverifythemeanbyfirstshowingthat xi =4265.

(b)Youmayconfirmthecalculationof s byshowingthat x2 i =2041 54so s

2.35No.Thesumofthesalariesmustbeequalto3(175,000)=525,000whichislessthan550,000.This assumesthatallsalariesarenon-negative.Itiscertainlypossibleifnegativesalariesareallowed.

2.36Themeanisindeed85.But,wecommentthat s =15indicatingconsiderablevariationinaverage monthlytemperature.Themedianis86,alsoacomfortabletemperature.

2.37(a)Themeanagreementis:

Consequently, s = √0.0330=0.1817.

2.38(a)Thefollowingtablegivestheobservations,thedeviations,thesquareddeviations,andthesumof thesquareddeviations.

SquaredSquared

SumofSquaredDeviations=.29709

SampleVariance s2 = 29709/9= 03301and s = 1817.

(b)Thesquaredobservationsare: .2500.1600.0016.2025.4225.1600.04000900.3600.2025

Thesumofthesesquaresis1.8891.Thus,

Thus, s = 1817

2.39(a)Themeanoffensivesmellis x = 16 i=1 xi 16 = 53 6 16 =3 35

(b)Theorderedoffensivesmellscoresare

1.01.01.71.92.42.62.73.2

3.33.83.94.35.05.25.36.3

Themedian=(3 2+3 3)/ 2=3 25.

(c)Since16 × (1/4)=4isaninteger, Q1 =(1.9+2.4) /2=2.15and Q3 =(4.3+5.0) /2=4.65.

Theboxplotis 1234567 Offensivesmellscore

2.40(a)Thetableofdata,deviation,anddeviationsquaredis:

Data 61 4 3

Dev. 34 10

Sq.91610

Thesumofthesquareddeviationsis26.Thus, s 2 =26/3=8 667and s =2 94

(b)Thesumoftheobservationsis62.Thesumoftheobservationssquaredis144.Thus,

2.41Themeanis30.91.Thesorteddataare: 29.6,30.3,30.4,30.5,30.7,31.0,31.2,31.2,32.0,32.2

Sincethenumberofobservationsis10(anevennumber),themedianistheaverageofthe5thand6th observationsor(30.7+31.0)/2=30.85.Thefirstquartileisthethirdobservation,30.4,andthethird quartileistheeighthobservation,31.2.

2.42Thetableofdata,deviation,anddeviationsquaredis:

Data97155

Deviation0 26 4 Squares043616

(a)Thedeviations(xi x)addto0+( 2)+6+( 4)=0. (b) (xi x)2 =56.Thus, s2 =56/3=18 66and s =4 32.

2.43Theboxplotisbasedonthefive-numbersummaryofthe n =50temperatures.

2.44(a) x =( 290+ 104+ 207+ 145+ 105+ 124)/6= 974/6= 1623

(b)Wefirstcalculate .2902 + .1042 + .2072 + .1452 + .1052 + .1242 = .18498andthen s 2 =

Consequently, s = √ 005373=0 0733.

2.45(a)Forthenon-leakers x =( 207+ 124+ 062+ 301+ 186+ 124)/6= 16733

(b)Also, .2072 + .1242 + .0622 + .3012 + .1862 + .1242 = .20264so s 2 = 6(.20264) (1.004)2 6 5 = 006928so s = √ 006928= 0832

(c)Themeansarequiteclosetoeachotherandsoarethestandarddeviations.Thesizeofgapdoes notseemtobeconnectedtotheexistenceofleaks.

2.46(a) xi =605.Thus,¯ x =605/20=30 25,and x2 i =20, 663.Hence, s2 =(20 21723 6152 )/(20 19)=124 303.And s =11 15.

(b)Theclasslimits,marks,andfrequenciesareinthefollowingtable:

ClasslimitsClassmarkFrequency 10-1914.53 20-2924.58 30-3934.55 40-4944.53 50-5954.51

Thus, x =(3(14 5)+8(24 5)+5(34 5)+3(44 5)+54 5)/20=30 xi fi =600. x2 i fi =20, 295.Thus, s2 =(20 20, 295 6002 )/(20 19)=120.79.So, s =10.99.

2.47Theclassmarksandfrequenciesare: ClassmarkFrequency

Thus, xi fi =4370, x2 i fi =389, 850.Themeanis4370/50=87.40,and s2 =(389, 850 43702 /50)/(49)=161.47. Copyright©2017PearsonEducation,Inc.

2.48Weusetheclasslimits[1,2),[2,3),...wheretheright-handendpointisexcluded.Theclassmarks andfrequenciesare:

Thus, xi fi =415 0, x2 i fi =2, 722 0.Therefore,themeanis415.0/80=5.188and s2 =(80 · 2, 722.0 415.02 )/(80 79)=7.2049.Thestandarddeviationis s =2.684.Thecoefficientofvariation is v =100 s/x =51 0percent.

2.49FromExercise2.14wehavetheintervalsandfrequencies.Thelasttwocolumnsgivethecalculations ofthebasictotals.

[1 10, 1 20)1.1511.151.3225

[1 20, 1 30)1.251113.7517.1875

[1.30, 1.40)1.351621.6029.1600

[1 40, 1 50)1.451521.7531.5375

[1 50, 1 60)1.5546.209.6100

[1.60, 1.70)1.6534.958.1675 Total5069.4096.9850

Substitutingthetotalsintotheappropriateformulasyields

and

Thecoefficientofvariationisthen

2.51Thenumerator

Thus, sx = csu .

2.53(a)Themedianisthe50/2th=the25thlargestobservation.Thisoccursattheright-handboundary sothemedianis90.Applyingtherule, 90+ 0 18 × 10=90

(b)Thereare80observations.Thereare40observationsinthefirstfourclasses,and40inthelast four.Thus,theestimateforthemedianistheclassboundarybetweenthe4thand5thclass.We coulduse5.0.

2.54(a)Wecanestimatethemeanandthemedianinthiscasesinceweknowtheclassmarksand frequenciesforeachclass.

(b)Wecannotestimatethemeaninthiscase,sincewedonotknowtheclassmarksfortheclasses “lessthan90”and“morethan119”.Wecanestimatethemedian.Itliesinthethirdclass,and weproceedasbefore.

(c)Again,wecannotestimatethemeansincewedonotknowtheclassmarkfortheclass“110or less”.Wealsocannotestimatethemedian,asitalsoliesintheclass“110orless”.

2.55(a)Thereare50observations. Q1 isinthesecondclassand Q3 isinthe4thclass.Thelowerclass boundaryforthe2ndclassis245.Thereare3observationsinthefirstclassand11inthe2nd class.Theclassintervalis40.Thus, Q1 isestimatedby40(50/4 3)/11+245=279.55 Proceedinginasimilarfashiongives325+40(37.5 37)/9=327.22astheestimateof Q3 .Thus, theinterquartilerangeis47.67.

(b)Thereare80observationsand80/4=20whichisontheboundaryofthesecondandthirdclasses sotheestimatefor Q1 is3.00andfor Q3 itis1((60 52)/10+6.00=6.80.

2.56(a)Theaveragesalarypaidtothe30executivesis

(4 · 264,000+15 ·272,000+11 · 269,000)/(4+15+11)=269,833.33.

(b)Themeanfortheentireclassis (22 · 71+18 · 78+10 · 89)/(22+18+10)=77.12.

2.57(a)Theweightedaverageforthestudentis (69+75+56+72+4 78)/8=73.0.

(b)Thecombinedpercentincreasefortheaveragesalariedworkeris: (24 60+33 30+15 40)/(24+33+15)=42.08percent. Copyright©2017PearsonEducation,Inc.

2.58UsingMINITABandtheDESCRIBEcommand,weobtain x and s

(a)Forthedecaytimesdata

NMEANMEDIANSTDEVMINMAX C1500.54950.29450.62420.04102.8630

(b)Fortheinterrequesttimes

NMEANMEDIANSTDEVMINMAX C1501179562481405699578811

2.59(a)Fromtheordereddata,thefirstquartile Q1 =1, 712,themedian Q2 =1, 863andthethird quartile Q3 =2, 061.

(b)Thehistogramis

Strength Frequency

Mean Q2 Q1Q3

10001500200025003000

(c)Forthealuminumdata,wefirstsortthedata. 66.467.768.068.068.368.468.668.8 68.969.069.169.269.369.369.569.5

69.669.769.869.869.970.070.070.1

70.270.370.370.470.570.670.670.8

70.971.071.171.271.371.371.571.6

71.671.771.871.871.972.172.272.3

72.472.672.772.973.173.373.574.2

74.575.3

Thefirstquartile Q1 =69 5,themedian Q2 =70 55andthethirdquartile Q3 =71 80.The histogramis

2.60TheParetochartforcomputerchipsdefectsis

2.61(a)Thefrequencytableofthealuminumalloystrengthdata(right-handendpointexcluded)is

ClasslimitsFrequency

[66 0, 67 5)1

[67 5, 69 0)8

[69.0, 70.5)19

[70 5, 72 0)17

[72.0, 73.5)9

[73 5, 75 9)3

[75 0, 76 5)1

(b)Thehistogram,usingthefrequencytableinpart(a),is

2.62(a)Frequencytableoftheinterrequesttimedata

ClasslimitsFrequency(Relativefrequency)/width

[0, 2500)90.0036

[2500, 5000)130.0052

[5000, 10000)100.0020

[10000, 20000)80.0008

[20000, 40000)80.0004

[40000, 60000)10.0001

[60000, 80000)10.0001

(b)Thehistogram,usingthefrequencytableinpart(a),isgiveninFigure2.1.

2.63(a)Themeanandstandarddeviationfortheearth’sdensitydataare x =5 4835and s =0 19042

(b)Theordereddataare

5.105.275.295.295.305.345.345.365.395.425.445.46

Density

0.0000.0020.004

010305070

Interrequesttime(unit=1,000)

Figure2.1:HistogramforExercise2.62

5.475.535.575.585.625.635.655.685.755.795.85

Thereare n =23observations.Themedianisthemiddlevalue,or5.46.Themustbeatleast 23/4=5.75observationsatorbelow Q1 so Q1 isthe6thlargesvalue. Q1 =5 34.Similarly,there mustbeatleast3(23/4)=17.25observationsatorbelow Q3 so Q3 isthe18thlargestobservation. Q3 =5.63.

(c)Fromtheplotoftheobservationsversustimeorderweseethatthereisnoobvioustrendalthough thereissomesuggestionofanincreaseoverthelasthalfoftheobservations.

Observation

Timeorder

2.64(a)DotdiagramofTube1andTube2observations.

(b)MeanandstandarddeviationforTube1are¯ x1 =0 42and s1 =0 085049

(c)MeanandstandarddeviationforTube2are¯ x2 =0 52857and s2 =0 066440

2.65(a)Theordereddataare

0.320.340.400.400.430.480.57

Sincethereare7observations,themedianisthemiddlevalue.Themedian,maximum,minimum andrangefortheTube1observationsare:

Median=0.40,maximum=0.57,minimum=0.32and range=maximum minimum=0.57 0.32=0.25.

(b)Theordereddataare:

0.470.470.480.510.530.610.63

Andthemedian,maximum,minimumandrangefortheTube2observationsare:

Median=0.51,maximum=0.63,minimum=0.47and range=maximum minimum=0.63 0.47=0.16.

2.66(a)Dotdiagramforthevelocityoflightminus299,700km/sis

1020304050

(b)Themeanforthe(velocityoflight) 299,700isequalto27.545andthemedianisequalto27.

(c)Thevarianceandthestandarddeviationare s2 =100.47and s =10.024

2.67(a)Here,11/4=2 25so Q1 isthe3rdlargestvalue.Thequartilesforthevelocityoflightdataare Q1 =18 0, Q2 =27 0,and Q3 =30 0

(b)Theminimum,maximum,rangeandtheinterquartilerangeare Minimum=12,maximum=48,range=maximum minimum=48 12=36and interquartilerange= Q3 Q1 =30 0 18 0=12 0.

(c)Thebox-plotis

2.68(a)Thedotdiagramforthesuspendedsolidsdatais

10203040506070

Median Mean

Suspendedsolids

(b)Themedian=28.0andthemean=32.182.

(c)Thevarianceandstandarddeviationare s2 =363.76and s =19.073.

2.69(a)Theordereddataare:1214192021282930556363

Thequartilesforthesuspendedsolidsdataare Q1 =19, Q2 =28,and Q3 =55.

(b)Theminimum,maximum,rangeandtheinterquartilerangeare Minimum=12,maximum=63,range=63 12=51and interquartilerange= Q3 Q1 =55 19=36.

(c)TheboxplotisshowninFigure2.2.

2.70(a)Theordereddataaregivenintheexercise.Theminimum=16 12andthemaximum=19 00. Since20/4=5,toobtainthefirstquartileweaveragethe5thand6thobservations.Thequartiles fortheweightofmeatdataare Q1 =16.975, Q2 =17.31,and Q3 =17.695

(b)Theminimum,maximum,rangeandtheinterquartilerangeare

Figure2.2:Boxplotofsuspendedsolids.Exercise2.69.

Minimum=16.12,maximum=19.00,range=19.00 16.12=2.88and interquartilerange=(17.695 16.975)=.72.

(c)The10thpercentileis16 82andthe20thpercentileis16 935 whichareobtainedbytakingtheaverageofthe2ndand3rdobservationsandthe4thand5th observations,respectively.

2.71Theboxplotandmodifiedboxplotare

151617181920

Weightofmeat(grams)

151617181920

Weightofmeat(grams) ●

2.72Thestem-and-leafdisplayofthealuminumdata

4 67 7

68 0034689

69 012335567889

70 001233456689

71 012335667889

72 1234679

73 135 74 25

75 3

Notetheleafunitis0.10,thatisforinstance,thenumberinthefirstrowshouldbereadas66.4.

2.73(a) x =2 929/12= 2441 (b)

so s = √ 00001299= 0036

(c)Thecoefficientofvariationis .0036 2441 100=1 47percent.

(d)Forthelargedisk,thecoefficientofvariationis 05 28 100=17.9percent. Thus,thevaluesforthelargerharddiskarerelativelylessconsistent.

2.74(a)FromtheSASoutput,weidentifythemeantobe1908.76667andthestandarddeviationtobe 327.115047.TheseanswersseemtobemoreprecisethantheonesgiveninExercise2.51,which aretheroundingoftheseanswers.

(b)ThesoftwareprogramRtreats2,983asanoutlierandonlyextendsthelinetothesecondlargest observation2,403.TheboxplotisshowninFigure2.3.

2.75(a)Theorderedobservationsare 389.1390.8392.4400.1425.9429.1448.4461.6 479.1480.8482.9497.2505.8516.5517.5547.5 550.9563.7567.7572.2572.5575.6595.5602.0 606.7611.9618.9626.9634.9644.0657.6679.3 698.6718.5738.0743.3752.6760.6794.8817.2 833.9889.0895.8904.7986.41146.01156.0

Figure2.3:BoxplotforExercise2.74.

Thefirstquartileisthe12thobservation,497.2,themedianisthe24thobservation,602.0,and thethirdquartileisthe36thobservation,743.3.

(b)Since47(.90)=42.3,the90thpercentileisthe43rdobservation,895.8.

(c)Thehistogramis Flowrate(MGD) Frequency

2.76(a)Wecertainlycannotconcludethatitissafertodriveathighspeeds.Thegreatmajorityofdriving iscitydrivingwherespeedsintheranges25 or 30,or35 or 40arethemostcommon.Thatis,the majorityoftrafficvolumeisintheserangessothosearethespeedswheremostaccidentsoccur. Trafficvolumeatthegivenspeedsmustbetakenintoaccount.

(b)Asexplainedabove,themajorityoftrafficvolumemovesatthesespeeds.

(c)Thedensityhistogramis

020406080

2.77No.Tobeanoutlier,theminimumormaximummustbequiteseparatedfromthenextfewclosest observations.

2.78Yesbecause,fromthestem-and-leafdisplay,youcandetermineatleasttwooftheleadingdigits. Usuallytherearestemswithnoleavesafterthesmallestobservationsorbeforethelargest.

2.79(a)Thedotdiagramhasalongrighthandtail.

(b)Theordereddataare

Themedianisthemiddlevalue,1car,and x =10/11= .909car,whichissmallerthanthe median.

2.80(a)Thefrequencydistributionisgiveninthetablewheretheleft-handendpointisincluded.

No.Cars

ClassFrequency

[2, 3)13

[3, 4)14

[4, 5)4

[5, 7)6

[7, 9)4

Total41

(b)Thedensityhistogramhasalongrighthandtail.

Dropletsize

(c)Acomputercalculationgives

so s =1 70

(d)Thedataarealreadyordered.Forthefirstquartile,41/4=10 25isincreasedtothe11thposition

so Q1 =2.9Continuing Q2 =3.4and Q3 =4.9

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.