Solutions for Microelectronic Circuits 8th Us Edition by Sedra

Page 1


SEDRA/SMITH

INSTRUCTOR’SSOLUTIONSMANUALFOR

MicroelectronicCircuits

EIGHTHEDITION

AdelS.Sedra

UniversityofWaterloo

TonyChanCarusone

UniversityofToronto

VincentGaudet

UniversityofWaterloo

NewYorkOxford

OXFORDUNIVERSITYPRESS

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandcertainothercountries.

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica.

Copyright©2020,2015,2010,2004,1998byOxfordUniversityPress; 1991,1987Holt,Rinehart,andWinston,Inc.;1982CBSCollegePublishing

FortitlescoveredbySection112oftheUSHigherEducation OpportunityAct,pleasevisitwww.oup.com/us/heforthe latestinformationaboutpricingandalternateformats.

Allrightsreserved.Nopartofthispublicationmaybereproduced,stored inaretrievalsystem,ortransmitted,inanyformorbyanymeans,without thepriorpermissioninwritingofOxfordUniversityPress,orasexpressly permittedbylaw,bylicense,orundertermsagreedwiththeappropriate reproductionrightsorganization.Inquiriesconcerningreproductionoutside thescopeoftheaboveshouldbesenttotheRightsDepartment,Oxford UniversityPress,attheaddressabove.

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer.

ISBN:978–0–19–085348–8

Printingnumber:987654321

PrintedbyBridgeportNationalBindery,Inc.,UnitedStatesofAmerica

Contents

ExerciseSolutions (Chapters1–18)

ProblemSolutions (Chapters1–18)

Preface

ThisInstructor’sManual(ISM)containscompletesolutionsforabout450in-chapterexercisesand 1400end-of-chapterproblemsincludedinthebook MicroelectronicCircuits,EighthEdition

Thismanualhasbenefitedfromtheworkoftheaccuracycheckers,listedbelow.Wearegratefulto allofthem.Dr.AmirYazdaniofRyersonUniversitydeservesspecialmentionashehasdonea trulyoutstandingjobinensuringthatthismanualisasfreeoferrorsaspossible.However,despite allofourcombinedefforts,thereislittledoubtthatsomeerrorsremain.Wewillbemostgrateful toinstructorswhodiscovererrorsandpointthemouttous.Pleasesendcorrectionsandcomments byemailto:sedra@uwaterloo.ca.

AsshehasdoneforanumberofeditionsofthebookandtheISM,JenniferRodriguesmostably typedthemajorityofthesolutionsinthismanual.Weareverygratefulforherexcellentwork.

AtOUP,wewishtothankSeniorProductionEditorKeithFaivre,SeniorDevelopmentEditorEric Sinkins,andAssistantEditorMeganCarlson.

AdelSedra VincentGaudet Waterloo,Ontario,Canada TonyChanCarusone Toronto,Ontario,Canada

October2019

AccuracyCheckers

• LeonidBelostotski,UniversityofCalgary

• DanieloRomero,UniversityofMaryland

• MuhammadUllah,FloridaPolytechnicUniversity

• DerekWright,UniversityofWaterloo

• CharlesWu,HardingUniversity

• AmirYazdani,RyersonUniversity

Chapter1

SolutionstoExerciseswithintheChapter

Ex:1.1 Whenoutputterminalsare open-circuited,asinFig.1.1a:

Forcircuita. v oc = v s (t )

Forcircuitb. v oc = i s (t ) × Rs

Whenoutputterminalsareshort-circuited,asin Fig.1.1b:

Forcircuita. i sc = v s (t ) Rs

Forcircuitb. i sc = i s (t )

Forequivalency

Rs i s (t ) = v s (t ) Rs a b vs (t) Figure1.1a is (t) a b Rs

Figure1.1b

Ex:1.2 voc vs Rs isc

v oc = 10mV

i sc = 10 µA

Rs = v oc i sc = 10mV 10 µA = 1k

Ex:1.3 Usingvoltagedivider:

v o (t ) = v s (t ) × R L Rs + R L

vs (t) vo Rs RL

Given v s (t ) = 10mV and Rs = 1k .

If R L = 100k

v o = 10mV × 100 100 + 1 = 9 9mV

If R L = 10k

v o = 10mV × 10 10 + 1 9 1mV

If R L = 1k

v o = 10mV × 1 1 + 1 = 5mV

If R L = 100

v o = 10mV × 100 100 + 1K 0.91mV

For v o = 0 8v s , R L R L + Rs = 0 8

Since Rs = 1k , R L = 4k

Ex:1.4 Usingcurrentdivider: Rs is 10 A RL io

i o = i s × Rs Rs + R L

Given i s = 10 µA, Rs = 100k .

For R L = 1k , i o = 10 µA × 100 100 + 1 = 9 9 µA

For R L = 10k , i o = 10 µA × 100 100 + 10 9 1 µA

For

R L = 100k , i o = 10 µA × 100 100 + 100 = 5 µA

For R L = 1M , i o = 10 µA × 100K 100K + 1M 0 9 µA

For i o = 0 8i s , 100 100 + R L = 0 8

⇒ R L = 25k

Ex:1.5 f = 1 T = 1 10 3 = 1000Hz

ω = 2π f = 2π × 103 rad/s

Ex:1.6 (a) T = 1 f = 1 60 s = 16.7ms

(b) T = 1 f = 1 10 3 = 1000s

(c) T = 1 f = 1 106 s = 1 µs

Ex:1.7 If6MHzisallocatedforeachchannel, then470MHzto806MHzwillaccommodate

806 470 6 = 56channels

Sincethebroadcastbandstartswithchannel14,it willgofromchannel14tochannel69.

Ex:1.8 P = 1 T T 0 v 2 R dt

= 1 T × V 2 R × T = V 2 R

Alternatively, P = P1 + P3 + P5 +··· = 4 V

Itcanbeshownbydirectcalculationthatthe infiniteseriesintheparentheseshasasumthat approaches π 2 /8; thus P becomes V 2 / R asfound fromdirectcalculation.

Fractionofenergyinfundamental

= 8/π 2 = 0 81

Fractionofenergyinfirstfiveharmonics

= 8 π 2 1 + 1 9 + 1 25 = 0 93

Fractionofenergyinfirstsevenharmonics

= 8 π 2 1 + 1 9 + 1 25 + 1 49 = 0.95

Fractionofenergyinfirstnineharmonics

= 8 π 2 1 + 1 9 + 1 25 + 1 49 + 1 81 = 0 96

Notethat90%oftheenergyofthesquarewaveis inthefirstthreeharmonics,thatis,inthe fundamentalandthethirdharmonic.

Ex:1.9 (a) D canrepresent15equally-spaced valuesbetween0and3.75V.Thus,thevaluesare spaced0.25Vapart.

v A = 0 V ⇒ D = 0000

v A = 0 25 V ⇒ D = 0000

v A = 1 V ⇒ D = 0000

v A = 3.75 V ⇒ D = 0000

(b)(i)1levelspacing: 20 ×+0 25 =+0 25 V

(ii)2levelspacings: 21 ×+0 25 =+0 5 V

(iii)4levelspacings: 22 ×+0 25 =+1 0 V

(iv)8levelspacings: 23 ×+0 25 =+2 0 V

(c)Theclosestdiscretevaluerepresentedby D is +1.25V;thus D = 0101.Theerroris-0.05V,or

0 05/1 3 × 100 =−4%

Ex:1.10

Voltagegain = 20 log 100 = 40dB

Currentgain = 20 log 1000 = 60dB

Powergain = 10 log A p = 10 log ( A v A i ) = 10 log 105 = 50dB

Ex:1.11 Pdc = 15 × 8 = 120mW

PL = (6/√2)2 1 = 18mW

Pdissipated = 120 18 = 102mW

η = PL Pdc × 100 = 18 120 × 100 = 15%

Ex:1.12 v o = 1 × 10 106 + 10 10 5 V = 10 µV

PL = v 2 o / R L = (10 × 10 6 )2 10 = 10 11 W

Withthebufferamplifier:

v o = 1 × Ri Ri + Rs × A v o × R L R L + Ro

= 1 × 1 1 + 1 × 1 × 10 10 + 10 = 0 25V

PL = v 2 o R L = 0 252 10 = 6 25mW

Voltagegain= v o v s = 0 25V 1V = 0 25V/V

=−12dB

Powergain ( A p ) ≡ PL Pi

where PL =6.25mWand Pi = v i i 1 ,

v i = 0 5Vand

i i = 1V 1M + 1M = 0 5 µA

Exercise1–3

ThisfigurebelongstoExercise1.15.

Stage 1

vs vi1 10vi1 100 k 1 M vi2 1 k

Thus,

Pi = 0 5 × 0 5 = 0 25 µW and

A p = 6.25 × 10 3

0 25 × 10 6 = 25 × 103

10log A p = 44dB

Ex:1.13 Open-circuit(noload)outputvoltage=

A v o v i

Outputvoltagewithloadconnected

= A v o v i R L R L + Ro

0 8 = 1 Ro + 1 ⇒ Ro = 0 25k = 250

Ex:1.14 A v o = 40dB = 100V/V

PL = v 2 o R L = A v o v i R L R L + Ro 2 R L

= v 2 i × 100 × 1 1 + 1 2 1000 = 2 5 v 2 i

Pi = v 2 i Ri = v 2 i 10,000

A p ≡ PL Pi = 2 5v 2 i 10 4 v 2 i = 2 5 × 104 W/W

10log Ap = 44dB

Ex:1.15 Withoutstage3(seefigureabove)

v L v s = 1M 100k + 1M (10) 100k 100k + 1k

×(100) 100 100 + 1k

v L v s = (0 909)(10)(0 9901)(100)(0 0909)

= 81 8V/V

Stage 2

k

vi2 vL 1 k

Ex:1.16 ReferthesolutiontoExample1.3inthe text.

v i 1 v s = 0 909V/V

v i 1 = 0 909 v s = 0 909 × 1 = 0 909mV

v i 2 v s = v i 2 v i 1 × v i 1 v s = 9 9 × 0 909 = 9V/V

v i 2 = 9 × v S = 9 × 1 = 9mV

v i 3 v s = v i 3 v i 2 × v i 2 v i 1 × v i 1 v s = 90 9 × 9 9 × 0 909

= 818V/V

v i 3 = 818 v s = 818 × 1 = 818mV

v L v s = v L v i 3 × v i 3 v i 2 × v i 2 v i 1 × v i 1 v s = 0 909 × 90 9 × 9 9 × 0 909 744V/V

v L = 744 × 1mV = 744mV

Ex:1.17 Usingvoltageamplifiermodel,the three-stageamplifiercanberepresentedas vi Ri Ro Avovi Ri = 1M Ro = 10

A v o = A v 1 × A v 2 × A v 3 = 9 9 × 90 9 × 1 = 900V/V

Theoverallvoltagegain

v o v s = Ri Ri + Rs × A v o × R L R L + Ro

For R L = 10

Overallvoltagegain

= 1M 1M + 100K × 900 × 10 10 + 10 = 409V/V

For R L = 1000

Overallvoltagegain

= 1M 1M + 100K × 900 × 1000 1000 + 10 = 810V/V

∴ Rangeofvoltagegainisfrom409 V/V to 810 V/V

Ex:1.18 ii io Ais ii RL Ro Rs Ri is

Ex:1.20 Usingthetransresistancecircuitmodel, thecircuitwillbe Ri Rs is ii Ro RL vo Rmii

i i = i s Rs Rs + Ri

i o = A is i i Ro Ro + R L = A is i s Rs Rs + Ri Ro R o + R L

Thus, i o i s = A is Rs Rs + Ri Ro R o + R L

Ex:1.19 Ri Ro Gmvi RL Ri vi vo

vs v i = v s Ri Ri + Rs

v o = G m v i ( Ro R L )

= G m v s Ri Ri + Rs ( Ro R L )

Thus,

v o v s = G m Ri Ri + Rs ( Ro R L )

i i i s = Rs Ri + Rs

v o = Rm i i × R L R L + Ro

v o i i = Rm R L R L + Ro

Now v o i s = v o i i × i i i s = Rm R L R L + Ro × Rs Ri + Rs = Rm Rs Rs + Ri × R L R L + Ro

Ex:1.21

v b = i b r π + (β + 1)i b Re = i b r π + (β + 1) Re But v b = v x and i b = i x , thus Rin ≡ v x i x = v b i b = r π + (β + 1) Re

Ex:1.22 f Gain 10Hz60dB 10kHz40dB 100kHz20dB 1MHz0dB

Gain (dB) 20 dB/decade

110 10 10 10 10 10 10 f (Hz)

Ex:1.23

RL Ro Ri Vi Vi Gm Vo CL

whichisoftheSTCLPtype.

ω0 = 1 C L ( R L Ro ) = 1 4.5 × 10 9 (103 Ro )

For ω0 tobeatleast wπ × 40 × 103 ,thehighest valueallowedfor Ro is Ro = 103 2π × 40 × 103 × 103 × 4 5 × 10 9 1 = 103 1 131 1 = 7 64 k

Thedcgainis

G m ( R L Ro )

Toensureadcgainofatleast40dB(i.e.,100), theminimumvalueof G m is

⇒ R L ≥ 100/(103 7 64 × 103 ) = 113 1 mA/V

Vo = G m Vi Ro R L C L = G m Vi 1 Ro + 1 R L + sC L

Thus, Vo Vi = G m 1 Ro + 1 R L × 1 1 + sC L 1 Ro + 1 R L

Vo Vi = G m ( R L Ro ) 1 + sC L ( R L Ro )

Ex:1.24 RefertoFig.E1.24

V2 Vs = Ri Rs + 1 sC + Ri = Ri Rs + Ri s s + 1 C ( Rs + Ri ) whichisanHPSTCfunction.

f 3dB = 1 2π C ( Rs + Ri ) ≤ 100Hz C ≥ 1 2π(1 + 9)103 × 100 = 0 16 µF

Chapter2

SolutionstoExerciseswithintheChapter

Ex:2.1 Theminimumnumberofterminals requiredbyasingleopampis5:twoinput terminals,oneoutputterminal,oneterminalfor positivepowersupply,andoneterminalfor negativepowersupply.

Theminimumnumberofterminalsrequiredbya quadopampis14:eachopamprequirestwo inputterminalsandoneoutputterminal (accountingfor12terminalsforthefourop amps).Inaddition,thefouropampscanallshare oneterminalforpositivepowersupplyandone terminalfornegativepowersupply.

Ex:2.2 Relevantequationsare:

v 3 = A (v 2 v 1 ); v Id = v 2 v 1 ,

v Ic m = 1 2 (v 1 + v 2 )

(a)

v 1 = v 2 v 3 A = 0 4 103 =−0 004V =−4mV

v Id = v 2 v 1 = 0 ( 0.004) =+0.004V = 4mV

v Ic m = 1 2 ( 4mV + 0) =−2mV

(b) 10 = 103 (2 v 1 ) ⇒ v 1 = 2 01V

v Id = v 2 v 1 = 2 2.01 =−0.01V =−10mV

v Ic m = 1 2 (v 1 + v 2 ) = 1 2 (2 01 + 2) = 2 005V 2V

(c)

v 3 = A (v 2 v 1 ) = 103 (1 998 2 002) =−4V

v Id = v 2 v 1 = 1 998 2 002 =−4mV

v Ic m = 1 2 (v 1 + v 2 ) = 1 2 (2 002 + 1 998) = 2V

(d)

1 2 = 103 v 2 ( 1 2) = 103 (v 2 + 1 2)

⇒ v 2 =−1 2012V

v Id = v 2 v 1 =−1.2012 ( 1.2) =−0 0012V =−1 2mV

v Ic m = 1 2 (v 1 + v 2 ) = 1 2 [ 1 2 + ( 1 2012)] −1 2V

Ex:2.3 FromFig.E2.3wehave: v 3 = μv d and

v d = ( G m v 2 G m v 1 ) R = G m R (v 2 v 1 )

Therefore:

v 3 = μ G m R (v 2 v 1 )

Thatis,theopen-loopgainoftheopampis

A = μ G m R .For G m = 20mA/V and

μ = 50,wehave:

A = 50 × 20 × 5 = 5000V/V,orequivalently, 74dB.

Ex:2.4 Thegainandinputresistanceofthe invertingamplifiercircuitshowninFig.2.5are R2 R1 and R1 ,respectively.Therefore,wehave:

R1 = 100k and R2 R1 =−10 ⇒ R2 = 10 R 1

Thus:

R2 = 10 × 100k = 1M

Ex:2.5 vi vo ii R 10 k

FromTable1.1wehave:

Rm = v o i i i o = 0 ;thatis,outputisopencircuit

Thenegativeinputterminaloftheopamp(i.e., v i )isavirtualground,thus v i = 0:

v o = v i Ri i = 0 Ri i =− Ri i Rm = v o i i i o 0 =− Ri i i i =− R ⇒ Rm =− R =−10k

Ri = v i i i and v i isavirtualground(v i = 0), thus Ri = 0 i i = 0 ⇒ Ri = 0

Sinceweareassumingthattheopampinthis transresistanceamplifierisideal,theopamphas zerooutputresistanceandthereforetheoutput resistanceofthistransresistanceamplifierisalso zero.Thatis Ro = 0

10 k

0.5 mA

10 k

vi vo

ConnectingthesignalsourceshowninFig.E2.5 totheinputofthisamplifier,wehave:

v i isavirtualgroundthatis v i = 0,thusthe currentflowingthroughthe 10-k resistor connectedbetween v i andgroundiszero. Therefore,

v o = v i R × 0 5mA = 0 10k × 0 5mA =−5V

Ex:2.6

Ex:2.7 R1 R2 v1 v2 vO Rf

Forthecircuitshownabovewehave:

v O =− R f R1 v 1 + R f R2 v 2

Sinceitisrequiredthat v O =−(v 1 + 4v 2 ), wewanttohave:

R f R1 = 1 and R f R2 = 4

Itisalsodesiredthatforamaximumoutput voltageof4V,thecurrentinthefeedback resistornotexceed1mA.

Therefore 4V R f ≤ 1mA ⇒ R f ≥ 4V 1mA ⇒ R f ≥ 4k

Letuschoose R f tobe 4k ,then R1 = R f = 4k and R2 = R f 4 = 1k

Ex:2.8

v 1 isavirtualground,thus v 1 = 0 V

i 1 = 2V v 1 R1 = 2 0 1k = 2mA

Assuminganidealopamp,thecurrentflowing intothenegativeinputterminaloftheopampis zero.Therefore, i 2 = i 1 ⇒ i 2 = 2mA

v O = v 1 i 2 R2 = 0 2mA × 5k =−10V

i L = v o R L = 10V 1k =−10mA

i O = i L i 2 =−10mA 2mA =−12mA

Voltagegain = v O 2V = 10V 1V =−5V/V or 14dB

Currentgain = i L i 1 = 10mA 2mA =−5A/A or 14dB

Powergain

= PL Pi = 10( 10mA) 2V × 2mA = 25W/W or14dB

NotethatpowergainindBis10log10 PL Pi

v O = Ra R1 Rc Rb v 1 + Ra R2 Rc Rb v 2 Rc R3 v 3

Wewanttodesignthecircuitsuchthat

v O = 2v 1 + v 2 4v 3

Thusweneedtohave

Ra R1 Rc Rb = 2, Ra R2 Rc Rb = 1,and Rc R3 = 4

Fromtheabovethreeequations,wehavetofind sixunknownresistors;therefore,wecan arbitrarilychoosethreeoftheseresistors.Letus choose Ra = Rb = Rc = 10k

Thenwehave

R3 = Rc 4 = 10 4 = 2 5k

Ra R1 Rc Rb = 2, ⇒ 10 R1 × 10 10 = 2

⇒ R1 = 5k

Ra R2 Rc Rb = 1 ⇒ 10 R2 × 10 10 = 1

⇒ R2 = 10k

Ex:2.9 Usingthesuperpositionprincipletofind thecontributionof v 1 totheoutputvoltage v O , weset v 2 = 0

Usingthesuperpositionprincipletofindthe contributionof v 1 to v O ,weset v 2 = v 3 = 0 Thenwehave(refertothesolutionofExercise 2.9): v O = 6v 1

Tofindthecontributionof v 2 to v O , weset

v 1 = v 3 = 0, then: v O = 2v 2

Tofindthecontributionof v 3 to v O weset

v 1 = v 2 = 0, then

v o =− 7k 1k v 3 =−7v 3

Combiningthecontributionsof v 1 , v 2 , and v 3 to v O wehave: v O = 6v 1 + 4v 2 7v 3 .

Ex:2.11 R1 R2 i vi vO

v O v i = 1 + R2 R1 = 2 ⇒ R2 R1 = 1 ⇒ R1 = R2

v + (thevoltageatthepositiveinputoftheopamp

is: v + = 3 1 + 3 v 1 = 0.75v 1

Thus v O = 1 + 7k 1k v + = 8 × 0 75v 1 = 6v 1

Tofindthecontributionof v 2 totheoutput voltage v O weset v 1 =0.

Then v + = 1 1 + 3 v 2 = 0 25v 2

Hence

v O = 1 + 7k 1k v + = 8 × 0.25v 2 = 2v 2

Combiningthecontributionsof v 1 and v 2 to v O ,wehave v O = 6v 1 + 2v 2

Ex:2.10 7 k 1 k 1 k 3 k v1 v3 vO v2

If v O = 10V,thenitisdesiredthat i = 10 µA

Thus, i = 10V R1 + R2 = 10 µA ⇒ R1 + R2 = 10V 10 µA R1 + R2 = 1M and R1 = R2 ⇒ R1 = R2 = 0.5M

Ex:2.12 (a) R1 vI vO v R2

v I v = v O / A ⇒ v = v I v O / A (1)

Butfromthevoltagedivideracross v O ,

v = v O R1 R1 + R2 (2)

EquatingEq.(1)andEq.(2)gives

v O R1 R1 + R2 = v I v O A

whichcanbemanipulatedtotheform

v O v I = 1 + ( R2 / R 1 ) 1 + 1 + ( R2 / R1 ) A

(b)For R1 = 1k and R2 = 9k theidealvalue fortheclosed-loopgainis 1 + 9 1 , thatis,10.The

actualclosed-loopgainis G = 10 1 + 10/ A .

If A = 103 ,then G = 9 901 and = G 10 10 × 100 =−0 99% −1%

For v I = 1V, v O = G × v I = 9 901V and

v O = A (v + v ) ⇒ v + v = v O A = 9.901 1000 9 9mV

If A = 104 ,then G = 9 99 and =−0 1%

For v I = 1V, v O = G × v I = 9.99V, therefore,

v + v = v O A = 9 99 104 = 0 999mV 1mV

If A = 105 ,then G = 9 999 and =−0 01%

For v I = 1V, v O = G × v I = 9 999 thus,

v + v = v O A = 9 999 105 = 0 09999mV 0 1mV

Ex:2.13

i I = 0A, v 1 = v I = 1V

i 1 = v 1 1k = 1V 1k = 1mA i 2 = i 1 = 1mA vO v1 iO i2 i1 iI iL 1 k 1 k 9 k vI 1 V

v O v i = 10V 1V = 10V/V or20dB

i L i I = 10mA 0 =∞

PL PI = v O × i L v I × i I = 10 × 10 1 × 0 =∞

Ex:2.14

(a)Loadvoltage = 1k 1k + 1M × 1V 1mV

(b) Loadvoltage = 1 V

Ex:2.15

v O = v 1 + i 2 × 9k = 1 + 1 × 9 = 10V

i L = v O 1k = 10V 1k = 10mA

i O = i L + i 2 = 11mA

(a) R1 = R3 = 2k , R2 = R4 = 200k

Since R4 / R3 = R2 / R1 wehave:

A d = v O v I 2 v I 1 = R2 R1 = 200 2 = 100V/V

(b) Rid = 2 R1 = 2 × 2k = 4k

Sinceweareassumingtheopampisideal,

Ro = 0

(c)

A cm ≡ v O v Ic m = R4 R3 + R4 1 R2 R1 R3 R4

Theworst-casecommon-modegain(i.e.,the largest A cm )occurswhentheresistortolerances aresuchthatthequantityinparenthesesis maximum.Thisinturnoccurswhen R2 and R3 areattheirhighestpossiblevalues(eachone percentabovenominal)and R1 and R4 areattheir lowestpossiblevalues(eachonepercentbelow nominal),resultingin

A cm = R4 R3 + R4 1 1.01 × 1.01 0 99 × 0 99

| A cm | R4 R3 + R4 ×0.04 200 202 ×0.04 0.04 V/V

ThecorrespondingCMRRis

CMRR = | A d | | A cm | = 100 0 04 = 2500 or68dB.

Ex:2.16 Wechoose R3 = R1 and R4 = R2

Thenforthecircuittobehaveasadifference

amplifierwithagainof10andaninputresistance of 20k ,werequire

A d = R2 R1 = 10 and

R Id = 2 R1 = 20k ⇒ R1 = 10k and

R2 = A d R1 = 10 × 10k = 100k

Therefore, R1 = R3 = 10k and

R2 = R4 = 100k

Ex:2.17 Given v Ic m =+5V

v Id = 10sin ω t mV

2 R1 = 1k , R2 = 0 5M

R3 = R4 = 10k

v I 1 = v Ic m 1 2 v Id = 5 1 2 × 0 01sin ω t

= 5 0 005sin ω t V

v I 2 = v Ic m + 1 2 v Id

= 5 + 0.005sin ω t V

v (opamp A 1 ) = v I 1 = 5 0 005sin ω t V

v (opamp A 2 ) = v I 2 = 5 + 0 005sin ω t V

v Id = v I 2 v I 1 = 0 01sin ω t

v O 1 = v I 1 R2 × v Id 2 R1

= 5 0 005sin ω t 500k × 0 01sin ω t 1k

= (5 5 005sin ω t ) V

v O 2 = v I 2 + R2 × v Id 2 R1

= (5 + 5 005sin ω t ) V

v + (opamp A 3 ) = v O 2 × R4 R3 + R4 = v O 2 10 10 + 10

= 1 2 v O 2 = 1 2 (5 + 5 005sin ω t )

= (2.5 + 2.5025sin ω t )V

v (opamp A 3 ) = v + (opamp A 3 )

= (2 5 + 2 5025sin ω t ) V

v O = R4 R3 1 + R2 R1 v Id

10k

10k 1 + 0 5M 0 5k × 0 01sin ω t

= 1(1 + 1000) × 0 01sin ω t

= 10 01sin ω t V

Ex:2.18

vi(t) vI (t ) dt C R 1 CR t 0 i i

vO (t)

Thesignalwaveformswillbeasshown. vI (t) vO (t) t t 2.5 V 2.5 V 2.5 V 2.5 V 0 2 s

When v I =+2 5 V,thecurrentthroughthe capacitorwillbeinthedirectionindicated, i = 2 5 V/ R ,andtheoutputvoltagewill decreaselinearlyfrom +2 5 Vto 2 5 V.Thusin ( T /2) seconds,thecapacitorvoltagechangesby 5V.Thechargeequilibriumequationcanbe expressedas

i ( T /2) = C × 5 V 2 5 R T 2 = 5C ⇒ CR = 2 5 T 10 = 1 4 × 2 × 10 6

= 0 5 µs

Ex:2.19 Vo Vi C R

Theinputresistanceofthisinvertingintegratoris R ;therefore, R = 10k

Sincethedesiredintegrationtimeconstant is 10 3 s, wehave: CR = 10 3 s ⇒

C = 10 3 s 10k = 0 1 µF

FromEq.(2.27)thetransferfunctionofthis integratoris:

Vo ( j ω)

Vi ( j ω) =− 1 j ω CR

For ω = 10 rad/s,theintegratortransferfunction hasmagnitude

Vo Vi = 1 1 × 10 3 = 100V/V andphase φ = 90◦

For ω = 1 rad/s,theintegratortransferfunction hasmagnitude

Vo Vi = 1 1 × 10 3 = 1000V/V andphase φ = 90◦

Thefrequencyatwhichtheintegratorgain magnitudeisunityis

ω int = 1 CR = 1 10 3 = 1000 rad/s

Ex:2.20

C = 0 01 µF istheinputcapacitanceofthis differentiator.Wewant CR = 10 2 s (thetime constantofthedifferentiator);thus,

R = 10 2 0 01 µF = 1M

FromEq.(2.33),thetransferfunctionofthe differentiatoris

Vo ( j ω)

Vi ( j ω) =− j ω CR

Thus,for ω = 10rad/s thedifferentiatortransfer functionhasmagnitude

Vo Vi = 10 × 10 2 = 0 1V/V

andphase φ =−90◦

For ω = 103 rad/s,thedifferentiatortransfer functionhasmagnitude

Vo Vi = 103 × 10 2 = 10V/V

andphase φ =−90◦

Ifweaddaresistorinserieswiththecapacitorto limitthehigh-frequencygainofthedifferentiator to100,thecircuitwouldbe:

Athighfrequenciesthecapacitor C actslikea shortcircuit.Therefore,thehigh-frequencygain ofthiscircuitis: R R1 .Tolimitthemagnitudeof thishigh-frequencygainto100,weshouldhave:

R R1 = 100 ⇒ R1 = R 100 = 1M 100 = 10k

Ex:2.21

RefertothemodelinFig.2.27andobservethat

v + v = V OS + v 2 v 1 = V OS + v Id

andsince v O = v 3 = A (v + v ),then

v O = A (v Id + V OS ) (1)

where A = 104 V/Vand V OS = 5 mV.From Eq.(1)weseethat v id = 0 resultsin v O = 50 V, whichisimpossible;thustheopampsaturates and v O =+10 V.Thissituationpertainsfor v Id ≥−4 mV.If v Id decreasesbelow 4 mV, theop-ampoutputdecreasescorrespondingly.

Forinstance, v Id =−4 5 mVresultsin v O =+5 V; v Id =−5 mVresultsin v O = 0 V; v Id =−5 5 mVresultsin v O =−5 V;and v Id =−6 mVresultsin v O =−10 V,atwhich pointtheopampsaturatesatthenegativelevelof 10 V.Furtherdecreasesin v Id havenoeffecton theoutputvoltage.Theresultisthetransfer characteristicsketchedinFig.E2.21.Observe thatthelinearrangeofthecharacteristicisnow centeredaround v Id =−5 mVratherthanthe idealsituationof v Id = 0;thisshiftisobviouslya resultoftheinputoffsetvoltage V OS

Ex:2.22 (a)Theinvertingamplifierof 1000 V/Vgainwillexhibitanoutputdcoffset voltageof ± V OS (1 + R2 / R1 ) = ±3 mV × (1 + 1000) =±3 03 V.Now,sincethe op-ampsaturationlevelsare ±10 V,theroomleft foroutputsignalswingisapproximately ±7 V. Thustoavoidop-ampsaturationandtheattendant clippingofthepeakoftheoutputsinusoid,we mustlimitthepeakamplitudeoftheinputsine wavetoapproximately 7 V/1000 = 7 mV.

(b)Ifatroomtemperature (25◦ C), V OS is trimmedtozeroand(i)thecircuitisoperatedata constanttemperature,thepeakoftheinputsine wavecanbeincreasedto10mV.(ii)However,if thecircuitistooperateinthetemperaturerange of 0◦ C to 75◦ C (i.e.,atatemperaturethatdeviates fromroomtemperaturebyamaximumof 50◦ C), theinputoffsetvoltagewilldriftfrombya maximumof 10 µV/◦ C × 50◦ C = 500 µVor0.5 mV.Thiswillreducetheallowedpeakamplitude oftheinputsinusoidto9.5mV.

Ex:2.23

(a)Iftheamplifieriscapacitivelycoupledinthe mannerofFig.2.32(a),thentheinputoffset voltage V OS willseeaunity-gainamplifier[Fig. 2.32(b)]andthedcoffsetvoltageattheoutput willbeequalto V OS ,thatis,3mV.Thus,almost theentireoutputrangeof ±10 Vwillbeavailable forsignalswing,allowingasine-waveinputof approximately10-mVpeakwithouttheriskof outputclipping.Obviously,inthiscasethereis noneedforoutputtrimming.

(b)Weneedtoselectavalueofthecoupling capacitor C thatwillplacethe3-dBfrequencyof theresultinghigh-passSTCcircuitat1000Hz, thus 1000 = 1 2π CR1 ⇒ C = 1 2π × 1000 × 1 × 103 = 0 16 µF

Ex:2.24 FromEq.(2.35)wehave:

V O = I B 1 R2 I B R2 = 100nA × 1M = 0 1V

FromEq.(2.37)thevalueofresistor R3 (placed inserieswithpositiveinputtominimizethe outputoffsetvoltage)is

R3 = R1 R2 =

9 9k

R3 = 9 9k 10k

Withthisvalueof R3 ,thenewvalueoftheoutput dcvoltage[usingEq.(2.38)]is:

V O = I OS R2 = 10nA × 10k = 0 01V

Ex:2.25 UsingEq.(2.39)wehave:

v O = V OS + V OS CR t ⇒ 12 = 2mV + 2mV 1ms t

⇒ t = 12V 2mV 2mV × 1ms 6s

Withthefeedbackresistor R F ,tohaveatleast ±10V ofoutputsignalswingavailable,wehave tomakesurethattheoutputvoltagedueto V OS hasamagnitudeofatmost2V.FromEq.(2.34), weknowthattheoutputdcvoltagedueto V OS is

V O = V OS 1 + R F R ⇒ 2V = 2mV 1 + R F 10k

1 + R F 10k = 1000 ⇒ R F 10M

ThecornerfrequencyoftheresultingSTC networkis ω 0 = 1 CR F

Weknow RC = 1ms and R = 10k ⇒ C = 0 1 µF

Thus ω 0 = 1 0 1 µF × 10M = 1rad/s

f 0 = ω 0 2π = 1 2π = 0 16Hz

Ex:2.26

20 log A 0 = 106 dB ⇒ A 0 = 200,000 V/V f t = 3 MHz

f b = f t / A 0 = 3 MHz 200,000 = 15 Hz

At f b ,theopen-loopgaindropsby3dBbelow itsvalueatdc;thusitbecomes103dB.

For f f b , | A | f t / f ;thus

At f = 300 Hz, | A |= 3 MHz 300 Hz = 104 V/V or80dB

At f = 3 kHz, | A |= 3 MHz 3 kHz = 103 V/V or60dB

At f = 12 kHz,whichistwooctaveshigherthan 3kHz,thegainwillbe 2 × 6 = 12 dBbelowits valueat3kHz;thatis, 60 12 = 48 dB.

At f = 60 kHz, | A |= 3 MHz 60 kHz = 50 V/V or34dB

Ex:2.27

A 0 = 106 V/V or120dB

Thegainfallsoffattherateof20dB/decade. Thus,itreaches40dBatafrequencyfour decadeshigherthan f b ,

104 f b = 100 kHz ⇒ f b = 10 Hz

Theunity-gainfrequency f t willbetwodecades higherthan100kHz,thatis,

f t = 100 × 100 kHz = 10 MHz

Alternatively,wecouldhavefound f t fromthe gain-bandwidthproduct

f t = A 0 f b = 106 × 10 Hz=10MHz

Atafrequency f f b , | A |= f t / f

For f = 10 kHz, | A |= 10 MHz 10 kHz = 103 V/Vor60dB

Ex:2.28

20 log A 0 = 106 dB ⇒ A 0 = 200,000 V/V

f t = 20 MHz

Foranoninvertingamplifierwithanominaldc gainof100, 1 + R2 R1 = 100

Sincethenominaldcgainismuchlowerthan A 0 ,

f 3dB f t 1 + R2 R1 = 20 MHz 100 = 200 kHz

Ex:2.29 Fortheinputvoltagestepofmagnitude V theoutputwaveformwillstillbegivenbythe exponentialwaveformofEq.(2.56)if ω t V ≤ SR

thatis, V ≤ SR ω t ⇒ V ≤ SR 2π f t resultingin V ≤ 0 16V

FromAppendixFweknowthatthe10%to90% risetimeoftheoutputwaveformoftheformof Eq.(2.56)is tr 2 2 × timeconstant = 2.2 ω t

Thus, tr 0 35 µs

Ifaninputstepofamplitude1.6V(10timesas largecomparedtothepreviouscase)isapplied, theoutputwillbeslew-ratelimitedandthus linearlyrisingwithaslopeequaltotheslewrate, asshowninthefollowingfigure.

SR

Ex:2.30 FromEq.(2.57)wehave: f M = SR 2π V O max = 318 kHz

UsingEq.(2.58),foraninputsinusoidwith frequency f = 5 f M , themaximumpossible amplitudethatcanbeaccommodatedatthe outputwithoutincurringSRdistortionis: V O = V O max f M 5 f M = 5 × 1 5 = 1V (peak)

Chapter3

SolutionstoExerciseswithintheChapter

Ex:3.1 T = 50K

n i = BT 3/2 e Eg /(2kT )

= 7 3 × 1015 (50)3/2 e 1 12/(2×8 62×10 5 ×50)

9 6 × 10 39 /cm3

T = 350K

n i = BT 3/2 e Eg /(2kT )

= 7 3 × 1015 (350)3/2 e 1 12/(2×8 62×10 5 ×350)

= 4 15 × 1011 /cm3

Ex:3.2 N D = 1017 /cm3

FromExercise3.1, n i at

T = 350K = 4 15 × 1011 /cm3

n n = N D = 1017 /cm3

pn ∼ = ni 2 N D

= (4.15 × 1011 )2 1017

= 1 72 × 106 /cm3

Ex:3.3 At300K, n i = 1 5 × 1010 /cm3

p p = N A

Wantelectronconcentration

= n p = 1 5 × 1010 106 = 1 5 × 104 /cm3

∴ N A = p p = ni 2 n p = (1 5 × 1010 )2 1 5 × 104 = 1 5 × 1016 /cm3

Ex:3.4 (a) νn drift =−μn E

Herenegativesignindicatesthatelectronsmove inadirectionoppositeto E

Weuse

νn -drift = 1350 × 1 2 × 10 4 ∵ 1 µm = 10 4 cm

= 6 75 × 106 cm/s = 6 75 × 104 m/s

(b)Timetakentocross 2-µm

length = 2 × 10 6 6 75 × 104 30ps

Exercise3–1

(c)In n -typesilicon,driftcurrentdensity Jn is Jn = qn μn E

= 1 6 × 10 19 × 1016 × 1350 × 1V 2 × 10 4

= 1 08 × 104 A/cm 2

(d)Driftcurrent In = AJn

= 0 25 × 10 8 × 1 08 × 104

= 27 µA

Theresistanceofthebaris

R = ρ × L A

= qn μn × L A

= 1 6 × 10 19 × 1016 × 1350 × 2 × 10 4 0 25 × 10 8

= 37 0 k

Alternatively,wemaysimplyusethepreceding resultforcurrentandwrite

R = V / In = 1 V/27 µA = 37 0 k

Notethat 0 25 µm2 = 0 25 × 10 8 cm2

Ex:3.5 Jn = qD n dn ( x ) dx

FromFig.E3.5,

n 0 = 1017 /cm3 = 105 /(µm)3

Dn = 35cm2 /s = 35 × (104 )2 (µm)2 /s

= 35 × 108 (µm)2 /s dn

dx = 105 0 0 5 = 2 × 105 µm 4

Jn = qDn dn ( x ) dx

= 1 6 × 10 19 × 35 × 108 × 2 × 105

= 112 × 10 6 A/µm2

= 112 µA/µm2

For In = 1mA = Jn × A

⇒ A = 1mA Jn = 103 µA 112 µA/(µm)2 9 µm2

Ex:3.6 UsingEq.(3.20), Dn

μn = D p μ p = VT

Dn = μn VT = 1350 × 25.9 × 10 3

∼ = 35cm2 /s

D p = μ p VT = 480 × 25 9 × 10 3

∼ = 12 4cm2 /s

Ex:3.7 Equation(3.25)

W = 2 s q 1 N A + 1 N D V0

= 2 s q N A + N D N A N D V0

W 2 = 2 s q N A + N D N A N D V0

V0 = 1 2 q s N A N D N A + N D W 2

Ex:3.8 Ina p + n diode NA ND

Equation(3.26) W = 2 s q 1 N A + 1 N D V0

Wecanneglecttheterm 1 N A ascomparedto 1 N D , thus

W 2 s qN D V0

Equation(3.26) x n = W N A N A + N D

W N A N A = W

Equation(3.28), x p = W N D N A + N D since NA ND

W N D N A = W N A N D

Equation(3.28), Q J = Aq N A N D N A + N D W

Aq N A N D N A W = AqN D W

Equation(3.29), Q J = A 2 s q N A N D N A + N D V0

A 2 s q N A N D N A V0 since NA ND = A 2 s qN D V0

Ex:3.9 InExample3.5, N A = 1018 /cm3 and N D = 1016 /cm3

Inthe n -regionofthis pn junction

n n = N D = 1016 /cm3

pn = n 2 i n n = (1 5 × 1010 )2 1016 = 2.25 × 104 /cm3

Asonecanseefromaboveequation,toincrease minority-carrierconcentration ( pn ) byafactorof 2,onemustlower ND (= nn )byafactorof2.

Ex:3.10

Equation(3.40) I S = Aqn 2 i D p L p N D + Dn L n N A

since D p L p and Dn L n haveapproximately

similarvalues,if NA N D ,thentheterm Dn L n N A canbeneglectedascomparedto D p L p N D

∴ I S ∼ = Aqn 2 i D p L p N D

Ex:3.11 I S = Aqn 2 i D p L p N D + Dn L n N A

= 10 4 × 1 6 × 10 19 × (1 5 × 1010 )2

10 5 × 10 4 × 1016 2 + 18 10 × 10 4 × 1018

= 1 46 × 10 14 A

I = I S (e V / V T 1)

I S e V / V T = 1 45 × 10 14 e 0 605/(25 9×10 3 )

= 0 2mA

Ex:3.12 W = 2 s q 1 N A + 1 N D ( V0 V F )

= 2 × 1 04 × 10 12 1 6 × 10 19 1 1018 + 1 1016 (0 814 0 605)

= 1 66 × 10 5 cm = 0 166 µm

Ex:3.13 W = 2 s q 1 N A + 1 N D ( V0 + V R )

= 2 × 1 04 × 10 12 1 6 × 10 19 1 1018 + 1 1016 (0 814 + 2)

= 6 08 × 10 5 cm = 0 608 µm

UsingEq.(3.28),

Q J = Aq N A N D N A + N D W

= 10 4 × 1 6 × 10 19 1018 × 1016 1018 + 1016 × 6 08 × 10 5 cm

= 9 63pC

Reversecurrent I = I S = Aqn 2 i D p L p N D + Dn L n N A

= 10 14 × 1.6 × 10 19 × (1.5 × 1010 )2 × 10 5 × 10 4 × 1016 + 18 10 × 10 4 × 1018

= 7 3 × 10 15 A

Ex:3.14 Equation(3.47),

C j 0 = A s q 2 N A N D N A + N D 1 V0

= 10 4 1 04 × 10 12 × 1 6 × 10 19 2 1018 × 1016 1018 + 1016 1 0 814 = 3 2pF

Equation(3.46),

C j = C j 0 1 + V R V0 = 3 2 × 10 12 1 + 2 0 814 = 1 72pF

Ex:3.15 C d = dQ dV = d dV (τ T I ) = d dV τ T × I S (e V / V T 1) = τ T I S d dV (e V / V T 1) = τ T I S 1 VT e V / V T

τ T VT × I S

V / V T ∼ = τ T VT I

Ex:3.16 Equation(3.49), τ p = L 2 p D p = (5 × 10 4 )2 10 = 25ns

Equation(3.57),

C d = τ T VT I

InExample3.6, N A = 1018 /cm3 , N D = 1016 /cm3

Assuming N A N D , τ T τ p = 25ns

∴ C d = 25 × 10 9 25 9 × 10 3 0 1 × 10 3 = 96 5pF

Exercise4–1

Chapter4

SolutionstoExerciseswithintheChapter

Ex:4.1 RefertoFig.4.3(a).For v I ≥ 0, the diodeconductsandpresentsazerovoltagedrop. Thus v O = v I .For v I < 0, thediodeiscutoff, zerocurrentflowsthrough R ,and v O = 0.The resultisthetransfercharacteristicinFig.E4.1.

Ex:4.2 SeeFig.4.3aand4.3b.Duringthe positivehalfofthesinusoid,thediodeisforward biased,soitconductsresultingin v D = 0.During thenegativehalfcycleoftheinputsignal v I , the diodeisreversebiased.Thediodedoesnot conduct,resultinginnocurrentflowinginthe circuit.So v O = 0 and v D = v I v O = v I .This resultsinthewaveformshowninFig.E4.2.

Ex:4.3 ˆ i

Ex:4.4 (a)

R = 3 133k

Ex:4.6 Themaximumcurrentariseswhen

|v I | = 20 V.Inthiscase,

i D = 20 5 R

Toensurethisis50mA, R = 20 5 50 = 0.3 k = 300

Ex:4.7Equation(4.5)

V2 V1 = 2 3 V T log I2 I1

Atroomtemperature VT = 25mV

V2 V1 = 2 3 × 25 × 10 3 × log 10 0 1 = 115mV

Ex:4.8 i = I S e v / VT (1)

1 (mA) = I S e 0 7/ VT (2)

Dividing(1)by(2),weobtain

i (mA) = e (v 0 7)/ VT

⇒ v = 0 7 + 0 025 ln(i ) where i isinmA.Thus, for i = 0 1 mA,

v = 0 7 + 0 025 ln(0 1) = 0 64 V andfor i = 10 mA,

v = 0 7 + 0 025 ln(10) = 0 76 V

Ex:4.9 i D = I S e v / VT

⇒ I S = i D e v / VT = 0 25 × e 300/25

= 1 23 × 106 m A = 1 23 × 10 9 A

Ex:4.10 T = 125 25 = 100◦ C

I S = 10 14 × 1 15 T = 1.17 × 10 8 A

Ex:4.11 At 20◦ C I = 1V 1M = 1 µA

Sincethereverseleakagecurrentdoublesfor every 10◦ C increase,at 40◦ C

I = 4 × 1 µA = 4 µA

⇒ V = 4 µA × 1M = 4 0V

@0◦ C I = 1 4 µA

⇒ V = 1 4 × 1 = 0 25V

Ex:4.12 a.Useiteration: Diodehas0.7Vdropat1mAcurrent.

Assume V D = 0 7V

I D = 5 0.7 10k = 0 43mA

UseEq.(4.5)andnotethat

V1 = 0 7V, I1 = 1mA ID VCC 5 V VD R 10 k

V2 V1 = 2 3 × VT log I2 I1

V2 = V1 + 2 3 × VT log I2 I1

Firstiteration

V2 = 0 7 + 2 3 × 25 × 10 3 log 0 43 1 = 0 679V

Seconditeration

I2 = 5 0 679 10k = 0 432mA

V2 = 0 7 + 2 3 × 25 3 × 10 3 log 0 432 1

= 0 679V 0 68V wegetalmostthesamevoltage.

∴ Theiterationyields

I D = 0.43mA, V D = 0.68V

b.Useconstantvoltagedropmodel:

V D = 0 7V constantvoltagedrop

I D = 5 0 7 10k = 0 43mA

Ex:4.13 R I 10 V

2.4 V

Diodeshave0.7Vdropat1mA

∴ 1mA = I S e 0 7/ VT (1)

Atacurrent I (mA),

I = I S e V D / VT (2)

Using(1)and(2),weobtain

I = e ( V D 0 7)/ VT

Foranoutputvoltageof2.4V,thevoltagedrop

acrosseachdiode = 2 4 3 = 0.8V

Now I,thecurrentthrougheachdiode,is

I = e (0 8 0 7)/0 025

= 54 6mA R = 10 2.4

6 × 10 3 = 139

Ex:4.15 Withareversevoltage,thediodein Fig.4.10willnotconduct.Thus,thevoltagedrop on R willbezero,andthereversevoltageonthe diodeis V D =− V DD .Toensurewerespectthe peakinversevoltage,werequire V DD = V D > 30 V.Hence,theminimum voltageon V DD is 30 V.

Ex:4.16 Whenconductingareversecurrentof 20mA,thereversevoltageis

V Z = V ZT + I Z r z = 3 5 V + (20 mA 10 mA)10 = 3 6 V

Themaximumcurrent, Imax ,isthecurrentat 200mWpowerdissipation.

200 mW = Imax (3 5 V + 10 ( Imax 10 mA))

0 2 = 3 5 Imax + 10 I 2 max 0 1 Imax

⇒ I 2 max + 0 34 Imax 0 02 = 0

⇒ Imax = 1 2 0 34 + 0 342 + 4 × 0 02 = 51 mA

Ex:4.17 r d = VT I D

I D = 0 1mA r d = 25 × 10 3 0 1 × 10 3 = 250

I D = 1mA r d = 25 × 10 3 1 × 10 3 = 25

I D = 10mA r d = 25 × 10 3 10 × 10 3 = 2 5

Ex:4.18 Forsmallsignalmodel,

i D = v D / r d (1)

where r d = VT I D Forexponentialmodel,

i D = I S e V / V T

i D 2 i D 1 = e ( V2 V1 ) / V T = e v D / V T i D = i D 2 i D 1 = i D 1 e v D / V T i D 1

= i D 1 e v D / V T 1 (2)

Inthisproblem, i D 1 = I D = 1mA.

UsingEqs.(1)and(2)with VT = 25mV,we obtain

v D (mV) i D (mA) i D (mA) smallexponential signalmodel

a 10 0.4 0.33

b 5 0.2 0.18

c + 5 + 0.2 + 0.22

d + 10 + 0.4 + 0.49

Ex:4.19

a.Inthisproblem, V O i L = 20mV 1mA = 20 .

∴ Totalsmall-signalresistanceofthefourdiodes = 20

∴ Foreachdiode, r d = 20 4 = 5

But r d = VT I D ⇒ 5 = 25mV I D

∴ I D = 5mA R IL VO 15 V and R = 15 3 5mA = 2.4k .

b.For V O = 3V, voltagedropacrosseachdiode

= 3 4 = 0 75V

i D = I S e V / VT I S = i D e V / VT = 5 × 10 3 e 0 75/0 025 = 4 7 × 10 16 A

c.If i D = 5 i L = 5 1 = 4mA

Acrosseachdiodethevoltagedropis

V D = VT ln I D I S = 25 × 10 3 × ln 4 × 10 3 4 7 × 10 16

= 0 7443V

Voltagedropacross4diodes

= 4 × 0 7443 = 2 977V

sochangein V O = 3 2.977 = 23mV.

Ex:4.20 Whenthediodecurrentishalved,the voltagechangesby

V Z = r z I Z = 80 × 5 mA 2 =−200 mV

⇒ V Z = 6 0 2 = 5 8 V

Whenthediodecurrentisdoubled,

V Z = r z I Z = 80 × 5 mA = 400 mV

⇒ V Z = 6 + 0.4 = 6.4 V

Finally,thevalueof V Z 0 isthatobtainedbyusing themodelatzerocurrent.

V Z = V Z 0 + r z I Z

⇒ V Z 0 = V Z r z I Z = 6 V 80 × 5 mA

= 5 6 V

Ex:4.21

vS VD 2 t Vs 12 2 0 u u

a.Thediodestartsconductionat

v S = V D = 0 7V

v S = Vs sin ω t, here Vs = 12√2

At ω t = θ ,

v S = Vs sin θ = V D = 0.7V

12√2sin θ = 0 7 θ = sin 1 0 7 12√2 2 4◦

Conductionstartsat θ andstopsat 180 θ.

∴ Totalconductionangle = 180 2θ = 175 2◦

b. v O ,avg = 1 2π (π θ ) θ ( Vs sin φ V D ) d φ = 1 2π [ Vs cos φ V D φ ]φ =π θ φ θ = 1 2π [ Vs cos θ Vs cos (π θ ) V D (π 2θ )]

But cos θ 1, cos (π θ ) − 1, and π 2θ π

v O ,avg = 2 Vs 2π V D 2 = Vs π V D 2

For Vs = 12√2and V D = 0 7V

v O ,avg = 12√2 π 0 7 2 = 5 05V

c.Thepeakdiodecurrentoccursatthepeak diodevoltage.

∴ ˆ i D = Vs V D R = 12√2 0 7 100 = 163mA

PIV =+ V S = 12√2 17V

Ex:4.22 () vS Vs VS VD output 0 input t

a.Asshowninthediagram,theoutputiszero between (π θ ) to (π + θ ) = 2θ

Here θ istheangleatwhichtheinputsignal reaches V D

∴ Vs sin θ = V D

θ = sin 1 V D Vs 2θ = 2sin 1 V D Vs

b.Averagevalueoftheoutputsignalisgivenby

V O = 1 2π ⎡ ⎣2 × (π θ ) θ ( Vs sin φ V D ) d φ ⎤ ⎦ = 1 π [ Vs cos φ V D φ ]π θ φ =θ 2 Vs π V D ,for θ small.

c.Peakcurrentoccurswhen φ = π 2

Peakcurrent = Vs sin (π/2) V D R = Vs V D R

If v S is12V(rms), then Vs = √2 × 12 = 12√2

Peakcurrent = 12√2 0 7 100 163mA

Nonzerooutputoccursforangle = 2 (π 2θ )

Thefractionofthecycleforwhich v O > 0 is = 2 (π 2θ ) 2π × 100

Averageoutputvoltage V O is

V O = 2 Vs π V D = 2 × 12√2 π 0 7 = 10 1V

Peakdiodecurrent ˆ i D is

ˆ

Ex:4.24 Full-wavepeakrectifier: RC vO vS vS D1 D2 Vp Vr assume ideal diodes t t { T 2

Theripplevoltageistheamountofvoltage reductionduringcapacitordischargethatoccurs whenthediodesarenotconducting.Theoutput voltageisgivenby

v O = V p e t / RC

V p Vr = V p e T /2 RC ← dischargeisonly halftheperiod.Wealsoassumed t T 2

Vr = V p 1 e T /2 RC e T /2 RC 1 T /2 RC ,for CR T/2 Thus Vr V p 1 1 + T /2 RC

Vr = V p 2 fRC (a) Q.E.D. Tofindtheaveragediodecurrent,notethatthe chargesuppliedto C duringconductionisequal tothechargelostduringdischarge.

Q SUPPLIED = Q LOST

i C av t = CV r SUB (a) i D ,av I L t = C V p 2 fRC = V p 2 fR = V p π ω R i D ,av = V p π ω tR + I L where ω t istheconductionangle.

Notethattheconductionanglehasthesame expressionasforthehalf-waverectifierandis givenbyEq.(4.30),

ω t ∼ = 2 Vr V p (b)

Substitutingfor ω t ,weget

⇒ i D ,av = π V p 2 Vr V p R + I L

Sincetheoutputisapproximatelyheldat Vp , V p R ≈ I L · Thus

⇒ i D av ∼ = π I L V p 2 Vr + I L

= I L 1 + π V p 2 Vr Q.E.D.

If t =0isatthepeak,themaximumdiodecurrent occursattheonsetofconductionorat t =−ω t .

Duringconduction,thediodecurrentisgivenby

i D = i C + i L

i D ,max = C d v S dt t =−ω t + i L assuming i L isconst. i L V p R = I L

= C d dt V p cos ω t + I L

=−C sin ω t × ω V p + I L

=−C sin( ω t ) × ω V p + I L

Forasmallconductionangle

sin( ω t ) ≈− ω t Thus

⇒ i D ,max = C ω t × ω V p + I L

Sub(b)toget

i D ,max = C 2 V r V p ω V p + I L

Substituting ω = 2π f andusing(a)togetherwith V p / R I L resultsin

i D max = I L 1 + 2π V p 2 Vr Q.E.D.

Ex:4.25

Theoutputvoltage, v O ,canbeexpressedas

Attheendofthedischargeinterval

v O = V p 2 V D Vr

Thedischargeoccursalmostoverhalfofthetime period T /2

Fortimeconstant RC T 2

e t / RC 1 T 2 × 1 RC

∴ V P 2 V D Vr = V p 2 V D 1 T 2 × 1 RC

⇒ Vr = V p 2 V D × T 2 RC

Here V p = 12√2and Vr = 1V

V D = 0 8V

T = 1 f = 1 60 s

1 = (12√2 2 × 0 8) × 1 2 × 60 × 100 × C

C = (12√2 1 6) 2 × 60 × 100 = 1281 µF

Withoutconsideringtheripplevoltage,thedc outputvoltage

= 12√2 2 × 0.8 = 15.4V

Ifripplevoltageisincluded,theoutputvoltageis

= 12√2 2 × 0 8 Vr 2 = 14 9V

I L = 14 9 100 0 15 A

v O = V p 2 V D e t / RC vS vO D2 D1 D3 D4 C R ac line voltage

Theconductionangle ω t canbeobtainedusing Eq.(4.30)butsubstituting V p = 12√2 2 × 0 8:

ω t = 2 Vr V p = 2 × 1 12√2 2 × 0 8

= 0 36rad = 20 7◦

Theaverageandpeakdiodecurrentscanbe calculatedusingEqs.(4.34)and(4.35):

i D av = I L 1 + π V p 2 Vr , where I L = 14 9V 100 ,

V p = 12√2 2 × 0.8, and Vr = 1V;thus

i D av = 1 45A

i D max = I 1 + 2π V p 2 Vr = 2 76A

PIVofthediodes

= VS V DO = 12√2 0.8 = 16.2V

Toprovideasafetymargin,selectadiodecapable ofapeakcurrentof3.5to4AandhavingaPIV ratingof20V.

Ex:4.26 vA iD vI i i vD vO 1 k iR

Thediodehas0.7Vdropat1mAcurrent.

i D = I S e v D / VT

i D 1mA = e (v D 0 7)/ V T

⇒ v D = VT ln i D 1mA + 0 7V

For v I = 10mV, v O = v I = 10mV

Itisanidealopamp,so i + = i = 0

∴ i D = i R = 10mV 1k = 10 µA

v D = 25 × 10 3 ln 10 µA 1mA + 0 7 = 0 58V

v A = v D + 10mV

= 0 58 + 0 01 = 0.59V

For v I = 1V

v O = v I = 1V

i D = v O 1k = 1 1k = 1mA

v D = 0 7V

V A = 0 7V + 1k × 1mA = 1 7V

For v I =−1V, thediodeiscutoff.

∴ v O = 0V

v A =−12V

Ex:4.27 vO R IL vI

v I > 0 ∼ diode iscutoff,loopisopen,andthe opampissaturated:

v O = 0V

v I < 0 ∼ diode conductsandclosesthenegative feedbackloop:

v O = v I

Ex:4.28 Reversingthedioderesultsinthepeak outputvoltagebeingclampedat0V: t vO 10 V

Herethedccomponentof v O = V O =−5V

Ex:4.29 Thecapacitorvoltageaccountsforthe shiftofthevoltagewaveformsfrom v I to v O Thus,fromFig.4.30,weseethecapacitorvoltage is V p + VCC = 8 V.Thediode’speakinverse voltagearisesatthepeaksof v O ,

PIV = v O max VCC

= VCC + 2 V p VCC

= 2 V p = 6 V

Ex:4.30 C j 0 = 100 fF, V0 = 3 V, m = 3.Using Equation(3.47),

at V R = 1 V: C j = 100 fF 1 + 1 3 3 = 42.2 fF,and

at V R = 3 V: C j = 100 fF 1 + 3 3 3 = 12 5 fF.

Ex:4.31 Thereversecurrentis

i D = I D + i P = I D + R × P

Atanincidentlightpowerof P = 1 mW,

i D = 10 4 + 0 5 × 1 = 0 5 mA

Atanincidentlightpowerof P = 1 µW,

i D = 10 4 + 0 5 × 10 3 = 6 × 10 4 mA = 0 6 µA

Ex:4.32 Neglectingdarkcurrent, i P = R × P

Thecapacitanceis10pFpermm2 or, equivalently,1nFpercm2 .Thus, C j = 1 × 3 33 = 3 33 nF

Ex:4.33 R = 9 3 × 1 8 20 = 0 18 k = 180

Ex:4.34 R = 9 3 × 2 2 20 = 0 12 k = 120

Exercise5–1

Chapter5

SolutionstoExerciseswithintheChapter

Ex:5.1

C ox = ox tox = 34 5pF/m 4nm = 8 625fF/µm2

μn = 450cm2 /V S

k n = μn C ox = 388 µA/V2

v OV = v G S Vt = 0 5V

g DS = 1 1k = k n W L v OV ⇒ W L = 5 15

L = 0 18 µm, so W = 0 93 µm

Ex:5.2

C ox = ox tox = 34.5pF/m 1 4nm = 24 6fF/µm2

μn = 216cm2 /V s

k n = μn C ox = 531 µA/V2

i D = 1 2 k n W L v 2 OV

50 = 1 2 × 531 × 10 × v 2 OV

∴ v OV = 0 14V

v G S = Vt + v OV = 0.49V

v DS , min = v OV = 0 14V,

Ex:5.3 i D = 1 2 k n W L v 2 OV insaturation

Changein i D is:

(a)double L ,0.5

(b)double W ,2

(c)double v OV , 22 = 4

(d)double v DS ,nochange(ignoringlength modulation)

(e)changes(a)–(d),4

Case(c)wouldcauseleavingsaturationif

v DS < 2v OV

Ex:5.4 Forsaturation v DS ≥ v OV , so v DS must bechangedto 2v OV i D = 1 2 k n W L v 2 OV , so i D increasesbyafactorof4.

Ex:5.5 v OV = 0 5V

g DS = k n W L v OV = 1 1k

∴ k n = k n W L = 1 1 × 0 5 = 2mA/V2

At v DS = 0 2V,v DS <v OV ,thusthetransistoris operatinginthetrioderegion,

i D = k n (v OV v DS 1 2 v 2 DS )

= 2(0 5 × 0 2 1 2 × 0 22 ) = 0 16mA

At v DS = 0 5V,v DS = v OV ,thusthetransistoris operatinginsaturation,

i D = 1 2 k n v 2 OV = 1 2 × 2 × 0 52 = 0 25mA

At v DS = 1V, v DS >v OV andthetransistoris operatinginsaturationwith i D = 0 25mA

Ex:5.6 V A = V A L = 5 × 0 8 = 4V

λ = 1 V A = 0 25V 1

v DS = 0 8V >v OV = 0 2V

⇒ Saturation: i D = 1 2 k n W L v 2 OV (1 + λv DS )

i D = 1 2 × 400 × 16 0 8 × 0 22 (1 + 0 25 × 0 8)

= 0 192mA

r o = V A i D = 4 0 16 = 25k where i D isthevalueof i D without channel-lengthmodulationtakenintoaccount.

r o = v DS i D ⇒ i D = 1V 25k = 0 04mA = 40 µA

Ex:5.7 vG vD 1.8 V iD

Vtp =−0 5V

k p = 100 µA/V2 W L = 10 ⇒ k p = 1mA/V2

(a)Conductionoccursfor VS G ≥| Vtp |= 0.5V

⇒ v G ≤ 1 8 0 5 =+1 3V

(b)Trioderegionoccursfor v D G ≥| Vtp |= 0 5V

⇒ v D ≥ v G + 0 5

(c)Conversely,forsaturation

v D G ≤| Vtp |= 0 5V

⇒ v D ≤ v G + 0 5

(d)Given λ ∼ = 0,

i D = 1 2 k p W L |v OV |2 = 50 µA

∴ |v OV |= 0 32V = v S G −| Vtp |

⇒ v S G =|v OV |+| Vtp |= 0 82V

v G = 1 8 v S G = 0 98V

v D ≤ v G + 0 5 = 1 48V

(e)For λ =−0.2V 1 and |v OV |= 0.32V,

i D = 50 µAand r o = 1 | λ |i D = 100k

(f)At v D =+1V,v SD = 0 8V,

i D = 1 2 k n W L |v OV |2 (1 +| λ ||v SD |)

= 50 µA (1 16) = 58 µA

At v D = 0V,v SD = 1 8V,

i D = 50 µA (1 36) = 68 µA

r o = v DS i D = 1V 10 µA = 100k

whichisthesamevaluefoundin(c).

Ex:5.8

R D = V DD v D I D = 1 0 2 0 1 = 8k

I D = 1 2 μn C ox W L V 2 OV ⇒

100 = 1 2 × 400 × 5 0 4 V 2 OV ⇒

V OV = 0.2V ⇒ VG S = V OV + Vt = 0.2 + 0.4 = 0 6V

VS =−0.6V ⇒ R S = VS VSS I D = 0.6 ( 1) 0 1

R S = 4k

Ex:5.9

Vtn = 0 5V

μn C ox = 0 4mA/V2

W L = 0.72 µm 0 18 µm = 4 0

λ = 0 VD R 1.8 V

Saturationmode (v G D = 0 < Vtn ) : I D = 1 2 μn C ox W L ( V D Vtn )2 = 0 032mA

V D = 0 7V = 1 8 I D R

∴ R = 1 8 0 7 0 032mA = 34 4k

Ex:5.10 R2 R Q2 Q1 1.8 V

Since Q 2 isidenticalto Q 1 andtheir VG S values arethesame,

I D 2 = I D 1 = 0 032mA

For Q 2 tooperateatthetriode–saturation boundary,wemusthave

V D 2 = V OV = 0 7 0 5 = 0 2V

∴ R2 = 1.8V 0.2V 0 032mA = 50k

Ex:5.11 R D = 6 55 × 2 = 13 1k

VG S = 2V, assumetrioderegion:

I D = k n W L ( VG S Vtn ) V DS 1 2 V 2 DS

I D = V DD V DS R ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⇒ 2 V DS 13 1 = 2 × (2 0 5) V DS V 2 DS 2

⇒ V 2 DS 3 076 V DS + 0 15 = 0

⇒ V DS = 0 05V < V OV ⇒ trioderegion

I D = 2 0 05 13 1 = 0 15mA

Ex:5.12 AsindicatedinExample5.6,

V D ≥ VG Vt forthetransistortobeinthe saturationregion.

V D min = VG Vt = 5 1 = 4V

I D = 0 5mA ⇒ R D max = V DD V D min I D = 10 4 0 5 = 12k

Ex:5.13

I D = 0 32mA = 1 2 k n W L V 2 OV = 1 2 × 1 × V 2 OV

⇒ V OV = 0 8V

VG S = 0 8 + 1 = 1 8V

VG = VS + VG S = 1 6 + 1 8 = 3 4V

R G 2 = VG I = 3 4 1 µA = 3 4M

R G 1 = 5 3 4 1 µA = 1 6M

R S = VS 0 32 = 5k

V D = 3 4V, then R D = 5 3 4 0.32 = 5k

Ex:5.14 ID R 1.8 V

Vtp =−0 4V k p = 0 1mA/V2 W L = 10 µm 0 18 µm ⇒ k p = 5 56mA/V2

VS G =| Vtp |+| V OV |

= 0 4 + 0 6 = 1V

VS =+1V

Since V D G = 0,thetransistorisoperatingin saturation,and

I D = 1 2 k p V 2 OV = 1mA

∴ R = 1 8 VS I D = 1 8 1 1 = 0 8k = 800

Ex:5.15 V I = 0:sincethecircuitisperfectly symmetrical, V O = 0 andtherefore VG S = 0, whichimpliesthatthetransistorsareturnedoff and I DN = I DP = 0

V I = 2 5V:ifweassumethattheNMOSis turnedon,then V O wouldbelessthan2.5V,and thisimpliesthatPMOSisoff ( VS G P < 0)

I DN = 1 2 k n W L ( VG S Vt )2

I DN = 1 2 × 1(2 5 V O 1)2

I DN = 0 5(1 5 V O )2

Also: V O = R L I DN = 10 I DN

I DN = 0 5(1 5 10 I DN )2

⇒ 100 I 2 DN 32 I DN + 2 25 = 0 ⇒ I DN = 0 104mA I DP = 0

VO = 10 × 0 104 = 1 04V

Exercise5–4

V I =−2 5V:Againifweassumethat Q P is turnedon,then V O > 2 5Vand VG SN < 0, whichimpliesthattheNMOS Q N isturnedoff.

I DN = 0

Becauseofthesymmetry,

I DP = 0 104mA,

1 23 V

V O =− I DP × 10k =−1 04V Ex:5.16 Vt = 0 8 + 0 4

Ex:5.17 v DS min = v G S +| Vt | = 1 + 2 = 3 V

I D = 1 2 × 2 [1 ( 2)]2 = 9 mA

Chapter6

SolutionstoExerciseswithintheChapter

Ex:6.1 i C = I S e v BE / VT

v BE 2 v BE 1 = VT ln i C 2 i C 1

v BE 2 = 700 + 25ln 0 1 1 = 642mV

v BE 3 = 700 + 25ln 10 1 = 758mV

Ex:6.2 ∴ α = β β + 1

50 50 + 1 <α< 150 150 + 1 0 980 <α< 0 993

Ex:6.3 IC = I E I B

= 1 460mA 0 01446mA = 1 446mA

α = IC I E = 1 446 1 460 = 0 99

β = IC I B = 1 446 0.01446 = 100

IC = I S e v BE / VT

I S = IC e v BE / VT = 1 446 e 700/25 = 1 446 e 28 mA = 10 15 A

Ex:6.4 β = α 1 α and IC = 10mA

For α = 0 99,β = 0 99 1 0.99 = 99

I B = IC β = 10 99 = 0 1mA

For α = 0.98,β = 0 98 1 0 98 = 49

I B = IC β = 10 49 = 0 2mA

Ex:6.5 Given:

I S = 10 16 A,β = 100, I C = 1mA Wewrite

I SE = I S /α = I S × 1 + 1 β

= 10 16 × 1 01 = 1 01 × 10 16 A

Exercise6–1

I SB = I S β = 10 16 100 = 10 18 A

V BE = VT ln IC I S = 25ln 1mA 10 16 A

= 25 × 29 9336 = 748mV

Ex:6.6 VCC 5 V RC B 10 A bIB E C v BE

v BE = 690mV IC = 1mA

Foractiverange VC ≥ V B , RC max = VCC 0 690 IC

= 5 0 69 1 = 4 31k

Ex:6.7 I S = 10 15 A AreaC = 100 × Area E

I SC = 100 × I S = 10 13 A

Ex:6.8 i C = I S e v BE / VT I SC e v BC / VT for i C = 0

I S e v BE / VT = I SC e v BC / VT I SC I S = e v BE / VT e v BC / VT = e (v BE v BC )/ VT ∴ VCE = V BE V BC = VT ln I SC I S

ForcollectorArea=100 × Emitterarea

VCE = 25ln 100 1 = 115mV

Ex:6.9 IC = I S e V BE / VT I SC e V BC / VT

I B = I S β e V BE / VT + I SC e V BC / VT

β forced = IC I B sat <β = β I S e V BE / VT I SC e V BC / VT

I S e V BE / VT + β I SC e V BC / VT = β I S e ( V BE V BC )/ VT I SC

I S e ( V BE V BC )/ VT + β I SC = β e VCE sat / VT I SC / I S

e VCE sat / VT + β I SC / I S Q.E.D.

β forced = 100 e 200/25 100 e 200/25 + 100 × 100 = 100 × 0 2219 ≈ 22 2

Ex:6.10 IS /a IS ev EB /VT aiE 2 mA E B C 10 V

I E = I S α e V BE / VT

2mA = 51 50 10 14 e V BE / VT

V BE = 25ln 2 103 × 50 51 × 1014 = 650mV

IC = β β + 1 I E = 50 51 × 2 = 1 96mA

I B = IC β = 1.96 50 ⇒ 39 2 µA

Ex:6.11 IC = I S e V BE / VT = 1.5A

∴ V BE = VT ln 1 5/10 11 = 25 × 25 734 = 643mV

Ex:6.12

0 5 k = 500

Sinceat IC = 1 mA, V BE = 0 8 V,thenat IC = 2 mA,

V BE = 0.8 + 0.025 ln 2 1 = 0 8 + 0 017 = 0 817 V

V E =− V BE =−0 817 V I E = 2 mA α = 2 0 99 = 2 02 mA

I E = V E ( 1 5) R E Thus, R E = 0 817 + 1 5 2 02 = 0 338 k = 338

I E = V E ( 10) 10 = 0 7 + 10 10

= 0 93 mA

Assumingactive-modeoperation,

I B = I E β + 1 = 0 93 50 + 1 = 0 0182 mA

= 18 2 µA

IC = I E I B = 0 93 0 0182 = 0 91 mA

VC = 10 IC × 5

= 10 0 91 × 5 = 5 45 V

Since VC > V B ,thetransistorisoperatinginthe activemode,asassumed.

Ex:6.14

V B = 1 0 V

Thus,

I B = V B 100 k = 0 01 mA

V E =+1 7 V

Thus,

I E = 10 V E 5 k = 10 1 7 5 = 1 66 mA and β + 1 = I E I B = 1 66 0 01 = 166

⇒ β = 165

α = β β + 1 = 165 165 + 1 = 0 994

Assumingactive-modeoperation,

IC = α I E = 0 994 × 1 66 = 1 65 mA and VC =−10 + 1 65 × 5 =−1 75 V

Since VC < V B ,thetransistorisindeedoperating intheactivemode.

Ex:6.15 5 V IC VE VC RC 1 k 2 mA

Thetransistorisoperatingataconstantemitter current.Thus,achangeintemperatureof +30◦ C resultsinachangein V EB by

V EB =−2 mV × 30 =−60 mV

Thus,

V E =−60 mV

Sincethecollectorcurrentremainsunchangedat α I E ,thecollectorvoltagedoesnotchange:

VC = 0 V

Ex:6.16 RefertoFig.6.19(a):

i C = I S e v BE / VT + v CE r o (1) NowusingEqs.(6.21)and(6.22),wecanexpress r o as

r o = V A

I S e v BE / VT

SubstitutinginEq.(1),wehave

i C = I S e v BE / VT 1 + v CE V A whichisEq.(6.18).Q.E.D.

Ex:6.17 r o = V A IC = 100 IC

At IC = 0 1 mA, r o = 1 M

At IC = 1 mA, r o = 100 k

At IC = 10 mA, r o = 10 k

Ex:6.18 IC = VCE r o where

r o = V A IC = 100 1 = 100 k

IC = 11 1 100 = 0.1 mA

Thus, IC becomes1.1mA.

Ex:6.19 VCC 10 V IB IC VBB RC 10 k

RB 10 k

VBE 0.7 V VCE

(a)Foroperationintheactivemodewith

VCE = 5 V,

IC = VCC VC RC = 10 5 10 = 0 5 mA

I B = IC β = 0 5 50 = 0 01 mA

V BB = V BE + I B R B

= 0 7 + 0 01 × 10 = 0 8 V

(b)Foroperationattheedgeofsaturation,

VCE = 0 3 V

IC = VCC VCE RC = 10 0 3 10 = 0 97 mA

I B = IC β = 0 97 50 = 0 0194 mA

V BB = V B + I B R B

= 0 7 + 0 0194 × 10 = 0 894 V

(c)Foroperationdeepinsaturationwith βforced = 10, wehave

VCE 0 2 V

IC = 10 0 2 10 = 0 98 mA

I B = IC βforced = 0 98 10 = 0 098 mA

V BB = V B + I B R B

= 0 7 + 0 098 × 10 = 1 68 V

Ex:6.20 For V BB = 0 V, I B = 0 andthe transistoriscutoff.Thus,

IC = 0 and

VC = VCC =+10 V

Ex:6.21 RefertothecircuitinFig.6.22andlet V BB = 1 7 V.Thecurrent I B canbefoundfrom

I B = V BB V B R B = 1 7 0 7 10 = 0.1 mA

Assumingoperationintheactivemode,

IC = β I B = 50 × 0.1 = 5 mA

Thus,

VC = VCC RC IC

= 10 1 × 5 = 5 V whichisgreaterthan V B ,verifyingthatthe transistorisoperatingintheactivemode,as assumed.

(a)Toobtainoperationattheedgeofsaturation, RC mustbeincreasedtothevaluethatresultsin

VCE = 0 3 V:

RC = VCC 0 3 IC

= 10 0.3 5 = 1 94 k

(b)Furtherincreasing RC resultsinthetransistor operatinginsaturation.Toobtain saturation-modeoperationwith VCE = 0 2 Vand βforced = 10,weuse

IC = βforced × I B = 10 × 0 1 = 1 mA

Thevalueof RC requiredcanbefoundfrom

RC = VCC VCE

IC = 10 0 2 1 = 9 8 k

Ex:6.22 RefertothecircuitinFig.6.23(a)with thebasevoltageraisedfrom4Vto V B .Ifatthis valueof V B ,thetransistorisattheedgeof saturationthen,

VC = V B 0 4 V

Since IC I E ,wecanwrite 10 VC

RC = V E R E = V B 0 7 R E

Thus,

DividingEq.(1)byEq.(2),wehave

Ex:6.23

Ex:6.25 RefertothecircuitinFig.6.26(a).The largestvaluefor RC whiletheBJTremainsinthe activemodecorrespondsto

VC =+0 4 V

Sincetheemitterandcollectorcurrentsremain unchanged,thenfromFig.6.26(b)weobtain

Thus,

Toestablishareverse-biasvoltageof2Vacross theCBJ,

VC =+6 V

Fromthefigureweseethat RC

and

wherewehaveassumed α 1

Ex:6.24

Thefigureshowsthecircuitwiththebasevoltage at V B andtheBJToperatinginsaturationwith VCE = 0 2 Vand βforced = 5

Fora4-Vreverse-biasedvoltageacrosstheCBJ, VC =−4 V

Refertothefigure. IC = 1 mA = VC ( 10) RC

Ex:6.27 RefertothecircuitinFig.6.27:

I B = 5 0.7 100 = 0 043 mA

Toensurethatthetransistorremainsintheactive modefor β intherange50to150,weneedto select RC sothatforthehighestcollectorcurrent possible,theBJTreachestheedgeofsaturation, thatis, VCE = 0 3 V.Thus,

VCE = 0 3 = 10 RC IC max where

IC max = βmax I B

= 150 × 0 043 = 6 45 mA

Thus,

RC = 10 0 3 6 45 = 1 5 k

Forthelowest β ,

IC = βmin I B

= 50 × 0.043 = 2.15 mA

andthecorresponding VCE is

VCE = 10 RC IC = 10 1 5 × 2 15

= 6 775 V

Thus, VCE willrangefrom0.3Vto6.8V.

Ex:6.28 RefertothesolutionofExample6.10.

I E = V BB V BE R E + R BB /(β + 1)

= 5 0 7 3 + (33.3/51) = 1 177 mA

IC = α I E = 0 98 × 1 177 = 1 15 mA

Thusthecurrentisreducedby

IC = 1 28 1 15 = 0 13 mA whichisa 10% change.

Ex:6.29 RefertothecircuitinFig.6.30(b).The totalcurrentdrawnfromthepowersupplyis

I = 0 103 + 1 252 + 2 78 = 4 135 mA

Thus,thepowerdissipatedinthecircuitis

P = 15 V × 4 135 mA = 62 mW

Ex:6.30 15 V

Fromthefigureweseethat

V E 3 = IC 3 α × 0 47

VC 2 = V E 3 + 0 7 = IC 3 α × 0 47 + 0 7 (1)

Anodeequationatthecollectorof Q 2 yields

2 75 = VC 2 2 7 + IC 3 β

Substitutingfor VC 2 fromEq.(1),weobtain

2 75 = (0 47 IC 3 /α) + 0 7 2.7 + IC 3 β

Substituting α = 0 99 and β = 100 andsolving for IC 3 resultsin

IC 3 = 13 4 mA

Now, V E 3 and VC 2 canbedetermined:

V E 3 = IC 3 α × 0 47 = 13 4 0 99 × 0 47 =+6 36 V

VC 2 = V E 3 + 0 7 =+7 06 V

Ex:6.31

V

V

Fromthefigureweseethat Q 1 willbeoffand Q 2 willbeon.Sincethebaseof Q 2 willbeata voltagehigherthan 5 V,transistor Q 2 willbe operatingintheactivemode.Wecanwritealoop equationfortheloopcontainingthe10-k resistor,theEBJof Q 2 andthe1-k resistor:

I E × 1 0 7 I B × 10 =−5

Substituting I B = I E /(β + 1) = I E /101 and rearranginggives

I

Thus,

V E =−3 9 V

V B 2 =−4 6 V

I B = 0 039 mA

Ex:6.32 Withtheinputat + 10V,thereisa strongpossibilitythattheconductingtransistor

ThisfigurebelongstoExercise6.32.

Q 1 willbesaturated.Assumingthistobethe case,theanalysisstepswillbeasfollows:

VCE sat | Q 1 = 0 2 V V E = 5 V VCE sat =+4 8 V I E 1 = 4 8 V 1 k = 4 8 mA

whichislowerthan βmin ,verifyingthat Q 1 is indeedsaturated.

Finally,since Q 2 isoff,

IC 2 = 0

Ex:6.33 V O =+10 BV BCO = 10 70 =−60 V

Chapter7

SolutionstoExerciseswithintheChapter

Ex:7.1 RefertoFig.7.2(a)and7.2(b).

CoordinatesofpointA: Vt and V DD ;thus0.4V and1.8V.Todeterminethecoordinatesof pointB,weuseEqs.(7.7)and(7.8)asfollows:

V OV B = √2k n R D V DD + 1 1 k n R D

= √2 × 4 × 17 5 × 1 8 + 1 1 4 × 17 5

= 0 213 V

Thus,

VG S B = Vt + V OV B = 0 4 + 0 213 = 0 613 V and

V DS B = V OV B = 0 213 V

Thus,coordinatesofBare0.613Vand0.213V. AtpointC,theMOSFETisoperatinginthe trioderegion,thus

i D = k n (v G S C Vt )v DS C 1 2 v 2 DS C

If v DS C isverysmall,

i D k n (v G S C Vt )v DS C

= 4(1 8 0 4)v DS C

= 5 6v DS C , mA

But

i D = V DD v DS C R D V DD R D = 1.8 17 5 = 0 1 mA

Thus, v DS C = 0 1 5 6 = 0 018V = 18mV,which isindeedverysmall,asassumed.

Ex:7.2 RefertoExample7.1andFig.7.4(a).

Design1:

V OV = 0 2 V, VG S = 0 6 V

I D = 0 08 mA

Now,

A v =−k n V OV R D

Thus, 10 =−0.4 × 10 × 0.2 × R D

⇒ R D = 12 5 k

V DS = V DD R D I D = 1 8 12 5 × 0 08 = 0 8 V

Design2:

R D = 17 5 k

A v =−k n V OV R D 10 =−0 4 × 10 × V OV × 17 5

Thus,

V OV = 0.14 V

VG S = Vt + V OV = 0 4 + 0 14 = 0 54 V

I D = 1 2 k n W L V 2 OV

= 1 2 × 0 4 × 10 × 0 142 = 0 04 mA

R D = 17.5 k

V DS = V DD R D I D

= 1 8 17 5 × 0 04 = 1 1 V

Ex:7.3 A v =− IC RC VT

320 =− 1 × RC 0 025 ⇒ RC = 8 k

VC = VCC IC RC

= 10 1 × 8 = 2 V

Sincethecollectorvoltageisallowedtodecrease to +0.3V,thelargestnegativeswingallowedat theoutputis 2 0 3 = 1 7V.Thecorresponding inputsignalamplitudecanbefoundbydividing 1.7Vbythegainmagnitude(320V/V),resulting in5.3mV.

Ex:7.4 iD VDD RD vGS vgs vDS VGS

V DD = 5V

VG S = 2V

Vt = 1V

λ = 0

k n = 20 µA/V2

R D = 10k

W L = 20

(a) VG S = 2V ⇒ V OV = 1V

I D = 1 2 k n W L V 2 OV = 200 µA = 0 2mA

V DS = V DD I D R D =+3V

(b) gm = k n W L V OV = 400 µA/V = 0 4mA/V

(c) A v = v ds v gs =− gm R D =−4V/V

(d) v gs = 0 2sin ω t V

v ds =−0 8sin ω t V

v DS = V DS + v ds ⇒ 2.2V ≤ v DS ≤ 3.8V

(e)UsingEq.(7.28),weobtain

i D = 1 2 k n ( VG S Vt )2

+ k n ( VG S Vt )v gs + 1 2 k n v 2 gs

i D = 200 + 80sin ω t

+ 8sin2 ω t , µA

= [200 + 80sin ω t + (4 4cos2ω t )]

= 204 + 80sin ω t 4cos2ω t , µA

Thus, I D shiftsby 4 µA and

2HD = ˆ i 2ω ˆ i ω = 4 µA 80 µA = 0 05 (5%)

Ex:7.5

(a) VG S = 1 5V ⇒ V OV = 1.5 1 = 0.5V

gm = 2 I D V OV

I D = 1 2 k n W L V 2 OV = 1 2 × 60 × 40 × 0 52

I D = 300 µA = 0 3mA

gm = 2 × 0 3 0 5 = 1 2mA/V

r o = V A I D = 15 0 3 = 50k

(b) I D = 0 5mA ⇒ gm = 2 μn C ox W L I D

= 2 × 60 × 40 × 0 5 × 103

gm = 1 55mA/V

r o = V A I D = 15 0.5 = 30k

Ex:7.6

I D = 0 1mA, gm = 1mA/V, k n = 500 µA/V2

gm = 2 I D V OV ⇒ V OV = 2 × 0 1 1 = 0 2V

I D = 1 2 k n W L V 2 OV ⇒ W L = 2 I D k n V 2 OV

= 2 × 0 1

500

1000 × 0 22 = 10

Ex:7.7

gm = μn C ox W L V OV

Samebiasconditions,sosame V OV andalsosame L and gm forbothPMOSandNMOS.

μn C ox Wn = μ p C ox W p ⇒ μ p μn = 0 4 = Wn W p

⇒ W p Wn = 2.5

Ex:7.8

I D = 1 2 k p W L ( VS G −| Vt |)2

= 1 2 × 60 × 16 0 8 × (1 6 1)2

I D = 216 µA

gm = 2 I D | V OV | = 2 × 216 1 6 1 = 720 µA/V

= 0 72mA/V

|λ|= 0 04 ⇒| V A |= 1 |λ| = 1 0 04 = 25V/µm

r o = | V A |× L I D = 25 × 0.8 0 216 = 92 6k

Ex:7.9

gm r o = 2 I D V OV × V A I D = 2 V A V OV

V A = V A × L = 6 × 3 × 0 18 = 3 24V

gm r o = 2 × 3 24 0 2 = 32.4V/V

Ex:7.10

RefertothesolutionofExample7.3.From Eq.(7.47), A v ≡ v o v i =− gm R D (notethat R L isabsent).

Thus,

gm R D = 25

5 V RD vo vi RG

Substitutingfor gm = k n V OV ,wehave

k n V OV R D = 25

where k n = 1mA/V2 ,thus

V OV R D = 25 (1)

Next,considerthebiasequation

VG S = V DS = V DD R D I D

Thus,

Vt + V OV = V DD R D I D

Substituting Vt = 0 7V, V DD = 5V,and

I D = 1 2 k n V 2 OV = 1 2 × 1 × V 2 OV = 1 2 V 2 OV

weobtain

0 7 + V OV = 5 1 2 V 2 OV R D (2)

Equations(1)and(2)canbesolvedtoobtain

V OV = 0 319 V and

R D = 78 5k

Thedccurrent I D canbenowfoundas

I D = 1 2 k n V 2 OV = 50.9 µA

Todeterminetherequiredvalueof R G weuseEq. (7.48),againnotingthat R L isabsent:

Rin = R G 1 + gm R D

0 5 M = R G 1 + 25

⇒ R G = 13 M

Finally,themaximumallowableinputsignal ˆ v i canbefoundasfollows:

ˆ v i = Vt | A v |+ 1 = 0 7 V 25 + 1 = 27 mV

Ex:7.11 D 0 Req G S i i it ro vt 1 gm i t = v t r o + i = v t r o + gm v t

Req = v t i t = r o 1 gm

Ex:7.12

Given: gm = ∂ i C ∂v BE i C = IC where IC = I S e v BE / VT

∂ i C ∂v BE i C = IC = I S e v BE / VT VT = IC VT

Thus, gm = IC VT

Ex:7.13

gm = IC VT = 0 5mA 25mV = 20mA/V

Ex:7.14

IC = 0 5mA ( constant)

For β = 50: gm = IC VT = 0 5mA 25mV = 20mA/V

I B = IC β = 0.5 50 = 10 µA

r π = β gm = 50 20 = 2 5k

For β = 200, gm = IC VT = 20mA/V

I B = IC β = 0.5mA 200 = 2 5 µA

r π = β gm = 200 20 = 10k

Ex:7.15

β = 100 IC = 1mA

gm = 1mA 25mV = 40mA/V

r e = VT I E = α VT IC 25mV 1mA = 25

r π = β gm = 100 40 = 2.5k

Ex:7.16

gm = IC VT = 1mA 25mV = 40mA/V

A v = v ce v be =− gm RC

=−40 × 10

=−400V/V

VC = VCC IC RC

= 15 1 × 10 = 5V

v C (t ) = VC + v c (t )

= VC + A v v be (t )

= 5 400 × 0 005sin ω t

= 5 2sin ω t

i B (t ) = I B + i b (t ) where

I B = IC β = 1mA 100 = 10 µA and i b (t ) = gm v be (t ) β = 40 × 0 005sin ω t 100 = 2sin ω t , µA

Thus,

i B (t ) = 10 + 2sin ω t , µA

Ex:7.17

Exercise7–5

I E = 10 0 7 10 = 0.93mA

IC = α I E = 0 99 × 0 93 = 0 92mA

VC =−10 + IC RC

=−10 + 0 92 × 7 5 =−3 1V

A v = v o v i = α RC r e

where r e = 25mV 0 93mA = 26.9

A v = 0 99 × 7 5 × 103 26 9 = 276 2V/V

For v i = 10mV, v o = 276 2 × 10 = 2 76V

Ex:7.20 10V 8 k 10 k Y Z X I 1 mA

I E = 1mA

IC = 100 101 × 1 = 0 99mA

I B = 1 101 × 1 = 0 0099mA

(a) VC = 10 8 × 0.99 = 2.08 2.1V

V B =−10 × 0 0099 =−0 099 −0 1V

ThisfigurebelongstoExercise7.20c.

V E =−0 1 0 7 =−0 8V

(b) gm = IC VT = 0.99 0 025 40mA/V

r π = β gm = 100 40 2 5k

r o = V A IC = 100 0 99 = 101 100k (c)Seefigurebelow.

Rsig = 2k R B = 10k r π = 2 5k

gm = 40mA/V

RC = 8k R L = 8k r o = 100k

V y Vsig = Vπ Vsig × V y Vπ = R B r π ( R B r π ) + Rsig ×− gm ( RC R L r o )

= 10 2.5 (10 2 5) + 2 ×−40(8 8 100)

=−0 5 × 40 × 3 846 =−77V/V

If r o isnegelected, V y Vsig =−80,foranerror of3.9%.

Ex:7.21

gm = 2 I D V OV = 2 × 0 25 0.25 = 2mA/V

Rin =∞

Av o =− gm R D =−2 × 20 =−40V/V

Ro = R D = 20k

A v = Av o R L R L + Ro =−40 × 20 20 + 20 =−20V/V

G v = A v =−20V/V

ˆ v i = 0 1 × 2 V OV = 0 1 × 2 × 0 25 = 0 05V

ˆ v o = 0 05 × 20 = 1V

Ex:7.22

IC = 0 5mA

gm = IC VT = 0 5mA 0 025V = 20mA/V

r π = β gm = 100 20 = 5k

Rin = r π = 5k

Av o =− gm RC =−20 × 10 =−200V/V

Ro = RC = 10k

A v = Av o R L R L + Ro =−200 × 5 5 + 10

=−66 7V/V

G v = Rin Rin + Rsig A v = 5 5 + 5 ×−66 7

=−33 3V/V

v π = 5mV ⇒ˆ v sig = 2 × 5 = 10mV

ˆ v o = 10 × 33 3 = 0 33V

Althoughalargerfractionoftheinputsignal reachestheamplifierinput,linearity considerationscausetheoutputsignaltobein factsmallerthanintheoriginaldesign!

Ex:7.23 RefertothesolutiontoExercise7.21.

If v sig = 0 2V andwewishtokeep

ˆ v gs = 50mV,thenweneedtoconnecta

resistance Rs = 3 gm inthesourcelead.Thus,

Rs = 3 2mA/V = 1 5k

G v = A v =− R D R L 1 gm + Rs =− 20 20

0 5 + 1 5 =−5V/V

ˆ v o = Gv ˆ v sig = 5 × 0 2 = 1 V(unchanged)

Ex:7.24

Fromthefollowingfigureweseethat

ˆ v sig = ˆ i b Rsig +ˆ v π + ˆ i e Re

= ˆ i e β + 1 Rsig +ˆ v π + ˆ i e Re

= v π (β + 1)r e Rsig +ˆ v π + v π r e Re

ˆ v sig =ˆ v π 1 + Re r e + Rsig r π Q E D

For IC = 0 5mA and β = 100,

r e = VT I E = α VT IC = 0 99 × 25 0 5 50

r π = (β + 1)r e 5k

For ˆ v sig = 100mV, Rsig = 10k andwith ˆ v π limitedto10mV,thevalueof Re requiredcanbe foundfrom

100 = 10 1 + Re 50 + 10 5

⇒ Re = 350

Rin = (β + 1)(r e + Re ) = 101 × (50 + 350)

= 40 4k

G v =−β RC R L Rsig + (β + 1)(r e + Re )

=−100 10 10 + 101 × 0.4 =−19 8V/V

Ex:7.25 1

gm = Rsig = 100

⇒ gm = 1 0 1k = 10mA/V

But

gm = 2 I D V OV

Thus, 10 = 2 I D 0 2

⇒ I D = 1mA

G v = Rin Rin + Rsig × gm R D

= 0 5 × 10 × 2 = 10V/V

Ex:7.26

IC = 1mA

r e = VT I E VT IC = 25mV 1mA = 25

Rin = r e = 25

Av o = gm RC = 40 × 5 = 200V/V

Ro = RC = 5k

A v = Av o R L R L + Ro = 200 × 5 5 + 5 = 100V/V

G v = Rin Rin + Rsig × A v = 25 25 + 5000 × 100 = 0 5V/V

Ex:7.27

Rin = r e = 50

⇒ I E = VT r e = 25mV 50 = 0 5mA

IC I E = 0 5mA

G v = RC R L r e + Rsig

40 = RC R L (50 + 50)

RC R L = 4k

Ex:7.28 RefertoFig.7.42(c).

Ro = 100

Thus, 1 gm = 100 ⇒ gm = 10mA/V

But

gm = 2 I D V OV

Thus,

I D = 10 × 0 25 2 = 1 25mA

ˆ v o =ˆ v i × R L R L + Ro = 1 × 1 1 + 0 1 = 0 91V

ˆ v gs =ˆ v i 1 gm 1 gm + R L = 1 × 0 1 0 1 + 1 = 91mV

Ex:7.29

Ro = 200

1 gm = 200

⇒ gm = 5mA/V

But

g m = k n W L V OV

Thus, 5 = 0 4 × W L × 0 25

⇒ W L = 50

I D = 1 2 k n W L V 2 OV

= 1 2 × 0 4 × 50 × 0 252

= 0 625mA

R L = 1k to10k

Correspondingly,

G v = R L R L + Ro = R L R L + 0.2 willrangefrom

G v = 1 1 + 0 2 = 0 83V/V to

G v = 10 10 + 0 2 = 0.98V/V

Ex:7.30 IC = 5mA

r e = VT I E VT IC = 25mV 5mA = 5

Rsig = 10k R L = 1k

Rin = (β + 1)(r e + R L ) = 101 × (0 005 + 1) = 101 5k

Gv o = 1V/V

Rout = r e + Rsig β + 1

= 5 + 10,000 101 = 104

G v = R L R L + r e + Rsig β + 1 = R L R L + Rout

= 1 1 + 0 104 = 0 91V/V

v π = v sig r e r e + R L + Rsig β + 1

v sig =ˆ v π 1 + R L r e + Rsig (β + 1) r e

v sig = 5 1 + 1000 5 + 10,000 101 × 5 = 1 1V/V

Correspondingly,

ˆ v o = G v × 1 1 = 0 91 × 1 1 = 1V

Ex:7.31 Rsig Rin vsig (b2 1) (re2 RL) vo RL Rout re1 Q1 Q2

Fromthefigurewecanwrite

Rin = (β1 + 1) [r e 1 + (β2 + 1)(r e 2 + R L )]

Rout = R L r e 2 + r e 1 + Rsig /(β1 + 1) β2 + 1

v o v sig = R L R L + r e 2 + r e 1 + Rsig /(β1 + 1) β2 + 1

For I E 2 = 5 mA, β1 = β2 = 100, R L = 1 k , and Rsig = 100 k ,weobtain

r e 2 = 25 mV 5 mA = 5

I E 1 = 5 β2 + 1 = 5 101 0 05 mA

r e 1 = 25 mV 0 05 mA = 500

Rin = 101 × (0 5 + 101 × 1 005) = 10 3 M

Rout = 1 0 005 + 0 5 + (100/101) 101 20

v o v sig = 1 1 + 0 005 + 0.5 + (100/101) 101 = 0 98 V/V

Ex:7.32 I D = 1 2 k n W L ( VG S Vt )2

Exercise7–8

0.5 = 1 2 × 1( VG S 1)2

⇒ VG S = 2V

If Vt = 1 5V,then

I D = 1 2 × 1 × (2 1 5)2 = 0 125mA

⇒ I D I D = 0 125 0 5 0 5 =−0 75 =−75%

Ex:7.33

R D = V DD V D I D = 5 2 0 5 = 6k

→ R D = 6 2k

I D = 1 2 k n W L V 2 OV ⇒ 0 5 = 1 2 × 1 × V 2 OV

⇒ V OV = 1V

⇒ VG S = V OV + Vt = 1 + 1 = 2V

⇒ VS =−2V

R S = VS VSS I D = 2 ( 5) 0 5 = 6k

→ R S = 6 2k

Ifwechoose R D = R S = 6 2k ,then I D will changeslightly:

I D = 1 2 × 1 × ( VG S 1)2

Also,

VG S =− VS = 5 R S I D

Thus,

2 I D = (4 6 2 I D )2

⇒ 38 44 I 2 D 51 6 I 2 D + 16 = 0

⇒ I D = 0.49mA, 0.86mA

I D = 0 86 resultsin VS > 0 or VS > VG ,whichis notacceptable.Therefore I D = 0 49mA and VS =−5 + 6 2 × 0 49 =−1 96V

V D = 5 6 2 × 0 49 =+1 96V

R G shouldbeselectedintherangeof 1M to 10M

Ex:7.34

I D = 0 5mA = 1 2 k n W L V 2 OV

⇒ V 2 OV = 0.5 × 2 1 = 1

⇒ V OV = 1V ⇒ VG S = 1 + 1 = 2V

= V D ⇒ R D = 5 2 0 5 = 6k

⇒ R D = 6 2k (standardvalue).Forthis R D

wehavetorecalculate I D :

I D = 1 2 × 1 × ( VG S 1)2

= 1 2 ( V DD R D I D 1)2

( VG S = V D = V DD R D I D )

I D = 1 2 (4 6 2 I D )2 ⇒ I D ∼ = 0 49mA

V D = 5 6 2 × 0 49 = 1 96V

Ex:7.35 RefertoExample7.12.

(a)Fordesign1, R E = 3k , R1 = 80k ,and R2 = 40k .Thus, V BB = 4V.

I E = V BB V BE R E + R1 R2 β + 1

Forthenominalcase, β = 100 and

I E = 4 0.7 3 + 40 80 101 = 1 01 1mA

For β = 50,

I E = 4 0 7 3 + 40 80 51 = 0 94mA

For β = 150,

I E = 4 0 7 3 + 40 80 151 = 1 04mA

Thus, I E variesoverarangeapproximately10% ofthenominalvalueof1mA.

(b)Fordesign2, R E = 3 3k , R1 = 8k ,and R2 = 4k .Thus, V BB = 4V.Forthenominal case, β = 100 and

I E = 4 0 7

3 3 + 4 8 101 = 0 99 1mA

For β = 50,

I E = 4 0 7

3.3 + 4 8 51 = 0 984mA

For β = 150,

I E = 4 0 7

3 3 + 4 8 151 = 0.995mA

Thus, I E variesoverarangeof1.1%ofthe nominalvalueof1mA.Notethatlowering theresistancesofthevoltagedividerconsiderably decreasesthedependenceonthevalueof β ,a

highlydesirableresultobtainedattheexpense ofincreasedcurrentandhencepower dissipation.

Ex:7.36 RefertoFig.7.55.Sincethecircuitisto beusedasacommon-baseamplifier,wecan dispensewith R B altogetherandgroundthebase; thus R B = 0.Thecircuittakestheformshownin thefigurebelow.

10 V

RC

5 V vo vi

RE

Toestablish I E = 1mA,

I E = 5 V BE R E

1mA = 5 0.7 R E

⇒ R E = 4 3k

Thevoltagegain v o v i = gm RC ,where gm = IC VT = 40mA/V

Tomaximizethevoltagegain,weselect RC as largeaspossible,consistentwithobtaininga ±2-Vsignalswingatthecollector.Tomaintain active-modeoperationatalltimes,thecollector voltageshouldnotbeallowedtofallbelowthe valuethatcausestheCBJtobecomeforward biased,namely, 0.4V.Thus,the lowestpossibledcvoltageatthe collectoris 0 4V + 2V =+1 6V Correspondingly,

RC = 10 1 6 IC 10 1 6 1mA = 8 4k

Ex:7.37 RefertoFig.7.56.For I E = 1mA and VC = 2 3V,

I E = VCC VC RC

1 = 10 2.3 RC

⇒ RC = 7 7k

Now,usingEq.(7.147),weobtain

I E = VCC V BE

RC + R B β + 1

1 = 10 0 7

7 7 + R B 101

⇒ R B = 162k

Selectingstandard5%resistors(AppendixJ),we use

R B = 160k and RC = 7 5k

Theresultingvalueof I E isfoundas

I E = 10 0 7

7 5 + 160 101 = 1.02mA

andthecollectorvoltagewillbe

VC = VCC I E RC = 2 3V

Ex:7.38 RefertoFig.7.57(b).

VS = 3 5Vand I D = 0 5mA; thus

R S = VS I D = 3 5 0 5 = 7k

V DD = 15Vand V D = 6V; thus

R D = V DD V D I D = 15 6 0 5mA = 18k

Toobtain V OV ,weuse

I D = 1 2 k n V 2 OV

0 5 = 1 2 × 4 V 2 OV

⇒ V OV = 0 5V

Thus,

VG S = Vt + V OV = 1 + 0 5 = 1 5V

Wenowcanobtainthedcvoltagerequiredatthe gate,

VG = VS + VG S = 3 5 + 1 5 = 5V

Usingacurrentof 2 µA inthevoltagedivider,we have

R G 2 = 5V 2 µA = 2 5M

Thevoltagedropacross R G 1 is10V,thus

R G 1 = 10V 2 µA = 5M

Thiscompletesthebiasdesign.Toobtain gm and r o ,weuse

gm = 2 I D V OV = 2 × 0 5 0 5 = 2mA/V

r o = V A I D = 100 0 5 = 200k

Ex:7.39 RefertoFig.7.57(a)and(c)andtothe valuesfoundinthesolutiontoExercise7.38 above.

Rin = R G 1 R G 2 = 5 2 5 = 1 67M

Ro = R D r o = 18 200 = 16 5k

G v =− Rin Rin + Rsig gm (r o R D R L )

=− 1 67 1 67 + 0 1 × 2 × (200 18 20) =−17 1V/V

Ex:7.40 Toreduce v gs tohalfitsvalue,the unbypassed Rs isgivenby

Rs = 1 gm

FromthesolutiontoExercise7.38above, gm = 2mA/V.Thus

Rs = 1 2 = 0 5k

Neglecting r o , G v isgivenby

G v =− Rin Rin + Rsig ×− R D R L 1 gm + Rs

=− 1 67 1.67 + 0.1 × 18 20 0.5 + 0.5

=−8.9V/V

Ex:7.41 RefertoFig.7.58(a).For V B = 5V and 50-µA currentthrough R B 2 ,wehave

R B 2 = 5V 0 05mA = 100k

Thebasecurrentis

I B = I E β + 1 0.5mA 100 = 5 µA

Thecurrentthrough R B 1 is

I R B 1 = I B + I R B 2 = 5 + 50 = 55 µA

Sincethevoltagedropacross R B 1 is VCC V B = 10V,thevalueof R B 1 canbe foundfrom

R B 1 = 10V 0 055 µA = 182k

Thevalueof R E canbefoundfrom

I E = V B V BE R E

⇒ R E = 5 0 7 0 5 = 8 6k

Thevalueof RC canbefoundfrom VC = VCC IC RC

6 = 15 0 99 × 0 5 × RC

RC 18k

Thiscompletesthebiasdesign.Thevaluesof gm , r π ,and r o canbefoundasfollows:

gm = IC VT 0 5mA 0 025V = 20mA/V

r π = β gm = 100 20 = 5k

r o = V A IC 100 0 5 = 200k

Ex:7.42 RefertoFig.7.58(b)andtothesolution ofExercise7.41above.

Rin = R B 1 R B 2 r π = 182 100 5 = 4 64k

Ro = RC r o = 18 200 = 16 51k

G v =− Rin Rin + Rsig gm ( RC R L r o )

G v =− 4.64 4 64 + 10 × 20 × (18 20 200)

=−57 3V/V

Ex:7.43 RefertothesolutionsofExercises7.41 and7.42above.With Re included(i.e.,left unbypassed),theinputresistancebecomes[refer toFig.7.59(b)]

Rin = R B 1 R B 2 [(β + 1)(r e + Re )]

Thus,

10 = 182 100 [101(0 05 + Re )]

wherewehavesubstituted r e = VT I E =

25 0 5 = 50 .Thevalueof Re isfoundfromthe equationabovetobe

Re = 67 2

Theoverallvoltagegaincanbefoundfrom

G v =−α Rin Rin + Rsig RC R L r e + Re

G v =−0 99 × 10 10 + 10 18 20 0 05 + 0 0672 =−40V/V

Ex:7.44 RefertoFig.7.60(a).

Rin = 50 = r e R E r e

r e = 50 = VT I E

⇒ I E = 0 5mA

IC = α I E I E = 0 5mA

VC = VCC RC IC

For VC = 1V and VCC = 5V,wehave

1 = 5 RC × 0.5

⇒ RC = 8k

Toobtaintherequiredvalueof R E ,wenotethat thevoltagedropacrossitis

( V EE V BE ) = 4 3V.Thus,

R E = 4 3 0 5 = 8 6k

G v = Rin Rin + Rsig gm ( RC R L ) = 50 50 + 50 × 20(8 8)

= 40V/V

ˆ v o = 40 ˆ v sig = 40 × 10mV = 0 4V

Ex:7.45 RefertoFig.7.61.Considerfirst thebiasdesignofthecircuitinFig.7.61(a).

Sincetherequired I E = 1mA,thebasecurrent

I B = I E β + 1 = 1 101 0 01mA.Foradcvoltage

dropacross R B of1V,weobtain

R B = 1V 0 01mA = 100k

Theresultisabasevoltageof–1Vandan emittervoltageof–1.7V.Therequiredvalueof R E cannowbedeterminedas

R E = 1.7 ( 5) I E = 3.3 1mA = 3 3k

Rin = R B (β + 1)r e + ( R E r o R L )

where r o = V A IC = 100V 1mA = 100k

Rin = 100 (100 + 1)0 025 + (3 3 100 1)

= 44 3k

v i v sig = Rin Rin + Rsig = 44 3 44 3 + 50 = 0 469V/V

v o v i = R E r o R L

r e + ( R E r o R L ) = 0 968V/V

G v ≡ v o v sig = 0.469 × 0.968 = 0.454V/V

Rout = r o R E r e + R B Rsig β + 1

= 100 3 3 0 025 + 100 50 101

= 320

Chapter8

SolutionstoExerciseswithintheChapter

Ex:8.1 InthecurrentsourceofExample8.1

(Fig.8.1)wehave I O = 100 µA andwewantto reducethechangeinoutputcurrent,

I O , correspondingtoa1-Vchangeinoutput voltage, V O , to1% of I O

Thatis, I O = V O r o2 = 0 01 I O ⇒ 1V r o2

= 0 01 × 100 µA = 1 µA

r o2 = 1V 1 µA = 1M

r o2 = V A × L I O ⇒ 1M = 20 × L 100 µA

⇒ L = 100V 20V/ µm = 5 µm

Tokeep VOV ofthematchedtransistorsthesame asthatinExample8.1, W L ofthetransistor shouldremainthesame.Therefore,

W 5 µm = 10 µm 1 µm ⇒ W = 50 µm

Sothedimensionsofthematchedtransistors Q1 and Q2 shouldbechangedto W = 50 µmand L = 5 µm

Ex:8.2 ForthecircuitofFig.8.4wehave

I2 = IREF ( W/ L )2 ( W/ L )1 , I3 = IREF ( W/ L )3 ( W/ L )1 and I5 = I4 ( W/ L )5 ( W/ L )4

Sinceallchannellengthsareequal,thatis,

L 1 = L 2 =···= L 5 = 1 µm and

IREF = 10 µA, I2 = 60 µA, I3 = 20 µA, I4 = I3 = 20 µA, and I5 = 80 µA, wehave

I2 = IREF W2 W1 ⇒ W2 W1 = I2 IREF = 60 10 = 6

I3 = IREF W3 W1 ⇒ W3 W1 = I3 IREF = 20 10 = 2

I5 = I4 W5 W4 ⇒ W5 W4 = I5 I4 = 80 20 = 4

Toallowthevoltageatthedrainof Q2 togo downtowithin0.2Vofthenegativesupply voltage,weneed V OV 2 = 0 2V: I2 = 1 2 μn C ox W L 2 V 2 OV 2 = 1 2 k n W L 2 V 2 OV 2

60 µA = 1 2 200 µA V2 W L 2 (0 2)2 ⇒ W L 2 = 120 200 × (0 2)2 = 15 ⇒ W2 = 15 × L 2 W2 = 15 µm, W2 W1 = 6 ⇒ W1 = W2 6 = 2 5 µm W3 W1 = 2 ⇒ W3 = 2 × W1 = 5 µm

Toallowthevoltageatthedrainof Q5 togoupto within0.2Vofpositivesupply,weneed V OV 5 = 0 2V:

I5 = 1 2 k p W L 5 V 2 OV 5

80 µA = 1 2 80 µA V2 W L 5 (0 2)2 ⇒ W L 5 = 2 × 80 80 × (0 2)2 = 50 ⇒ W5 = 50 L5

W5 = 50 µm W5 W4 = 4 ⇒ W4 = 50 µm 4 = 12 5 µm

Thus:

W1 = 2.5 µm, W2 = 15 µm, W3 = 5 µm W4 = 12 5 µm, and W5 = 50 µm

Ex:8.3 V BE = VT ln( I REF / I S ) = 0 025ln(10 3 /10 15 ) = 0 691V

FromEq.(8.21)wehave

I O = IREF ⎛ ⎜ ⎜ ⎝ m 1 + m + 1 β ⎞ ⎟ ⎟ ⎠ 1 + V O VBE V A 2

I O = 1mA⎛ ⎜ ⎝ 1 1 + 1 + 1 100 ⎞ ⎟ ⎠ 1 + 5 0 691 100 = 1 02mA

I O = 1 02mA Ro = ro2 = V A I O = 100V 1 02mA = 98k 100k

Ex:8.4

FromEq.(8.23),wehave

I O = IREF 1 + (2/β ) 1 + V O VBE V A

Q1 R Q2 VCC IREF IO

where V BE = VT ln I O I S = 0 025ln 0 5 × 10 3 10 15 = 0 673V

0 5mA = IREF 1 + (2/100) 1 + 2 0 673 50 ⇒

IREF = 0 5mA 1 02 1 0265 = 0 497mA

IREF = VCC VBE R ⇒ R = VCC VBE IREF

R = 5 0 673 0 497mA = 8 71k

V O min = VCE sat = 0 3V

For V O = 5 V,FromEq.(8.23)wehave

I O = IREF 1 + (2/β ) 1 + V O VBE V A

I O = 0 497 1 + (2/100) 1 + 5 0 673V 50 = 0 53mA

Ex:8.5 I1 = I2 =···= I N = IC | Q REF

Attheinputnode,

IREF = IC | Q REF + I B | Q REF + I B 1 +···+ I BN

= IC | Q REF + ( N + 1) I B | Q REF

= IC | Q REF + ( N + 1) β IC | Q REF ⇒ IC | Q REF = IREF 1 + N + 1 β

Thus, I1 = I2 =···= I N = IREF 1 + N + 1 β Q.E.D For β = 100,tolimittheerrorto10%, 0 1 = N + 1 β = N + 1 100

⇒ N = 9

Ex:8.6 Rin 1 gm 1

Now, Rin = 1 k ,thus gm 1 = 1 mA/V

But

gm 1 = 2(μn C ox ) W L 1 I D 1

1 = 2 × 0 4 × W L 1 × 0 1 ⇒ W L 1 = 12.5

Toobtain

A is ideal = 5 5 = ( W/ L )2 ( W/ L )1 ⇒ W L 2 = 5 × 12 5 = 62 5

Ro = r o2 = V A 2 I D 2 = V A 2 5 I D 1

Thus,

40 k = V A 2 5 × 0 1 ⇒ V A 2 = 20 V

But

V A 2 = V A 2 L 2 20 = 20 × L 2 ⇒ L 2 = 1 µm

Selecting L 1 = L 2 ,then L 1 = L 2 = 1 µm W1 = 12.5 µm W2 = 62 5 µm

Theactualshort-circuitcurrent-transferratiois givenbyEq.(8.31),

A is = 5 1 + 1 gm 1 r o1

Thusthepercentageerroris

Error = 1/ gm 1 r o1 1 + (1/ gm 1 r o1 ) × 100%

Substituting, gm 1 = 1 mA/V

r o1 = V A 1 I D 1 = V A L 1 I D 1 = 20 × 1 0 1 = 200 k

Error = 1/200 1 + (1/200) × 100 =−0 5%

Ex:8.7

UsingEq.(8.42):

gm = 2μn C ox W L I D

For I D = 10 µA,wehave

gm = 2(387 µA/V2 )(10)(10 µA)

= 0.28mA/V

UsingEq.(8.46):

A 0 = V A 2μn C ox ( W/ L ) √ I D

= 5V/µm 2(387 µA/V2 )(10)(0 36)2 √10 µA

A 0 = 50V/V

Since gm varieswith I D and A0 with 1 √ I D , for I D = 100 µA ⇒ gm = 0 28mA/V 100 10 1/2

= 0 88mA/V

A 0 = 50 10 100 1/2 = 15 8V/V

For I D = 1mA,wehave

gm = 0 28mA/V 1 0.010 1/2 = 2 8mA/V

A 0 = 50 0 010 1 1/2 = 5V/V

Ex:8.8

Sincealltransistorshavethesame

W L = 7 2 µm 0 36 µm , wehave

IREF = I D 3 = I D 2 = I D 1 = 100 µA gm 1 = 2μn C ox W L 1 I D 1 = 2 387 µA/V2 7 2 0 36 (100 µA)

= 1 24mA/V

r o1 = V An L 1 I D 1 = 5V/µm (0 36 µm) 0 1mA = 18k

r o2 = | V Ap | L 2 I D 2 = 6V/µm (0 36 µm) 0 1mA = 21 6k

Voltagegainis

A v =− gm 1 (r o1 r o2 )

A v =− (1 24mA/V)(18k 21 6k ) =−12.2V/V

Ex:8.9 VCC vo vi Rin VBIAS Q1 Q2 I

IC 1 = I = 100 µA = 0.1mA

gm 1 = IC 1 VT = 0 1mA 25mV = 4mA/V

Rin = r π 1 = β 1 gm 1 = 100 4mA/V = 25k

r o1 = V A I = 50V 0 1mA = 500k

r o2 = | V A | I = 50V 0 1mA = 500k

A 0 = gm 1 r o1 = (4mA/V)(500k ) = 2000V/V

A v =− gm 1 (r o1 r o2 ) =−(4mA/V) × (500k 500k ) =−1000V/V

Ex:8.10 RefertoFig.1, vsig Rsig RL i i Rin vo

vo = iR L v sig = i ( Rs + Rin )

Thus,

vo v sig = R L Rs + Rin Q.E.D

Ex:8.11 Since gm r o 1,weuseEq.(8.52),

Rin 1 gm + R L gm r o

R L 0 r o ( gm r o )r o ∞

Rin 1 gm 2 gm r o ∞

Ex:8.12 For gm r o 1,weuseEq.(8.57),

Rout r o + ( gm r o ) Rs toobtain

Rs 0 r o ( gm r o )r o ∞

Rout r o ( gm r o )r o ( gm r o )2 r o ∞

Ex:8.13 Substituting Rs = r o inEq.(8.53)gives

A is = 1 + 1 gm r o 1 + 2 gm r o

Substitutingthegivenvaluesof ( gm r o ) weobtain

gm r o 20 50 100

A is (A/A) 0.95 0.98 0.99

Ex:8.14 A v o remainsunchangedat gm r o .Witha loadresistance R L connected,

A v = A v o R L R L + Ro = ( gm r o ) R L R L + (1 + gm Rs )r o

Ex:8.15 Since gm r o 1 weuseEq.(8.62),

Rin r π 1 gm + R L gm r o For R L = 0,

Rin r π 1 gm = r e

For R L = r o ,

Rin = r π ( 1 gm + 1 gm ) = r π 2 gm 2r e

For R L = β r o ,

Rin = r π ( 1 gm + β r o gm r o ) = r π ( 1 gm + r π )

r π r π = 1 2 r π

For R L =∞,

Rin = r π

Summary:

R L 0 r o β r o ∞

Rin r e 2r e 1 2 r π r π

Ex:8.16 UsingEq.(8.69),

Rout r o + ( gm r o )( Re r π ) weobtain

Re 0 r e r π r o ∞

Rout r o 2r o β 2 + 1 r o (β + 1)r o (β + 1)r o

Ex:8.17 UsingEq.(8.65)with Re = r o ,

A is = 1 + 1 gm r o 1 + 1 gm r o + 1 gm (r o r π ) = 1 + 1

gm r o 1 + 2 gm r o + 1 gm r π = 1 + 1 gm r o 1 + 2 gm r o + 1 β

For β = 100 and gm r o = 100,

A is = 1 + 1 100 1 + 2 100 + 1 100 = 0 98 A/A

For β = 100 and gm r o = 1000,

A is = 1 + 1 1000 1 + 2 1000 + 1 100 = 0 99 A/A

Ex:8.18 Ro = 1 + gm ( Re r π )r o where

gm = 4 mA/V, r π = β gm = 25 k ,

Re = 1 k , and r o = V A IC = 20 0 1 = 200 k

Thus,

Ro = [1 + 4(1 25)] × 200 1 M

Withoutemitterdegeneration,

Ro = r o = 200 k

Ex:8.19 If L ishalved L = 0 55 µm 2 and | V A | = V A · L ,weobtain

| V A |= 5V/µm 0 55 µm 2 = 1 375V

Ro = | V A | | VOV |/2 · | V A | I D = 2 (1 375V)2 (0 3V)(100 µA) = 126k

Since I D = 1 2 μ p C ox W L | VOV |2 1 + VSD | V A |

W L = 2 (100 µA) 90 µA/V2 (0.3V)2 1 + 0 3V 1 375V W L = 20 3

Ex:8.20 VG4 1.1 V VDD 1.8 V

Ifalltransistorsarematchedandareobviously operatingatthesame I D ,thenall | VOV | willbe

equalandequaltothatof Q 1 ,namely, | V OV | = 0 7 0 5 = 0 2V

Tokeep Q 2 insaturation,

v O min = VG 2 −| Vt |= 0 5V

Tokeep Q 3 insaturation,

v O max = VG 3 +| Vt |= 1 3V

Thus,theallowablerangeof v O isfrom0.5Vto 1.3V.

Ex:8.21 RefertoFig.8.31.

gm 1 = gm 2 = gm 3 = gm 4 = 2 I D | VOV | = 2 × 0 2 0 2 = 2 mA/V

r o1 = r o2 = r o3 = r o4 = | V A | I D = 2 0 2 = 10 k

Ron = ( gm 2 r o2 )r o1 = (2 × 10) × 10 = 200 k

Rop = ( gm 3 r o3 )r o4 = (2 × 10) × 10 = 200 k

Ro = Ron Rop = 200 200 = 100 k

A v =− gm 1 Ro =−2 × 100 =−200 V/V

Ex:8.22 gm 1 = gm 2 = gm = I D V OV 2 = 0 1mA (0 2/2) V = 1mA/V

r o1 = r o2 = r o

= V A I D = 2V 0.1mA = 20k

so, gm r o = 1mA/V (20k ) = 20

(a)For R L = 20k ,

Rin2 = R L + r o2 1 + gm 2 r o2 = 20k + 20k 1 + 20 = 1 9k

∴ A v 1 =− gm 1 (r o1 Rin2 ) =−1mA/V (20 1 9) =−1 74V/V or IfweusetheapproximationofEq.(8.84),

Rin2 ≈ R L gm 2 r o2 + 1 gm 2 = 20k 20 + 1 1mA/V = 2k then

A v1 =−1mA/V (20k 2k ) =−1 82V/V Continuing,fromEq.(8.81),

A v =− gm 1 ( gm 2 r o2 r o1 ) R L

A v =−1mA/V {[(20)(20k )] 20k }

=−19 0V/V

A v 2 = A v A v 1 = 19 0 1 82 = 10 5V/V

(b)Now,for R L = 400k ,

Rin2 R L gm 2 r o2 + 1 gm 2 = 400k 20 + 1 1mA/V

= 21k

A v 1 =−1mA/V (20k 21k ) =−10 2V/V

A v =−1mA/V [(20)(20k )] 400k

=−200V/V

A v 2 = A v A v 1 = 200 10 2 = 19 6V/V

Ex:8.23 ReferringtoFig.8.34,

Rop = ( gm 3 r o3 )(r o4 r π 3 ) and

Ron = ( gm 2 r o2 )(r o1 r π 2 )

Themaximumvaluesoftheseresistancesare obtainedwhen r o r π andaregivenby

Ron max = ( gm 2 r o2 ) r π 2

Rop max = ( gm 3 r o3 ) r π 3

Since gm r π = β,

Ron max = β 2 r o2

Rop max = β 3 r o3

Since A v =− gm 1 Ron Rop ,

| A v max | = gm 1 β 2 r o2 β 3 r o3

Ex:8.24 Forthe npn transistors,

gm 1 = gm 2 = | IC | | VT | = 0 2mA 25mV = 8mA/V

r π 1 = r π 2 = β gm = 100 8mA/V = 12 5k

r o1 = r o2 = | V A | | IC | = 5V 0 2mA = 25k

FromFig.8.34,

Ron = ( gm 2 r o2 )(r o1 r π 2 )

= (8mA/V)(25k )(25k 12 5k )

Ron = 1 67M

Forthe pnp transistors,

gm 3 = gm 4 = | IC | VT = 0 2mA 25mV = 8mA/V

r π 3 = r π 4 = β gm = 50 8mA/V = 6 25k

r o3 = r o4 = | V A | | IC | = 4V 0 2mA = 20k

Rop = ( gm 3 r o3 )(r o4 r π 3 )

= (8mA/V)(20k )(20k 6.25k )

Rop = 762k

A v =− gm 1 Ron Rop

=− (8mA/V)(1 67M 762k )

A v =−4186V/V

A v max occurswhen r o1 and r o4 are r π

Then

Ron = ( gm 2 r o2 ) r π 2 = β 2 r o2

Ron = 100 (25k ) = 2 5M

Rop = ( gm 3 r o3 ) r π 3 = β 3 r o3

Rop = 50 (20k ) = 1M

Finally,

A v max =−(8mA/V)(2 5M 1 0M )

A v max =−5714V/V

Ex:8.25

gm = 2 I D VOV = 2 × 0 2 0 2 = 2 mA/V

gm b = χ gm = 0 2 × 2 = 0 4 mA/V

r o1 = r o3 = V A I D = 5 0 2 = 25 k

R L = r o1 r o3 1 gm b = 25 25 2 5 k

= 2.083 k

v o v i = R L R L + 1 gm = 2 083 2 083 + 1 2 = 0 81 V/V

Toobtain Rout weuseEq.(8.95),

Rout = 1 gm 1 gm b r o1 r o3 = 0 5 2 5 25 25 = 0 403 k = 403

Ex:8.26 RefertothecircuitinFig.8.36.All transistorsareoperatingat I D = IREF = 100 µA andequal VOV ,foundfrom

I D = 1 2 μn C ox W L V 2 OV

100 = 1 2 × 387 × 3 6 0 36 × V 2 OV

⇒ VOV = 0 227 V

VGS = 0 227 + 0 5 = 0 727 V

V O min = VG 3 Vt 3

= VG S 4 + VG S 1 Vt 3

Thus,

V O min = 2 VGS Vt

= Vt + 2 VOV

= 0 5 + 2 × 0 227 = 0 95 V

gm = 2 I D VOV = 2 × 0 1 0 227 = 0.88 mA/V

r o = V A I D = V A L I D = 5 × 0 36 0 1 = 18 k

Ro = ( gm 3 r o3 )r o2 = (0.88 × 18) × 18 = 285 k

Ex:8.27 FortheWilsonmirrorfromEq.(8.97), wehave

I O IREF 1 1 + 2 β 2 = 0 9998

Thus | I O IREF | IREF × 100 =0.02%

whereasforthesimplemirrorfromEq.(8.18)we have

I O IREF = 1 1 + 2 β = 0 98

Hence | I O IREF | IREF × 100 = 2%

FortheWilsoncurrentmirror,wehave

Ro = β r o 2 = 100 × 100k 2 = 5M

andforthesimplemirror, Ro = r o = 100k .

Ex:8.28 Forthetwocurrentsourcesdesignedin

Example8.5,wehave

gm = IC VT = 10 µA 25mV = 0 4 mA V

r o = V A IC = 100V 10 µA = 10M ,

r n = β gm = 250k

ForthecurrentsourceinFig.8.40(a),wehave

Ro = r o2 = r o = 10M

ForthecurrentsourceinFig.8.40(b),from Eq.(8.105),wehave

Rout 1 + gm ( R E r n ) r o

FromExample8.5, R E = R3 = 11 5k ; therefore,

Rout 1 + 0 4 mA V (11 5k 250k ) 10M

∴ Rout = 54M

Chapter9

SolutionstoExerciseswithintheChapter

Ex:9.1 ReferringtoFig.9.3, If R D isdoubledto5k ,

V D 1 = V D 2 = V DD I 2 R D

= 1 5 0 4mA 2 (5k ) = 0 5V

VCMmax = Vt + V D = 0.5 + 0.5 =+1.0V

Sincethecurrents I D 1 ,and I D 2 arestill0.2mA each,

VG S = 0 82V

So, VCMmin = VSS + VCS + VG S =−1 5V + 0 4V + 0 82V =−0 28V

So,thecommon-moderangeis 0 28V to +1.0V

Ex:9.2 (a)Thevalueof v id thatcauses Q 1 to conducttheentirecurrentis √2 V OV

→ √2 × 0 316 = 0 45V then, V D 1 = V DD I × R D = 1.5 0.4 × 2.5 = 0.5V

V D 2 = V DD =+1 5V

v O = V D 2 V D 1 =+1V

(b)For Q 2 toconducttheentirecurrent:

v id =−√2 V OV =−0 45V then,

V D 1 = V DD =+1 5V

V D 2 = 1 5 0 4 × 2 5 = 0 5V

v O = V D 2 V D 1 =−1V

(c)Thusthedifferentialoutputrangeis +1Vto 1V.

Ex:9.3 RefertoanswertableforExercise9.3 wherevalueswereobtainedinthefollowingway:

I 2 = 1 2 k n W L V 2 OV ⇒ W L = I k n V 2 OV = 2 V 2 OV

gm = 2( I /2) V OV = I V OV = 0 4 V OV mA/V

v id /2 V OV 2 = 0 1 → v id = 2 V OV √0 1 = 0 632 V OV

Ex:9.4 I D = I 2 = 0 8mA 2 = 0 4mA

I D = 1 2 k n W L ( V OV )2 RD 5 k RD 5 k I 0.8 mA VSS VDD ID ID

Thus, V OV = 2 I D k n W L = 2 (0 4mA) 0.2 mA/V2 (100) = 0 2V

gm = I D V OV /2 = 0 4mA × 2 0 2V = 4mA/V

r o = V A I D = 20V 0.4mA = 50k

A d = gm ( R D r o )

A d = (4mA/V)(5k 50k ) = 18 2V/V

Ex:9.5 With I = 200 µA,foralltransistors,

I D = I 2 = 200 µA 2 = 100 µA

L = 2(0 18 µm) = 0 36 µm

r o1 = r o2 = r o3 = r o4 = V A L I D

= (10V/ µm)(0 36 µm) 0 1mA = 36k

Since I D 1 = I D 2 = 1 2 μn C ox W L V 2 OV , W L 1 = W L 2 = 2 I D μn C ox V 2 OV

2(100 µA)

400 µA/V2 (0 2V)2 = 12.5

W

L 3 = W L 4 = 2 I D μ p C ox | V OV |2

2(100 µA)

100 µA/V2 (0 2)2 = 50

gm = I D V OV /2 = (100 µA)(2) 0 2V = 1mA/V,

so

A d = gm 1 (r o1 r o3 ) = 1(mA/V)(36k 36k ) = 18V/V

Ex:9.6 L = 2 (0 18 µm) = 0 36 µm

All r o = V A · L I D

Thedraincurrentforalltransistorsis

I D = I 2 = 200 µA 2 = 100 µA

r o = (10V/ µm)(0.36 µm) 0 1mA = 36k

ReferringtoFig.9.13(a),

Since I D = 1 2 μn C ox W L V 2 OV forallNMOS transistors,

W L 1 = W L 2 = W L 3 = W L 4

= 2 I D μn C ox V 2 OV = 2(100 µA) 400 µA/V2 (0 2V)2 = 12 5

W L 5 = W L 6 = W L 7 = W L 8

= 2 I D μ p C ox V 2 OV = 2(100 µA) 100 µA/V2 (0.2V)2 = 50

Foralltransistors,

gm = | I D | | V OV | /2 = (0.1mA)(2) (0 2V) = 1mA/V

FromFig.9.13(b),

Ron = ( gm 3 r o3 ) r o1 = (1 × 36) × 36 = 1.296M

Rop = ( gm 5 r o5 )r o7 = (1 × 36) × 36

= 1 296M

A d = gm 1 Ron Rop

= (1mA/V)(1 296M 1 296M ) = 648V/V

Ex:9.7

Ex:9.8

IC2

2.5 V RC 5 k IC1 RC

2.5 V VEE VCC I 0.4 mA

IC 1 = IC 2 I E 1 = I E 2 = I 2 = 0 4mA 2 = 0 2mA

VCM max VC + 0 4V

= VCC IC RC + 0 4V

= 2 5 0 2mA (5k ) + 0 4V =+1 9V

VCM min =− V EE + VCS + V BE

VCM min =−2 5V + 0 3V + 0 7V =−1 5V

Inputcommon-moderangeis 1 5V to +1 9V

Ex:9.9 Substituting i E 1 + i E 2 = I inEq.(9.45) yields

i E 1 = I 1 + e (v B 2 v B 1 )/ VT

0 99 I = I 1 + e (v B 2 v B 1 )/ VT

v B 1 v B 2 =− VT ln 1 0 99 1 =−25ln (1/99)

= 25ln (99) = 115mV

Ex:9.10 (a)TheDCcurrentineachtransisteris

0.5mA.Thus V BE foreachwillbe

V BE = 0.7 + 0.025ln 0 5 1

= 0.683V

⇒ v E = 5 0 683 =+4 317V

(b) gm = IC VT = 0 5 0 025 = 20 mA V

(c) i C 1 = 0 5 + gm 1 v BE 1

= 0 5 + 20 × 0 005sin (2π × 1000t )

= 0 5 + 0 1sin(2π × 1000t ), mA

i C 2 = 0 5 0 1sin(2π × 1000t ), mA

(d) v C 1 = ( VCC IC RC ) 0 1

× RC sin (2π × 1000t )

= (15 0 5 × 10) 0 1 × 10sin (2π × 1000t )

= 10 1sin(2π × 1000t ) , V

v C 2 = 10 + 1sin(2π × 1000t ) , V

(e) v C 2 v C 1 = 2 sin(2π × 1000t ) , V

(f)Voltagegain ≡ v C 2 v C 1 v B 1 v B 2

= 2Vpeak 0 01Vpeak = 200 V/V

Ex:9.11 Thetransconductanceforeach transistoris

gm = 2μn C ox ( W/ L ) I D

I D = I 2 = 0 8mA 2 = 0 4mA

Thus,

gm = √2 × 0 2 × 100 × 0 4 = 4mA/V

Thedifferentialgainformatched

R D valuesis A d = v O 2 v O 1 v id = gm R D

Ifweignorethe1%here,thenweobtain

A d = gm R D = (4mA/V)(5k ) = 20V/V

| A cm |= R D 2 R SS R D R D = 5 2 × 25 (0 01) = 0 001V/V

CMRR (dB) = 20log | A d | | A CM | = 20log 20 0.001 = 86dB

Ex:9.12 FromExercise9.11,

gm = 4mA/V

UsingEq.(9.85)andthefactthat R SS = 25k , weobtain

CMRR = (2gm R SS ) gm gm = 2(4mA/V)(25k ) 0.01

= 20, 000

CMRR (dB) = 20log10 (20, 000) = 86dB

Ex:9.13 IftheoutputofaMOSdifferential amplifieristakensingle-endedly,then

| A d |= 1 2 gm R D

(thatis,halfthegainobtainedwiththeoutput takendifferentially),andfromEq.(9.74)wehave

| A cm | R D 2 R SS

Thus,

CMRR ≡ | A d | | A cm | = gm R SS

Substituting gm = 4 mA/V, R D = 5 k ,and R SS = 25 k , | A d |= 10V/V

| A cm |= 0 1V/V

CMRR = 100 or 40 dB

Ex:9.14 VCC

i1 VB3 VB5 VEE Q5 Q1 Q2 Q3 Q4 VB4 vo2 vi2 I 200 A vo1 I = 200 µA Since β 1, IC 1 ≈ IC 2 ≈ I 2 = 200 µA 2 = 100 µA

gm 1 = gm 2 = gm = IC VT = 100 µA 25mV = 4mA/V RC 1 = RC 2 = RC = r o = | V A | IC = 10V 100 µA = 100k

r o1 = r o2 = V A I /2 = 10 0 1 = 100k

r e 1 = r e 2 = r e = VT I E = 25mV 0 1mA = 0 25k

| A d |= RC r o r e = 100k 100k 0 25k = 200V/V

Exercise9–4

Rid = 2r π , r π = β gm = 100 4mA/V = 25k

Rid = 2(25k ) = 50k

R EE = V A I = 10V 200 µA = 50k

Ifthetotalloadresistanceisassumedtobe mismatchedby1%,thenwehave

| A cm |= RC 2 R EE RC RC = 100 2 × 50 × 0.01 = 0.01V/V

CMRR (dB) = 20log10 A d A cm = 20log10 200 0 01 = 86dB

UsingEq.(9.96),weobtain

Ricm = β R EE 1 + RC β r o 1 + RC + 2 R EE r o = 100 × 50 × 1 + 100 100 × 100 1 + 100 + 2 × 50 100

Ricm 1 68M

Ex:9.15 FromExercise9.4:

V OV = 0 2V

UsingEq.(9.97)weobtain V OS dueto R D / R D as:

V OS = V OV 2 · R D R D

= 0.2 2 × 0 02 = 0 002V i.e2mV

Toobtain V OS dueto k n , useEq.(9.98),

V OS = V OV 2 k n k n

⇒ V OS = 0 2 2 × 0 02 = 0 002

⇒ 2mV

Theoffsetvoltagearisingfrom Vt isobtained fromEq.(9.99):

V OS = Vt = 2mV

Finally,fromEq.(9.100)thetotalinputoffsetis

V O S

3 × 2 × 10 3 2 = 3 5mV

Ex:9.16 FromEq.(9.103),weget V OS = VT RC RC 2 + I S I S 2

= 25 (0 02)2 + (0 1)2 = 2 55mV I B = 100 2(β + 1) = 100 2 × 101 ∼ = 0 5 µA

I OS = I B β β

= 0 5 × 0 1 µA = 50nA

Ex:9.17 I D = 1 2 I = 0 4 mA

I D = 1 2 μn C ox W L n V 2 OV 0 4 = 1 2 × 0 2 × 100 × V 2 OV ⇒ V OV = 0 2 V

gm 1,2 = 2 I D V OV = 2 × 0 4 0 2 = 4 mA/V G m d = gm 1,2 = 4 mA/V

r o2 = V An I D = 20 0 4 = 50 k

r o4 = | V Ap | I D = 20 0 4 = 50 k

Ro = r o2 r o4 = 50 50 = 25 k

A d = G m Ro = 4 × 25 = 100 V/V

Ex:9.18 G m d = gm 1,2 I /2 VT = 0 4 mA 0 025 V = 16 mA/V

r o2 = r o4 = V A IC = V A I /2 = 100 0 4 = 250 k

Ro = r o2 r o4 = 250 250 = 125 k

A d = G m Ro = 16 × 125 = 2000 V/V

Rid = 2r π = 2 × β gm 1,2 = 2 × 160 16 = 20 k

Ex:9.19 FromExercise9.17,weget

I D = 0.4 mA

V OV = 0 2 V gm 1,2 = 4 mA/V

G m d = 4 mA/V A d = 100 V/V

Now,

R SS = 25 k

gm 3 = 2μ p C ox W L p I D

= √2 × 0 1 × 200 × 0 4 = 4 mA/V

| A cm |= 1 2 gm 3 R SS = 1 2 × 4 × 25 = 0 005 V/V

CMRR = | A d | | A cm | = 100 0 005

= 20,000 or 20 log 20,000 = 86 dB

Ex:9.20 RefertoFig.(9.37).

(a)UsingEq.(9.142),weobtain

I6 = ( W/ L )6 ( W/ L )4 ( I /2)

⇒ 128 = ( W/ L )6 11 1 × 64

thus, ( W/ L )6 = 22 2

UsingEq.(9.143),weget

I7 = ( W/ L )7 ( W/ L )5 I

⇒ 128 = ( W/ L )7 88 8 × 128

thus, ( W/ L )7 = 88 8

(b)For Q 1 ,

I 2 = 1 2 μ p C ox W L 1 V 2 OV1

⇒ V OV 1 = 64 1 2 × 128 × 44.4 = 0 15V

Similarlyfor Q 2 , V OV 2 = 0 15V

For Q 6 ,

128 = 1 2 × 512 × 22 2 V 2 OV 6

⇒ V OV 6 = 0 15V

(c) gm = 2 I D V OV

I D V OV gm

Q 1 64 µA0.15V0.853mA/V

Q 2 64 µA0.15V0.853mA/V

Q 6 128 µA0.15V1.71mA/V

(d)

r o2 = 3.2/0.064 = 50k

r o4 = 3 2/0 064 = 50k

r o6 = 3 2/0 128 = 25k

r o7 = 3 2/0 128 = 25k

(e)Eq.(9.140):

A 1 =− gm 1 (r o2 r o4 )

=−0 853 (50 50) =−21 3 V V

Eq.(9.141):

A 2 =− gm 6 (r o6 r o7 )

=−21.3V/V

Overallvoltagegainis

A 1 × A 2 =−21 3 ×− 21 3 = 454V/V

Ex:9.21 Rid = 20 2k

A v o = 8513V/V

Ro = 152

With R S = 10k and R L = 1k ,

G v = 20 2 20 2 + 10 × 8513 × 1 (1 + 0 152)

= 4943V/V

Ex:9.22 i e 8 i b8 = β 8 + 1 = 101A/A

i b8 i c 7 = R5 R5 + Ri 4 = 15 7 15 7 + 303 5 = 0 0492A/A i c 7 i b7 = β 7 = 100A/A

i b7 i c 5 = R3 R3 + Ri 3 = 3 3 + 234 8 = 0 0126A/A

i c 5 i b5 = β 5 = 100A/A

i b5 i c 2 = R1 + R2 R1 + R 2 + Ri 2 = 40 40 + 5 05 = 0 8879A/A

i c 2 i 1 = β 2 = 100A/A

Thustheoverallcurrentgainis

i e 8 i 1 = 101 × 0 0492 × 100 × 0 0126 × 100

× 0 8879 × 100

= 55,599A/A andtheoverallvoltagegainis

v o v id = R6 Ri 1 i e 8 i 1 = 3 20.2 × 55599 = 8257V/V

Exercise10–1

Chapter10

SolutionstoExerciseswithintheChapter

Ex:10.1 C ox = ox tox = 3 45 × 10 11 F/m 3 × 10 9 m

= 11 5 × 10 3 F/m2

= 11 5 fF/µm2

C ov = WL ov C ox

= 1 5 × 0 03 × 11 5 = 0 52 fF

C gs = 2 3 WLC ox + C ov

= 2 3 × 1.5 × 0.15 × 11.5 + 0.52

= 2 25 fF

C gd = C ov = 0 52 fF

C sb = C sb0 1 + VSB V0 = 1 1 + 0 2 0 9 = 0 9 fF

C db = C db0 1 + V DB V0 = 1 1 + 0 8 + 0 2 0 9 = 0 7 fF

Ex:10.2 gm = 2k n ( W/ L ) I D

= 2 × 0 5 × (1 5/0 15) × 0 1 = 1 mA/V

f T = gm

2π(C gs + C gd )

= 1 × 10 3

2π(2 25 + 0 52) × 10 15

f T = 57 5 GHz

Ex:10.3 C de = τ F gm where

τ F = 20 ps

gm = IC VT = 1 mA 0 025 V = 40 mA/V

Thus,

C de = 20 × 10 12 × 40 × 10 3 = 0 8 pF

C je 2C je 0

= 2 × 20 = 40 fF

C π = C de + C je

= 0.8 + 0.04 = 0.84 pF

C μ = C μ0 1 + VCB V0c m = 20 1 + 2 0 5 0 33 = 12 fF

f T = gm 2π(C π + C μ ) = 40 × 10 3 2π(0 84 + 0 012) × 10 12 = 7 47 GHz

Ex:10.4 |β |= 10 at f = 50 MHz

Thus,

f T = 10 × 50 = 500 MHz

C π + C μ = gm 2π f T

= 40 × 10 3

2π × 500 × 106 = 12.7 pF

C π = 12 7 2 = 10 7 pF

Ex:10.5 C π = C de + C je

10 7 = C de + 2

⇒ C de = 8.7 pF

Since C de isproportionalto gm andhence IC ,at

IC = 0 1 mA,

C de = 0 87 pF and

C π = 0 87 + 2 = 2 87 pF

f T = 4 × 10 3 2π(2 87 + 2) × 10 12 = 130 7 MHz

Ex:10.6 A M =− gm R L where

gm = 2 mA/V

R L = R L r o = 10 20 = 6 67 k

Thus,

A M =−2 × 6 67 =−13 3 V/V

C eq = (1 + gm R L )C gd

= (1 + 13 3) × 5 = 71 5 fF

C in = C gs + C eq = 20 + 71 5 = 91 5

f H = 1 2π C in Rsig

= 1 2π × 91 5 × 10 15 × 20 × 103 = 86 9 MHz

Ex:10.7 f H = 1 2π C in Rsig

For f H ≥ 100 MHz,

C in ≤ 1 2π × 100 × 106 × 20 × 103 = 79 6 fF

But,

C in = C gs + C eq = 20 + C eq

Thus,

C eq ≤ 59 6 fF

C gd (1 + gm R L ) ≤ 59 6

C gd ≤ 59 6 1 + 20 = 2 8 fF

Ex:10.8 RefertoExample10.2.

Tomove f t from10.6GHzto3GHz, f H mustbe movedfrom530.5MHzto

f H = 530 5 × 3 10.6 = 150 1 MHz

Since,

f H = 1 2π(C L + C gd ) R L then

C L + C gd = 1 2π × 150 1 × 106 × 10 × 103 = 106 fF

C L = 106 5 = 101 fF

Ex:10.9 Toreducethemidbandgaintohalfthe valuefound,wereduce R L bythesamefactor, thus

R L = 4 76 2 = 2 38 k

But,

R L = R L r o

2 38 = R L 100

⇒ R L = 2 44 k

C in = C π + C μ (1 + gm R L )

= 7 + 1(1 + 40 × 2 38)

= 103 2 pF

f H = 1 2π C in Rsig

= 1 2π × 103.2 × 10 12 × 1.67 × 103 = 923 MHz

Thus,byacceptingareductioningainbyafactor of2,thebandwidthisincreasedbyafactorof 923/480 = 1.9,approximathelythesamefactoras thereductioningain.

Ex:10.10 T (s ) = 1000 1 + s 2π × 105

GB = 1000 × 100 × 103 = 108 Hz

Ex:10.11 | A M |= gm R L = 2 × 10 = 20 V/V

GB =| A M | f H

= 20 × 56 8 = 1 14 GHz

Ex:10.12 | A M |= 1 2 × 20 = 10 V/V

R gs = 20 k

R gd = Rsig (1 + gm R L ) + R L

= 20(1 + 10) + 5 = 225 k

RC L = R L = 5 k

τ gs = C gs R gs = 20 × 10 15 × 20 × 103 = 400 ps

τ gd = C gd R gd = 5 × 10 15 × 225 × 103 = 1125 ps

τC L = C L RC L = 25 × 10 15 × 5 × 103 = 125 ps

τ H = τ gs + τ gd + τC L

= 400 + 1125 + 125

= 1650 ps

f H = 1 2πτ H

= 1 2π × 1650 × 10 12 = 96 5 MHz

GB = 10 × 96.5 = 0.965 GHz

Ex:10.13 gm = 2μn C ox W L I D

Since I D isincreasedbyafactorof4, gm doubles:

gm = 2 × 2 = 4 mA/V

Since R L is r o /2,increasing I D byafactoroffour resultsin r o andhence R L decreasingbyafactor of4,thus

R L = 1 4 × 10 = 2 5 k

| A M |= gm R L = 4 × 2 5 = 10 V/V

R gs = Rsig = 20 k

R gd = Rsig (1 + gm R L ) + R L

= 20(1 + 10) + 2 5

= 222 5 k

RC L = R L = 2 5 k

τ H = τ gs + τ gd + τC L

= C gs Rsig + C gd R gd + C L RC L

= 20 × 10 15 × 20 × 103 + 5 × 10 15 × 222 5

× 103 + 25 × 10 15 × 2.5 × 103

= 400 + 1112 5 + 62 5

= 1575 ps

f H = 1 2π × 1575 × 10 12 = 101 MHz

GB =| A M | f H

= 10 × 101 = 1 01 GHz

Ex:10.14 (a) gm = 40 mA/V

r π = 200 40 = 5 k

r on = V An I = 130 1 = 130 k

r op = | V Ap | I = 50 1 = 50 k

R L = r on r op = 130 50 = 36.1 k

A M =− r π r π + Rsig gm R L

=− 5 5 + 36 × 40 × 36 1

=−176 V/V

(b) C in = C π + C μ (1 + gm R L )

= 16 + 0 3(1 + 40 × 36 1)

= 450 pF

Rsig = r π Rsig

= 5 36 = 4 39 k

f H = 1 2π C in Rsig

= 1 2π × 450 × 10 12 × 4.39 × 103

= 80 6 kHz

(c) Rπ = Rsig = 4 39 k

Rμ = Rsig (1 + gm R L ) + R L

= 4.39(1 + 40 × 36.1) + 36.1

= 6.38 M

RCL = R L = 36 1 k

τ H = C π + C μ Rμ + C L RCL

= 16 × 4 39 + 0 3 × 6 38 × 103 + 5 × 36 1

= 70 2 + 1914 + 180 5

= 2164 7 ns

f H = 1 2π × 2164 7 × 10 9

= 73.5 kHz

(d) f Z = gm 2π C μ

= 40 × 10 3

2π × 0 3 × 10 12 = 21 2 GHz

(e)GB = 175 × 73 5 = 12 9 MHz

Ex:10.15 Rin = R L + r o 1 + gm r o

= 800 + 20 1 + 40 20 k

G v = R L Rsig + Rin = 800 20 + 20 = 20 V/V

R gs = Rsig Rin = 20 20 = 10 k

R gd = R L Ro

= 800 840 = 410 k

τ H = C gs R gs + (C gd + C L ) R gd

= 20 × 10 15 × 10 × 103 + (5 + 25) × 10 15

× 410 × 103

= 200 + 12,300

= 12,500 ps

f H = 1 2π × 12,500 × 10 12 = 12 7 MHz

Thus,whilethemidbandgainhasbeenincreased substantially(byafactorof21),thebandwidth hasbeensubstantiallylowered(byafactorof 20.7).Thus,thehigh-frequencyadvantageofthe CGamplifieriscompletelylost!

Ex:10.16 (a) A CS =− gm ( R L r o )

=− gm (r o r o ) =− 1 2 gm r o

=− 1 2 × 40 =−20 V/V

A cascode =− gm ( R L Ro )

=− gm (r o gm r o r o )

− gm r o =−40 V/V

Thus,

A cascode A CS = 2 (b)FortheCSamplifier,

τ H = C gs R gs + C gd R gd where

R gs = Rsig

R gd = Rsig (1 + gm R L ) + R L Rsig (1 + gm R L )

= Rsig 1 + 1 2 gm r o

= Rsig 1 + 1 2 × 40 = 21 Rsig

τ H = C gs Rsig + C gd × 21 Rsig

= C gs Rsig + 0.25C gs × 21 Rsig

= 6 25C gs Rsig

f H = 1 2π × 6 25C gs Rsig

Forthecascodeamplifier,

τ H Rsig C gs 1 + C gd 1 (1 + gm 1 Rd 1 )

where

Rd 1 = r o1 Rin2 = r o r o + r o gm r o

= r o 2 gm = 2 gm r o 2 gm + r o

= 2r o 2 + gm r o = 2r o 2 + 40 = r o 21

τ H = C gs Rsig 1 + 0.25 1 + gm r o 21

= C gs Rsig 1 + 0 25 1 + 40 21

= 1 73C gs Rsig

f H = 1 2π × 1 73 C gs Rsig

Thus,

f H (cascode)

f H (CS) = 6 25 1 73 = 3 6 (c) f t (cascode)

f t (CS) = 2 × 3 6 = 7 2

Ex:10.17 gm = 40 mA/V

r π = β gm = 200 40 = 5 k

Rin = r π = 5 k

A 0 = gm r o = 40 × 130 = 5200

Ro1 = r o1 = 130 k

Rin2 = r π 2 r o2 + R L gm 2 r o2 = 5 130 + 50 5200

= 35

Ro β2 r o2 = 200 × 130 = 26 M

A M =− r π r π + Rsig gm ( Ro R L )

=− 5 5 + 36 40(26,000 50)

Exercise10–4

A M =−244 V/V

Rsig = r π 1 Rsig

= 5 36 = 4 39 k

Rπ 1 = Rsig = 4 39 k

Rc 1 = r o1 Rin2

= 130 k 35 35

Rμ1 = Rsig (1 + gm 1 Rc 1 ) + Rc 1

= 4 39(1 + 40 × 0 035) + 0 035

= 10 6 k

τ H = C π 1 Rπ 1 + C μ1 Rμ1 + C π 2 Rc 1 + (C L + C μ2 )( R L Ro )

= 16 × 4 39 + 0 3 × 10 6 + 16 × 0 035

+ (5 + 0 3)(50 26,000)

= 70 24 + 3 18 + 0 56 + 264 5

= 338 5 ns

f H = 1 2π × 338 5 × 10 9 = 470 kHz

f t =| A M | f H = 244 × 470 = 113.8 MHz

Thus,incomparisontotheCEamplifierof Exercise10.19,weseethat | A M | hasincreased from175V/Vto242V/V, f H hasincreasedfrom 73.5kHzto470kHz,and f t hasincreasedfrom 12.9MHzto113.8MHz.

Tohave f H equalto1MHz,

τ H = 1 2π f H = 1 2π × 1 × 106 = 159.2 ns

Thus, 159 2 = 70 24 + 3 18 + 0 56

+ (C L + C μ )(50 26,000)

⇒ C L + C μ = 1.71 pF

Thus, C L mustbereducedto1.41pF.

Ex:10.18 FromEq.(10.103),weobtain

R gs = Rsig gm R L + 1 + R L gm R L + 1 = Rsig + R L gm R L + 1

R gd = Rsig

RC L = R L gm R L + 1

Ex:10.19 FromExample10.8,weget

τ H = b1 = 104 ps

f H = 1

2πτ H

= 1 2π × 104 × 10 12 = 1 53 GHz

Thisislowerthantheexactvaluefoundin Example10.8(i.e.,1.86GHz)byabout18%,still notabadestimate!

Ex:10.20 gm = 40 mA/V

r e = 25

r π = β gm = 100 40 = 2 5 k

Rsig = 1 k

R L = R L r o = 1 100 = 0.99 k

A M = R L R L + r e + Rsig β + 1

= 0 99 0 99 + 0 025 + (1/101) = 0 97 V/V

C π + C μ = gm 2π f T = 40 × 10 3 2π × 400 × 106

= 15 9 pF

C μ = 2 pF

C π = 13.9 pF f Z = 1 2π C π r e = 1 2π × 13 9 × 10 12 × 25

= 458 MHz

b1 = C π + C μ 1 + R L r e Rsig + C π + C L 1 + Rsig r π R L 1 + R L r e + Rsig r π = 13 9 + 2 1 + 0.99 0 025 × 1 + (13 9 + 0)0 99 1 + 0 99 0 025 + 1 2 5

= 2 66 × 10 9 s

b2 = C π C μ R L Rsig 1 + R L r e + Rsig r π = 13 9 × 2 × 0 99 × 1 1 + 0.99 0 025 + 1 2 5

= 0.671 × 10 18

ω P 1 and ω P 2 aretherootsoftheequation

1 + b1 s + b2 s 2 = 0

Solvingweobtain,

f P 1 = 67 2 MHz

f P 2 = 562 MHz

Since f P 1 f P 2 ,

f H f P 1 = 67.2 MHz

Ex:10.21 (a) I D 1,2 = 1 2 μn C ox W L 1,2 V 2 OV

0 4 = 1 2 × 0 2 × 100 V 2 OV

⇒ V OV = 0.2 V

gm = 2 I D V OV = 2 × 0 4 0 2 = 4 mA/V

(b) A d = gm ( R D r o ) where

r o = V A I D = 20 0 4 = 50 k

A d = 4(5 50) = 4 × 4 545 = 18.2 V/V

(c) f H = 1 2π(C L + C gd + C db )( R D r o ) = 1 2π(100 + 10 + 10) × 10 15 × 4 545 × 103

= 292 MHz

(d) τ gs = C gs Rsig = 50 × 10 = 500 ps

τ gd = C gd R gd = C gd Rsig (1 + gm R L ) + R L

= 10 [10(1 + 18 2) + 4 545]

= 1965 5 ps

τC L = (C L + C db ) R L = 110 × 4 545 = 500 ps

τ H = τ gs + τ gd + τC L

= 500 + 1965 5 + 500 = 2965 5 ps

f H = 1 2π × 2965 5 × 10 12

= 53 7 MHz

Ex:10.22 f Z = 1 2π R SS C SS

= 1 2π × 75 × 103 × 0 4 × 10 12

= 5 3 MHz

Thus,the3-dBfrequencyoftheCMRRis 5.3MHz.

Ex:10.23 A d = gm 1,2 (r o2 r o4 ) where

gm 1,2 = 0 5 0 025 = 20 mA/V

r o2 = r o4 = 100 0 5 = 200 k

A d = 20(200 200) = 2000 V/V

Thedominanthigh-frequencypoleisthat introducedattheoutputnode,

f H = 1

2π C L (r o2 r o4 )

= 1 2π × 2 × 10 12 × 100 × 103

= 0 8 MHz

Ex:10.24 (a) A M =− gm R L

where

R L = R L r o = 20 20 = 10 k

A M =−2 × 10 =−20 V/V

τ H = C gs R gs + C gd R gd + C L R L

= C gs Rsig + C gd Rsig (1 + gm R L ) + R L + C L R L

= 20 × 20 + 5 [20(1 + 20) + 10] + 5 × 10

= 400 + 2150 + 50

= 2600 ps

f H = 1 2πτ H

= 1 2π × 2600 × 10 12

= 61 2 MHz

GB =| A M | f H

= 20 × 61 2

= 1 22 GHz

(b) G m = gm 1 + gm Rs = 2 1 + 2 = 0 67 mA/V

Ro r o (1 + gm Rs )

= 20 × 3 = 60 k

R L = R L Ro = 20 60 = 15 k

A M =− G m R L

=−0 67 × 15 =−10 V/V

R gd = Rsig (1 + G m R L ) + R L

= 20(1 + 10) + 15

= 235 k

RC L = R L = 15 k

R gs = Rsig + Rs + Rsig Rs /(r o + R L )

1 + gm Rs

r o r o + R L

where Rs = 2 gm = 1 k

R gs = 20 + 1 + 20 × 1 20 + 20 1 + 2 × 20 20 + 20

= 10 75 k

τ H = C gs R gs + C gd R gd + C L RC L

= 20 × 10.75 + 5 × 235 + 5 × 15

= 215 + 1175 + 75 = 1465 ps

f H = 1 2π × 1465 × 10 12 = 109 MHz

GB = 10 × 109 = 1 1 GHz

Ex:10.25 RefertoFig.10.35(b).

A M = 2r π 2r π + Rsig × 1 2 × gm R L

where

gm = 20 mA/V

r π = 100 20 = 5 k

A M = 10 10 + 10 × 1 2 × 20 × 10 = 50 V/V f P 1 = 1 2π C π 2 + C μ (2r π Rsig ) = 1 2π 6 2 + 2 × 10 12 (10 10) × 103

= 6 4 MHz

f P 2 = 1 2π C μ R L = 1 2π × 2 × 10 12 × 10 × 103

= 8 MHz

T (s ) = 50 1 + s ω P 1 1 + s ω P 2 | T ( j ω)|= 50 1 + ω ω P 1 2 1 + ω ω P 2 2

At ω = ω H , | T |= 50/√2,thus

2 = 1 + ω H ω P 1 2 1 + ω H ω P 2 2

1 +

ω 4 H

ω 2 P 1 ω 2 P 2 + ω 2 H 1 ω 2 P 1 + 1 ω 2 P 2 1 = 0

f 4 H

f 2 P 1 f 2 P 2 + f 2 H 1 f 2 P 1 + 1 f 2 P 2 1 = 0

f 4 H 6.42 × 82 + f 2 H 1 6.42 + 1 82 1 = 0

⇒ f H = 4 6 MHz(Exactvalue)

P 2

UsingEq.(10.150),anapproximathevaluefor f H canbeobtained:

f H 1/ 1 f 2 P 1 + 1 f 2 P 2

= 1/ 1 6.42 + 1 82 = 5 MHz

Ex:10.26 A M =− R G R G + Rsig gm ( R D R L )

=− 10 10 + 0 1 × 2(10 10)

=−9 9 V/V

f P 1 = 1 2π C C 1 ( Rsig + R G )

= 1 2π × 1 × 10 6 (0 1 + 10) × 106

= 0 016 Hz

f P 2 = gm + 1/ R S 2π C S

= (2 + 0 1) × 10 3

2π × 1 × 10 6 = 334 2 Hz

f P 3 = 1 2π C C 2 ( R D + R L ) = 1 2π × 1 × 10 6 (10 + 10) × 103

= 8 Hz

f Z = 1

2π C S R S

= 1

2π × 1 × 10 6 × 10 × 103

= 15 9 Hz

Sincethehighest-frequencypoleis f P 2 = 334 2 andthenexthighest-frequencysingularityis f Z at15.9Hz,thelower3-dBfrequency f L willbe

f L f P 2 = 334.2 Hz

Ex:10.27 RefertoFig.10.42.

τC 1 = C C 1 Rsig + ( R B r π )

= 1 × 10 6 [5 + (100 2 5)] × 103

= 7 44 ms

τCE = C E R E r e + R B Rsig β + 1

β = gm r π = 40 × 2 5 = 100

r e 1/ gm = 25

τCE = 1 × 10 6 5 0 025 + 100 5 101 × 103

τCE = 0 071 ms

τC 2 = C C 2 ( RC + R L )

= 1 × 10 6 (8 + 5) × 103

= 13 ms

f L = 1 2π 1 τC 1 + 1 τCE + 1 τC 2

= 1 2π 1 7 44 + 1 0 071 + 1 13 × 103

= 2 28 kHz

f Z = 1

2π C E R E = 1

2π × 1 × 10 6 × 5 × 103 = 31 8 Hz

Since f Z ismuchlowerthan f L itwillhavea negligibleeffecton f L

Chapter11

SolutionstoExerciseswithintheChapter

Ex:11.1 (b)

β = 1/ A f ideal = 1 10 = 0 1 V/V

0 1 = R1 R1 + R2

⇒ R2 R1 = 9

(c)

A = 100 β = 0 1

Aβ = 10

1 + Aβ = 11 or 20 8 dB

A f = A 1 + Aβ = 100 11 = 9 091 V/V

A f differsfromtheidealvalueof10V/Vby 9 1%.

(d)

10 = A 1 + Aβ = 100 1 + 100β

⇒ β = 0 09 V/V

0 09 = R1 R1 + R2

⇒ R2 R1 = 10 11

(e)

Vo = A f Vs = 10 × 1 = 10 V

V f = β Vo = 0 09 × 10 = 0 9 V

Vi = Vs V f = 1 0 9 = 0 1 V

(f)

A = 0 8 × 100 = 80

A f = 80 1 + 80 × 0 09 = 9 76 V/V whichisa 2 44%decrease.

Ex.11.2 (b)

β = 1/ A f ideal = 1/103

β = 0.001 V/V

0 001 = R1 R1 + R2

⇒ R2 R1 = 999

(c)

Aβ = 104 × 10 3 = 10

1 + Aβ = 11 or 20 8 dB

A f = A 1 + Aβ = 104 11 = 909 1 V/V

(d)

1000 = 104 1 + 104 β

⇒ β = 0 0009

0 0009 = R1 R1 + R2

⇒ R2 R1 = 1110 1

(e)

Vo = A f Vs = 1000 × 0 01 = 10 V

V f = β Vo = 0.0009 × 10 = 0.009 V

Vi = Vs V f = 0 01 0 009 = 0 001 V

(f)

A = 0 8 × 104

A f = 0 8 × 104 1 + 0 8 × 104 × 0 0009 = 975 6 V/V

whichisa 2 44%decrease.

Ex.11.3 Toconstrainthecorrespondingchange in A f to0.1%,weneedanamount-of-feedback ofatleast

1 + Aβ = 10% 0 1% = 100

Thusthelargestobtainableclosed-loopgainwill be

A f = A 1 + Aβ = 1000 100 = 10 V/V

Eachamplifierinthecascadewillhaveanominal gainof10V/Vandamaximumvariabilityof 0.1%;thustheoverallvoltagegainwillbe

(10)3 = 1000 V/Vandthemaximumvariability willbe0.3%.

Ex.11.4

β = R1 R1 + R2 = 1 1 + 9 = 0 1

Aβ = 104 × 0 1 = 1000

1 + Aβ = 1001

A f = A 1 + Aβ

A f = 104 1 + 104 × 0 1 = 9 99 V/V

f Hf = f H (1 + Aβ) = 100 × 1001 = 100 1 kHz

Ex.11.5 (a)RefertoFig.11.8(c).

β = R1 R1 + R2 (b) RD R2 R1 Vt Vr Vd

Figure1showsthecircuitpreparedfor determiningtheloopgain Aβ .Observethatwe haveeliminatedtheinputsignal Vs ,andopened theloopatthegateof Q wheretheinput impedanceisinfiniteobviatingtheneedfora terminationresistanceattheright-handsideof thebreak.Nowweneedtoanalyzethecircuitto determine

Aβ ≡− Vr Vt

First,wewriteforthegainoftheCSamplifier Q ,

Vd Vt =− gm R D ( R1 + R2 )(1) thenweusethevoltage-dividerruletofind Vr , Vr

Vd = R1 R1 + R2 (2)

CombiningEqs.(1)and(2)gives

Aβ ≡− Vr Vt = gm R D ( R1 + R2 ) R1 R1 + R2 whichcanbesimplifiedto

β

(c) A = Aβ β = gm R D ( R1 + R2 ) R D + R1 + R2 (d) β = R1 R1 + R2 = 20 20 + 80 = 0.2 V/V

Aβ = 4 10 × 20 10 + 20 + 80 = 7 27

A = 7 27 0 2 = 36 36 V/V

A f = A 1 + Aβ = 36 36 1 + 36 36 × 0 2 = 4 4 V/V

If Aβ were 1,then

A f 1 β = 1 0 2 = 5 V/V

Ex.11.6 FromthesolutionofExample11.5, 1 + Aβ = 60 1

Thus,

f Hf = (1 + Aβ) f H = 60 1 × 1 = 60 1 kHz

Ex.11.7 RefertoFig.E11.7.The1-mAbias currentwillsplitequallybetweentheemittersof Q 1 and Q 2 ,thus

I E 1 = I E 2 = 0 5 mA

Transistor Q 3 willbeoperatingatanemitter current

I E 3 = 5 mA determinedbythe5-mAcurrentsource.Sincethe dccomponentof Vs = 0,thenegativefeedback willforcethedcvoltageattheoutputtobe approximatelyzero.

The β circuitisshowninFig.1(onnextpage) togetherwiththedeterminationof β andofthe loadingeffectsofthe β circuitonthe A circuit,

β = R1 R1 + R2 = 1 1 + 9 = 0 1 V/V

R11 = R1 R2 = 1 9 = 0 9 k

R22 = R1 + R2 = 1 + 9 = 10 k

The A circuitisshowninFig.2(onnextpage).

r e 1 = r e 2 = VT I E 1,2 = 25 mV 0 5 mA = 50

r e 3 = VT I E 3 = 25 mV 5 mA = 5

i e = Vi

r e 1 + r e 2 + Rs + R11 β + 1

ThesefiguresbelongtoExercise11.7.

i e = Vi

0 05 + 0 05 + 10 + 0 9 101

⇒ i e = 4 81 Vi (1)

Rb3 = (β + 1)[r e 3 + ( R22 R L )] = 101[0 005 + (10 2)] = 168 84 k

i b3 = α i e RC RC + Rb3

= 0 99 i e 20 20 + 168 84

Figure2

⇒ i b3 = 0 105i e (2) Vo = i e 3 ( R22 R L ) = (β + 1)i b3 ( R22 R L )

= i b3 × 101(10 2)

⇒ Vo = 168 33i b3 (3)

Combining(1)–(3),weobtain

A ≡ Vo Vi = 85 V/V

β = 0 1 V/V

Aβ = 8 5

1 + Aβ = 9 5

A f = 85 9 5 = 8 95 V/V

Fromthe A circuit,wehave

Ri = Rs + R11 + (β + 1)(r e 1 + r e 2 )

= 10 + 0 9 + 101 × 0 1

= 21 k

Rif = Ri (1 + Aβ)

= 21 × 9 5 = 199 5 k

Rin = Rif Rs = 199 5 10 = 189 5 k

Fromthe A circuit,wehave

Ro = R L R22 r e 5 + RC β + 1

= 2 10 0 005 + 20 101

= 181

Rof = Ro 1 + Aβ

= 181 9 5 = 19 1

Rof = R L Rout

19 1 = 2 k Rout

⇒ Rout = 19 2

Ex.11.8 Figure1showsthe β circuittogether withthedeterminationof β , R11 and R22

β = R1 R1 + R2

ThisfigurebelongstoExercise11.8.

Exercise11–4

R11 = R1 R2

R22 = R1 + R2

Figure2showsthe A circuit.Wecanwrite

Vo = gm ( R D R22 ) Vi

Thus, A ≡ Vo Vi = gm R D ( R1 + R2 )

f = A 1 + Aβ

From A circuit,wehave Ri = 1 gm

Figure1

Ro = R D R22

Rin = Rif = Ri (1 + Aβ)

Rin = 1 gm (1 + Aβ)

Rout = Rof = Ro 1 + Aβ

Rout = R D ( R1 + R2 ) 1 + Aβ

ComparisonwiththeresultsofExercise11.6

showsthattheexpressionsfor A and β are identical.However, Rin and Rout cannotbe determinedusingthemethodofExercise11.6.

Ex.11.9 A f ideal = 10 A/A

β = 1 A f ideal = 0 1 A/A

A = 1000 A/A

1 + Aβ = 1 + 1000 × 0 1 = 101

A f = A 1 + Aβ = 1000 101 = 9.9 A/A

Rif = Ri 1 + Aβ = 1000 101 = 9 9

Rof = Ro (1 + Aβ) = 100 k × 101 = 10 1 M

Ex.11.10 RefertothesolutionofExample11.7.

If μ isreducedfrom1000V/Vto100V/V, A willbereducedbythesamefactor(10)tobecome

A = 64 9 mA/V

andtheloopgainwillbecorrespondingly reduced,

Aβ = 64 9

Thus,theamountoffeedbackbecomes

1 + Aβ = 65 9

andtheclosed-loopgain A f becomes

A f = A 1 + Aβ = 64 9 65 9 = 0 985 mA/V

Theinputresistancebecomes

Rin = Rif = (1 + Aβ) Ri = 65 9 × 101 = 6 7 M

Theoutputresistancebecomes

Rout = Rof = (1 + Aβ) Ro = 65 9 × 61 = 4 M

Ex.11.11 RefertothesolutionofExample11.7. Todouble A f ideal weneedtoreduce β tohalfits

value.Since β = R F ,thefeedbackresistance R F becomes

R F = 500

Now,since A isgivenby

A = Rid Rid + R F μ 1 gm + ( R F r o2 ) r o2 R F + r o2

thevalueof A becomes

A = 100 100 + 0 5 1000 0 5 + (0 5 20) 20 0 5 + 20 = 982 7 mA/V

Thus, A f becomes

A f = A 1 + Aβ = 982 7 1 + 982 7 × 0 5 = 1 996 mA/V

Ex.11.12 Toobtain A f ideal = 100 mA/V,the feedbackfactor β mustbe

β = 1 100 = 0 01 V/mA = 10

But,

β = R E 1 R E 2 R E 1 + R E 2 + R F

For R E 1 = R E 2 = 100 ,

10 = 100 × 100 100 + 100 + R F

⇒ R F = 800

Sincetheidealvalueof ( Io / Vs ) is100mA/V,the idealvalueofthevoltagegainis,

Vo Vs =− Io RC Vs =−100 × 0 6

=−60 V/V

Ex.11.13 Seefigureonnextpage.Figure1 showsthecircuitpreparedforthedetermination oftheloopgain,

Aβ ≡− Vr Vt

Wewilltracethesignalaroundtheloopas follows:

Ic 2 = gm 2 Vt (1)

Ib3 = Ic 2 RC 2 RC 2 + Ri 3 (2) where

Ri 3 = (β + 1) r e 3 + R E 2 ( R F + ( R E 1 r e 1 )) (3) Ie 3 = (β + 1) Ib3 (4)

ThisfigurebelongstoExercise11.13.

I f = Ie 3 R E 2 R E 2 + R F + ( R E 1 r e 1 ) (5)

Ie 1 = I f R E 1 R E 1 + r e 1 (6)

Ic 1 = α Ie 1 (7)

Vr =− Ic 1 ( RC 1 r π 2 )(8)

Combining(1)–(8)gives Vr intermsof Vt and hence Aβ ≡− Vr / Vt .Weshalldothis numericallyusingthevaluesinExample11.8:

gm 2 = 40 mA/V, RC 2 = 5 k ,β = 100,

r e 3 = 6 25 , R E 1 = R E 2 = 100 , R F = 640 ,

r e 1 = 41 7 ,α1 = 0 99, RC 1 = 9 k , and r π 2 = 2 5 k

Ri 3 = 101 0 00625 + 0 1 (0 64 + (0 1 0 0417))

= 9 42 k

Ic 2 = 40 Vt (9)

Ib3 = 0 347 Ic 2 (10)

Ie 3 = 101 Ib3 (11)

I f = 0 13 Ie 3 (12)

Ie 1 = 0 706 I f (13)

Ic 1 = 0 99 Ie 1 (14)

Vr =−1 957 Ic 1 (15)

Combining(9)–(15),weobtain

Aβ =− Vr Vt = 249 2

Ex.11.14 mVt RF ro Rs Rid RL Rid VrVt

Figure1

Figure1showsthecircuitpreparedfor determiningtheloopgain

Aβ ≡− Vr Vt

Usingthevoltage-dividerrule,wecanwriteby inspection

Vr = μ Vt R L [ R F + ( Rs Rid )]

r o + R L [ R F + ( Rs Rid )] ( Rs Rid ) R F + ( Rs Rid )

Vr = μ Vt R L ( Rs Rid )

r o [ R L + R F + ( Rs Rid )] + R L [ R F + ( Rs Rid )]

Thus, Aβ =− Vr Vt = μ R L ( Rid Rs )

r o [ R L + R F + ( Rid Rs )] + R L [ R F + ( Rid Rs )]

Q.E.D.

UsingthenumericalvaluesinExample11.9,we get

Aβ = 1035 2

Figure1

ThisfigurebelongstoExercise11.15.

Ex.11.15 Seefigureonnextpage.Figure1(a) showsthefeedbackamplifiercircuit.The β circuitisshowninFig.1(b),andthe determinationof β isshowninFig.1(c),

Finally,the A circuitisshowninFig.1(f).We canwritebyinspection

Ri = Rs R11 = Rs R F Ro = r o R22 = r o R F Vgs = Ii Ri Vo =− gm Vgs (r o R22 )

(b)Thedeterminationof R11 and R22 is illustratedinFigs.1(d)and(e),respectively: R11 = R22 = R F

Figure1

A f = gm ( Rs R F )(r o R F )

1 + gm ( Rs R F )(r o R F )/ R F Q E D

(c) Rif = Ri 1 + Aβ

Rif = Rs R F

1 + gm ( Rs R F )(r o R F )/ R F 1 Rif = 1 Rs + 1 R F + gm (r o R F ) R F

But, 1 Rif = 1 Rs + 1 Rin thus, 1 Rin = 1 R F 1 + gm (r o R F )

⇒ Rin = R F 1 + gm (r o R F ) Q E D

(d) Rout = Rof = Ro 1 + Aβ

= r o R F

1 + gm ( Rs R F )(r o R F )/ R F 1 Rout = 1 r o + 1 R F + gm ( Rs R F ) R F

⇒ Rout = r o R F 1 + gm ( Rs R F ) Q E D

(e) A =−5(1 10)(20 10)

A =−30 3 k β =− 1 R F =− 1 10 =−0 1 mA/V

Aβ = 3 03

1 + Aβ = 4 03

A f = A 1 + Aβ =− 30 3 4 03 =−7 52 k

(Comparetotheidealvalueof 10 k ).

Ri = Rs R F = 1 10 = 909

Ro = r o R F = 20 10 = 6.67 k

Rif = Ri 1 + Aβ = 909 4 03 = 226

Rin = 1 1 Rif 1 Rs = 291

Rof = Ro 1 + Aβ = 6 67 4 03 = 1 66 k

Rout = Rof = 1 66 k

Ex.11.16 RefertothesolutionofExample

11.10.

A =−μ Ri 1/ gm + ( R1 R

=−100 100 1 5 + (10 90 20) 20 20 + (10 90)

=−1076.4 A/A

β =−0 1

A f = A 1 + Aβ =− 1076 4 1 + 1076 4 × 0 1

=− 1076 4 1 + 107 64 =− 1076 4 108 64

=−9 91 A/A

Ri = 100 k

Rin = Rif = Ri 1 + Aβ = 100 108.64 = 921

Rout = Rof = Ro (1 + Aβ) = 929 × 108 64 = 101 M

Ex.11.17 RefertothesolutionofExample

11.10.With R2 = 0, β =− 1 1 + 0 =−1

A f ideal = 1 β =−1 A/A

Ri = Rs Rid ( R1 + R2 )

⇒ Ri = R1

Ro = r o2 + ( R1 R2 ) + ( gm r o2 )( R1 R2 )

⇒ Ro = r o2

A =−μ Ri 1/ gm + ( R1 R2 r o2 ) r o2 r o2 + ( R1 R2 )

⇒ A =−μgm R1

Aβ = μgm R1

A f = A 1 + Aβ =− μgm R1 1 + μgm R1

Rin = Rif = Ri 1 + Aβ

Rin = R1 1 + μgm R1 1 μgm

Rout = Rof = Ro (1 + Aβ)

= r o2 (1 + μgm R1 )

⇒ Rout μ( gm r o2 ) R1

Ex.11.18 Thefeedbackshiftsthepolebya factorequaltotheamountoffeedback:

1 + A 0 β = 1 + 105 × 0 01 = 1001

Thepolewillbeshiftedtoafrequency

f Pf = f P (1 + A 0 β)

= 100 × 1001 = 100.1 kHz

If β ischangedtoavaluethatresultsinanominal closed-loopgainof1,thenweobtain

β = 1

and

1 + A 0 β = 1 + 105 × 1 105 thenthepolewillbeshiftedtoafrequency

f Pf = 105 × 100 = 10 MHz

Ex.11.19 FromEq.(11.40),weseethatthe polescoincidewhen

(ω P 1 + ω P 2 )2 = 4(1 + A 0 β)ω P 1 ω P 2

(104 + 106 )2 = 4(1 + 100β) × 104 × 106

⇒ 1 + 100β = 25 5

⇒ β = 0 245

Thecorrespondingvalueof Q = 0 5.Thiscan alsobeverifiedbysubstitutinginEq.(11.42).

Amaximallyflatresponseisobtainedwhen Q = 1/√2.SubstitutinginEq.(11.42),weobtain

1 √2 = (1 + 100β) × 104 × 106 104 + 106

⇒ β = 0 5

Inthiscase,thelow-frequencyclosed-loopgainis

A f (0) = A 0 1 + A 0 β = 100 1 + 100 × 0 5 = 1 96 V/V

Ex.11.20 Theclosed-looppolesaretherootsof thecharacteristicequation

1 + A (s )β = 0

1 + ⎛ ⎜ ⎝ 10 1 + s 104 ⎞ ⎟ ⎠ 3 β = 0

Tosimplifymatters,wenormalize s bythe factor 104 ,thusobtainingthenormalized

complex-frequencyvariable S = s /104 ,andthe characteristicequationbecomes

( S + 1)3 + 103 β = 0 (1)

Thisequationhasthreeroots,arealoneanda pairthatcanbecomplexconjugate.Therealpole canbefoundfrom

( S + 1)3 =−103 β

Dividingthecharacteristicpolynomialin(1)by S + 1 + 10β 1/3 givesaquadraticwhosetwo rootsaretheremainingpolesofthefeedback amplifier.Aftersomestraightforwardbut somewhattediousalgebra,weobtain

S 2 + 10β 1/3 2 S + 1 + 100β 2/3 10β 1/3 = 0 (3)

Thepairofpolescannowbeobtainedas

S = 1 + 5β 1/3 ± j 5√3 β 1/3 (4)

Equations(1)and(3)describethethreepoles showninFig.E11.20.

FromEq.(2)weseethatthepairofcomplex poleslieonthe j ω axisforthevalueof β that makesthecoefficientof S equaltozero,thus

βcr = 2 10 3 = 0 008

Ex.11.21

A (s) 99R R

Figure1

FromFig.1,wecaneasilyobtaintheloopgainas

Aβ = A (s ) × 0 01 = 105 1 + s 2π × 10 × 0 01 = 1000 1 + s 2π × 10

Fromthissingle-poleresponse(low-passSTC response)wecanfindtheunity-gainfrequency byinspectionas

f 1 = f P × 1000 = 104 Hz

Thephaseangleat f 1 willbe 90◦ andthusthe phasemarginis 90◦

Ex.11.22 FromEq.(11.48),weobtain

| A f ( j ω1 )| 1/β = 1/|1 + e j θ |

= 1/|1 + cos θ j sin θ |

(a)ForPM = 30◦ , θ = 180 30 = 150◦ ,thus

| A f ( j ω1 )| 1/β = 1/|1 + cos 150◦ j sin 150◦ | = 1 93

(b)ForPM = 60◦ , θ = 180 60 = 120◦ ,thus

| A f ( j ω1 )| 1/β = 1/|1 + cos 120◦ j sin 120◦ | = 1

(c)ForPM = 90◦ , θ = 180 90 = 90◦ ,thus

| A f ( j ω1 )| 1/β = 1/|1 + cos 90◦ j sin 90◦ |

= 1/√2 = 0 707

Ex.11.23 Foraphasemarginof 45◦ , φ =−135◦ .Locatingthepoint φ =−135◦ on thephaseplotinFig.11.38,wefindthe correspondingpointonthegainplotat80dB, thatis,

20 log(1/β) = 80 dB

⇒ β = 10 4 A f = A 1 + Aβ = 105 1 + 105 × 10 4 = 9.09 × 103 = 79 2 dB 80 dB

Ex.11.24 Toobtainstableperformancefor closed-loopgainsaslowas20dB(whichis80 dBbelow A 0 ,orequivalently 104 below A 0 ), wemustplacethenewdominantpoleat 1MHz/104 = 100 Hz.

Ex.11.25 Thefrequencyofthefirstpolemustbe loweredfrom1MHztoanewfrequency f D = 10 MHz 104 = 1000 Hz

thatis,byafactorof1000.Thus,thecapacitance atthecontrollingnodemustbeincreasedbya factorof1000.

Chapter12

SolutionstoExerciseswithintheChapter

Ex:12.1 Toallowfor v O toreach

VCC + VCE sat =−15 + 0.2 =−14.8 V,with Q 1 justcuttingoff(i.e. i E 1 = 0),

I = 14.8 V R L = 14.8 1 k = 14 8 mA

Thevalueof R cannowbefoundfrom

I = V R R = VCC V D R

14 8 = 15 0 7 R ⇒ R = 14.3 14 8 = 0 97 k

Theresultingoutputsignalswingwillbe 14 8

Vto +14 8 V.Theminimumcurrentin Q 1 = 0

Themaximumcurrentin

Q 1 = 14 8 + 14 8 = 29 6 mA

Ex:12.2 At v O =−10 V,wehave

i L = 10 1 =−10 mA

i E 1 = I + i L = 14 8 10 = 4 8 mA

v BE 1 = 0 6 + 0 025 ln 4 8 1

= 0 64 V

v I = v O + v BE 1

=−10 + 0 64 =−9 36 V

At v O = 0 V,wehave

i L = 0 mA

i E 1 = I = 14 8 mA

v BE 1 = 0 6 + 0 025 ln 14 8 1

= 0 67 V

v I = v O + v BE 1

= 0 + 0 67 = 0 67 V

At v O = 10 V

i L = 10 1 = 10 mA

i E 1 = I + i L = 14 8 + 10 = 24 8 mA

v BE 1 = 0 6 + 0 025 ln 24 8 1

= 0 68 V

v I = v O + v BE 1

= 10 + 0 68 = 10 68 V

At v O =−10 V,wehave

i E 1 = 4 8 mA

r e 1 = 25 mV 4 8 mA = 5 2

v o v i = R L R L + r e 1 = 1 1 + 0 0052 = 0 995 V/V

At v O = 0 V,

i E 1 = 14 8 mA

r e 1 = 25 mV 14 8 mA = 1 7

v o v i = R L R L + r e 1 = 1 1 + 0 0017 = 0 998 V/V

At v O =+10 V,

i E 1 = 24 8 mA

r e 1 = 25 mV 24.8 mA = 1 0

v o v i = R L R L + r e 1 = 1 1 + 0.001 = 0 999 V/V

Ex:12.3 a. PL = Vo /√2 2 R L = 8/√2 2 100 = 0.32W

PS = 2 VCC × I = 2 × 10 × 100 × 10 3

= 2W

Efficiency η = PL PS × 100

= 0 32 2 × 100 = 16%

Ex:12.4 (a) PL = 1 2 ˆ V 2 o R L

= 1 2 (4 5)2 4 = 2 53W

(b) PS + = PS = VCC × 1 π ˆ Vo R L

= 6 × 1 π × 4 5 4 = 2 15W

(c) η = PL PS × 100 = 2 53 2 × 2 15 × 100 = 59%

(d)Peakinputcurrents = 1 β + 1

ˆ Vo R L

= 1 51 × 4 5 4

= 22 1mA

(e)UsingEq.(12.22),weobtain

PDN max = PDP max = V 2 CC π 2 R L

= 62 π 2 × 4 = 0.91W

Ex:12.5 (a)Thequiescentpowerdissipatedin

eachtransistor = I Q × VCC

Totalpowerdissipatedinthetwotransistors

= 2 I Q × VCC

= 2 × 2 × 10 3 × 15

= 60mW

(b) I Q isincreasedto10mA

At v O = 0,wehave i N = i P = 10mA

FromEq.(12.31),weobtain

Rout = VT i P + i N = 25 10 + 10 = 1 25

v o v i = R L R L + Rout = 100 100 + 1.25

v o v i = 0 988at v O = 0V

At v O = 10V,wehave

i L = 10V 100 = 0 1A = 100mA

UseEq.(12.27)tocalculate i N :

i 2 N i N i L I 2 Q =0

i 2 N 100 i N 102 = 0

⇒ i N = 101 0mA

UsingEq.(12.26),weobtain

i P = I 2 Q i N 1mA

Rout = VT i N + i P = 25 101.0 + 1 0 2451

v o v i = R L R L + Rout = 100 100 + 0 2451 1

%change = 1 0 988 1 × 100 = 1 2%

InExample12.3, I Q =2mA,andfor v O = 0

Rout = VT

i N + i P = 25 2 + 2 = 6 25

v o v i = R L R L + Rout = 100 100 + 6 25 = 0 94

v O = 10V

i L = 10V 100 = 100mA

Againcalculate i N (for I Q = 2mA)using Eq.(12.27) (i N =100.04mA):

i P = I 2 Q I N = 22 100.04 = 0 04mA

Rout = VT i N + i P = 25 100 04 + 0 04 = 0.25

v o v i = R L R L + Rout 1

%Change = 1 0 94 1 × 100 = 6%

For I Q =10mA,changeis1.2%

For I Q =2mA,changeis6%

(c)Thequiesentpowerdissipatedineach transistor = I Q × VCC

Totalpowerdissipated = 2 × 10 × 10 3 × 15 = 300mW

Ex:12.6 FromExample12.4,wehave VCC =15

V, R L = 100

Q N and Q P matchedand I S = 10 13 Aand β = 50, IBias = 3mA

For v O =10V,wehave i L = 10 100 = 0 1A

Asafirstapproximation, i N 0.1A,

i P = 0, i BN 0 1A 50 + 1 2mA

i D = IBias i BN = 3 2 = 1mA

V BB = 2 VT ln⎛ ⎜ ⎝ 10 3 1 3 × 10 13 ⎞ ⎟ ⎠ (1)

This 1 3 isbecausebiasingdiodeshave 1 3 areaof theoutputdevices.

But V BB = V BEN + V BEP

= VT ln i N I S + VT ln i N i L I S

= V T ln i N (i N i L ) I 2 S (2)

EquatingEqs.1and2,weobtain

2 VT ln⎛ ⎜ ⎝ 10 3 1 3 × 10 13 ⎞ ⎟ ⎠ = VT ln i N (i N i L ) I 2 S

IBias

iN iD iP

10 3 1 3 × 10 13

⎟ ⎠ 2 = i N (i N 0 1) 10 13 2

i N (i N 0 1) = 9 × 10 6

If i N isinmA,then

i N (i N 100) = 9

i 2 N 100 i N 9 = 0

⇒ i N = 100 1mA

i P = i N i L = 0 1mA

For v O =−10V and i L = 10 100 =−0 1A

=−100mA:

Asafirstapproximationassume i P ∼ = 100mA, i N 0 Since i N = 0,currentthrough diodes = 3mA

∴ V BB = 2 VT ln⎛ ⎜ ⎝ 3 × 10 3 1 3 × 10 13 ⎞ ⎟ ⎠ (3)

But V BB = VT ln i N 10 13 + VT ln i P 10 13 = V T ln i P + i L 10 13 + VT ln i P 10 13 (4)

Here i L =−0 1A

EquatingEqs.(3)and(4),weobtain 2 VT ln⎛ ⎜ ⎝ 3 × 10 3 1 3 × 10 13 ⎞ ⎟ ⎠ =

VT ln i P 0 1 10 13 + VT ln i P 10 13 ⎛ ⎜ ⎝ 3 × 10 3 1 3 × 10 13 ⎞ ⎟ ⎠ 2 = i P (i P 0 1) 10 13 2

i P (i P 0.1) = 81 × 10 6

ExpressingcurrentsinmA,wehave

i P (i P 100) = 81

i 2 P 100 i P 81 = 0

⇒ i P = 100 8mA

i N = i P + i L = 0.8mA

Ex:12.7 IC = gm × 2mV/◦ C × 5 ◦ C, mA

where gm isinmA/mV

gm = 10mA 25mV = 0 4mA/mV

Thus, IC = 0 4 × 2 × 5 = 4mA

Ex:12.8 RefertoFig.12.14.

(a)Toobtainaterminalvoltageof1.2V,and since β 1 isverylarge,itfollowsthat

V R 1 = V R 2 = 0 6V

Thus IC 1 = 1mA

I R = 1 2V R1 + R2 = 1 2 2 4 = 0 5mA

Thus, I = IC 1 + I R = 1 5mA

(b)For V BB =+50mV:

V BB = 1 25V I R = 1 25 2.4 = 0 52mA

V BE = 1 25 2 = 0 625V

IC 1 = 1 × e V BE / VT = e 0 025/0 025

= 2 72mA

I = 2 72 + 0 52 = 3 24mA

For V BB =+100mV,wehave

V BB = 1 3V, I R = 1 3 2.4 = 0 54mA

V BE = 1 3 2 = 0 65V

IC 1 = 1 × e V BE / VT = 1 × e 0 05/0 025

= 7 39mA

I = 7 39 + 0 54 = 7 93mA

For V BB =+200mV:

V BB = 1.4V, I R = 1 4 2 4 = 0.58mA

V BE = 0 7V

IC 1 = 1 × e 0 1/0 025 = 54 60mA

I = 54.60 + 0.58 = 55.18mA

For V BB =−50mV:

V BB = 1 15V, I R = 1 15 2 4 = 0 48mA

V BE = 1 15 2

= 0 575

IC 1 = 1 × e 0 025/0 025 = 0 37mA

I = 0.48 + 0.37 = 0.85mA

For V BB =−100mV:

V BB = 1 1V I R = 1 1 2 4 = 0 46mA

V BE = 0 55V

IC 1 = 1 × e 0 05/0 025 = 0 13mA

I = 0 46 + 0 13 = 0 59mA

For V BB =−200mV:

V BB = 1 0V I R = 1 2 4 = 0 417mA

V BE = 0 5V

IC 1 = 1 × e 0 1/0 025 = 0 018mA

I = 0 43mA

Ex:12.9 (a)Fromsymmetryweseethatall transistorswillconductequalcurrentsandhave equal V BE ’s.Thus,

v O = 0V

If V BE 0 7V, then

V E 1 = 0 7Vand I1 = 15 0 7 5 = 2 86mA

Ifweneglect I B 3 ,then

IC 1 2 86mA

Atthiscurrent, | V BE | isgivenby

| V BE |= 0 025ln 2 86 × 10 3 3 3 × 10 14 0 63V

Thus V E 1 = 0 63Vand I1 = 2 87mA

Nomoreiterationsarerequiredand

i C 1 = i C 2 = i C 3 = i C 4 2 87mA

(b)For v I =+10V

Tostarttheiterations,let V BE 1 0 7V

E 1 = 10 7V

I1 = 15 10 7 5 = 0 86mA

Neglecting I B 3 ,weobtain IC 1 I E 1 I1 = 0 86mA Butatthiscurrent | V BE 1 |= VT ln IC 1 I S = 0 025ln 0 86 × 10 3 3 3 × 10 14 = 0 6V

Thus, V E 1 =+10 6Vand I1 = 0 88mA No furtheriterationsarerequiredand

IC 1 0 88mA

Tofind IC 2 ,weuseanidenticalprocedure:

V BE 2 0 7V

V E 2 = 10 0 7 =+9 3V

I2 = 9 3 ( 15) 5 = 4 86mA

V BE 2 = 0 025ln 4.86 × 10 3 3 3 × 10 14

= 0 643V

V E 2 = 10 0 643 =+9 357

I2 = 4 87mA

IC 2 4.87mA

Finally,

IC 3 = IC 4 = 3 3 × 10 14 e V BE / VT where

V BE = V E 1 V E 2 2 = 0 62V

Thus, IC 3 = IC 4 = 1 95mA

Thesymmetryofthecircuitenablesustofindthe valuesfor v I =−10V asfollows:

IC 1 = 4 87mA IC 2 = 0 88mA

IC 3 = IC 4 = 1 95mA

For v I =+10V,wehave v O = V E 1 V BE 3

= 10 6 0 62 =+9 98V

For v I =−10V,wehave v O = V E 1 V BE 3

=−9 357 0 62 =−9 98V

(c)For v I =+10V,wehave

v O 10V I L 100mA

IC 3 100mA

I B 3 = 100 201 0 5mA

Assumingthat | V BE 1 | hasnotchangedmuchfrom 0.6V,then

V E 1 10.6V

I1 = 15 10 6 5 = 0 88mA

I E 1 = I1 I B 3 = 0 88 0 5 = 0 38mA

IC 1 0 38mA

| V BE 1 |= 0 025ln 0 38 × 10 3 3 3 × 10 14

vI = 0 58V

V E 1 = 10 58V

I1 = 15 10 58 5 = 0 88mA

Thus, IC 1 0 38mA

Nowfor Q 2 wehave

V BE 2 = 0 643V

V E 2 = 10 0 643 = 9 357

I2 = 4 87mA

I B 4 0

IC 2 4 87mA (asin(b))

Assumingthat IC 3 100mA, wehave

V BE 3 = 0 025ln 100 × 10 3 3 3 × 10 14

= 0 72V

Thus, v O = V E 1 V BE 3

= 10 58 0 72 =+9 86V

| V BE 4 |= v O V E 2 9 86 9 36 = 0 5V

Thus, IC 4 = 3 3 × 10 14 e 0 5/0 025 0 02mA

Fromsymmetrywefindthevaluesforthecase

v I =−10Vas:

IC 1 = 4 87mA, IC 2 = 0 38mA

IC 3 = 0 02mA, IC 4 = 100mA

v O =−9 86V

Ex:12.10 For Q 1 :

i C 1 = I SP e v EB / VT

i C β N + 1 = I SP e v EB / VT

i C β N I SP e v EB / VT

Thus,effectivescale current = β N I SP

Ex:12.12

vI vO

(b)Effectivecurrentgain ≡ i C i B = β P β N

= 20 × 50 = 1000

100 × 10 3 = 50 × 10 14 e v EB /0 025

v EB = 0 025ln 2 × 1011 = 0 651V

Ex:12.11

v O = 0 V ⇒ I D 1 = 10 mA

⇒ VG S 1 = Vtn + V OV 1

= v tn + 2 I D 1 k n

= 0 5 V + 20 mA 50 mA/V2 = 1 13 V

⇒ v I = 1 13 V

FromEq.(12.38),

R L ≥ VSS V OV 2 I = 2 5 V 0 63 V 10 mA = 187

When v O = 0 V,

I D 1 = 50 mA

gm 1 = 2k n I D 1 = √2 × 80 × 50 = 89 mA/V

A v = R L R L + 1/ gm 1 = 100 100 + 1/0 089 = 0 899 V/V

V OV 2 = 2 I k n = 2 × 50 80 = 1 12 V

⇒ v O min =−2 5 + 1 12

=−1 38 V

WemustalsoensureEquation(12.38)issatisfied.

I ≥ VSS V OV 2 R L

50 mA ≥ 1 38 V 100 = 13 8 mA

Thus,when v O = v O min :

I D 1 = 50 mA 1 38 V 100 = 36.2 mA

⇒ gm 1 = 2k n I D 1

= √2 × 80 × 36 2

= 76 1 mA/V

⇒ A v = R L R L + 1/ gm 1

= 100 100 + 1/0 0761 = 0 884 V/V

Thepercentagechangeistherefore, 0 884 0 899

0.899 × 100% = 1 7%

Exercise12–7

Ex:12.13 AccordingtoEquation(12.44),

Rout ∼ = 1 μgm p

⇒ μ ∼ = 1 gm p Rout

= 1

0 05 × 1

= 20 V/V

gm p = 2 I V OV 1

⇒ I = gm p V OV 1 2 = 50 × 0.3 2 = 7 5 mA

Ex:12.14 I Q = 0 1 × 2 V 100 = 2 mA

gm n = gm p = 2 I Q V OV 1,2 = 2 × 2 0 3 = 13 33 mA/V

AccordingtoEquation(12.45), Rout = 1 μ( gm p + gm n )

= 1 10 × (13 3 + 13 3) = 3 75

Ex:12.15 SeeFig.1.

Figure1

Ex:12.16 f s = 10 × highestfrequencyinaudiosignal

= 10 × 20 = 200 kHz

Since f s isadecadehigherthan f P ,thegainwill havefallenby40dB.ThusthePWMcomponent at f s willbeattenuatedby40dB.

Ex:12.17 Maximumpeakamplitude = V DD

Maximumpowerdeliveredto R L = ( V DD /√2)2 R L = V 2 DD 2 R L

Figure1 continued

For V DD = 35 Vand R L = 8 :

Peakamplitude = 35 V

Maximumpower = 352 2 × 8 = 76 6 W

Exercise12–8

Powerdeliveredbypowersupplies = PL η = 76 6 0 9 = 85 1 W

Chapter13

SolutionstoExerciseswithintheChapter

Ex:13.1 UsingEq.(13.2),weobtain

V ICM min =− VSS + Vtn + V OV 3 −| Vtp |

=−1 65 + 0 5 + 0 3 0 5

=−1 35 V

UsingEq.(13.3),weget

V ICM max = V DD −| V OV 3 |−| Vtp |−| V OV 1 |

= 1 65 0 3 0 5 0 3

=+0 55 V

Thus,

1 35 V ≤ V ICM ≤+0 55 V

UsingEq.(13.5),weobtain

VSS + V OV 6 ≤ v O ≤ V DD −| V OV 7 |

Thus

1 65 + 0 5 ≤ v O ≤ 1 65 0 5

⇒−1 15 V ≤ v O ≤+1 15 V

Inaunity-gainconfiguration,theoutputis connectedtothegateof Q 1 andmust,therefore, respectbothlimits.Theoverlapis

1 15 V ≤ v O ≤+0 55 V

Ex:13.2 Foralldevices,wehave

| V An | = 5 V/ µm × 0.5 µm = 2.5 V

V Ap = 6 V/ µm × 0 5 µm = 3 V

UsingEq.(13.11),weget

A 1 =− 2 | V OV 1 | 1 | V A 2 | + 1 V A 4 =− 2 0 2 V 1 3 V + 1 2 5 V =−13 6 V/V

UsingEq.(13.16),weobtain A 2 =− 2 | V OV 6 | 1 V A 6 + 1 | V A 4 | =− 2 0 3 V 1 2 5 V + 1 3 V =−9 1 V/V

Thetotalgainis

A v = A 1 A 2 =−13 6 ×−9 1

= 123 8 V/V

Wefindtheop-ampoutputresistanceasfollows,

r o6 = V An I D 6 = 2 5 V 0 1 mA = 25 k

r o7 = V Ap I D 6 = 3 V 0 1 mA = 30 k

Ro = r o6 r o7 = 25 30 = 13 6 k

Ex:13.3 Thefeedbackisofthevoltagesampling type(i.e.,theconnectionattheoutputisashunt one),thus

Rout = Rof = Ro 1 + Aβ where

Ro = r o6 r o7

A = gm 1 (r o2 r o4 ) gm 6 (r o6 r o7 )

β = 1

Thus, Rout = r o6 r o7 1 + gm 1 (r o2 r o4 ) gm 6 (r o6 r o7 )

Usually,

A 1

Thus,

Rout 1 gm 6 [ gm 1 (r o2 r o4 )]

Ex:13.4 UsingEq.(13.31),weget

f t = G m 1 2π C C

⇒ C C = G m 1 2π f t

= 0 35 × 10 3

2π × 20 × 106

= 2 8 pF

FromEq.(13.26),wehave

f Z = G m 2 2π C C = 1 0 × 10 3

2π × 2 8 × 10 12 57 MHz

FromEq.(13.30),wehave

f P 2 = G m 2 2π C 2

= 1.0 × 10 3 2π × 2 × 10 12 = 80 MHz

Thus, f t islowerthan f Z and f P 2

Exercise13–2

Ex:13.5 (a)UsingEq.(13.36),wehave

f t = G m 1 2π C C

⇒ C C = G m 1 2π f t = 1 × 10 3

2π × 100 × 106 = 1 6 pF

A 0 = G m 1 (r o2 r o4 ) G m 2 (r o6 r o7 )

= 1(100 100) × 2(40 40)

= 50 × 2 × 20 = 2000 V/V

f 3dB = f t A 0 = 100 × 106 2000 = 50 kHz

(b)FromEq.(13.34),wehave

R = 1 G m 2 = 1 2 × 10 3 = 500 (c)FromEq.(13.35),wehave

f P 2 = G m 2 2π C 2 = 2 × 10 3 2π × 1 × 10 12 = 318 MHz

φ P 2 =−tan 1 f t f P 2 =−tan 1 100 318 =−17 4◦

PM = 90 17 4 = 72 6◦

Ex:13.6 UsingEq.(13.47),weobtain

SR = V OV 1 ωt = 0 2 × 2π × 100 × 106 = 126 V/µs

UsingEq.(13.45),

SR = I C C

⇒ I = 126 × 106 × 1 6 × 10 12 = 200 µA

Ex:13.7

G m 2 = gm 6 = 2 I D 6 V OV = 2 × 0 5 0 25 = 4 mA/V

f P 2 = G m 2 2π × C 2 = 4 2π × 15 × 10 12 = 42 MHz

G m 1 = gm 1 = 2( I /2) V OV = 2 × 0 3 0 25 = 1.2 mA/V

f t = G m 1 2π × C C ⇒ C C = G m 1 2π × f t = 1.2 × 10 3 2π × 15 3 × 106 = 12 5 pF

Ex:13.8 I REF = 0 2 mA 10 = 20 µA = I D 8

I D 8 = 1 2 k p W L 8 V 2 OV ⇒ W L 8 = 2 I D 8 k p × V 2 OV = 2 × 20 × 10 6 86 × 10 6 × 0 52 = 1 86

W8 = 1 86 × L 8 = 1 86 × 0 6 = 1 1 µm

W5 W8 = I D 5 I D 8 ⇒ W5 = 200 20 × 1 1 = 11 µm

W6 W8 = I D 6 I D 8 ⇒ W6 = 400 20 × 1.1 = 22 µm

| VG S 8 |=| Vtp |+| V OV |= 0 5 + 0 5 = 1 0 V

Therequiredresistorvalueis

R = 1 V 1 V ( 1 V) I REF = 1 V 20µA = 50 k

Ex:13.9 Totalbiascurrent = 300 µA = 2 I B

⇒ I B = 150 µA

I B = I D 1 + I D 3 150 = I D 1 + 0 25 I D 1

⇒ I D 1 = 120 µA

I = I D 1 + I D 2

= 120 + 120 = 240 µA

I D 3,4 = 0 25 I D 1,2 = 0 25 × 120 = 30 µA

Ex:13.10 UsingEq.(13.50),weget

V ICM max = V DD −| V OV 9 |+ Vtn

= 1.65 0.3 + 0.5 =+1.85 V UsingEq.(13.51),weobtain

V ICM min =− VSS + V OV 11 + V OV 1 + Vtn

V ICM min =−1 65 + 0 3 + 0 3 + 0 5

tan 1 f t f P 2 = 20◦ ⇒ f t = f P 2 × tan20◦ = 15 3 MHz

=−0 55 V

Thus,

0 55 V ≤ V ICM ≤+1 85 V

UsingEq.(13.54),weget

V O max = V DD −| V OV 10 |−| V OV 4 |

= 1 65 0 3 0 3 =+1 05 V

UsingEq.(13.55),weobtain

V O min =− VSS + V OV 7 + V OV 5 + Vtn

=−1 65 + 0 3 + 0 3 + 0 5

=−0 55 V

Thus,

0 55 V ≤ v O ≤+1 05 V

Ex:13.11 G m = gm 1 = gm 2

G m = 2( I /2) V OV 1 = I V OV 1

= 0 24 0 2 = 1 2 mA/V

r o2 = | V A | I /2 = 20 0 12 = 166 7 k

r o4 = | V A | I D 4 = | V A | I B I 2 = 20 0 150 0 120

= 20 0 03 = 666 7 k

r o10 = | V A | I B = 20 0 15 = 133 3 k

gm 4 = 2 I D 4 | V OV | = 2 × 0 03 0 2 = 0 3 mA/V

Ro4 = ( gm 4 r o4 )(r o2 r o10 )

= (0 3 × 666 7)(166 7 133 3)

= 14 8 M

gm 6 = 2 I D 6 V OV = 2 × 0 03 0 2 = 0.3 mA/V

r o6 = r o8 = | V A | I D 6,8 = 20 0 03 = 666 7 k

Ro6 = gm 6 r o6 r o8

= 0.3 × 666.7 × 666.7 = 133.3 M

Ro = Ro4 Ro6 = 14 8 133 3 = 13 3 M

A v = G m Ro = 1 2 × 13 3 × 103 = 16,000 V/V

Ex:13.12 (a)TheNMOSinputstageoperates overthefollowinginputcommon-moderange:

VSS + 2 V OV + Vtn ≤ V ICM ≤ V DD −| V OV |+ Vtn thatis,

( 2 5 + 0 6 + 0 7) ≤ V ICM ≤ (2 5 0 3 + 0 7)

1 2 V ≤ V ICM ≤+2 9 V

(b)ThePMOSinputstageoperatesoverthe followinginputcommon-moderange: VSS + V OV −| Vtp |≤ V ICM ≤ V DD 2| V OV |−| Vtp | thatis,

( 2 5 + 0 3 0 7) ≤ V ICM ≤ (2 5 0 6 0 7) 2 9 V ≤ V ICM ≤+

(c)Theoverlaprangeis

(d)Theinputcommon-moderangeis 2 9 V ≤ V ICM ≤+2 9 V

Ex:13.13 Denotethe ( W/ L ) ofthetransistorsin thewide-swingmirrorby ( W/ L ) M .Transistor Q 4 has ( W/ L )5 = 1 4 ( W/ L ) M IREF = 1 2

Thus, V OV 5 2 = V OV where V OV istheoverdrivevoltageforeachof themirrortransistors.Thus, V5 = Vtn + 2 V OV whichisthevalueof VBIAS neededinthecircuit ofFig.13.13(b).

Ex:13.14 I S 2 = 2 I S 1 UsingEq.(13.72),weobtain I = VT R2 ln I S 2 I S 1 0 01 = 0 025 R2 ln2 ⇒ R2 = 1 73 k

R3 = R4 = 0 2 V 0 01 mA = 20 k

Ex:13.15 Toobtain I5 = 10 µA,transistor Q 5 musthavethesameemitterareaas Q 2 and

R5 = R2 = 1.73 k

Toobtain I6 = 5 µA,transistor Q 6 musthave one-halftheemitterareaof Q 2 and

R6 = 2 R2 = 3 46 k

Toobtain I7 = 20 µA,transistor Q 7 musthave doubletheemitterareaof Q 3 and

R7 = 0 5 R3 = 10 k

Toobtain I8 = 10 µA,transistor Q 8 musthave thesameemitterareaas Q 3 and

R8 = R3 = 20 k

Ex:13.16 RefertoFig.13.23.AtnodeX, I REF = 2 I 1 + 2 β P + 2 I β P

2 I β P + 1 β P + 2

2 I

Thus, I = I REF 2 = 9.5 µA resultingin

IC 1 = IC 2 = IC 3 = IC 4 = 9 5 µA

Ex:13.17 Figure1onnextpageshowsthe determinationoftheloopgainofthefeedback circuitthatstabilizesthebiascurrentsofthefirst stageofthe741opamp.Notethatsince I REF is assumedtobeconstant,wehaveshownits incrementalvalueatnodeXtobezero.Observe thatthiscircuitshowsonlyincremental quantities.Theanalysisshownprovidesthe returnedcurrentsignalas

Ir =− It β P 1 + 2 β P For β P 1,wehave

Ir −β P It andtheloopgain Aβ is

Ex:13.18 I B = 1 2 ( I B 1 + I B 2 ) = 1 2 I β N + 1 + I β N + 1 = I β N + 1 I β N = 9 5 200 = 47 5 nA

I OS = 0 1 × I B = 4 75 nA

Ex:13.19 VC 1 = VCC V EB 8 = 15 0 6 = 14 4 V

Q 1 and Q 2 saturatewhen V ICM exceeds VC 1 by 0.3V.Thus,

V ICM max =+14.7 V

Ex:13.20 r e = VT I E 25 mV 9 5 µA = 2 63 k

gm 1 1 r e = 0 38 mA/V

G m 1 = 1 2 gm 1 = 0 19 mA/V

Rid = (β N + 1) × 4r e = 201 × 4 × 2 63

= 2.1 M

Ex:13.21 r o4 = | V Ap | I = 50 V 9 5 µA = 5 26 M

gm 4 = 0 38 mA/V

r e 2 = 2 63 k

r π 4 = β P gm 4 = 50 0 38 = 131 6 k

Ro4 = r o4 1 + gm 4 (r e 2 r π 4 )

= 5 261 + 0 38(2 63 131 6)

= 10 4 M

10.5M isobtainedbyneglecting r π 4

r o6 = V An I = 125 V 9 5 µA = 13 16 M

gm 6 = 0 38 mA/V

R6 = 1 k

r π 6 = 200 0 38 = 526 3 k

Ro6 = r o6 1 + gm 6 ( R2 r π 6 )

= 13 161 + 0 38(1 526 3)

Exercise13–5

ThisfigurebelongstoExercise13.17.

= 18 2 M

Ro1 = 0 5 × Ro4 = 5 3 M

Ex:13.22 | A v o |= G m 1 Ro1

Using G m 1 givenintheanswertoExercise13.20,

G m 1 = 0 19 mA/V and Ro1 givenintheanswertoExercise13.21,

Ro1 = 5.3 M weobtain

| A v o |= G m 1 Ro1

= 0 19 × 5 3 = 1007 V/V

Ex:13.23

Ro6 = r o6 = | V Ap | IC 6 = 50 V 19 µA = 2 63 M

Ro7 = r o7 [1 + gm 7 ( R4 r π 7 )]

where

r o7 = V An IC 7 = 125 V 19 µA = 6.58 M

gm 7 = IC 7 VT = 19 µA 0 025 V = 0 76 mA/V

R4 = 5 k

r π 7 = β N gm 7 = 200 0 76 = 263 2 k

Ro7 = 6 58[1 + 0 76(5 263 2)] = 31.1 M

Ro = Ro6 Ro7 = 2 63 31 1 = 2 43 M

Ex:13.24 UsingEq.(13.84),weobtain

G m cm = m 2 Ro

= 5.5 × 10 3 2 × 2 43 × 106 = 1 13 × 10 6 mA/V

Figure1

CMRR = G m 1 G m cm = 0 19 1 13 × 10 6 = 1.68 × 105 or 104 5 dB

Withoutcommon-modefeedback,theCMRRis reducedbyafactorequalto β P .Equivalently,

CMRR = 104 5 20 log β P

= 104 5 20 log 50

= 70 5 dB

Ex:13.25 RefertothecircuitinFig.13.29.

(a)Currentgainfrom v IP tooutput

= (β1 + 1)(β2 + 1)β P

β1 β2 β P = β N β 2 P

Currentgainfrom v IN tooutput = (β3 + 1)β N

β3 β N = β 2 N

(b)For i L =+10 mA,

currentneededat v IP input

= 10 β N β 2 P = 10 40 × 102 = 2 5 µA

For i L =−10 mA,

currentneededat v IN input = 10 β 2 N = 10 402 = 6 25 µA

Ex:13.26 I Q = 0 4 mA, I = 10 µA, I SN I S 10 = 10, I S 7 I S 11 = 2

UsingEq.(13.93),weobtain 0 4 × 103 = 2 I 2 REF 10 × 10 × 2

where IREF isin µA.Thus, IREF = 10 µA

For i L =−10 mA,then i P = 10 + i N

UsingEq.(13.94),weget

i N (10 + i N ) i N + 10 + i N = 0 2 ⇒ i 2 N 9 6i N + 2 = 0 ⇒ i N = 0 2 mA i P = 10 2 mA

Chapter14

SolutionstoExerciseswithintheChapter

Ex:14.1 A =−20log| T | [dB]

| T | = 10.990.90.80.70.50.10

A 00.1123620 ∞

Ex:14.2 A max =−20log0 9 0 9dB

A min = 20log 1 0 01 = 40dB

Ex:14.3 (a)

T (s ) = K

s 3 + b2 s 2 + b1 s + b0

Thisisalow-passfilterwith3transmissionzeros at s =∞

(b)

T (s ) = Ks

s 3 + b2 s 2 + b1 s + b0

Thereisonetransmissionzeroat s = 0,andtwo transmissionzerosat s =∞ ⇒ Bandpassfilter.

(c)

T (s ) = Ks 2

s 3 + b2 s 2 + b1 s + b0

Therearetwotransmissionzerosat s = 0,and onetransmissionzeroat s =∞ ⇒ Bandpass.

(d)

T (s ) = Ks 3

s 3 + b2 s 2 + b1 s + b0

Threetransmissionzerosat s = 0 ⇒ Highpass.

Ex:14.4

T (s ) = k (s + j 2)(s j 2)

s + 1 2 + j 3 2 s + 1 2 j 3 2

s 2 + 4

= k

s 2 + s + 1 4 + 3 4

= k s 2 + 4

s 2 + s + 1

T (0) = k 4 1 = 1

k = 1 4

∴ T (s ) = 1 4 s 2 + 4

s 2 + s + 1

Ex:14.5

T (s ) = a3 s s 2 + 4

(s + 0 1 + j 0 8)(s + 0 1 j 0 8) × 1

(s + 0 1 + j 1 2)(s + 0 1 j 1 2)

= a3 s s 2 + 4

s 2 + 0 2s + 0 65 s 2 + 0 2s + 1 45

Ex:14.6

T (s ) =− R2 R1 1 1 + s ω0

where R2 / R1 = 10 and ω0 = 105 rad/s.The | T | willbereducedby3dBfromthevalueatdc,at

ω = ω0 = 105 rad/s.Thus,

ω P = 105 rad/s

The | T | at ω = ωs = 3ω0 is | T ( j ωs ) |= 10 1 + 3ω0 ω0 2

Thus,relativeto | T (0) |,thetransmissionwillbe lowerby 20 log 1 + 32 ,whichis10dB.Thus,

A (ωs ) = 10 dB

Ex:14.7 R2 R1 Vi Vo C 104 = 1 CR 1 , R1 = 10k

C = 0 01 µF = 10nF

H.F.gain= R2 R1 =−10

R2 = 100k

Ex:14.8 T (s ) = ω 2 0 s 2 + s ω0 Q + ω 2 0

Formaximallyflatresponse, Q = 1/√2,thus

T (s ) = ω 2 0

s 2 + s √2 ω0 + ω 2 0

T ( j ω) = ω 2 0 (ω 2 0 ω 2 ) + j √2 ωω0

| T ( j ω) |= ω 2 0 (ω 2 0 ω 2 )2 + 2ω 2 ω 2 0

= ω 2 0 ω 4 0 + ω 4 = 1 1 + ω ω0 4 At ω = ω0 ,

| T ( j ω0 ) |= 1 √1 + 1 = 1 √2 whichis3dBbelowthevalueat ω = 0 (0dB). Q E D

Ex:14.9 T (s ) = sK ω0 Q s 2 + s ω0 Q + ω 2 0

where K isthecenter-frequencygain.For ω0 = 105 rad/sand3-dBbandwidth = 103 rad/s, wehave

3-dB BW = ω0 Q

103 = 105 Q

⇒ Q = 100

Also,foracenter-frequencygainof10,wehave

K = 10

Thus,

T (s ) = 104 s s 2 + 103 s + 1010

Ex:14.10

T (s ) = k s 2 + ω 2 n s 2 + s ω0 Q + ω 2 0 For ωn = 1 2 rad/s, ω0 = 1 rad/s, Q = 5,anddc gain= k ω 2 n ω 2 0 = 1,i.e., k = 0 694,

T (s ) = 0 694 s 2 + 1 44

s 2 + 0 2 s + 1

T (∞) = 0 694

Ex:14.11 | T ( j ω) |= 1/ 1 + 2 ( ω ω P )2 N ω P = ω3dB , = 1, and N = 5, | T ( j ω) |= 1/ 1 + ( ω ω3dB )10

= 1/ 1 + ( f f 3dB )10

| T ( j ωs ) |= 1/ 1 + ( 30 10 )10

A (ωs ) =−20 log | T ( j ωs ) | = 47 7 dB

Ex:14.12 = 10 A max 10 1 = 10 1 10 1 = 0 5088

| T ( j ω ) | = 1 1 + 2 ω ω p 2 N A (ω s ) =−20log| T ( j ω s )| = 10log 1 + 2 ω s ω p 2 N

Thus, 10log 1 + 0 50882 × 1 52 N ≥ 30

N = 10: LHS = 29 35dB

N = 11: LHS = 32 87dB

∴ Use N = 11andobtain

A min = 32 87dB

Ex:14.13 Therealpoleisat s = –1

Thecomplexconjugatepolesareat

s =− cos60◦ ± j sin60◦

=−0.5 ± j 3 2

Notethat ω0 = 1 rad/sand Q = 1. j ( )1/3 1 s 30 60 1 e

T (s ) = 1 (s + 1) s + 0 5 + j 3 2 s + 0 5 j 3 2

= 1 (s + 1) s 2 + s + 1

DCgain = 1

Ex:14.14

= 10 A max 10 1 = 10 0 5 10 1 = 0 3493

A (ω s ) = 10log 1 + 2 cosh2 N cosh 1 ω s ω p

= 10log 1 + 0 34932 cosh2 7cosh 1 2

= 64 9dB

For A max = 1dB, = 100 1 1 = 0 5088

A (ω s ) = 10log 1 + 0 50882 cosh2 7cosh 1 2

= 68 2dB

Thisisanincreaseof3.3dB

Ex:14.15 = 10 1 10 1 = 0 5088

(a)FortheChebyshevfilter:

A (ω s )

= 10log 1 + 0 50882 cosh2 N cosh 1 1 5

≥ 50dB

N = 7.4 ∴ choose N = 8

Excessattenuation =

10log 1 + 0 50882 cosh2 8cosh 1 1 5 50

= 55 50 = 5dB

(b)ForaButterworthfilter

= 0 5088

A (ω s ) = 10log 1 + 2 ω s ω p 2 N

= 10log 1 + 0 50882 (1 5)2 N ≥ 50

N = 15 9 ∴ choose N = 16

Excessattenuation =

10log 1 + 0 50882 (1 5)32 50 = 0 5dB

Ex:14.16 Maximallyflat ⇒ Q = 1 √2

ω 0 = 2π × 100 × 103

Arbitrarilyselecting R = 1k ,weget

Q = ω 0 CR ⇒ C = 1 √2 × 2π 105 × 103 = 1125pF L R C Vi Vo Also Q = R ω 0 L ∴ L = R ω 0 Q = 103 2π 105 × 1 √2 = 2.25mH

Ex:14.17 RefertoFig.14.19(c).

ω0 = 1/√ LC = 105 rad/s

3-dB BW = ω0 Q = 1 CR = 103 rad/s

Selecting R = 100 k ,

C = 1 103 R = 1 103 × 105 = 10 8 F = 10 nF

L = 1 ω 2 0 C = 1 1010 × 10 8 = 0 01 H = 10 mH

Ex:14.18 RefertoFig.14.20(a).Selecting,

R1 = R2 = R3 = R5 = R and

C 4 = C gives

Z in = sCR 2 Thus, L = CR 2

Toobtain L = 100 mH,weselect C = 1 nF. Thus,

100 × 10 3 = 1 × 10 9 R 2

⇒ R = 104 = 10 k

Thevaluesof C and R arepracticallyconvenient.

Ex:14.19

f 0 = 10kHz, f 3dB = 500Hz

Q = f f 3dB = 104 500 = 20

UsingEqs.(14.53)and(14.54)andselecting, C = 1 2nF,

weget,

R = 1 ω 0 C

= 1 2π104 × 1 2 × 10 9 = 13 26k

R6 = QR = 20 × 13 26 = 265k

Now,

K = center-frequencygain = 10

Thus, 1 + r 2 / r 1 = 10

Selecting r 1 = 10k ,weobtain r 2 = 90k .

Ex:14.20 RefertotheKHNcircuitinFig.14.24.

Choosing C = lnF,weobtain

R = 1 ω 0 C = 1 2π 104 × 10 9 = 15.9k

UsingEq.(14.65)andselecting R1 = 10k , weget

R f = R1 = 10k

UsingEq.(14.66)andsetting R2 = 10k , we obtain

R3 = R2 (2 Q 1) = 10 (2 × 2 1) = 30k

High-frequencygain = K = 2 1 Q = 1.5V/V

Thetransferfunctiontotheoutputofthefirst integratoris

Vbp

Vi =− 1 sCR × Vhp Vi = sK / (CR ) s 2 + s ω 0 Q + ω 2 0

Thusthecenter-frequencygainisgivenby

K

CR Q ω 0 = KQ = 1 5 × 2 = 3V/V

Ex:14.21 RefertoFig.14.25(b)

CR = 1 ω 0 ⇒ C = 1 2π 104 × 104 = 1 59nF

Rd = QR = 20 × 10 = 200k

Centerfrequencygain = KQ = 1

∴ K = 1 Q = 1 20

R g = R / K = 20 R = 200k

Ex:14.22 RefertoFig.14.27(a)andEqns. (14.80)-(14.85).Selecting

C 1 = C 2 = C = 1 nF, and,

R3 = R then,

R = 10 4 10 9 = 105 = 100 k

R3 = R = 100 k

R4 = R 100 = 1 k

Thecenter-frequencygainisgivenbyEq. (14.85),

K =−2 Q 2 =−2 × 25 =−50 V/V

Ex:14.23 RefertoFig.14.29andEqns. (14.94)-(14.101).Selecting

R1 = R2 = R

C 4 = C then

C 3 = C 4 Q 2 = C 4 × 1 2 = C 2

Thus,ifweselect C = 1 nFthen

C 4 = 1 nF

C 3 = 0 5 nF Now,

CR = 2 Q ω0 = 2 × 1/√2 105 = 1 414 × 10 5 s

Thus, R = 1 414 × 10 5 1 × 10 9 = 1 414 × 104 = 14 14 k

⇒ R1 = R2 = 14 14 k

Finally,fromthetransferfunctioninEq.(14.94)

DCgain = 1 V/V

Ex:14.24 FromEq.(14.108),

C 3 = C 4 = ω 0 Tc C = 2π 104 × 1 200 × 103 × 20 = 6 283pF

FromEq.(14.110),

C 5 = C 4 Q = 6 283 20 = 0 314pF

FromEq.(14.111),

R4 = R 4 Q 2 = R 4 × 25 = R 100 and CR = 2 Q ω0 = 2 × 5 105 = 10 4 s

Centre-frequencygain= C 6 C 5 = 1

C 6 = C 5 = 0 314pF

Chapter15

SolutionstoExerciseswithintheChapter

Ex:15.1 Polefrequency f 0 = 1kHz

Center-frequencygain = 1 Amplifiergain

= 1 2 V/V

Ex:15.2 RefertoFig.15.2(a).

ω0 = 1 √ LC = 1 √0 1 × 10 3 × 10 × 10 9 = 106 rad/s

Theloopgainat ω0 = (1 + r 2 r 1 ) × 1 = 1 01

Thus,theconditionofoscillationissatisfied.

Ex:15.3 ω0 = 1 √ LC (a)

L −→ 1 01 L

ω0 + ω0 = 1 √1 01 LC = 0 995 √ LC

Thus,

ω0

ω0 × 100 =−0 5%

(b)

C −→ 1 01C

ω0 + ω0 = 1 √ L × 1 01C = 0.995 √ LC

ω0

ω0 × 100 =−0 5% (c)

R −→ 1 01 R

Since ω0 is not afunctionof R ,changing R has noeffecton ω0 ,thatis, ω0 = 0.

Ex:15.4 RefertoFig.15.5.Notingthatthe sinusoidatthepositiveinputterminaloftheop amphasapeakamplitudeof0.9V,toobtaina 5-Vpeakamplitudeattheoutput,theclosed-loop gainoftheopampmustbe

1 + r 2 r 1 = 5 0 9 = 5 6

⇒ r 2 r 1 = 4 6

Ex:15.5 (a) L (s ) = 1 + R2 R1 Z P Z P + Z S = 1 + R2 R1 1 1 + Z S Y P = 1 + 20 3 10 1 1 + R + 1 sC 1 R + sC

= 3 03

3 + sCR + 1 sCR

where R = 10k and C = 16nF

Thus,

L (s ) = 3 03

3 + s 16 × 10 5 + 1 s × 16 × 10 5

Theclosed-looppolesarefoundbysetting L (s ) = 1;thatis,theyarethevaluesofs, satisfying

3 + s × 16 × 10 5 + 1 s × 16 × 10 5 = 3 03

⇒ s = 105 16 (0 015 ± j )

(b)Thefrequencyofoscillationis 105 /16 rad/s orapproximately1kHz.

(c)UsingEq.(15.11),thepositivepeakamplitude canbefoundas

v o+ = 1 3 × 15 + 1 + 1 3 × 0 7 / 2 3 1 3 × 1 3

= 10 68 V

Sincethelimitercircuitissymmetric,the negativepeakamplitudealsowillbe10.68V. Thus,thepeak-to-peakamplitudeoftheoutput sinusoidwillbe

ˆ v op p = 2 × 10 68 = 21 36 V

Ex:15.6 (a)Foroscillationstostart,weneed fromEq.(15.10), R2 / R1 = 2; thusthe potentiometershouldbesetsothatitsresistance togroundis 20k

(b)FromEq.(15.9), f 0 = 1 2π RC = 1 2π 10 × 103 × 16 × 10 9 = 1kHz

Ex:15.7 Figure1showsthecircuittogetherwith theanalysisdetails.Thecurrent I canbefoundas I = Vo R f 1 + 1 sCR + Vo sCRR f 2 + 1 sCR

Finally, Vx canbefoundfrom Vx =− 1 sCR f Vo 2 + 1 sCR I sC =− 1 sCR f Vo 2 + 1 sCR Vo sCR f 1 + 1 sCR

ThisfigurebelongstoExercise15.7.

Vx Vo = 3 sCR f + 4 s 2 C 2 RR f + 1 s 3 C 3 R 2 R f

Vo Vx =− s 2 C 2 RR f 4 + s 3CR + 1 sCR

For s = j ω ,

Vo Vx = ω 2 C 2 RR f 4 + j 3ω CR 1 ω CR

Ex:15.8 Fromtheloop-gainexpression

Vo Vx = ω 2 C 2 RR f 4 + j 3ω CR 1 ω CR weseethatthephasewillbezeroat

3ω0 CR = 1 ω0 CR

⇒ ω0 = 1 √3CR

Atthisfrequency,wehave

Vo Vi = ω 2 0 C 2 RR f 4 = 1 12 R f R

Thustheminimumvaluethat R f musthavefor oscillationstostartis

R f = 12 R

UsingthevaluesinFig.15.10,weobtain

ω0 = 1 √3 1 16 × 10 9 × 10 × 103 = 3 608 krad/s

f 0 = ω0 2π = 3.608 × 103 2π = 574 3 Hz

R f ≥ 12 × 10 = 120 k

Ex:15.9 ω 0 = 1 CR ⇒ CR = 1 2π 103

For C = 16nF, wehave R = 10k . Thepeak-to-peakamplitudeofthesquarewaveis 1.4V,whichhasafundamental-frequencycomponentof 4 × 1 4 π = 1 8 Vpeak-to-peak.Since theoutputistwiceaslargeasthevoltageacross theresonator,itspeak-to-peakamplitudeis3.6V.

Ex:15.10 RefertoFig.15.14(a).Theadmittance seenbythetransistorbetweendrainandsourceis

Y = sC 1 + 1 sL + 1 sC 2 = s 2 LC 1 + C 1 C 2 + 1 sL + 1 sC 2 = s 2 + 1/ L C 1 C 2 C 1 + C 2 s 1 C 1 + 1 sLC 1 C 2

Y ( j ω) = ω 2 + 1/ L C 1 C 2 C 1 + C 2 j ω C 1 1 1 ω 2 LC 2 fromwhichweseethatat

ω = ω0 = 1/ L C 1 C 2 C 1 + C 2 thenumeratoriszero and Y ( j ω0 ) = 0.Q.E.D.

Ex:15.11 RefertothecircuitinFig.15.15(a).

R = Rcoil r o R L = Q ω0 C 1 100 × 103 100 × 103 = 100 106 × 0 01 × 10 6 105 105

Figure1

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.