P. E. 10.1 (a)
CHAPTER 10

Att=2ns,y=1m, 0.9425 30cos(220.96/4)2.844zz e
1 106 1 09425 1 06 ln(/.) . ln . 542mm (d) 2 /60 ||188.11 11.002[1(0.09)] 4
P. E. 10.8
(c) 2 ave ||(24) 125 74.15148.9 22(120)20 oyz kyz o E
P. E. 10.12 (a)
(b) 122 oo,/ E isparalleltotheplaneofincidence.Since 12 o , wemayusetheresultofProb.10.42,i.e.
(c)11sincos rryrz kaa .Oncekrisknown,Erischosensuchthat 11 .0or.0.Let (cossin)cos(sincos) rrr rorryrzrr Etyz
Onlythepositivesignwillsatisfytheboundaryconditions.Itisevidentthat
(cossin)cos(24)ioiiyizEtyz Eaa
Since ri ,
EE orroii coscos. //// 102946
EEorroii sinsin. //// 51473
1124sin,cosrr
i.e.
Eaatyz ryz (..)cos() 2946147324
1(105)cos(24)(2.9461.473)cos(24) iryzyztyztyz EEEaaaa V/m
(d)22sincos ttytz kaa .Since
Eaa
22212220 r sinsin,cos tit 1 2 1 25 9 20
2220 19 20 8718cos. t
EEottoit coscos.. // 06474125 19 20 7055
EEottoit sinsin.. // 06474125 1 20 16185
Hence 2(7.0551.6185)cos(28.718) tyztyz EEaa V/m
(d)tan. //// BB o 2 1 26343
P.E. 10.13
Si= 104 104 14 06 . . . . =2.333 So= 102 102 12 08 .. =1.5
Prob. 10.1 (a)Wavepropagatesalong+ax (b)
Thesearesketchedbelow.

Prob. 10.2 (a) 8 3106510m 60 c
8 6 310 150m 210
8 6 310 2.5m 12010
8 9 310 0.125m 2.410
Prob. 10.3
Prob. 10.4
Prob.
Assumingthat1,weincludeuptothesecondpowerinand neglecthigher-orderterms.
(d)Thephasedifferenceis2.74
Prob. 10.14
Prob. 10.18 (a)Along-xdirection.
Prob. 10.20
Prob. 10.22
Prob. 10.25 Foragoodconductor,
No,notconducting.
No,notconducting.
Yes,conducting.
Prob. 10.26
(seeTable10.2).
Prob. 10.36 y (25)sin()
E
TheratioE/remainsthesameastchanges.Hencethewaveislinearlypolarized
z
Prob. 10.37
Hence,wehavecircularpolarization.
Hence,wehaveellipticalpolarizatio
Prob. 10.38
(a)Wecanwrite x Re()(4060)cos(10)
SinceE/doesnotchangewithtime,thewaveislinearlypolarized.
(b)Thisisellipticallypolarized.
Prob.
Prob. 10.40 Wecanwrite Esas 12 1 2 12 ()() where 1 ()() 2 1 ()() 2
Werecognizethatandarecircularlypolarizedwaves.Theproblemisthereforeproved. s
Prob. 10.41 (a) 12 When0, (,)()cos()
Thetwocomponentsareinphaseandthewaveislinearlypolarized.
When/2, cos(/2)sin()
Wecancombineandtoshowthatthewaveisellipticallypolarized. zoo xz
When,
Thus,thewaveislinearlypolarized.
Prob.
Similarly,
Prob.
.or0.1716 (Notethatthesevaluesaremutualreciprocals,reflectingtheinherentsymmetryofthe problem.)
Thefractionoftheincidentpowerreflectedis
Thetransmittedfractionis

Prob. 10.68 (a)
Prob.10.72
From
From kHE , kHE aaa
Prob. 10.73
Similarly,
2 2222 cossin sincos(sincos)sincos(sincos)
2 cossin (sincossincos)(coscossinsin)
it ittiitit
2 cossin sin()cos()
Fromthefigure, rrzzryy
Hence,43ryz kaa
17.46,12cos0.9539,120,/260ttoo 21 // 21 coscos(0.9539)(0.8)20.253 coscos(0.9539)(0.8)
But k ioo 1 k k tkk i ti 2210
kkkk tytttztt cos.,sin, 95393
kaa tyz 95393
Notethat kkk izrztz 3
But ()(sincos)6.256(0.30.9539) tyytzztotytzyz EEE
Hence,
Prob. 10.76
Prob. 10.78
Prob. 10.79
(a)2.111.45
Prob.10.80
Microwaveisused:
(1)Forsurveyinglandwithapieceofequipmentcalledthe tellurometer. Thisradar systemcanpreciselymeasurethedistancebetweentwopoints.
(2)Forguidance.Theguidanceofmissiles,thelaunchingandhomingguidanceof spacevehicles,andthecontrolofshipsareperformedwiththeaidofmicrowaves.
(3)Insemiconductordevices.Alargenumberofnewmicrowavesemiconductor deviceshavebeendevelopedforthepurposeofmicrowaveoscillator, amplification,mixing/detection,frequencymultiplication,andswitching. Withoutsuchachievement,themajorityoftoday’smicrowavesystemscouldnot exist.
Prob.10.81
(a)IntermsoftheS-parameters,theT-parametersaregivenby T11=1/S21,T12=-S22/S21,T21=S11/S21,T22=S12-S11S22/S21
(b)T11=1/0.4=2.5,T12=-0.2/0.4, T21=0.2/0.4,T22=0.4-0.2x0.2/0.4=0.3 Hence,
T = 2.50.5 0.50.3
Prob. 10.82
SinceZL=Zo, L=0.
i=S11=0.33–j0.15
g=(Zg-Zo)/(Zg+Zo)=(2–1)/(2+1)=1/3
o=S22+S12S21 g/(1-S11 g)
=0.44–j0.62+0.56x0.56x(1/3)/[1–(0.11–j0.05)]
=0.5571-j0.6266
Prob. 10.83 Themicrowavewavelengthsareofthesamemagnitudeasthecircuit components.Thewavelengthinairatamicrowavefrequencyof300GHz,forexample, is1mm.Thephysicaldimensionofthelumpedelementmustbeinthisrangetoavoid interference.Also,theleadsconnectingthelumpedelementprobablyhavemuchmore inductanceandcapacitancethanisneeded.
Prob. 10.84
CHAPTER 12
P. E. 12.1 (a)ForTE10,fc=3GHz, 11315096 22 (/)(/). ff c ,
60084261588 (.). P. E. 12.2 (a)Since E z 0,thisisaTMmode
j Exye h
y x 1254050 .tancot
P. E. 12.3 IfTE13modeisassumed,fcand remainthesame.
fc=28.57GHz, =1718.81rad/m, j
Form=1,n=3,thefieldcomponentsare:
Ez=0
Ez=0,
P. E. 12.4
Forn=0,m=1,
2(/)sin(/)cos(/) z yso EjaHxaybe h
2(/)sin(/)cos(/) z xso HjaHxaybe h
yso HjbHxaybe h
Fortheelectricfieldlines,
Forthemagneticfieldlines
Noticethat()() E E H H y x y x 1
showingthattheelectricandmagneticfieldlinesaremutuallyorthogonal.Thefield linesareasshowninFig.12.14.
P. E. 12.8
P. E. 12.9
(a)BySnell’slaw,n1sin 1=n2sin 2.Thus 2=90osin 2=1 sin 1=n2/n1, 1=sin–1n2/n1=sin–11.465/1.48=81.83o (b)NA= nn 1 2 2 2 =148146522=0.21
P. E. 12.10 l=10logP(0)/P(l)=0.2X10=2 P(0)/P(l)=100.2,i.e.P(l)=P(0)10-0.2=0.631P(0) i.e.63.1%
Thefollowingmodesaretransmitted
Prob.
Usingthisformula,weobtainthecutofffrequenciesforthegivenmodesasshownbelow.
(b)10 Sincef=12GHz,onlyTEmodewillpropagate.
Prob. 12.5 a/b=3a=3b f u ac102 '8 9 10 '310 221810 c u a f
Adesigncouldbea=9mm,b=3mm.
Prob. 12.6 Forthedominantmode,
8310 18.75MHz 228 c fc a
m=0.833cm
(a)ItwillnotpasstheAMsignal,(b)itwillpasstheFMsignal.
Prob. 12.7 (a)ForTE10mode, f u a c ' 2
Or 8 9 '310 3cm 22510 c u a f
ForTE01mode, f u cb ' 2 Or 8 9 '310 1.25cm 221210 c bu f
(b)Sincea>b,1/a<1/b,thenexthighermodesarecalculatedasshownbelow.
Modefc(GHz)
TE105 *TE2010 TE3015 TE4020
*TE0112 TE0224
*TE1113 TE2115.62
Thenextthreehighermodesarestarredones,i.e.TE20,TE01,TE11
(c)8 1 '210 2.25 c u
m/s
ForTE11modes,
(d)ForTEmode,
Prob.
Prob. 12.18 Infreespace,
1||1.5667 1|| s
Prob. 12.19 Substituting ERZ z intothewaveequation,
Dividingby RZ , 1 2 22 R d d Rk Z Z k z
i.e.2''0 z ZkZ 1 20 22 R d d Rkk z (') '' ()
R d d Rkkk z (')() '' 2222 or
'' k 20
d d RkkR (')()2220 ,where kkk z 222 .Hence 22220 RRkkR '''()
Prob. 12.20
TheMATLABcodeandtheplotofthephaseandgroupvelocitiesarepresentedbelow.
% Plot U_p and U_g versus frequency f (10<f<100) in GHz
c=3*10^8; for k=1:91
f(k)=9+k
fac = sqrt( 1 - (8/f(k))^2 );
up(k) = c/fac; ug(k) = c*fac; end
plot(f,up, 'r', f, ug, 'k') xlabel('frequency f') ylabel('phase vel (red) & group vel (black)')
Prob.
Prob.
ForTM
TheMATLABcodeisshownbelow
k=10^(-5)/(30*sqrt(5.8/2.25)); fc=10^10; forn=1:1000 f(n)=fc*(n/100+1); fn=f(n); num=sqrt(fn)*(1+(fc/fn)^2); den=sqrt(1-(fc/fn)^2); alpha(n)=k*num/den; end plot(f/10^9,alpha) xlabel('frequency(GHz)') ylabel('attenuation') grid
Theplotofattenuationversusfrequencyisshownbelow.
Prob. 12.35 Thecutofffrequencyofthedominantmodeis
Prob. 12.39 ForTE10mode,
wherekisaconstant.
Forminimumvalue, d df c
0 .Thisleadstof=2.962fc
Prob. 12.40 FortheTEmodetoz,
asrequired.
FromMaxwell’sequation,
0 ss xsys jxyz EE
Prob. 12.41 Maxwell’sequationcanbewrittenas
Hj h E yh H x xs zszs
22
Forarectangularcavity, hkkmanb xy 22222 (/)(/)
ForTMmode,Hzs=0and
EEmxanybpzc zso sin(/)sin(/)cos(/) Thus 2 zs xs HjE hy
asrequired.
FromMaxwell’sequation,
Prob. 12.42
f u rmanbpc ' (/)(/)(/) 2 222
whereforTMmodetoz,m=1,2,3,…,n=1,2,3,….,p=0,1,2,….
andforTEmodetoz,m=0,1,2,3,…,n=0,1,2,3,….,p=1,2,3,…,()0 mn .
(a)Ifa<b<c,1/a>1/b>1/c,
ThelowestTMmodeisTM110with f u rab ' 2 11 22
ThelowestTEmodeisTE011with2222 '11'11 22 r fuubcab
HencethedominantmodeisTE011.
(b)Ifa>b>c,1/a<1/b<1/c,
ThelowestTMmodeisTM110with f u rab ' 2 11 22
ThelowestTEmodeisTE101with2222 '11'11 22 r fuuacab
HencethedominantmodeisTM110.
(c)Ifa=c>b,1/a=1/c<1/b,
ThelowestTMmodeisTM110with f u rab ' 2 11 22
ThelowestTEmodeisTE101with f u ac u rab '' 2 11 2 11 2222
HencethedominantmodeisTE101.
Prob. 12.45
9.48500.250.111=5.701GHz
9.48500.250.444=7.906GHz
9.48500.250.999=10.61GHz
9.485010.111=10GHz
Thus,thefirstfiveresonantfrequenciesare:
5.701GHz(TE)
7.906GHz(TE)
10GHz(TEandTE)
10.61GHz(TEorTM)
11.07GHz(TEorTM)
Prob. 12.46
Prob.
ThisisaTMmodetoz.FromMaxwell’sequations,
Prob. 12.52
(8.7)(3.6)
(10.2)(8.7)(3.6)
Prob. 12.56
2 d Vnn V N
17.17or17modes
Prob. 12.57
(a)NA=sin a= nn 1
=153145 22 = 0.4883 a=sin–10.4883=29.23o
(b)P(l)/P(0)=10- l /10=10-0.4X5/10=0.631
i.e.63.1%
Prob. 12.58 /100.50.85/10
Prob. 12.59
AsshowninEq.(10.35),log10P1/P2=0.434lnP1/P2, 1Np=20log10e=8.686dBor1Np/km=8.686dB/km, or1Np/m=8686dB/km.Thus, 1210 8686
0.40.4dB/km=Np/km 8.686
30.79230.392dB76.98km 0.4dB/km
Prob. 12.61
P(0)=P(l)10 l/10=0.2x100.4x30/10mW=3.1698mW
Prob. 12.62 Seetext.
CHAPTER 2
P. E. 2.1
(a)AtP(1,3,5),x=1,y=3,z=5, xy 22 =10,z=5,11tan/tan371.6 o yx P( ,,)(,tan,)(.,.,) zPPo 103531627165 1
Sphericalsystem:
222 12211 355916 105063253231 . tantantan.. (,,)(5.916,32.31,71.57)PrP
AtT(0,-4,3),x=0y=-4,z=3;
xyzyx TzT 22114340270 42703 ,,tan/tan/ (,,)(,,).
Sphericalsystem: rxyzz TrT
222115435313 55313270 ,tan/tan/.. (,,)(,.,).
AtS(-3-4-10),x=-3,y=-4,z=-10; 22145,tan233.1 3 (,,)(5,233.1,10).
Sphericalsystem: 222 11 5511.18. 5 tantan153.43; 10 (,,)(11.18,153.43,233.1). rxyz z SrS
(b)InCylindricalsystem,22;sin, xyyzz
2222 sin ;0;;xyz QQQz zz
Note,thatthemagnitudeofvectorQ=2.53inall3casesabove.
Prob. 2.1
Prob. 2.2 (a) 11 cos2cos301.732; sin2sin301; 5; (,,)(1.732,1,5). x
(b) 22 1cos900;1sin901;3. (,,)(0,1,3). xyz
(c)
33 sincos10sin(/4)cos(/3)3.535; sinsin10sin(/4)sin(/3)6.124; cos10cos(/4)7.0711 (,,)(3.535,6.124,7.0711).
(d) 44 4sin30cos601 4sin30sin601.7321 cos4cos303.464 (,,)(1,1.7321,3.464).
Prob.
Prob. 2.4 (a)
HenceQ(5.099,78.69,120)
Prob. 2.5 (,,)10,60,30 sincos10sin60cos307.5 sinsin10sin60sin304.33 cos10cos605 (,,)(7.5,4.33,5) sin10sin608.66 (,,)(8.66,30,5)
Prob.
Prob. 2.9
cossin02 sincos03 0014 AtP,2,/2,1
2cos3sin2cos903sin903
2sin3cos2sin903cos902 4 Hence,324
Prob. 2.10
2 z Az Hence, 222 yzxyz Aaa
(b)
Prob.
Prob. 2.12
sincoscoscossinsin coscoscossincos0 cossin0cos sincossincos,sincoscoscos sincos
Prob. 2.14
Insphericalsystem:
aa aa aa aa
Hence, sincos; coscos; sinsin; cossin; cos; sin; xr x yr y zr z aa aa
aaaaaa aaaa aaaaa aaaaa
Prob. 2.15 (a) 22 cossin,sincos cossin0 sincos0(cossin) 001 sincos cossin0 sincos0 cossin 001 xyxy zz zxy zxy
(b) 2222 sincossinsincos coscoscossinsin sincos sincossinsincos coscoscossinsin (sinsincossin)(coscossincos) (sincossincossinco rxyz xyz xy
aaaa aaaa aaa aa aa ssincos) sincos z xy a aaa
xy
22 sincos0 sincossinsincos coscoscossin(sinsinsincos) coscoscossinsin coscoscossinsin sincos0 sincossinsin(coscoscossin)
Prob. 2.16
Prob. 2.18
Prob.
Prob. 2.21
Prob. 2.24
99.1189.956. d d
2223 1052(10)(5)coscos2(10)(5)sinsincos(7) 464644 125100(0.7071)(0.866)100(0.7071)(0.5)(0.2334) 12561.2335.3399.118
Prob. 2.25
Usingeq.(2.33), 222 121212121221 2coscos2sinsincos() 16362(4)(6)cos30cos902(4)(6)sin30sin90cos(180) 1636048(0.5)(1)(1)522476
d
8.718
Prob. 2.26
coscoscossinsin2cotsin sincos0sin sincos2cossi
ncossin sincos3cossin coscos2cotcossinsinsin sincos2cotsincos [sincos3cossin] [coscos2cotcossinsinsin] sincos(2cotcos) r
Prob. 2.31
(a)Aninfinitelineparalleltothez-axis.
(b)Point(2,-1,10).
(c)Acircleofradius r sin 5,i.e.theintersectionofaconeandasphere.
(d)Aninfinitelineparalleltothez-axis.
(e)Asemi-infinitelineparalleltothex-yplane.
(f)Asemi-circleofradius5inthey-zplane.
Prob. 2.32 ()() sincoscoscossin. At(2,/2,3/2), ln2. Pxx xr P d
Prob. 2.33
AtP,2,60,1 4(1/4)2(3/4)11.52.5 x o x H z H
Prob. 2.34
10||22 001 acylinderofinfinitelength zxy xyz