INSTRUCTOR’S SOLUTIONS MANUAL

AN IN T R O D C T I O N TO GEOTECHNICAL
THIRD
EDITION
Robert D. Holtz, Ph.D., P.E., D.GE
University of Washington
William D. Kovacs, Ph.D., P.E., D.GE
University of Rhode Island
Thomas C. Sheahan, Sc.D., P.E.
Northeastern University
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Copyright © 2023, 2011, 1981 by Pearson Education, Inc., 221 River Street, Hoboken, NJ 07030. All rights reserved
Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, ph otocopying, recording, or ot herwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights and Permissions Department, please visit www.pearsoned.com/permissions.
ISBN-13: 978-0-13-561930-8
ISBN-10: 0-13-561930-0
CHAPTER2:INDEXANDCLASSIFICATIONPROPERTIESOFSOILS
2.1.Prepareaspreadsheetplotofdrydensityinkg/m3 astheordinateversuswatercontentin percentastheabscissa.Assume ρs =2750kg/m3 andvarythedegreeofsaturation, S,from100% to40%in10%increments.Amaximumof50%watercontentshouldbeadequate(exceptforvery softclays,tobedefinedshortly).[Note:Suchagraphisveryusefultocheckproblemsthatyoudo inthischapter,asthereisauniquerelationshipbetweendrydensity,watercontent,andthedegree ofsaturationforanygivendensityofsolids.Voidratio,wetdensity,andsoonarethenreadily computed.Similargraphsfordensityofothersolidsmaybeeasilycomputedandplotted.]Show allyourequationsascommentsonyoursheetforfuturereference.
Solution:SolveEq.2.12andEq.2.15for ρd = f (ρs,ω,S,Gs),oruseEq.5.1.
Finally,
ρw (kg/m3)1000
ρs (kg/m3)2750
Gs 2.75
S(%)100908070605040302010
w(%)
ρd (kg/m3)
02750275027502750275027502750275027502750 52418238623472299223721572047188616301158 10215721062047197418861774163014351158733 1519471886181417301630150713541158898537 201774170716301540143513101158971733423 251630155914791387128211581011835620349 30150714351354126211581038898733537297 3514011329124811581056940807653473259 401310123811581069971859733589423229 45122911581080994898791672537383206 50115810881011928835733620493349186
2.2.PrepareagraphlikethatinProblem2.1,onlyusedrydensityunitsofkN/m3 andpounds percubicfeet.
Solution:FromEq.2.12andEq.2.15
2.2.a.IntheSIunitsystem:
γw (kN/m3)9.8
γs (kN/m3)26.95 Gs 2.75 S(%)100908070605040302010
w(%) γd (kN/m3)
026.9526.9526.9526.9526.9526.9526.9526.9526.9526.95 523.6923.3823.0022.5321.9321.1420.0618.4815.9711.35 1021.1420.6420.0619.3518.4817.3915.9714.0611.357.19 1519.0818.4817.7816.9615.9714.7713.2711.358.805.26 2017.3916.7315.9715.0914.0612.8311.359.517.194.15 2515.9715.2814.4913.6012.5611.359.918.196.073.42 3014.7714.0613.2712.3711.3510.178.807.195.262.91 3513.7313.0212.2311.3510.359.217.916.404.642.54 4012.8312.1311.3510.489.518.427.195.784.152.25 4512.0411.3510.589.748.807.766.585.263.752.01 5011.3510.669.919.098.197.196.074.833.421.83
IntheEnglishunitsystem:
ρw (pcf)62.4
ρs (pcf)171.6 Gs 2.75
S(%)100908070605040302010
w(%)
ρd (pcf)
0171.56171.56171.56171.56171.56171.56171.56171.56171.56171.56 5150.82148.82146.40143.39139.57134.56127.67117.64101.6772.24 10134.56131.41127.67123.17117.64110.68101.6789.5172.2445.75 15121.46117.64113.19107.95101.6794.0184.4672.2456.0233.48 20110.68106.49101.6796.0789.5181.7072.2460.5545.7526.39 25101.6797.2692.2786.5579.9572.2463.1052.1238.6621.79 3094.0189.5184.4678.7572.2464.7456.0245.7533.4818.55 3587.4282.9077.8772.2465.8858.6550.3740.7729.5216.15 4081.7077.2072.2466.7260.5553.6145.7536.7626.3914.30 4576.6872.2467.3661.9856.0249.3741.9133.4823.8712.83 5072.2467.8763.1057.8852.1245.7538.6630.7321.7911.63
2.3.PrepareagraphlikethatinProblem2.1,onlyforS=100%,andvarythedensityofsolids from2600to2800kg/m3.Youdecidethesizeoftheincrementsyouneedto“satisfactorily”evaluatetherelationshipas ρs varies.Prepareaconcludingstatementofyourobservations.
Solution:Therelationshipbetween ρd and w isnotoverlysensitiveto ρs.
ρw (kg/m3)1000 S(%)100
ρs (kg/m3)26002650270027502800 w(%) ρd (kg/m3) 026002650270027502800 523012340237924182456 1020632095212621572188 1518711896192219471972 2017111732175317741795 2515761594161216301647 3014611476149215071522 3513611375138814011414 4012751286129813101321 4511981209121912291239 5011301140114911581167
2.4.Thedrydensityofacompactedsandis19.5kN/m3 andthedensityofthesolidsis27.1 kN/m3.WhatisthewatercontentofthematerialwhenS=50%?Phasediagram!
FromEq.5.1:
Solvingforw: w = Sγw 1 γd 1 γs =(0 5)(9 8) 1 19 5 1 27 1 =0 07=7%
Forphasediagram,assume Vt =1m3
γd = Ws Vt ⇒ Ws = γsVt =19 5kN w = Ww Ws × 100 ⇒ Ww = wWs 100 = (7)(19 5) 100 =1.37kN Wt = Ww + Ws =1.37+19.5=20.87kN
ρw =9 8kN/m 3 = Ww Vw ⇒ Vw = 1 37 9 8 =0 14m3
Va = Vt Vw Vs =0 14m3
Vv = Va + Vw =0 28m3
TBEXAM.COM
Checkingthat S =50 S = Vw Vw = 0 14 0.28 =0 5=50%(OK) P.2.4.Phasediagram
2.5 Asoilthatiscompletelysaturatedhasatotaldensityof2050kg/m3 andawatercontentof 20%.Whatisthedensityofthesolids?Whatisthedrydensityofthesoil?Phasediagram!
Solution:
a.)Solveusingequationsorphasediagrams:
ρs = ρwρd ρd + ρw ρsat = (1000)(1708 3) (1708 3+1000 2045) =2594.9kg/m 3
b)Solveusingphasediagramrelationships:Assume Vt =1.0m3
Mt =2050kg
Mw Ms
ρd = Ms Vt = 1708 3 1 =1708.3kg/m 3
ρs = Ms Vs = 1708.3 1 0.34 =2594 9kg/m 3
2.6 Whatisthewatercontentofafullysaturatedsoilwithadrydensityof1750kg/m3?Assume ρs =2820kg/m3
Solution:
FromEq.2-12andEq.2-15:
Solvingfor w
2.7 Adryquartzsandhasadensityof1675kg/m3.Determineitsdensitywhenthedegreeof saturationis65%.Thedensityofsolidsforquartzis2680kg/m3
Solution:
Recognizethat ρd(initial)= ρd (final); S =75%
FromEq.2-12andEq.2-15:
Solvingfor w:
Then,usingEq.2.14:
ρt = ρd(1+ w)=1675kg/m 3(1+0 168)=1956 3kg/m 3
2.8 Thedryunitweightofasoilis15.7kN/m3 andthesolidshaveaunitweightof26kN/m3 Assumingthesoilissaturated,find(a)watercontent,(b)voidratio,and(c)totalunitweight. a.)Watercontent.FromEq.5.1:
Solvingforw:
= Sγw 1
b.)Voidratio.FromEq.2.15:
c.)Totaldensitywhenthesoilissaturated.UsingEq.2.14:
)=15
TBEXAM.COM
2.9 Anaturaldepositofsoilisfoundtohaveawatercontentof20%andtobe90%saturated. Whatisthevoidratioofthissoil?
Solution: w =20%, S =90%;assume Gs =2 70FromEq.2.15: γwSe = wγ
2.10 Achunkofsoilhasawetweightof62lbandavolumeof0.56ft3.Whendriedinanoven, thesoilweighs50lb.IfthespecificgravityofsolidsGs=2.64,determinethewatercontent,wet unitweight,dryunitweight,andvoidratioofthesoil.
Solution: Solveusingphasediagramrelationships.
a.)Watercontent:
w = Ww Ws × 100= 12(100) 50 =24.0%
b.)Wetunitweight:
γt = Wt Vt = 62 0 56 =110 7pcf
c.)Dryunitweight:
γd = Ws Vt = 50 0.56 =89 29pcf
d.)Voidratio:
Vw = Ww γw = 12 62 4 =0.1923ft3
Vs = Ws Gsγw = 50 (2 64)(62 4) =0.3035ft3
Vv = Vt Vv =0 56 0303=0 256
e = Vv Vs = 0 256 0 303 =0.84
TBEXAM.COM
2.11 Inthelab,acontainerofsaturatedsoilhadamassof115.5gbeforeitwasplacedintheoven and102.4gafterthesoilhaddried.Thecontaineralonehadamassof49.31g.Thespecificgravity ofsolidsis2.70.Determinethevoidratioandwatercontentoftheoriginalsoilsample.
Solution:
Solveusingphasediagramrelationships.
Ms =102.4 49.31=53.09g
Mw =115 5 102 4=13 10g
w = Mw Ms × 100%=24.67%
FromEq.2.15: e = Gsw S = (2 70)(24 67) 100 =0 66
2.12 Thenaturalwatercontentofasampletakenfromasoildepositwasfoundtobe20.0%.It hasbeencalculatedthatthemaximumdensityforthesoilwillbeobtainedwhenthewatercontent reaches25.0%.Computehowmanygramsofwatermustberemovedtoeach1000gofsoil(inits naturalstate)inordertodecreasethewatercontentto25.0%.
Solution:
Naturalstate:
w =0 20= Mw Ms ⇒ Mw =0 20Ms
Mt = Ms + Mw = Ms +0.20Ms =1.20Ms =1000g
Ms =1000/1 20=833 33g
Mw =(0.20)(833.3)=166.67g
Targetstate:
(Note: Ms doesnotchangebetweenthenaturalstateandthetargetstate)
Mw = wMs =0 25(833 33)=208 33g
additionalwaternecessary=208.33-166.67=41.67g
2.13 Acubicmeterofdryquartzsand(Gs =2.65)porosityof60%isimmersedinanoilbath havingadensityof0.92g/cm3 .Ifthesandcontains0.27m3 ofentrappedair,howmuchforceis requiredtopreventitfromsinking?Assumethataweightless,permeablemembranesurroundsthe specimen.(Prof.C.C.Ladd.)
Solution:
Vt =1m3 =1, 000, 000cm3
TBEXAM.COM
n = Vv Vt ⇒ Vv = nVt =0.6(1.0)=0.60m3
Vs = Vt Vv =1.0 0.6=0.40m3
Ms = GsρwVs =2 65(1000kg/m 3)(0 40m3)=1060kg= Mt (dryquartzsand)
ρt = Mt Vt = 1060 1 0 =1060kg/m 3
ρbouy = ρt ρoil =1060 920=140kg/m 3
γbouy = ρbouy × g =140(9 81)=1373 4N/m 3
Finallytheforce(F)iscalculatedas:
F = γbouy × (entrappedair)=1373 4N/m 3 × 0 27m3 =370 8N
2.14 Asoilsampletakenfromaborrowpithasanaturalvoidratioof0.89.Thesoilwillbe usedforahighwayprojectwhereatotalof100,000m3 ofsoilisneededinitscompactedstate;its compactedvoidratiois0.69.Howmuchvolumehastobeexcavatedfromtheborrowpittomeet thejobrequirements?
Solution:
Vs = Vv e = Vt Vs e ⇒ Vs = Vt e +1
Embankment:
Vt =100, 000m3
Vs(emb) = 100, 000 0.69+1 =59171 6m3
Borrowpit:
Vs(borr) = Vs(emb) =59171.6m3
Vs(emb) = 100, 000 0.89+1 = Vt e +1
Vt(emb) = Vs(eborr +1)=(59171 6)(0 89+1)=111, 834 3m3
2.15 Asampleofmoistsoilwasfoundtohavethefollowingcharacteristics:
Totalvolume:0.0138m3
Totalmass:28.31kg
Massafterovendrying:23.40kg
Specificgravityofsolids:2.71
TBEXAM.COM
Findthedensity,unitweight,voidratio,porosity,anddegreeofsaturationforthemoistsoil.?
Solution:
a.)Density:
ρt = Mt Vt = 28 31 0.0138 =2051 45kg/m 3
b.)unitweight:
γt = ρt × g =(2051 45)(9 81)=20124 72N/m 3 =20 12kN/m 3
c.)voidratio:
Vs = Ms Gsρw = 23 40 2.71(1000) =0 00863m3
Vv = Vv Vs =0 0138 0 00863=0 00516m3
e = Vv Vs = 0.00516 0.00863 =0 60
d.)porosity:
n = e 1+ e × 100= 0 60 1+0 60 × 100=37.5%
e.)degreeofsaturation:
Mw =28 31 23 40=4 91g
Vw = Mw ρw = 4 91 1000 =0.00491
S = Vw Vv × 100= 0 00491 0 00516 =95.1%
2.16 Agraysiltyclay(CL)issampledfromadepthof12.5feet.The“moist”soilwasextruded froma6-inch-highbrasslinerwithaninsidediameterof7.18cmandweighed823grams.
(a)Calculatethewetunitweightinpoundspercubicfeet.
(b)Asmallchunkoftheoriginalsamplehadawetweightof154.3gramsandweighed74.3grams afterdrying.Computethewatercontent,usingthecorrectnumberofsignificantfigures.
(c)Computethedrydensityinkg/m3
Solution:
a.)Wetunitweightinpcf: Vt = πd2 4 ×L = π 7 18cm(1in/2 54cm) 2 4 ×6in=37
γt = Mt Vt = 823g(1lb/453 6g) 0.0218ft3 =83 26lb/ft3
b.)watercontent
Mw = Mt Ms =140 9 85 2=55 7 g
w = Mw Ms × 100= 55 7g 85 2g × 100=654%
c.)drydensity
2.17 Acylindricalsoilspecimenistestedinthelaboratory.Thefollowingpropertieswereobtained:
Samplediameter:3inches
Samplelength:6inches
Wt.beforedryinginoven:2.95lb
Et.afterdryinginoven:2.54lb
Oventemperature:110oC
Dryingtime:24hours
Specificgravityofsolids:2.65
Whatisthedegreeofsaturationofthissample?
Solution:
Vt = π(3)2 4 × 6=42 4115in3
Vs = Ws Gsγw = 2 54lb 2 65(62 4pcf) =0 01536ft3 =26 542in3
Vv = Vt Vs =42 4115 26 542=15 869in3
Ww = Wt Ws =2.95 2.54=0.41lb
Vw = Ww γw = 0 41lb 62 4pcf =0 00657ft3 =11 354in3
S = Vw Vv × 100%= 11 354 15 869 × 100=71 5%
2.18 Asampleofsaturatedsiltis10cmindiameterand2.5cmthick.Itsvoidratiointhisstate is1.42,andthespecificgravityofsolidsis2.68.Thesampleiscompressedtoa2-cmthickness withoutachangeindiameter.
(a)Findthedensityofthesiltsample,ing/cm3,priortobeingcompressed.
(b)Findthevoidratioaftercompressionandthechangeinwatercontentthatoccurredfrominitial tofinalstate.
Solution: a.)density Vt = π(10)2 4 × 2 5=196 35cm3
S =100%= Vw Vv ⇒ Vw = Vv
e = Vv Vs ⇒ Vv = eVs =1 42Vs
Vt = Vv + Vs =1 42Vs + Vs =2 42Vs =196 35cm3 ⇒ Vs =81 14cm3
Vv =1 42Vs =1 42(81 14)=115 21cm3
Mw = ρwVw =(1g/cm3)(115.21)=115.21g
Ms = GsρwVs =2 68(1g/cm3)(81 14cm3)=217 44g
Mt = Mw + Ms =115.21+217.44=332.66g
ρt = Mt Vt = 332.66 196.35 =1 694g/cm3 =1694kg/m 3
winitial = Mw Ms × 100= 115 21 217 44 × 100=53 0%
b.)voidratioandchangeinwatercontent
finalconditions:
Vt,2 = π(10)2 4 × 2.0=157.08cm3
Vs =81 14cm3 (nochange)
Vv = Vt,2 Vs =157.08 81.14=75.94cm3
efinal = Vv Vs = 75.94 81.14 =0 94
Vw = Vv =75 94cm3 (Saturated)
Mw = ρwVw =(1g/cm3)(75 94cm3)=75 94g
wfinal = 75 94 217 44 × 100=34.9%
∆w = winitial wfinal =53.0 34.9=18.1%
2.19 Asampleofsandhasthefollowingproperties:totalmass Mt =182g;totalvolume Vt =90 cm3;watercontent w =14%;specificgravityofsolids Gs =2.71.Howmuchwouldthesample volumehavetochangetoget90%saturation,assumingthesamplemass Mt stayedthesame?
Solution:
initialconditions:
Mw = wMs =0 14Ms
Mt = Ms +0.14Ms =182g ⇒ Ms = 182 1 14 =159.65g
Mw =0 14(159 65)=22 35g
Vw = γwMw =(1g/cm3)(22 35)=22 35cm3
Vs = Ms Gsρw = 159.65 2.71(1) =58 91cm3
Vv = Vt Vs =90 58 91=31 09cm3
S = Vw Vv × 100= 22.35 31.09 × 100=71 9%
desiredcondition:S=90%:
Vt changes,but Vs, Vw, Ms and Mw remainthesame
S = Vw Vv ⇒ Vv = Vw S = 22 35 0 90 =24 834cm3
Vt = Vs + Vv =58.91+24.834=83.74cm3
∆V =90 83 74=6 26cm3
TBEXAM.COM
2.20 Asampleofsoilpluscontainerweighs413.7gwhentheinitialwatercontentis9.5%.The containerweighs258.7g.Howmuchwaterneedstoberemovedtheoriginalspecimenifthewater contentistobedecreasedby4.2%?(AfterU.S.Dept.ofInterior,1990.)
Solution:
initialconditions:
Ms+c =413 7g
Mc =258.7g
Ms = Ms+c Mc =155g
w = Mw Ms ⇒ Mw = Msw =155(0 095)=14 72g
Desiredconditions:
wf = wi 4.2=9.5 4.2=5.3%
Mw,f = Ms(w)=155(0 053)=8 22%
w = Mw Mw,f =14 725 8 22=6 51g
2.21 Asoilsampleisdriedinamicrowaveoventodetermineitswatercontent.Fromthedata below,evaluatethewatercontentanddrawconclusions.Theoven-driedwatercontentis19.4%. Themassofthedishis131.2grams.(AfterU.S.Dept.ofInterior,1990.)
TimeinOven,minTotalOvenTime,minMassofSoil+Dish(g)
Solution:
a Thistotaltimeof4minutesisfrom3minutesbeforeandonemore minute,givingamassofsoil+dish=216.22grams,andsoon.
Mt =231 62 131 2=100 42g
Mw =(0.194)Ms
Mt =0 194Ms + Ms
Ms = Mt 1.194 =84 10g(thisvalueisconstantthroughoutdryingperiod)
w =column5= Mw Ms × 100= 231 62 column3 84 10 × 100
Conclusion:Thelossofadditionalwaterinthesoilsamplebecomesnegligibleafter8to10minutes inthemicrowaveovenusedintheexperiment.
TimeinOven,minTotalOvenTime,minMassofSoil+Dish(g)Massofwater(g) wn (%) 00231.62
a Thistotaltimeof4minutesisfrom3minutesbeforeandonemoreminute,givingamassofsoil+ dish=216.22grams,andsoon.
2.22 Thevolumeofwaterinasampleofsoilwith S =85%is0.32m3.Thevolumeofsolids Vs is 0.34m3.Giventhatthedensityofsoilsolids ρs is2690kg/m3,find(a)thewatercontent,(b)the voidratio,(c)theporosity,(d)thetotalorwetdensityand(e)thedrydensity.Giveyouranswers inkg/m3,andlbf/ft3
Solution:
a.)watercontent
Ms = ρsVs =2690(0 34)=914 6kg
Mw = ρwVw =1000(0 32)=320kg
w = Mw Ms × 100= 320 914.6 × 100=35 0%
b.)voidratio
Gs = ρs ρw = 2690 1000 =2 69
e = Gsw S = 2 69(35) 85 =1.11
c.)theporosity
n = e 1+ e × 100= 1 107 1+1 107 × 100=52 5%
d.)totalorwetdensity
Vt = Vs + Vv = Vs + eVs = Vs(1+ e)=0 34(1+1 107)=0 716m3
ρt = Mt Vt = 1234 6 0 716 =1723.17kg/m 3 =107.57pcf
ρd = Ms Vt = 914 94 0 716 =1276 54kg/m 3 =79 69pcf
2.23 A592-cm3 volumeofmoistsandweighs1090g.Itsdryweightis920gandthedensityof solidsis2680kg/m3.Computethevoidratio,porosity,watercontent,degreeofsaturation,and totaldensityinkg/m3
Solution:
ρs =2680kg/m 3 =2 68g/cm3
Vs = Vs ρs = 920 2 68 =343.284cm3
Vv = Vt Vs =592 343 284=248 716cm3
a.)voidratio
e = Vv Vs = 248 716 343 284 =0 724=0 72
c.)theporosity
n = e 1+ e × 100= 0 7245 1+0 7245 × 100=42 0%
d.)watercontent
Mw =1090 920=170g
w = Mw Ms × 100= 170 920 × 100=18 5%
d.)saturation
Vw = Mw ρw =170cm3
S = Vw Vv × 100= 170 248.716 × 100=68 4%
e.)totalorwetdensity
ρt = Mt Vt = 1090 592 =1.841g/cm3 =1841kg/m 3
2.24 Thesaturatedunitweight γsat ofasoilis128lbf/ft3.Findthebuoyantunitweightofthis soilinlbf/ft3 andbuoyantdensityinkg/m3 .
Solution:
γ = γsat γw =128 62.4=65.6lbf/ft3
ρ =(65.6lbf/ft3) 16 018kg/m3 1lbf/ft3 =1050.8kg/m 3
2.25 Asandiscomposedofsolidconstituentshavingaunitweightof168.5lb/ft3.Thevoidratio is0.62.Computetheunitweightofthesandwhendryandwhensaturatedandcompareitwith theunitweightwhensubmerged.
Solution:
Assume Vs =1ft3
Vv = eVs =0.62ft3
Vt = Vs + Vv =0 62+1=1 62ft3
Ws = ρsVs =168 5(1)=168 5lb
γd = Ws Vt = 168.5 1.62 =168 5lb/ft3
γd = Ws Vt = 168 5 1 62 =168 5lb/ft3
WhensoilissaturatedS=100%,then Vw = Vv =0 62lb/ft3
Ww = γwVw =62 4(0 62)=38 69lb
γsat = Ws + Ww Vt = 168 5+38 69 1 62 =127.9lb/ft3
γ = ρsat ρw =127.9 62.4=65.49lb/ft3
2.26 Asampleofnaturalglacialtillwastakenfrombelowthegroundwatertable.Thewatercontentwasfoundtobe43%.Estimatethewetdensity,drydensity,buoyantdensity,porosity,and voidratio.Clearlystateanynecessaryassumption.
Solution:
Assume Vs =1m3 and Gs =2.70
a.)totalorwetdensity
Ms = GsVsρs =2 7(1)(1000)=2700kg/m 3
Mw = wMs =0.43(2700)=1161kg/m 3
Mt = Ms + Mw =2700+1161=3861kg/m 3
S = Vw Vv =1 ⇒ Vw = Vv = Mw ρw =1.161m3
TBEXAM.COM
Vt = Vv + Vs =1 161+1=2 161m3
ρt = Mt Vt = 3861 2 161 =1786.7kg/m 3
b.)drydensity
ρd = Ms Vt = 2700 2 161 =1249.4kg/m 3
c.)buoyantdensity
ρ = ρsat ρw =1786.67 1000=786.7=786.7kg/m 3
c.)porosity
n = Vv Vt = 1.161 2 161 =53 7%
d.)voidratio
e = Vv Vs = 1 161 1 =1 2
2.27 Thevoidratioofclaysoilis0.58andthedegreeofsaturationis80%.Assumingthespecific gravityofsolidsis2.69,compute(a)thewatercontentand(b)dryandwetdensitiesinbothSI andBritishimperialunits.
Solution:
Assume Vs =1 0m3
Vv = eVs =0 58(1 0)=0 58m3
Vw = SVv =0 80(0 58)=0 464m3
Vt =0.58+1=1.58m3
Mw = ρwVw =(1000)(0.464)=464kg
Ms = ρsVs =(2690)(1)=2690kg
Mt = Ms + Mw =2690+464=3154kg
a.)watercontent:
w = Mw Ms × 100= 464 2690 =17 2%
b.)drydensity
ρd = Ms Vt = 2690 1 58 =1702kg/
c.)wetdensity
ρt = Mt Vt = 2690 1 58 =1996kg/m 3 =124 6lb/ft3
2.28 Thevaluesofminimumnandmaximumnforapuresilicasand(Gs =2.7)werefoundtobe 35%and42%,respectively.Whatisthecorrespondingrangeinthesaturatedunitweightinlb/ft3?
Solution:
maximum: ρsat =
minimum: ρsat =
168 5+62 4(0 538) 1+0 538 =131.35pcf
168 5+62 4(0 724) 1+0 724 =123 926pcf
2.29 Calculatethemaximumpossibleporosityandvoidratioforacollectionof(a)basketballs (9in.indiameter),(b)tennisballs(2.7in.indiameter)and(c)tinyballbearings0.01in.in diameter.Writeasentenceaboutwhatcausesthedifferencesacrossthesesize“particles.”
Solution:
Three-dimensionalparticlearrangementofequalsphereshasbeenstudiedindepthbymathematicians,statisticians,andmaterialsscientistssincethe1600s.Aquickinternetsearchonpacking ofequalsphereswillrevealnumerousmathematicaltheoriesandapproachesforestimatingthe densestandloosestpossiblepacking.Ingeneral,theloosestarrangementofequalspheresyields avoidfractionofabout0.48,regardlessofspheresize.Asanaside,thedensestpossiblepacking ofequal-sizespheresyieldsasolidsvolumeofabout: Vs = π/√18=0.7405(Thesevaluesare approximate–thereisnotaunifiedconsensusintheliterature.)
Loosestpacking
For Vt =1.0,Vv =0.48, and Vs =1 0.48=0.52;thus:
nmax = Vv Vt × 100= 0.48 1 0 × 100=48%
emax = Vv Vs = 0 48 0.52 =0 92
TBEXAM.COM
Densestpacking (notrequiredinproblemstatement)
Vs =0 7405,Vv =1 0 7405=0 2595, thus:
nmax = Vv Vt × 100= 0 2595 1 0 × 100=26%
emax = Vv Vs = 0.595 0 7405 =0 35
2.30 Aplastic-limittesthasthefollowingresults:
Wetweight+container=24 75g
Dryweight+container=19 37g
Containerweight=1 46g 23 Co pyrig ht © 2 0 2 3 Pe a rson
ComputethePLofthesoil.
Solution:
Mw =24 75 19 37=5 38g
Ms =19.37 1.46=17.91g
PL = Mw Ms × 100= 5 38 17 91 × 100=30%
2.31 Duringaliquid-limittest,thefollowingdatawasobtainedforoneofthesamples::
Wetweight+container=24 29g
Dryweight+container=17 62g
Containerweight=1 50g
AndthegrooveintheCasagrandecupclose1/2”at22blows.WhatistheLLofthsoil.
Solution:
Usetheone-pointmethod.
Mw =24.29 17.62=6.67g
Ms =17 62 1 5=16 12g
wn = Mw Ms × 100= 6 67 16 12 × 100=41.4%
UseEq.(2.38)
2.32 The“chunkdensity”methodisoftenusedtodeterminetheunitweight(andothernecessary information)ofaspecimenofirregularshape,especiallyoffriablesamples.Thespecimenatits naturalwatercontentis(1)weighed,(2)paintedwithathincoatowaxorparaffin(toprevent waterfrommovingintooroutofthepores),(3)weighedagain(Wt + Wmax),and(4)weighed inwater(togetthevolumeofthesample+waxcoating-rememberArchimedes?).Finally,the naturalwatercontentofthespecimenisdetermined.Aspecimenofcementedsiltysandistreated inthiswaytoobtainthe“chunkdensity.”Fromtheinformationgivenbelow,determinethe(a) wetdensity,(b)drydensity,(c)voidratio,and(d)degreeofsaturationofthesample.
Given:
Weightofspecimenatnaturalwatercontentinair=181 8g
Weightofspecimen+waxcoatinginair=215 9g
Weightofspecimen+waxinwater=58.9g
Naturalwatercontent=2.5%
Soilsoliddensity, ρs =2650kg/m 3
Waxsoliddensity, ρwax =940kg/m 3
Phasediagram!!
Solution: w = Mt Ms Ms ⇒ Ms = Mt 1+ w = 181 8 1+0 025 =177.366g
Mw = Mt Ms =181.8 177.4=4.43g
Vs = Ms ρs = 177.366g 2 650g/cm3 =66 93cm3
Vw = Mw ρw = 4.43g 1 0g/cm3 =4 43cm3
Mwax = Mt+wax Mwaterdisplaced ⇒ Mwaterdisplaced =215.9 58.9=157.0g
Vt+wax = Mwaterdisplaced ρw = 157 1.0 =157 0cm3
TBEXAM.COM
Vair = Vt+wax Vwax Vw Vs =157 0 36 28 4 43 66 93=49 36cm3
Vv = Vair + Vw =49 36+4 43=53 79cm3
Vt = Vt+wax Vwax =157.0 36.28=120.72cm3
a.)totaldensity
ρt = Mt Vt = 181 8 120 72 =1.50g/cm3 =1506kg/m 3
b.)drydensity
ρd = Ms Vt = 177 366 120.72 =1 47g/cm3 =1469kg/m 3
c.)voidratio
e = Vv Vs = 53.79 66.93 =0 80
c.)saturation
S = Vw Vv × 100= 4 43 53 79 =8 2%