Solutions for Introduction To Geotechnical Engineering 3rd Us Edition by Holtz

Page 1


INSTRUCTOR’S SOLUTIONS MANUAL

AN IN T R O D C T I O N TO GEOTECHNICAL

THIRD

EDITION

Robert D. Holtz, Ph.D., P.E., D.GE

University of Washington

William D. Kovacs, Ph.D., P.E., D.GE

University of Rhode Island

Thomas C. Sheahan, Sc.D., P.E.

Northeastern University

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2023, 2011, 1981 by Pearson Education, Inc., 221 River Street, Hoboken, NJ 07030. All rights reserved

Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, ph otocopying, recording, or ot herwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights and Permissions Department, please visit www.pearsoned.com/permissions.

ISBN-13: 978-0-13-561930-8

ISBN-10: 0-13-561930-0

CHAPTER2:INDEXANDCLASSIFICATIONPROPERTIESOFSOILS

2.1.Prepareaspreadsheetplotofdrydensityinkg/m3 astheordinateversuswatercontentin percentastheabscissa.Assume ρs =2750kg/m3 andvarythedegreeofsaturation, S,from100% to40%in10%increments.Amaximumof50%watercontentshouldbeadequate(exceptforvery softclays,tobedefinedshortly).[Note:Suchagraphisveryusefultocheckproblemsthatyoudo inthischapter,asthereisauniquerelationshipbetweendrydensity,watercontent,andthedegree ofsaturationforanygivendensityofsolids.Voidratio,wetdensity,andsoonarethenreadily computed.Similargraphsfordensityofothersolidsmaybeeasilycomputedandplotted.]Show allyourequationsascommentsonyoursheetforfuturereference.

Solution:SolveEq.2.12andEq.2.15for ρd = f (ρs,ω,S,Gs),oruseEq.5.1.

Finally,

ρw (kg/m3)1000

ρs (kg/m3)2750

Gs 2.75

S(%)100908070605040302010

w(%)

ρd (kg/m3)

02750275027502750275027502750275027502750 52418238623472299223721572047188616301158 10215721062047197418861774163014351158733 1519471886181417301630150713541158898537 201774170716301540143513101158971733423 251630155914791387128211581011835620349 30150714351354126211581038898733537297 3514011329124811581056940807653473259 401310123811581069971859733589423229 45122911581080994898791672537383206 50115810881011928835733620493349186

2.2.PrepareagraphlikethatinProblem2.1,onlyusedrydensityunitsofkN/m3 andpounds percubicfeet.

Solution:FromEq.2.12andEq.2.15

P.2.1

2.2.a.IntheSIunitsystem:

γw (kN/m3)9.8

γs (kN/m3)26.95 Gs 2.75 S(%)100908070605040302010

w(%) γd (kN/m3)

026.9526.9526.9526.9526.9526.9526.9526.9526.9526.95 523.6923.3823.0022.5321.9321.1420.0618.4815.9711.35 1021.1420.6420.0619.3518.4817.3915.9714.0611.357.19 1519.0818.4817.7816.9615.9714.7713.2711.358.805.26 2017.3916.7315.9715.0914.0612.8311.359.517.194.15 2515.9715.2814.4913.6012.5611.359.918.196.073.42 3014.7714.0613.2712.3711.3510.178.807.195.262.91 3513.7313.0212.2311.3510.359.217.916.404.642.54 4012.8312.1311.3510.489.518.427.195.784.152.25 4512.0411.3510.589.748.807.766.585.263.752.01 5011.3510.669.919.098.197.196.074.833.421.83

IntheEnglishunitsystem:

ρw (pcf)62.4

ρs (pcf)171.6 Gs 2.75

S(%)100908070605040302010

w(%)

ρd (pcf)

0171.56171.56171.56171.56171.56171.56171.56171.56171.56171.56 5150.82148.82146.40143.39139.57134.56127.67117.64101.6772.24 10134.56131.41127.67123.17117.64110.68101.6789.5172.2445.75 15121.46117.64113.19107.95101.6794.0184.4672.2456.0233.48 20110.68106.49101.6796.0789.5181.7072.2460.5545.7526.39 25101.6797.2692.2786.5579.9572.2463.1052.1238.6621.79 3094.0189.5184.4678.7572.2464.7456.0245.7533.4818.55 3587.4282.9077.8772.2465.8858.6550.3740.7729.5216.15 4081.7077.2072.2466.7260.5553.6145.7536.7626.3914.30 4576.6872.2467.3661.9856.0249.3741.9133.4823.8712.83 5072.2467.8763.1057.8852.1245.7538.6630.7321.7911.63

2.3.PrepareagraphlikethatinProblem2.1,onlyforS=100%,andvarythedensityofsolids from2600to2800kg/m3.Youdecidethesizeoftheincrementsyouneedto“satisfactorily”evaluatetherelationshipas ρs varies.Prepareaconcludingstatementofyourobservations.

Solution:Therelationshipbetween ρd and w isnotoverlysensitiveto ρs.

P.2.2.b

ρw (kg/m3)1000 S(%)100

ρs (kg/m3)26002650270027502800 w(%) ρd (kg/m3) 026002650270027502800 523012340237924182456 1020632095212621572188 1518711896192219471972 2017111732175317741795 2515761594161216301647 3014611476149215071522 3513611375138814011414 4012751286129813101321 4511981209121912291239 5011301140114911581167

2.4.Thedrydensityofacompactedsandis19.5kN/m3 andthedensityofthesolidsis27.1 kN/m3.WhatisthewatercontentofthematerialwhenS=50%?Phasediagram!

FromEq.5.1:

Solvingforw: w = Sγw 1 γd 1 γs =(0 5)(9 8) 1 19 5 1 27 1 =0 07=7%

Forphasediagram,assume Vt =1m3

γd = Ws Vt ⇒ Ws = γsVt =19 5kN w = Ww Ws × 100 ⇒ Ww = wWs 100 = (7)(19 5) 100 =1.37kN Wt = Ww + Ws =1.37+19.5=20.87kN

ρw =9 8kN/m 3 = Ww Vw ⇒ Vw = 1 37 9 8 =0 14m3

Va = Vt Vw Vs =0 14m3

Vv = Va + Vw =0 28m3

TBEXAM.COM

Checkingthat S =50 S = Vw Vw = 0 14 0.28 =0 5=50%(OK) P.2.4.Phasediagram

2.5 Asoilthatiscompletelysaturatedhasatotaldensityof2050kg/m3 andawatercontentof 20%.Whatisthedensityofthesolids?Whatisthedrydensityofthesoil?Phasediagram!

Solution:

a.)Solveusingequationsorphasediagrams:

ρs = ρwρd ρd + ρw ρsat = (1000)(1708 3) (1708 3+1000 2045) =2594.9kg/m 3

b)Solveusingphasediagramrelationships:Assume Vt =1.0m3

Mt =2050kg

Mw Ms

ρd = Ms Vt = 1708 3 1 =1708.3kg/m 3

ρs = Ms Vs = 1708.3 1 0.34 =2594 9kg/m 3

2.6 Whatisthewatercontentofafullysaturatedsoilwithadrydensityof1750kg/m3?Assume ρs =2820kg/m3

Solution:

FromEq.2-12andEq.2-15:

Solvingfor w

2.7 Adryquartzsandhasadensityof1675kg/m3.Determineitsdensitywhenthedegreeof saturationis65%.Thedensityofsolidsforquartzis2680kg/m3

Solution:

Recognizethat ρd(initial)= ρd (final); S =75%

FromEq.2-12andEq.2-15:

Solvingfor w:

Then,usingEq.2.14:

P.2.5.Phasediagram

ρt = ρd(1+ w)=1675kg/m 3(1+0 168)=1956 3kg/m 3

2.8 Thedryunitweightofasoilis15.7kN/m3 andthesolidshaveaunitweightof26kN/m3 Assumingthesoilissaturated,find(a)watercontent,(b)voidratio,and(c)totalunitweight. a.)Watercontent.FromEq.5.1:

Solvingforw:

= Sγw 1

b.)Voidratio.FromEq.2.15:

c.)Totaldensitywhenthesoilissaturated.UsingEq.2.14:

)=15

TBEXAM.COM

2.9 Anaturaldepositofsoilisfoundtohaveawatercontentof20%andtobe90%saturated. Whatisthevoidratioofthissoil?

Solution: w =20%, S =90%;assume Gs =2 70FromEq.2.15: γwSe = wγ

2.10 Achunkofsoilhasawetweightof62lbandavolumeof0.56ft3.Whendriedinanoven, thesoilweighs50lb.IfthespecificgravityofsolidsGs=2.64,determinethewatercontent,wet unitweight,dryunitweight,andvoidratioofthesoil.

Solution: Solveusingphasediagramrelationships.

a.)Watercontent:

w = Ww Ws × 100= 12(100) 50 =24.0%

b.)Wetunitweight:

γt = Wt Vt = 62 0 56 =110 7pcf

c.)Dryunitweight:

γd = Ws Vt = 50 0.56 =89 29pcf

d.)Voidratio:

Vw = Ww γw = 12 62 4 =0.1923ft3

Vs = Ws Gsγw = 50 (2 64)(62 4) =0.3035ft3

Vv = Vt Vv =0 56 0303=0 256

e = Vv Vs = 0 256 0 303 =0.84

TBEXAM.COM

2.11 Inthelab,acontainerofsaturatedsoilhadamassof115.5gbeforeitwasplacedintheoven and102.4gafterthesoilhaddried.Thecontaineralonehadamassof49.31g.Thespecificgravity ofsolidsis2.70.Determinethevoidratioandwatercontentoftheoriginalsoilsample.

Solution:

Solveusingphasediagramrelationships.

Ms =102.4 49.31=53.09g

Mw =115 5 102 4=13 10g

w = Mw Ms × 100%=24.67%

FromEq.2.15: e = Gsw S = (2 70)(24 67) 100 =0 66

2.12 Thenaturalwatercontentofasampletakenfromasoildepositwasfoundtobe20.0%.It hasbeencalculatedthatthemaximumdensityforthesoilwillbeobtainedwhenthewatercontent reaches25.0%.Computehowmanygramsofwatermustberemovedtoeach1000gofsoil(inits naturalstate)inordertodecreasethewatercontentto25.0%.

Solution:

Naturalstate:

w =0 20= Mw Ms ⇒ Mw =0 20Ms

Mt = Ms + Mw = Ms +0.20Ms =1.20Ms =1000g

Ms =1000/1 20=833 33g

Mw =(0.20)(833.3)=166.67g

Targetstate:

(Note: Ms doesnotchangebetweenthenaturalstateandthetargetstate)

Mw = wMs =0 25(833 33)=208 33g

additionalwaternecessary=208.33-166.67=41.67g

2.13 Acubicmeterofdryquartzsand(Gs =2.65)porosityof60%isimmersedinanoilbath havingadensityof0.92g/cm3 .Ifthesandcontains0.27m3 ofentrappedair,howmuchforceis requiredtopreventitfromsinking?Assumethataweightless,permeablemembranesurroundsthe specimen.(Prof.C.C.Ladd.)

Solution:

Vt =1m3 =1, 000, 000cm3

TBEXAM.COM

n = Vv Vt ⇒ Vv = nVt =0.6(1.0)=0.60m3

Vs = Vt Vv =1.0 0.6=0.40m3

Ms = GsρwVs =2 65(1000kg/m 3)(0 40m3)=1060kg= Mt (dryquartzsand)

ρt = Mt Vt = 1060 1 0 =1060kg/m 3

ρbouy = ρt ρoil =1060 920=140kg/m 3

γbouy = ρbouy × g =140(9 81)=1373 4N/m 3

Finallytheforce(F)iscalculatedas:

F = γbouy × (entrappedair)=1373 4N/m 3 × 0 27m3 =370 8N

2.14 Asoilsampletakenfromaborrowpithasanaturalvoidratioof0.89.Thesoilwillbe usedforahighwayprojectwhereatotalof100,000m3 ofsoilisneededinitscompactedstate;its compactedvoidratiois0.69.Howmuchvolumehastobeexcavatedfromtheborrowpittomeet thejobrequirements?

Solution:

Vs = Vv e = Vt Vs e ⇒ Vs = Vt e +1

Embankment:

Vt =100, 000m3

Vs(emb) = 100, 000 0.69+1 =59171 6m3

Borrowpit:

Vs(borr) = Vs(emb) =59171.6m3

Vs(emb) = 100, 000 0.89+1 = Vt e +1

Vt(emb) = Vs(eborr +1)=(59171 6)(0 89+1)=111, 834 3m3

2.15 Asampleofmoistsoilwasfoundtohavethefollowingcharacteristics:

Totalvolume:0.0138m3

Totalmass:28.31kg

Massafterovendrying:23.40kg

Specificgravityofsolids:2.71

TBEXAM.COM

Findthedensity,unitweight,voidratio,porosity,anddegreeofsaturationforthemoistsoil.?

Solution:

a.)Density:

ρt = Mt Vt = 28 31 0.0138 =2051 45kg/m 3

b.)unitweight:

γt = ρt × g =(2051 45)(9 81)=20124 72N/m 3 =20 12kN/m 3

c.)voidratio:

Vs = Ms Gsρw = 23 40 2.71(1000) =0 00863m3

Vv = Vv Vs =0 0138 0 00863=0 00516m3

e = Vv Vs = 0.00516 0.00863 =0 60

d.)porosity:

n = e 1+ e × 100= 0 60 1+0 60 × 100=37.5%

e.)degreeofsaturation:

Mw =28 31 23 40=4 91g

Vw = Mw ρw = 4 91 1000 =0.00491

S = Vw Vv × 100= 0 00491 0 00516 =95.1%

2.16 Agraysiltyclay(CL)issampledfromadepthof12.5feet.The“moist”soilwasextruded froma6-inch-highbrasslinerwithaninsidediameterof7.18cmandweighed823grams.

(a)Calculatethewetunitweightinpoundspercubicfeet.

(b)Asmallchunkoftheoriginalsamplehadawetweightof154.3gramsandweighed74.3grams afterdrying.Computethewatercontent,usingthecorrectnumberofsignificantfigures.

(c)Computethedrydensityinkg/m3

Solution:

a.)Wetunitweightinpcf: Vt = πd2 4 ×L = π 7 18cm(1in/2 54cm) 2 4 ×6in=37

γt = Mt Vt = 823g(1lb/453 6g) 0.0218ft3 =83 26lb/ft3

b.)watercontent

Mw = Mt Ms =140 9 85 2=55 7 g

w = Mw Ms × 100= 55 7g 85 2g × 100=654%

c.)drydensity

2.17 Acylindricalsoilspecimenistestedinthelaboratory.Thefollowingpropertieswereobtained:

Samplediameter:3inches

Samplelength:6inches

Wt.beforedryinginoven:2.95lb

Et.afterdryinginoven:2.54lb

Oventemperature:110oC

Dryingtime:24hours

Specificgravityofsolids:2.65

Whatisthedegreeofsaturationofthissample?

Solution:

Vt = π(3)2 4 × 6=42 4115in3

Vs = Ws Gsγw = 2 54lb 2 65(62 4pcf) =0 01536ft3 =26 542in3

Vv = Vt Vs =42 4115 26 542=15 869in3

Ww = Wt Ws =2.95 2.54=0.41lb

Vw = Ww γw = 0 41lb 62 4pcf =0 00657ft3 =11 354in3

S = Vw Vv × 100%= 11 354 15 869 × 100=71 5%

2.18 Asampleofsaturatedsiltis10cmindiameterand2.5cmthick.Itsvoidratiointhisstate is1.42,andthespecificgravityofsolidsis2.68.Thesampleiscompressedtoa2-cmthickness withoutachangeindiameter.

(a)Findthedensityofthesiltsample,ing/cm3,priortobeingcompressed.

(b)Findthevoidratioaftercompressionandthechangeinwatercontentthatoccurredfrominitial tofinalstate.

Solution: a.)density Vt = π(10)2 4 × 2 5=196 35cm3

S =100%= Vw Vv ⇒ Vw = Vv

e = Vv Vs ⇒ Vv = eVs =1 42Vs

Vt = Vv + Vs =1 42Vs + Vs =2 42Vs =196 35cm3 ⇒ Vs =81 14cm3

Vv =1 42Vs =1 42(81 14)=115 21cm3

Mw = ρwVw =(1g/cm3)(115.21)=115.21g

Ms = GsρwVs =2 68(1g/cm3)(81 14cm3)=217 44g

Mt = Mw + Ms =115.21+217.44=332.66g

ρt = Mt Vt = 332.66 196.35 =1 694g/cm3 =1694kg/m 3

winitial = Mw Ms × 100= 115 21 217 44 × 100=53 0%

b.)voidratioandchangeinwatercontent

finalconditions:

Vt,2 = π(10)2 4 × 2.0=157.08cm3

Vs =81 14cm3 (nochange)

Vv = Vt,2 Vs =157.08 81.14=75.94cm3

efinal = Vv Vs = 75.94 81.14 =0 94

Vw = Vv =75 94cm3 (Saturated)

Mw = ρwVw =(1g/cm3)(75 94cm3)=75 94g

wfinal = 75 94 217 44 × 100=34.9%

∆w = winitial wfinal =53.0 34.9=18.1%

2.19 Asampleofsandhasthefollowingproperties:totalmass Mt =182g;totalvolume Vt =90 cm3;watercontent w =14%;specificgravityofsolids Gs =2.71.Howmuchwouldthesample volumehavetochangetoget90%saturation,assumingthesamplemass Mt stayedthesame?

Solution:

initialconditions:

Mw = wMs =0 14Ms

Mt = Ms +0.14Ms =182g ⇒ Ms = 182 1 14 =159.65g

Mw =0 14(159 65)=22 35g

Vw = γwMw =(1g/cm3)(22 35)=22 35cm3

Vs = Ms Gsρw = 159.65 2.71(1) =58 91cm3

Vv = Vt Vs =90 58 91=31 09cm3

S = Vw Vv × 100= 22.35 31.09 × 100=71 9%

desiredcondition:S=90%:

Vt changes,but Vs, Vw, Ms and Mw remainthesame

S = Vw Vv ⇒ Vv = Vw S = 22 35 0 90 =24 834cm3

Vt = Vs + Vv =58.91+24.834=83.74cm3

∆V =90 83 74=6 26cm3

TBEXAM.COM

2.20 Asampleofsoilpluscontainerweighs413.7gwhentheinitialwatercontentis9.5%.The containerweighs258.7g.Howmuchwaterneedstoberemovedtheoriginalspecimenifthewater contentistobedecreasedby4.2%?(AfterU.S.Dept.ofInterior,1990.)

Solution:

initialconditions:

Ms+c =413 7g

Mc =258.7g

Ms = Ms+c Mc =155g

w = Mw Ms ⇒ Mw = Msw =155(0 095)=14 72g

Desiredconditions:

wf = wi 4.2=9.5 4.2=5.3%

Mw,f = Ms(w)=155(0 053)=8 22%

w = Mw Mw,f =14 725 8 22=6 51g

2.21 Asoilsampleisdriedinamicrowaveoventodetermineitswatercontent.Fromthedata below,evaluatethewatercontentanddrawconclusions.Theoven-driedwatercontentis19.4%. Themassofthedishis131.2grams.(AfterU.S.Dept.ofInterior,1990.)

TimeinOven,minTotalOvenTime,minMassofSoil+Dish(g)

Solution:

a Thistotaltimeof4minutesisfrom3minutesbeforeandonemore minute,givingamassofsoil+dish=216.22grams,andsoon.

Mt =231 62 131 2=100 42g

Mw =(0.194)Ms

Mt =0 194Ms + Ms

Ms = Mt 1.194 =84 10g(thisvalueisconstantthroughoutdryingperiod)

w =column5= Mw Ms × 100= 231 62 column3 84 10 × 100

Conclusion:Thelossofadditionalwaterinthesoilsamplebecomesnegligibleafter8to10minutes inthemicrowaveovenusedintheexperiment.

TimeinOven,minTotalOvenTime,minMassofSoil+Dish(g)Massofwater(g) wn (%) 00231.62

a Thistotaltimeof4minutesisfrom3minutesbeforeandonemoreminute,givingamassofsoil+ dish=216.22grams,andsoon.

2.22 Thevolumeofwaterinasampleofsoilwith S =85%is0.32m3.Thevolumeofsolids Vs is 0.34m3.Giventhatthedensityofsoilsolids ρs is2690kg/m3,find(a)thewatercontent,(b)the voidratio,(c)theporosity,(d)thetotalorwetdensityand(e)thedrydensity.Giveyouranswers inkg/m3,andlbf/ft3

Solution:

a.)watercontent

Ms = ρsVs =2690(0 34)=914 6kg

Mw = ρwVw =1000(0 32)=320kg

w = Mw Ms × 100= 320 914.6 × 100=35 0%

b.)voidratio

P.2.21

Gs = ρs ρw = 2690 1000 =2 69

e = Gsw S = 2 69(35) 85 =1.11

c.)theporosity

n = e 1+ e × 100= 1 107 1+1 107 × 100=52 5%

d.)totalorwetdensity

Vt = Vs + Vv = Vs + eVs = Vs(1+ e)=0 34(1+1 107)=0 716m3

ρt = Mt Vt = 1234 6 0 716 =1723.17kg/m 3 =107.57pcf

ρd = Ms Vt = 914 94 0 716 =1276 54kg/m 3 =79 69pcf

2.23 A592-cm3 volumeofmoistsandweighs1090g.Itsdryweightis920gandthedensityof solidsis2680kg/m3.Computethevoidratio,porosity,watercontent,degreeofsaturation,and totaldensityinkg/m3

Solution:

ρs =2680kg/m 3 =2 68g/cm3

Vs = Vs ρs = 920 2 68 =343.284cm3

Vv = Vt Vs =592 343 284=248 716cm3

a.)voidratio

e = Vv Vs = 248 716 343 284 =0 724=0 72

c.)theporosity

n = e 1+ e × 100= 0 7245 1+0 7245 × 100=42 0%

d.)watercontent

Mw =1090 920=170g

w = Mw Ms × 100= 170 920 × 100=18 5%

d.)saturation

Vw = Mw ρw =170cm3

S = Vw Vv × 100= 170 248.716 × 100=68 4%

e.)totalorwetdensity

ρt = Mt Vt = 1090 592 =1.841g/cm3 =1841kg/m 3

2.24 Thesaturatedunitweight γsat ofasoilis128lbf/ft3.Findthebuoyantunitweightofthis soilinlbf/ft3 andbuoyantdensityinkg/m3 .

Solution:

γ = γsat γw =128 62.4=65.6lbf/ft3

ρ =(65.6lbf/ft3) 16 018kg/m3 1lbf/ft3 =1050.8kg/m 3

2.25 Asandiscomposedofsolidconstituentshavingaunitweightof168.5lb/ft3.Thevoidratio is0.62.Computetheunitweightofthesandwhendryandwhensaturatedandcompareitwith theunitweightwhensubmerged.

Solution:

Assume Vs =1ft3

Vv = eVs =0.62ft3

Vt = Vs + Vv =0 62+1=1 62ft3

Ws = ρsVs =168 5(1)=168 5lb

γd = Ws Vt = 168.5 1.62 =168 5lb/ft3

γd = Ws Vt = 168 5 1 62 =168 5lb/ft3

WhensoilissaturatedS=100%,then Vw = Vv =0 62lb/ft3

Ww = γwVw =62 4(0 62)=38 69lb

γsat = Ws + Ww Vt = 168 5+38 69 1 62 =127.9lb/ft3

γ = ρsat ρw =127.9 62.4=65.49lb/ft3

2.26 Asampleofnaturalglacialtillwastakenfrombelowthegroundwatertable.Thewatercontentwasfoundtobe43%.Estimatethewetdensity,drydensity,buoyantdensity,porosity,and voidratio.Clearlystateanynecessaryassumption.

Solution:

Assume Vs =1m3 and Gs =2.70

a.)totalorwetdensity

Ms = GsVsρs =2 7(1)(1000)=2700kg/m 3

Mw = wMs =0.43(2700)=1161kg/m 3

Mt = Ms + Mw =2700+1161=3861kg/m 3

S = Vw Vv =1 ⇒ Vw = Vv = Mw ρw =1.161m3

TBEXAM.COM

Vt = Vv + Vs =1 161+1=2 161m3

ρt = Mt Vt = 3861 2 161 =1786.7kg/m 3

b.)drydensity

ρd = Ms Vt = 2700 2 161 =1249.4kg/m 3

c.)buoyantdensity

ρ = ρsat ρw =1786.67 1000=786.7=786.7kg/m 3

c.)porosity

n = Vv Vt = 1.161 2 161 =53 7%

d.)voidratio

e = Vv Vs = 1 161 1 =1 2

2.27 Thevoidratioofclaysoilis0.58andthedegreeofsaturationis80%.Assumingthespecific gravityofsolidsis2.69,compute(a)thewatercontentand(b)dryandwetdensitiesinbothSI andBritishimperialunits.

Solution:

Assume Vs =1 0m3

Vv = eVs =0 58(1 0)=0 58m3

Vw = SVv =0 80(0 58)=0 464m3

Vt =0.58+1=1.58m3

Mw = ρwVw =(1000)(0.464)=464kg

Ms = ρsVs =(2690)(1)=2690kg

Mt = Ms + Mw =2690+464=3154kg

a.)watercontent:

w = Mw Ms × 100= 464 2690 =17 2%

b.)drydensity

ρd = Ms Vt = 2690 1 58 =1702kg/

c.)wetdensity

ρt = Mt Vt = 2690 1 58 =1996kg/m 3 =124 6lb/ft3

2.28 Thevaluesofminimumnandmaximumnforapuresilicasand(Gs =2.7)werefoundtobe 35%and42%,respectively.Whatisthecorrespondingrangeinthesaturatedunitweightinlb/ft3?

Solution:

maximum: ρsat =

minimum: ρsat =

168 5+62 4(0 538) 1+0 538 =131.35pcf

168 5+62 4(0 724) 1+0 724 =123 926pcf

2.29 Calculatethemaximumpossibleporosityandvoidratioforacollectionof(a)basketballs (9in.indiameter),(b)tennisballs(2.7in.indiameter)and(c)tinyballbearings0.01in.in diameter.Writeasentenceaboutwhatcausesthedifferencesacrossthesesize“particles.”

Solution:

Three-dimensionalparticlearrangementofequalsphereshasbeenstudiedindepthbymathematicians,statisticians,andmaterialsscientistssincethe1600s.Aquickinternetsearchonpacking ofequalsphereswillrevealnumerousmathematicaltheoriesandapproachesforestimatingthe densestandloosestpossiblepacking.Ingeneral,theloosestarrangementofequalspheresyields avoidfractionofabout0.48,regardlessofspheresize.Asanaside,thedensestpossiblepacking ofequal-sizespheresyieldsasolidsvolumeofabout: Vs = π/√18=0.7405(Thesevaluesare approximate–thereisnotaunifiedconsensusintheliterature.)

Loosestpacking

For Vt =1.0,Vv =0.48, and Vs =1 0.48=0.52;thus:

nmax = Vv Vt × 100= 0.48 1 0 × 100=48%

emax = Vv Vs = 0 48 0.52 =0 92

TBEXAM.COM

Densestpacking (notrequiredinproblemstatement)

Vs =0 7405,Vv =1 0 7405=0 2595, thus:

nmax = Vv Vt × 100= 0 2595 1 0 × 100=26%

emax = Vv Vs = 0.595 0 7405 =0 35

2.30 Aplastic-limittesthasthefollowingresults:

Wetweight+container=24 75g

Dryweight+container=19 37g

Containerweight=1 46g 23 Co pyrig ht © 2 0 2 3 Pe a rson

ComputethePLofthesoil.

Solution:

Mw =24 75 19 37=5 38g

Ms =19.37 1.46=17.91g

PL = Mw Ms × 100= 5 38 17 91 × 100=30%

2.31 Duringaliquid-limittest,thefollowingdatawasobtainedforoneofthesamples::

Wetweight+container=24 29g

Dryweight+container=17 62g

Containerweight=1 50g

AndthegrooveintheCasagrandecupclose1/2”at22blows.WhatistheLLofthsoil.

Solution:

Usetheone-pointmethod.

Mw =24.29 17.62=6.67g

Ms =17 62 1 5=16 12g

wn = Mw Ms × 100= 6 67 16 12 × 100=41.4%

UseEq.(2.38)

2.32 The“chunkdensity”methodisoftenusedtodeterminetheunitweight(andothernecessary information)ofaspecimenofirregularshape,especiallyoffriablesamples.Thespecimenatits naturalwatercontentis(1)weighed,(2)paintedwithathincoatowaxorparaffin(toprevent waterfrommovingintooroutofthepores),(3)weighedagain(Wt + Wmax),and(4)weighed inwater(togetthevolumeofthesample+waxcoating-rememberArchimedes?).Finally,the naturalwatercontentofthespecimenisdetermined.Aspecimenofcementedsiltysandistreated inthiswaytoobtainthe“chunkdensity.”Fromtheinformationgivenbelow,determinethe(a) wetdensity,(b)drydensity,(c)voidratio,and(d)degreeofsaturationofthesample.

Given:

Weightofspecimenatnaturalwatercontentinair=181 8g

Weightofspecimen+waxcoatinginair=215 9g

Weightofspecimen+waxinwater=58.9g

Naturalwatercontent=2.5%

Soilsoliddensity, ρs =2650kg/m 3

Waxsoliddensity, ρwax =940kg/m 3

Phasediagram!!

Solution: w = Mt Ms Ms ⇒ Ms = Mt 1+ w = 181 8 1+0 025 =177.366g

Mw = Mt Ms =181.8 177.4=4.43g

Vs = Ms ρs = 177.366g 2 650g/cm3 =66 93cm3

Vw = Mw ρw = 4.43g 1 0g/cm3 =4 43cm3

Mwax = Mt+wax Mwaterdisplaced ⇒ Mwaterdisplaced =215.9 58.9=157.0g

Vt+wax = Mwaterdisplaced ρw = 157 1.0 =157 0cm3

TBEXAM.COM

Vair = Vt+wax Vwax Vw Vs =157 0 36 28 4 43 66 93=49 36cm3

Vv = Vair + Vw =49 36+4 43=53 79cm3

Vt = Vt+wax Vwax =157.0 36.28=120.72cm3

a.)totaldensity

ρt = Mt Vt = 181 8 120 72 =1.50g/cm3 =1506kg/m 3

b.)drydensity

ρd = Ms Vt = 177 366 120.72 =1 47g/cm3 =1469kg/m 3

c.)voidratio

e = Vv Vs = 53.79 66.93 =0 80

c.)saturation

S = Vw Vv × 100= 4 43 53 79 =8 2%

P.2.32.Phasediagram

2.33 Asensitivevolcanicclaysoilwastestedinthelaboratoryandfoundtohavethefollowing properties:

(a) ρ =1280kg/m3 (b)e=9.0 (c)S=95%

(d) ρs =2750kg/m3 (e)w=311%

Inrecheckingtheabovevalues,onewasfoundtobeinconsistentwiththerest.Findtheinconsistent valueandreportitcorrectly.Showallyourcomputationsandphasediagrams.

Solution:

Assume Vs =1m3

Ms = ρsVs =2750kg

Mw = wMs =3 11(2750)=8552 5kg

Mt = Ms + Mw =2750+8552.5=11302.5kg

Vt = Mt ρt = 11302.5 1280 =8 83m3

Vv = eVs =9(1)=9m3

Vt = Vv + Vs =9+1=10m3 =8 83m3

Check: Gsw = Se

2.65(3.11)=(0.95)(9.0)

8 55=8 55Thesevaluesareincorrectproportion

Consequently,theerrormustbein ρt value.

Re-calculate ρt = Mt Vt = 11302.5 10 =1130 2kg/m 3

Solution ρt =1130 2kg/m 3

P.2.33.Phasediagram

2.34 A15cmhighcylindercontains847cm3 ofloosedrysandwhichweighs843g.Undera staticloadof200kPathevolumeisreduced3%,andthenbyvibrationitisreduced12%fromthe originalvolume.Assumethesoliddensityofthesandgrainsis2710kg/m3.Computethevoid ratio,porosity,drydensity,andtotaldensitycorrespondingtoeachofthefollowingcases:

(a)Loosesand

(b)Sandunderstaticload

(c)Vibratedandloadedsand

Solution:

Vs = Ms ρs = 843 2 71 =311 1cm3 ; Mt =843g

drysand: Mw = Vw =0

a.)loosesand-Initialcondition

Vt =847cm3

Vv = Vt Vs =847 311 1=535 93cm3

e = Vv Vs = 535 93 311 1 =1.72

n = Vv Vt × 100= 535 93 847 × 100=63.3%

ρd = ρt = Ms Vt = 843 847 =0.995g/cm3 =995kg/m 3

b.)Sandunderstaticload

Vt =847 847(0 03)=821 59cm3

Vv = Vt Vs =821 59 311 1=510 52cm3

e = Vv Vs = 510 52 311 1 =1.64

n = Vv Vt × 100= 510 52 821.59 × 100=62 14%

ρd = ρt = Ms Vt = 843 821 59 =1 026g/cm3 =1026kg/m 3

c.)Vibratedandloadedsand

Vt =847 847(0.12)=723cm3

Vv = Vt Vs =723 311 1=411 93cm3

e = Vv Vs = 411.93 311.1 =1 32

n = Vv Vt × 100= 411 93 723 × 100=57 0%

TBEXAM.COM

ρd = ρt = Ms Vt = 843 723 =1.166g/cm3 =1166kg/m 3

2.35 Onfive-cyclesemilogarithmicpaper,plotthegrain-sizedistributioncurvesfromthefollowing mechanicalanalysisdataonsixsoils,AthroughF.Foreachsoildeterminetheeffectivesizeas wellastheuniformitycoefficientandthecoefficientofcurvature.Determinealsothepercentages ofgravel,sandsilt,andclayaccordingto(a)ASTM,(b)AASHTO,(c)USCS,and(d)theBritish Standard.

U.S.StandardSieveNo.PercentPassingbyWeight orParticleSizeSoilASoilBSoilCSoilDSoilESoilF 75mm(3in.)100.00100 38(1-1/2)70— 19(3/4)4910091

9.5(3/8)36—87 No.4278881100 No.1020827010089 No.20—80—99— No.40878499163 No.60—74—37— No.1005——9— No.140—6535460 No.20045532—57100

40 µm331274199

20 µm219223592 10 µm113182082 5 µm <11014871 2 µm——11—52 1 µm—210—39

Note:Missingdataisindicatedbyadashinthecolumn.

Solution:

Effectivesize,uniformitycoefficientandcoefficientofcurvature:

Effectivesize

A0.662846.72.1 B0.0050.040.0918.03.6 C0.0010.0611000.03.6 D0.160.220.31.91.0

E0.0060.0150.116.70.4 FN/DN/D0.003N/DN/D

P.2.35.Granulometriccurve
P.2.35.Soilclassificationchartafter(BardetandJean-Pierre,1997)

(a)Table.PercentagesaccordingtoASTM

Percentage(%)SoilASoilBSoilCSoilDSoilESoilF

Gravel731219000

Sand233349100430

Silt4451804929

Clay010140871

Fines(silt+clay)45532057100

Check:100100100100100100

(b)Table.PercentagesaccordingtoAASHTO

Percentage(%)SoilASoilBSoilCSoilDSoilESoilF

Gravel8018300110

Sand162738100320

Silt4451804929

Clay010140871

Fines(silt+clay)45532057100

Check:100100100100100100

(c)Table.PercentagesaccordingtoUSCS

TBEXAM.COM

Percentage(%)SoilASoilBSoilCSoilDSoilESoilF

Gravel731219000

Sand233349100430

Silt------

Clay------

Fines(silt+clay)45532057100

Check:100100100100100100

(d)Table.PercentagesaccordingtotheBritishStandard

Percentage(%)SoilASoilBSoilCSoilDSoilESoilF

Gravel8018300110

Sand162738100320

Silt4452105748

Clay010110052

Fines(silt+clay)45532057100

Check:100100100100100100

2.37 ThesoilsinProblem2.35havethefollowingAtterberglimitsandnaturalwatercontents. DeterminethePIandLIforeachsoilandcommentontheirgeneralactivity.

Solution:

Fromequations:

SoilA:verysensitive,highlyactive

SoilB:mostlikelyaclayabovethewatertablethathasexperiencedadecreaseinmoisture

SoilC:mostlikelyaclayabovethewatertablethathasexperiencedadecreaseinmoisture

SoilD:mostlikelyafinesand

SoilE:mostlikelyasilt

SoilF:slightlysensitiveandactive

2.38 CommentonthevalidityoftheresultsofAtterberglimitsonsoilsGandH.

Solution:

BasedonAtterberg’sdefinitions:LL >> PL > SL.SoilGviolatesthedefinitionsbecausetheSL > PL(25 > 20).SoilHviolatesthedefinitionsbecausethePL > LL(42 > 38).

2.39 Thefollowingdatawereobtainedfromaliquid-limittestonasiltyclay.

Twoplastic-limitdeterminationshadwatercontentsof24.2%and23.5%.DeterminetheLL,PI,the flowindex,andthetoughnessindex.Theflowindexistheslopeofthewatercontentversuslogof numberofblowsintheliquid-limittest,andthetoughnessindexisthePIdividedbytheflowindex.

Solution:

Theflowindexistheslopeofthetrendlineequalto15.7%

Thetoughnessindexisdefinedas:=

2.40 ClassifythefollowingsoilsaccordingtotheUSCS:

(a)Asampleofwell-gradedgravelwithsandhas73%finetocoarsesubangulargravel,25%fineto coarsesubangularsand,and2%fines.Themaximumsizeoftheparticlesis75mm.Thecoefficient ofcurvatureis2.7,whiletheuniformitycoefficientis12.4.

Solution: GW–Well-gradedgravelwithsand.

(b)Adarkbrown,wet,organic-odorsoilhas100%passingtheNo.200sieve.Theliquidlimitis 32%(notdried,andis21%whenovendried!)andtheplasticindexis21%(notdried).

Solution: OL–OrganicclayorOrganicsilt.

(c)Thissandhas61%predominatelyfinesand,23%siltyfines,and16%finesubroundedgravel size.Themaximumsizeis20mm.Theliquidlimitis33%andtheplasticlimitis27%.

Solution: SM–Siltysandwithgravel

(d)Thismaterialhas74%finetocoarsesubangularreddishsandand26%organicandsiltydark brownfines.Theliquidlimit(notdried)is37%whileitis26%whenovendried.Theplasticindex (notdried)is6.

Solution: SM–Siltysandwithorganicfines

(e)Althoughthissoilhasonly6%nonplasticsiltyfines,ithaseverythingelse!Ithasgravelcontentof78%finetocoarsesubroundedtosubangulargravel,and16%finetocoarsesubrounded tosubangularsand.Themaximumsizeofthesubroundedbouldersis500mm.Theuniformity

SievePercentFinerbyWeight 1/2–83 No.452 No.1040 No.2032 No.4017 No.6010 No.1008

coefficientis40,whilethecoefficientofcurvatureisonly0.8.(AfterU.S.Dept.oftheInterior,1990.)

Solution: GP-GM–Poorlygradedgravelwithsilt,sand,cobbles,andboulders(orGP-GC)

2.41 Youknowwhatiscoming.Classifythefivesoilsintheprecedingquestionaccordingtothe AASHTOmethodofsoilclassification.Youcanfindproceduresfordoingthisinthereferences giveninSection2.9orontheWeb

Solution:

(a)A-1-a (b)A-8

(c)A-2-4

(d)A-2-4orA-8

(e)A-1-a

2.42 Theresultsofasievetestbelowgivethepercentagepassingthroughthesieve.

(a)Usingaspreadsheet,plottheparticle-sizedistribution.

(b)Calculatetheuniformitycoefficient.

(c)Calculatethecoefficientofcurvature.

Solution:

(a)particle-sizedistribution

(b)Uniformitycoefficient:

(c)coefficientofcurvature:

P.2.42.Particle-sizedistribution

2.43 Forthedatagivenbelow,classifythesoilsaccordingtotheUSCS.Foreachsoil,giveboth thelettersymbolandthenarrativedescription.

(a)65%materialretainedonNo.4sieve,32%retainedonNo.200sieve.Cu=3,Cc=1.

Solution: GP–Poorlygradedgravelwithsand (b)100%materialpassedNo.4sieve,90%passedNo.200sieve.LL=23,PL=17.

Solution: CL-ML–Siltyclay

(c)70%materialretainedonNo.4sieve,27%retainedonNo.200sieve.Cu=5,Cc=1.5.

Solution: GW–Well-gradegravelwithsand

2.44 Asampleofsoilwastestedinthelaboratoryandthefollowinggrain-sizeanalysisresultswere obtained.LL=34,PL=21,28%iscoarserthanthe1/2-inchsieve.Classifythissoilaccordingto theUSCS,providingthegroupsymbolforit.

Solution: PI = LL PL =34 21=13% Cu = D60 D10 = 2 8 0 065 =43.1(2.24)

SieveNo.SieveOpening(mm)PercentCoarserbyWeightPercentfinerbyweight 44.752872

P.2.44.Particle-sizedistribution

SC-CL–Clayeysandwithgravel

2.45 AminusNo.40materialhadaliquidityindexof0.67,anaturalwatercontentof38.7%,and aplasticityindexof18.9.ClassifythissoilaccordingtotheUSCS,providingthegroupsymbolfor it.Youdonotneedtographthisdata;uselinearinterpolationifyouneedspecificvaluesnotgiven.

2.46 Asampleofsoilwastestedinthelaboratoryandthefollowinggrain-sizeanalysisresultswere obtained.LL=60,PL=26.ClassifythissoilaccordingtotheUSCS,providingthegroupsymbol forit.

Solution:

P.2.46.Particle-sizedistribution PI = LL PL =60 26=34%

u = D60 D10 = 4 75 0.075 =63(2.24)

SieveNo.SieveOpening(mm)PercentFinerbyWeight

2.47 Asampleofsoilwastestedinthelaboratoryandthefollowinggrain-sizeanalysisresultswere obtained.AtterberglimitsonminusNo.40materialwere:LL=38,PL=19.

Solution:

PI = LL PL =38 19=19%

2.48 Laboratorytestingwasperformedontwosoilsamples(AandB)andthedataissummarized inthetable.DeterminetheUSCSclassificationforsamplesAandB.Useloginterpolationas

SW-SC–Well-gradedsandwithclay
P.2.47.Particle-sizedistribution
SC-CL–Clayeysand

necessary.

Solution:

SieveNo.SampleA-%Passing(mm)SampleB-%Passing 3in.(76.2mm)1001.5in.(38.1mm)980.75in.(19.1mm)964(4.75mm)77100 10(2.00mm)Notused96 20(0.85mm)5594 40(0.425mm)Notused73

100(0.150mm)30Notused 200(0.075mm)1855

Liquidlimit3252 Plasticlimit2532

TBEXAM.COM

(a)ForSampleA: PI = LL PL =32 25=7% Cu = D60 D10 = 1 3 0 044 =29 5(2.24)

P.2.48
P.2.48.Particle-sizedistribution

SM—Siltysandwithgravel.

(b)ForSampleB:

PI = LL PL =52 32=20%

MHorOH—Elasticsandysiltororganicsandysilt/clay.

2.49 Asampleofsoilwastestedinthelaboratoryandthefollowinggrain-sizeanalysisresultswere obtained.AtterberglimitsonminusNo.40material:LL=56,PL=25.DeterminetheUSCS lettersymbol(e.g.,GP)forthissoil.

PI = LL PL =56 25=31%

Cu = D60 D10 = 0 31 0 055 =5.6(2.24) Cc = D2 30 D60 × D10 = 0.152 0.31(0.055) =1 3 ⇒

SC-CH—Clayeysand

P.2.49.Particle-sizedistribution

2.50 AsampleofabrownsandyclaywasobtainedtodetermineitsAtterberglimitsandthen classifyitssoiltypeaccordingtotheUnifiedSoilClassificationSystem.ForoneofthePLdeterminations,thewetweight+dish=11.53gandthedryweight+dish=10.49g.Thedishonly weighed4.15g.Computetheplasticlimit.Anotherplasticlimitwas16.9%.Threedeterminations oftheliquidlimitweremade.For17blows,thewatercontentwas49.8%;for26blows,thewater contentwas47.5%;andfor36blows,thewatercontentwas46.3%.Evaluatethesoiltype,indicate theinformationonaplasticitychart,andgivetheUnifiedSoilClassificationsymbol.

Solution: Mw =11 53 10 49=1 04g

Ms =10.49 4.15=6.34g

wPL = PL = Mw Ms × 100= 1 04 6.34 × 100=16 4

PLavg = 16.4+16.9 2 =16 65;Fromplotbelow:LL=48

PI =48 16 7=31

BasedonCasagrande’splasticitychart,thesoilfinesclassifyasCL—Sandyleanclay.

CHAPTER3:GEOLOGY,LANDFORMS,ANDTHEORIGINOFGEOMATERIALS

CHAPTER3:PROPERTIESOFROCKMASSES,SOIL PARTICLES

3.15 Inonecorerunof1500mmselectedfromcoresobtainedduringdrillingforabridgefoundation inhardlimestone,thefollowingcorerecoveryinformationwasobtained: Determine(a)thepercentcorerecovery,and(b)theRQD.BasedonthisRQD,whatistherock quality?Why?

P.3.15 CoreRecoveryLengthofCorePieces (mm) > 100mm

Solution:

(a)Corerecovery:

CR = Totallengthofrockrecovered Totalcorerunlength × 100 CR =

(b)RQD:

RQD = Lengthofsoundpieces

× 100

RQD = 150+100+125+100+125 1500 = 850 1500 × 100=56.7%

BasedontheRockMassClassificationsshowninTable3.6,thelimestonerockqualitywouldbe deemedfair.

3.16 Calculatethespecificsurfaceofacube(a)25mm,(b)2.5mm,(c)2.5 µm,and(d)2.5nm onaside.Calculatethespecificsurfaceintermsofbothareasandm2/kg.Assumeforthelatter casethat γs =2710kg/m3

Solution:

Solveusingthefollowingequation:

specificsurface= surfacearea unitvolume

(a)specificsurface= 6(625mm2) 253 mm3 = 3750mm2

intermsofmass:specificsurface= 0 24/ mm × (1000mm/1m) 2710kg/m3 =0.089m2/kg

(b)specificsurface= 6(6 25mm2) 2.53 mm3 = 37 5mm2 15.625mm3 =2.4/mm

TBEXAM.COM

intermsofmass:specificsurface= 2 4/ mm × (1000mm/1m) 2710kg/m3 =0.89m2/kg

(c)specificsurface= 6(6.25 µm2) 2.53 µm3 = 37.5 µm2 15.625 µm3 =2 4/µm=2400/ mm

intermsofmass:specificsurface= 2400/ mm × (1000mm/1m) 2710kg/m3 =885 6m2/kg

(d)specificsurface= 6(6 25nm2) 2 53 nm3 = 37 5nm2 15 625nm3 =2.4/nm=2, 400, 000/ mm

intermsofmass:specificsurface= 2, 400, 000/ mm × (1000mm/1m) 2710kg/m3 =885, 608.8m2/kg

3.18 Aspeciallyprocessedclayhasparticlesthatare600nmthickand12,000nm × 12,000nm wide.Thespecificgravityofsolidsis2.72.Theparticleslieperfectlyparallelwithanedge-to-edge spacingof375nm(i.e.,theylooklikethinbricksstackedperfectlyparallel).(a)Initially,thecation valenceinthedoublelayeris+1,resultinginaface-to-facespacingof1500nm.Howmanyparticlespercm3 willtherebeatthisspacing?Whatarethevoidratioandwatercontent,assuming

thatthesoilisat100%saturation?(b)Anothersampleoftheclayismixedsuchthatthecation valenceis+2.Whatarethenewvoidratioandwatercontentundertheseconditions?Assume theedge-to-edgespacingremains375nmandthatS=100%.(AfterC.C.Ladd.)

Solution:

Assumesymmetricaledge-to-edgespacingof375nmandonlyincludewholeparticles.

(a)thehorizontalspacingbetweentwoparticleisequalto:12,000+375=12,375nm.Then,the numberofparticlesinthisplaneisequalto:

no.ofparticlesinplan= 1, 000, 000 12, 000 12, 375 +1=808 1=808particles

Totalno.ofparticlesinplan=808 ∗ 808=652, 864particles

Theverticalspacefortwoparticlesisequalto600+1500=2100nm.Then,thenumberofparticles intheverticalis:

no.ofparticlesinvertical= 1, 000, 000 600 2100 +1=4762 6=4762particles

Totalno.ofparticlesin1cm3 =652, 864 × 4762=3108 × 106 particles

Thevolumeofofeachparticleis: V =600 × 1200 × 1200nm3 =8.64 × 1010 nm 3 =8.

× 10 11 cm3 thevolumeofthesolidsis: Vs =8 6 × 10 11 cm3 × 3108 × 106 particles=0 269cm3

ForS=100% ⇒ Vw = Vv =1cm3 0 269cm3 =0 731cm3

Thevoidratiocanbecalculateas:

e = Vv Vs = 0 731 0 269 =2 72

Forthewatercontent: Ms = VsGsρw =(0.269)(2.72)(1g/cm3)=0.73

w = Mw Ms = 0 73 0 73 × 100=100%

(b)theonlychangerespecttoparta.istheverticalspacing,whichisequalto=600+1500*2= 3600nm.

no.ofparticlesinvertical= 1, 000, 000 600 3600 +1=2778 6=2778particles

Totalno.ofparticlesin1cm3 =652, 864 × 2778=1840 × 106 particles

thevolumeofthesolidsis

Vs =8 64 × 10 11 cm3 × 1840 × 106 particles=0 157cm3

ForS=100% ⇒ Vw = Vv =1cm3 0 157cm3 =0 84cm3

Thevoidratiocanbecalculateas:

e = Vv Vs = 0.84 0.157 =5 38

Forthewatercontent:

Ms = VsGsρw =(0 157)(2 72)(1g/cm3)=0 426

w = Mw Ms = 0 84 0 426 × 100=197 9%

3.21 Canasoilhavealowvoidratioandahighdensityatthesametime?Explain.

Solution:

Thespecifygravityofthesolidshavetobeverylarge.

TBEXAM.COM

CHAPTER4:COMPACTIONANDSTABILIZATIONOF SOILS

4.1 ForthedatainFig.4.2:

(a)Estimatethemaximumunitweightandoptimumwatercontentforboththestandardcurve andthemodifiedProctorcurve.

(b)Whatisthewatercontentrangetoachieve90%relativecompactionforthemodifiedProctor curveand95%relativecompactionforthestandardProctorcurve?

(c)IfahighercompactiveeffortthanthemodifiedProctorwasusedandachievedamaximumunit weightof120lb/ft3,whatisyourpredictionofthewatercontentatwhichthatwasachieved?

Solution:

(a)Forthestandardproctor: ρd max =1730kg/m 3 =108lb/ft3 ; wopt =16%

Forthemodifiedproctor: ρd max =1875kg/m 3 =117lb/ft3 ; wopt =12%

(b)95%ofStandardProctorcurve:0.95×ρd max =(0 95)(1730)=1643kg/m3

watercontentrangeforStandardProctor: w =11to20%

90%ofModifiedProctorcurve:0.90×ρd max =(0.90)(1875)=1687kg/m3

watercontentrangeforStandardProctor: w =5to18%

(c)thewatercontentforthemaximununitweightof120lb/ft3 is10.3%

4.2 Thenaturalwatercontentofaborrowmaterialisknowntobe12%.Assuming4.75kgofwet soilisusedforlaboratorycompactiontestpoints,computethevolumeofwateristobeaddedto other4.75samplestobringtheirwatercontentsupto14%,17%,20%,23%,and26%.

Solution: w =0 12= Mw Ms ⇒ Mw =0 12Ms; Mt =4 75kg

Ms remainsconstant.Determine Ms forthenaturalmoisturecondition.

Mt = Mw + Ms =4 75kg; 4.75=0.12Ms + Ms ⇒ Ms =4.241kg; Mw fornaturalcondition:Mw =(0 12)(4 241)=0 509kg

(a) w =14%

Mw = wMs =(0.14)(4.241)=0.509kg

additionalwaternecessaryforw=14%:0 594 0 509=0 085kg

(b) w =17%

Mw = wMs =(0.17)(4.241)=0.721kg

additionalwaternecessaryforw=17%:0 721 0 509=0 212kg

(c) w =20%

Mw = wMs =(0.20)(4.241)=0.848kg

additionalwaternecessaryforw=20%:0 848 0 509=0 339kg

(d) w =23%

Mw = wMs =(0.23)(4.241)=0.975kg

additionalwaternecessaryforw=23%:0 975 0 509=0 467kg

(e) w =26%

Mw = wMs =(0.26)(4.241)=1.103kg

additionalwaternecessaryforw=26%:1 103 0 509=0 594kg

4.3 ForthesoilshowninFig.4.2,afielddensitytestprovidedthefollowinginformation:

Watercontent=13%

Wetunitweight=115lb/ft3

ComputethepercentrelativecompactionbasedonthemodifiedProctorandthestandardProctor curves.

Solution:

Dryunitweightinfield:

FromFig.4.2:StandardProctor γdmax =108.0pcf;ModifiedProctor γdmax =117.1pcf Therelativecompactionisequalto: RC= γdfield γ

4.4 Forthedatagivenbelow ρs =2710kg/m3:

(a)Plotthecompactioncurves.

(b)Establishthemaximumdrydensityandoptimumwatercontentforeachtest.

(c)ComputethedegreeofsaturationattheoptimumpointfordatainColumnA.

(d)Plotthe100%saturation(zeroairvoids)curve.Alsoplotthe70%,80%,and90%saturation curves.Plotthelineofoptimums.

A(modified)B(modified)C(lowenergy) ρd (kg/m3) w (%) ρd (kg/m3) w (%) ρd (kg/m3) w (%) 18739.316919.3162710.9 191012.8171511.8163912.3 180315.5175514.3174016.3 169918.7174717.6170720.1 164121.1168520.8164722.4 161923

Solution:

(a)SeeFig.P4.4.

(b)

Test wopt (%) ρmax

Modified12.01918

Standard15.51761

Lowenergy17.31747

(c)FromEq.4.1:

(d)FromEq.4.1:

P.4.4
P.4.4

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.