Solutions for Precalculus A Right Triangle Approach 5th Us Edition by Ratti

Page 1


INSTRUCTOR’S SOLUTIONS MANUAL

BEVERLY FUSFIELD

P RECALCULUS

A R IGHT T RIANGLE A PPROACH

FIFTH EDITION

J.

S. Ratti

University of South Florida

Marcus McWaters

University of South Florida

Leslaw A. Skrzypek

University of South Florida

Jessica Bernards

Portland Community College

Wendy Fresh

Portland Community College

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2023, 2019, 2015 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-751980-4

ISBN-10: 0-13-751980-X

CONTENTS

Chapter P Basic Concepts of Algebra

P.1TheRealNumbersandTheirProperties......................................................1

P.2IntegerExponentsandScientificNotation...................................................8

P.3Polynomials................................................................................................13

P.4FactoringPolynomials ................................................................................20

P.5RationalExpressions..................................................................................28

P.6RationalExponentsandRadicals...............................................................38

ChapterPReviewExercises....................................................................................48

ChapterPPracticeTest...........................................................................................53

Chapter 1 Equations and Inequalities

1.1LinearEquationsinOneVariable..............................................................54

1.2ApplicationsofLinearEquations:Modeling.............................................64

1.3QuadraticEquations...................................................................................76

1.4ComplexNumbers:QuadraticEquationswithComplexSolutions...........93

1.5SolvingOtherTypesofEquations...........................................................101

1.6Inequalities...............................................................................................122

1.7EquationsandInequalitiesInvolvingAbsoluteValue.............................138

Chapter1KeyIdeasataGlance...........................................................................155

Chapter1ReviewExercises..................................................................................156

Chapter1PracticeTestA......................................................................................167

Chapter1PracticeTestB......................................................................................169

Chapter 2 Graphs and Functions

2.1TheCoordinatePlane...............................................................................171

2.2GraphsofEquations.................................................................................181

2.3Lines.........................................................................................................194

2.4Functions..................................................................................................209

2.5PropertiesofFunctions .............................................................................219

2.6ALibraryofFunctions.............................................................................229

2.7TransformationsofFunctions..................................................................240

2.8CombiningFunctions;CompositeFunctions...........................................257

2.9InverseFunctions.....................................................................................275

Chapter2KeyIdeasataGlance...........................................................................286

Chapter2ReviewExercises..................................................................................288

Chapter2PracticeTestA......................................................................................298

Chapter2PracticeTestB......................................................................................300

CumulativeReviewExercises(ChaptersP2)......................................................300

Chapter 3 Polynomial and Rational Functions

3.1QuadraticFunctions.................................................................................305

3.2PolynomialFunctions...............................................................................326

3.3DividingPolynomials...............................................................................342

3.4TheRealZerosofaPolynomialFunction ................................................353

3.5TheComplexZerosofaPolynomialFunction........................................376

3.6RationalFunctions ....................................................................................386

3.7Variation...................................................................................................406

Chapter3KeyIdeasataGlance...........................................................................411

Chapter3ReviewExercises..................................................................................414

Chapter3PracticeTestA......................................................................................431

Chapter3PracticeTestB......................................................................................432

CumulativeReviewExercises(ChaptersP3)......................................................433

Chapter 4 Exponential and Logarithmic Functions

4.1ExponentialFunctions..............................................................................436

4.2LogarithmicFunctions.............................................................................449

4.3RulesofLogarithms.................................................................................463

4.4ExponentialandLogarithmicEquationsandInequalities........................475

4.5LogarithmicScales;Modeling.................................................................490

Chapter4KeyIdeasataGlance...........................................................................501

Chapter4ReviewExercises..................................................................................501

Chapter4PracticeTestA......................................................................................510

Chapter4PracticeTestB......................................................................................511

CumulativeReviewExercises(ChaptersP4)......................................................512

Chapter 5 Trigonometric Functions

5.1AnglesandTheirMeasure.......................................................................516

5.2Right-TriangleTrigonometry...................................................................523

5.3TrigonometricFunctionsofAnyAngle;TheUnitCircle........................535

5.4GraphsoftheSineandCosineFunctions.................................................548

5.5GraphsoftheOtherTrigonometricFunctions.........................................567

5.6InverseTrigonometricFunctions.............................................................582

Chapter5KeyIdeasataGlance...........................................................................590

Chapter5ReviewExercises..................................................................................592

Chapter5PracticeTestA......................................................................................596

Chapter5PracticeTestB......................................................................................597

CumulativeReviewExercises(ChaptersP5)......................................................598

Chapter 6 Trigonometric Identities and Equations

6.1VerifyingIdentities..................................................................................601

6.2SumandDifferenceFormulas..................................................................615

6.3Double-AngleandHalf-AngleFormulas.................................................629

6.4Product-to-SumandSum-to-ProductFormulas.......................................645

6.5TrigonometricEquationsI........................................................................654

6.6TrigonometricEquationsII......................................................................664

Chapter6KeyIdeasataGlance...........................................................................684

Chapter6ReviewExercises..................................................................................685

Chapter6PracticeTestA......................................................................................691

Chapter6PracticeTestB......................................................................................693

CumulativeReviewExercises(ChaptersP6)......................................................694

Chapter 7 Applications of Trigonometric Functions

7.1TheLawofSines ......................................................................................698

7.2TheLawofCosines ..................................................................................713

7.3AreasofPolygonsUsingTrigonometry...................................................726

7.4Vectors.....................................................................................................741

7.5TheDotProduct.......................................................................................751

7.6PolarCoordinates.....................................................................................761

7.7PolarFormofComplexNumbers;DeMoivre’sTheorem.......................778

Chapter7KeyIdeasataGlance...........................................................................792

Chapter7ReviewExercises..................................................................................793

Chapter7PracticeTestA......................................................................................802

Chapter7PracticeTestB......................................................................................803 CumulativeReviewExercises(ChaptersP–7)......................................................805

Chapter 8 Systems of Equations and Inequalities

8.1SystemsofLinearEquationsinTwoVariables.......................................808

8.2SystemsofLinearEquationsinThreeVariables.....................................828

8.3Partial-FractionDecomposition...............................................................851

8.4SystemsofNonlinearEquations..............................................................875

8.5SystemsofInequalities .............................................................................889

8.6LinearProgramming.................................................................................905

Chapter8KeyIdeasataGlance...........................................................................918

Chapter8ReviewExercises..................................................................................918

Chapter8PracticeTestA......................................................................................931

Chapter8PracticeTestB......................................................................................934

CumulativeReviewExercises(ChaptersP8)......................................................937

Chapter 9 Matrices and Determinants

9.1MatricesandSystemsofEquations..........................................................940

9.2MatrixAlgebra.........................................................................................963

9.3TheMatrixInverse...................................................................................983

9.4DeterminantsandCramer’sRule...........................................................1004

Chapter9KeyIdeasataGlance.........................................................................1015

Chapter9ReviewExercises................................................................................1018

Chapter9PracticeTestA....................................................................................1029

Chapter9PracticeTestB....................................................................................1030

CumulativeReviewExercises(ChaptersP9)....................................................1032

Chapter 10 The Conic Sections

10.2TheParabola...........................................................................................1034

10.3TheEllipse..............................................................................................1050

10.4TheHyperbola........................................................................................1069

Chapter10KeyIdeasataGlance.......................................................................1092

Chapter10ReviewExercises..............................................................................1093

Chapter10PracticeTestA..................................................................................1102

Chapter10PracticeTestB..................................................................................1104

CumulativeReviewExercises(ChaptersP10)..................................................1105

Chapter 11 Further Topics in Algebra

11.1SequencesandSeries.............................................................................1108

11.2ArithmeticSequences;PartialSums......................................................1120

11.3GeometricSequencesandSeries............................................................1127

11.4MathematicalInduction ..........................................................................1138

11.5TheBinomialTheorem..........................................................................1149

11.6CountingPrinciples................................................................................1157

11.7Probability..............................................................................................1164

Chapter11KeyIdeasataGlance.......................................................................1168

Chapter11ReviewExercises..............................................................................1169

Chapter11PracticeTestA..................................................................................1173

Chapter11PracticeTestB..................................................................................1173

CumulativeReviewExercises(ChaptersP11)..................................................1174

Chapter P Basic Concepts of Algebra

P.1 The Real Numbers and Their Properties

Practice Problems

1. Let x =2.132132132…. Then,1000x =2132.132132… 10002132.132132 2.132132 9992130 2130710 999333 x x x x 

2. a. Naturalnumbers:2,7

b. Wholenumbers:0,2,7

c. Integers: 21 6,3,0,2,7 7 

d. Rationalnumbers:  2114 6,3,,0,,2,7 723 

e. Irrationalnumbers:3,17

f. Realnumbers:thesetB

3. a. 3 22228 

b. 223339  aaaa

c. 4 111111 2222216

4. a. 20 truebecause2istotheleftof0 onthenumberline.

b. 57  truebecause5istotheleftof7on thenumberline.

c. 41 falsebecause4istotheleftof 1onthenumberline.

5.  3,1,0,1,3,4,2,0,2,4 AB

6. a. 

7. a. 1010

b. 3411 

c.

2376711

9. a.

352015205

b. 51262522541

c. 918 575723533

Concepts and Vocabulary

1. Wholenumbersareformedbyaddingthe numberzerotothesetofnaturalnumbers.

2. Thenumber3isaninteger,butitisalsoa rationalnumberandarealnumber.

3. If a < b,then a istotheleftof b onthe numberline.

4. Ifarealnumberisnotarationalnumber,itis anirrationalnumber.

5. True

6. False.51 2 22 

7. True

8. False.Anexampleis 

22224,  whichisrational.

Building Skills

9. 0.3,repeating

10. 0.6,repeating

11. 0.8,terminating

12. 0.25,terminating

13. 0.27,repeating

14. 0.3,repeating

15. 3.16,repeating

16. 2.73,repeating 17. 37515 3.75 1004  18. 23547 2.35 10020

24. 100142.3535 1.4235 99140.93 140.9314,093 999900 x x x

25. Rational 26. Rational

27. Rational 28. Rational

29. Rational 30. Rational

31. Irrational 32. Irrational Exercises33-38refertotheset 1217 A19,,3,0,2,10,,11 34 

33. Naturalnumbers:2,11

34. Wholenumbers:0,2,11

35. Integers: 12 19,4,0,2,11 3 

36. Rationalnumbers:121719,,0,2,,11 34

37. Irrationalnumbers:3,10

38. Realnumbers:Allnumbersinset A arereal numbers.

39. 3 10

base:10;exponent:3 3 101010101000

40. 54

base:5;exponent:4 4 55555625

41. 23 3

base: 2 3;exponent:3 3 22228 333327

42. 54 2

base:5;2exponent:4 4 55555625 2222216

43.

45.

48.

325

5 32322222 33296

50.  532

base:–3;exponent:2

2 535335945

55. 52  x 56. 12 x

57. 0 x  58. 0 x 

59. 2714  x 60. 235  x

61. 24 4 6  62. 52

63. 40 64. 91 4 22 

65.  4,3,2,0,1,2,3,4 AB 

66.  0,2,4  AB 

67.  4,2,0,2 AC  

68.  4,3,2,1,0,1,2,3,4 BC  

BCAA   

69.     3,0,2 4,3,2,0,2,4

70.     4,3,2,1,0,2,4 3,0,2,4 ACBB 

71.     4,3,2,0,1,2,3,4 4,3,2,0,2

ABCC   

ABCC   

72.     4,3,2,0,1,2,3,4 4,3,2,1,0,1,2,3,4

73.    12122,5;1,3IIII

74.    12121,7;3,5IIII

75.   1212 6,10; IIII

76.   1212 ,; IIII

77.     1212,;2,5IIII

78.     12122,;0,IIII

79.      1212,;1,35,7IIII 

80.      1212,26,;3,0IIII

81. 44 82. 1717 83. 55 77  84. 33 55 

85. 5252  86. 2552 

87. 3223  88. 33   89. 88 1 88  90. 88 1 88 

91. 575722

92. 474733

93.

(3,8)3855

94.

(2,14)2141212

95.

(6,9)691515

(12,3)1231515

97.

(20,6)20(6)1414

98.

(14,1)14(1)1313

100. 1631631919 , 555555

x 107. 39 44  x 108. 1 3 2  x 109. 4(1)44 xx 110. (3)(2)63 xx 111. 5(1)555  xyxy 112. 2(35)6102  xyxy

113. Additiveinverse:5;reciprocal: 1 5

114. Additiveinverse: 2 3;reciprocal:3 2 115. Additiveinverse:0;noreciprocal 116. Additiveinverse:1.7;reciprocal:10 17 117. Additiveinverse 118. Additiveinverse 119. Multiplicativeidentity 120. Multiplicativeidentity 121. Associativepropertyofmultiplication

122. Associativepropertyofmultiplication

123. Multiplicativeinverse

124. Multiplicativeinverse

125. Additiveidentity

126. Additiveidentity

127. Associativepropertyofaddition

128. Commutativeandassociativepropertiesof addition

129. 34334592029 5353351515

130. 737235141529 104102452020

131. 6755422567 57753535

132. 9596554559 21226121212

133. 5355332593417 61065103303015

134. 828325241034 159153954545

135. 595594253611 810851044040

136. 71751835827 8585584040

137. 575117955638 9119111199999

138. 57537215141 812831222424

139. 212215451 5252251010

140. 111312321 4643621212

38383 427427

142. 9149149 727727

7314311 2 22222

213213 3 1531153

121 5353 2315651 5335151515

150. 5310320911 2 3232666 

151. 2()32(3(5))3(5) 2(2)(15)41511

  xyy

   xyy

152. 2()52(3(5))5(5) 2(2)(25) 4(25)21

153. 3233253(3)2(5) 9101   xy

154. 773(5)787(8)56 xy

 xy xy



155. 333(5)3(5) 22 3(15)(15) 2 18 2(15)9(15)6



156. 3533(5) 3 243 (15) 33

157. 2(12)2(12(3))()(3)(5) 5 2(5)1521513 5 x xy y

158. 3(2)3(23)(1)(13(5)) 5 3(1)(1(15)) 5 377 16 55

170. 1 1 11 xyy xx y

171.   2 ,222 2 ,222 ababaab dPMa abbabba dQMb

M is themidpointofthelinesegment PQ 172. Answersmayvary.Usingthehint,wehave 440 13130  and770. 13130  Therefore, 403130 0 130130130 1106970 . 130130130130

Applying the Concepts

173. a. peoplewhoowneitherMP3playersor peoplewhoownDVDplayers.

b. peoplewhoownbothMP3playersand DVDplayers.

174. a. A ={FordBronco,HondaAccord}

b. B ={FordBronco}

c. C ={FordBronco,HondaAccord, AudiA4}

d. AB  ={FordBronco}

e. BC  ={FordBronco}

f. AB  ={FordBronco,HondaAccord}

g. AC  ={FordBronco,HondaAccord, AudiA4}

175. 119.5134.5  x

176. 4995 x 

177. a. 1241204 

b. 13712017 

c. 11412066 

178. a. 725616  MBperhour

b. 700380320  MBperhour

179. 42 C414418C 3 

180. 2241854 33 cc c 

IftheCelsiustemperatureis22°,then54 chirpswillbecounted.

181. Let x =thenumberofcaloriesfrombroccoli. Thenwehave 522.5550522.5559.5  xxx Thenumberofgramsofbroccoliis 9.5×100=950grams.

182. Let x =thenumberofordersoffrenchfries. Thenumberofcalorieslostfrombroccoliis 6×55=330.Thenwehave 16533001653302  xxx So,Carmenwillhavetoeat2ordersoffrench fries.

Beyond the Basics

183. True 184. True

185. a. False.Forexample,020.  b. Theproductsofanonzerorationalnumber andanirrationalnumberisanirrational number.

186. False.Forexample,222. 

187. False.Forexample, 

 23634. 

188. False.Forexample, 12 42. 3 

189. True 190. True Forexercises191–192,usethefollowingdefinition: Aninteger P is even if p =2n forsomeinteger n.An integer q isoddif q =2k +1forsomeinteger k

191. a. If a isodd,then a =2m +1forsome integer m

22 2 212121 441411 2211, ammm mmmm mm

whichisoftheformat2k +1.Therefore, 2 a isanoddinteger.

b. Notethatthisstatementisthe contrapositiveofthestatementinpart(a). Thatis,ifthestatementis“if p,then q”,the contrapositiveis“ifnot q,thennot p.”

Thecontrapositiveof“Ifaninteger a is odd,then2 a isalsoanoddinteger”is“If 2 a isnotanoddinteger(i.e.,aneven integer),then a isalsonotanoddinteger (i.e.,aneveninteger.”Logically,thesetwo statementsaretrue.Thatmeansthatthe originalstatementanditscontrapositiveare eitherbothtrueorbothfalse.Wealready knowfrompart(a)thattheoriginal statementistrue.Therefore,the contrapositiveisalsotrue.Thus,if2 b is even,then b isalsoaneveninteger.

192. 22 q isevenbecauseitisoftheform2n,soit followsthat2 p iseven.Then,fromexercise 191(b), p isalsoeven.Therefore, p =2n,for someinteger n.Substituting,wehave  2 2222 22222 qpnqn

222,qn  and,thus, q isevenusingexercise 191(b).

Getting Ready for the Next Section

GR1. a. 235 aaa 

b. 4711 aaa 

c. mnmn aaa  

GR2. a. 3 2 b b b  b. 7 4 3 b b b 

c. m mn n b b b 

GR3. a.   236 aa 

b.   428 aa 

c.   n mmnmn aaa 

GR4. a.  222abab 

b.  444abab 

c.  nnnabab 

Copyright©2023PearsonEducationInc.

P.2 Integer Exponents and Scientific Notation

Practice Exercises

1.

2333333 0 244416 1616116 xxxxx x

3. a. 4 404 0 3 3381 3 

b.

7771

5 0(0)(5)0 7771

c.  8 1(1)(8)8 8 1 xxx x 

d.   5 2(2)(5)10  xxx

b.     22 1212(1)(2) 2 2 555 25 25   xxx x x

c.   3 232(3)36  xyxyxy

d.  362(2)(3)3 3  x xyxy y

6. a. 22 2 111 39 3

b. 222 2 107749 710100 10

7. a. 422 48 11 2 24

x xx

b.   2323 23363 1  xyxy xyxyxy

8. 5 732,0007.3210 

9. 1010 2 88 2 2.1102.1102.10 10 3.53.53.51010 0.6010$60perperson

Concepts and Vocabulary

1. Intheexpression27,thenumber2iscalled theexponent.

2. Intheexpression73,thebaseis3.

3. Thenumber2 1 4 simplifiestobethepositive integer16.

4. Thepower-of-a-productruleallowsusto rewrite 53 a as 33 5. a

5. False. 10101111

6. False.When   23 x issimplified,the expressionbecomes6 x

7. True

8. False

xx xx

5. a.  11 1 1112 2 22

3 3 11 2 28

2 2 11 3 39

2 2 11 3 39

3 3 11 2 28

33. 11 (1110)1 10 2 222 2  34. 6 (68)2 82 311 33 339

35.   3412 1212 55 1 55  36.   5210 (108)2 88 99 9981 99  37. 52 (54)(2(3))11 43 23 23236 23 

38. 23 (2(3))(31) 3 12 45 45 45 45425100

39. 2 1 12 5112 22 252525

40. 2 1 12 7113 33 374949

41. 1 23 32

42. 11 5 5

43. 222 2 2339 324 2

44. 222 2 3224 239 3

45. 2 2 111149 121 7121 11 749

46. 2 2 131125 169 5169 13 525

47. 4044 1  xyxx

48. 1011 1  xy xx

49. 11

y xyy xx

50. 2 222 22 1  x xyx yy

51. 12 2 1  xy xy 52. 32 32 1  xy xy

53.

4 312 12 1 xx x 54.

2 510 10 1 xx x

55.   3 11(11)(3)33 xxx 

56.   12 4(4)(12)48 xxx 

57. 5553()3 xyxy

58. 6668()8 xyxy

59.  22122 2 4 44 x xyxy y 

60.  33133 3 6 66 y xyxy x 

61.  551(1)(5)5 5 3 33 x xyxy y 

62.  6616(1)(6) 6 5 55 y xyxy x 

63.    32326 6104 2525104 1 xxx xx xxxx

64.  222 21210 34341210 1 xxx xx xxxx  65. 333333 363 2236 3 33 3 228 8 8 8

xyxyxy xy xxx y xy x

444444 4124 33412 4 84 8 55625 625 625 625

5 25255105 55 105555 3(3)243 243243

69. 22222 22 111 3(3)25 99 51159 2525 xxxx x

444444 4 4 4 111 5(5)5625

3 23236 5353315915 446464 xxx xyxyxyxy

5 2525510510 3351510 33243243

223 2(1)2234 124  xyx xyxy xyy

35 3(4)5712 472 273 33 9

xyx xyxy xyy

15105 15105 16 16 xyz xyz

abcabc abc abcabc abca bc

3 323(3)(3)(2)(3) 2432(3)(4)(3)3(3) 396 6129 3(6)9126(9) 315 3315 3

  xyzxyz xyzxyz xyz xyz xyz xz xyz y

86. 1 211(2)(1)(1)(1) 58(5)(1)1(8)(1) 121 152(1)18 518 3 637 67 xyzxyz xyzxyz xyz xyz xyz y xyz xz

87. 1251.25102 

88. 2472.47102 

89. 5 850,0008.510 

90. 5 205,0002.0510 

91. 0.0077.0103 

92. 0.00191.9103 

93. 0.000002752.75106 

94. 0.00000383.8106 

Applying the Concepts

95. 135333 ft21080ft 

96. 3 33 1 675in.25in. 3

97. a. 222 (2)442  xxAA

b. 222 (3)993  xxAA

98. a. 22 222 42 22  

ddd A

99. 2225,000(0.25)1562.5lb

102. 10 8 56billion56,000,000,0005.610 330million330,000,0003.310

103. 7 24hr60min60sec 365.25daysdayhrmin

365.25246060sec 31,557,600sec 3.1557610sec

104. 7 24hr60min60sec 366daysdayhrmin

366246060sec

31,622,400sec 3.1622410sec

105. Celestial Body Equatorial Diameter (km) Scientific Notation Earth12,7001.27×104km Moon34803.48×103km Sun1,390,0001.39×106km Jupiter134,0001.34×105km Mercury48004.8×103km

Beyond the Basics

Getting Ready for the Next Section

GR1. a. 25257 xxxx 

b. 

c.

232510 xxx 

23523510 2342424 yyyyy  

GR2. a. 222257 xxx 

b. 22234xxx 

c. 333335119 xxxx 

GR3.  2 252525 xxxxxxx 

GR4.  27327231462 xxxxxxx 

GR5.       22 3 51551 55 xxxxx xx  

GR6. True.Thisisanexampleofthecommutative propertyofmultiplication.

GR7. False.2 5 x and3 3 x arenotliketerms,sothey cannotbecombined.

GR8.   2323212 532 25341068 1068 xxxxxx xxx   

P.3 Polynomials

Practice Problems

1.  2 167157889ft 

2. Usingthehorizontalmethod:

3. Tousethecolumnmethod,firstchangethe signineachterminthesecondpolynomial andthenadd.

4.

5.

32 3233 543 2425 242225

22 222 43232 432 5227 527227 105354214 103314

6. a.  2 2 4174287 4277   xxxxx xx

b.  2 2 3225615410 61910   xxxxx xx

7. 222 2 3232322 9124   xxx xx

8.  2 2212121214 xxxx 

9. a.  2 2222224 xyxyxyxy  b. 

3 3223 3223 3223 2 23232 8346 8126 xy xxyxyy xxyxyy xxyxyy 

Concepts and Vocabulary

1. Thepolynomial723294  xxx has leadingcoefficient3anddegree7.

2. Whenapolynomialiswrittensothatthe exponentsineachtermdecreasefromleftto right,itissaidtobeinstandardform.

3. Whenapolynomialin x ofdegree3isaddedto apolynomialin x ofdegree4,theresulting polynomialhasdegree4.

4. Whenapolynomialin x ofdegree3is multipliedbyapolynomialin x ofdegree4,the resultingpolynomialhasdegree7.

5. True

6. True.Thisistrueif A or B orbotharezero.

7. False.Thisisnotapolynomialbecausetheterm 3 x doesnothaveanexponentthatiseithera positiveintegerorzero.

8. True

Building Skills

9. Polynomial;221 xx

10. Notapolynomial

11. Notapolynomial

12. Apolynomial;7543321 xxxx

13. Notapolynomial

14. Notapolynomial

15. Apolynomial;instandardform

16. Apolynomial;instandardform

17. Degree:1;terms:7x,3

18. Degree:2;terms:23,7 x

19. Degree:4;terms:42,,2,9xxx

20. Degree:7;terms:739,2,,21 xxx 21.

27.

22 22 2 2316322 622181212 241414

28.

29.

30.

332 332 32 342214 342214 221 yyyyy yyyyy yyy

222 222 2 5312325 5312325 661 yyyyyy yyyyyy yy 

31. 2 6(23)1218  xxxx

32. 2 7(34)2128  xxxx

33. 

2 22 322 32 122 22122 2222 342 xxx xxxxx xxxxx xxx 

34. 

2 22 322 32 5231 2315231 2310155 213165 xxx xxxxx xxxxx xxx

2 22 322 32 321 3121 333222 3552 xxx xxxxx xxxxx xxx

2 22 322 32 2134 234134 26834 2554 xxx xxxxx xxxxx xxx

37. 22 (1)(2)(2)1(2) 2232   xxxxx xxxxx

38. 2 2 (2)(3)(3)2(3) 326 56    xxxxx xxx xx

39. 2 2 (32)(31)9362 992   xxxxx xx

40. 2 2 (3)(25)25615 21115   xxxxx xx

41. 2 2 (45)(3)412515 4715   xxxxx xx

42. 2 2 (21)(5)2105 2115   xxxxx xx

43. 2 2 (32)(21)6342 672   xxxxx xx

44. 2 2 (1)(53)5353 583   xxxxx xx

45. 22 22 (23)(25)410615 4415   xaxaxaxaxa xaxa

46. 22 22 (52)(5)525210 52310   xaxaxaxaxa xaxa

47. 2222 (2)4444  xxxxxx

48. 2222 (3)6969  xxxxxx

49. 22 (41)1681  xxx

50. 22 (32)9124  xxx

51. 22 2 2 333 2 444 39 216 xxx

52.

53.

54.

55.

58.

222 22 2522255 42025 xyxxyy

60. 3323 32 2123213211 81261 xxxx xxx

61. 333233 2 333333 92727 xxxxxx xx 

62. 333233 2 232322 6128 xxxxxx xx  

63.  32323 322 232322 6128 xyxxyxy xxyxy  

64.   3 3223 3223 23 23233233 8365427 xy xxyxyy xxyxyy   

65.  2 22525252254 xxxx 

66.  2 22343434916 xxxx

67. 22 22 232323 49 xyxyxy xy  

68. 22 22 525252 254 xyxyxy xy  

2 22 2 1111 xxxx xxxx

22 2 2 222 222 4 4 yyy yyy y y

2 333262224xxxx

2 22 322 32 2335 235335 26103915 291915 xxx xxxxx xxxxx xxx

2 22 322 32 243 43243 43286 656 xxx xxxxx xxxxx xxx

2 22 2233 11 111 11 yyy yyyyy yyyyyy

2 22 322 3 4416 4164416 41641664 64 yyy yyyyy yyyyy

77.

2 22 322 3 6636 6366636 636636216 216 xxx xxxxx xxxxx x

2 22 3223 11 111 11 xxx xxxxx xxxxxx   

79. 22 22 (2)(35)35610 31110   xyxyxxyxyy xxyy

80. 22 22 (2)(72)14472 14112   xyxyxxyxyy xxyy

81. 22 22 (2)(37)61437 6117   xyxyxxyxyy xxyy

82. 22 22 (3)(25)25615 215   xyxyxxyxyy xxyy

3 3223 3223 3223 3223 22 32322 2 61282 6128 26128 xyxy xxyxyy xy xxyxyyxy xxxyxyy yxxyxyy  

43223 32234 4334 6128 2122416 41616 xxyxyxy xyxyxyy xxyxyy

3 3223 3223 22 23232 2 81262 xyxy xxyxyy xy xxyxyyxy

83. 

22 2222 4224 2 xyxyxyxyxyxy xyxyxyxy xyxy xxyy

84. 

22 2222 4224 22 2222 2222 44 168 xyxy xyxyxyxy xyxyxyxy xyxy xxyy

85. 



222 2222 322223 323 244 4444 4444 34 xyxyxyxxyy xxxyyyxxyy xxyxyxyxyy xxyy

222 2222 322223 323 244 4444 4444 34 xyxyxyxxyy xxxyyyxxyy xxyxyxyxyy xxyy

3223 3223 43223 32234 4334 28126 8126 1624122 8126 16164 xxxyxyy yxxyxyy xxyxyxy xyxyxyy xxyxyy

Forexercises8994,use  222222. ababababab 

89.

90.

 

 222 2 4,3 2 42316610 xyxy xyxyxy

222 2 3,2 2 3229413 xyxy xyxyxy

91. a. 1 3 x x 

92.

b. Let2 ax  and2 1 b x  Usingtheresult fromparta,wehave 2

93. Let a =3x and b =2y.Then ab =6xy

222 2 943226 122661447272 xyxyxy 

94. Let a =3x and b =7y.Then ab =21xy

222 2 94937221 102211 1004258 xyxyxy 

Beyond the Basics

Applying the Concepts

95.    2 0.1150.0255.57$8.425  in2015 (fiveyearsafter2010)

96.    2 0.03540.1545.176.33  In2012(fouryearsafter2008),theatergrosses were6.33billiondollars.

97.   2 0.1404050$250.00 

98. 22 1510515575 2575$100.00 

99.    2 1652051625100500feet d 

100.    2 1621021642084feet d 

101. a. 22.50  x b.

2 2 2 301022.50 3022.503022510 67519510 10195675 xx xxx xx xx

102. a. 10250  n b. 2 2 (502)(10250) 50(10)50(250)2(10)2(250) 50012,50020500 2012,500 nn nnnn nnn n

(continued)

 

  22222222 2244244424 88 xyzxyzxyzxyyzxzxyzxyyzxz xyxz  

Alternatively,recognizethedifferenceoftwosquares. 

22 222222 42288 xyzxyzxyzxyzxyzxyz xyzxyxz   

106. 8;12abcabbcac    2222222 2222 222 222 2222 8212 6424 40 abcabcabbcacabcabbcac abc abc abc 

107. 222 12;44xyzxyz 

2222222 2 2222 12442 144442 1002 50 xyzxyzxyyzxzxyzxyyzxz xyyzxz xyyzxz xyyzxz xyyzxz 

108. 22264;18 xyzxyyzxz 

2222222 2 2 2222 64218 100 10010 xyzxyzxyyzxzxyzxyyzxz xyz xyz xyz  

 

109.  



3333 abcabcabbcac aabcabbcacbabcabbcaccabcabbcac aabacababcacabbbcabbcabcacbccabcbcac abcabc

 222 222222222 322222322222322

  

110. Fromexercise109,    222333333333 03033 abcabbcacabcabcabcabcabcabc 

111. Let a = x – y, b = y – z,and c = z – x.Then

 0. abcxyyzzx 

Fromexercise110,if0, abc then3333. abcabc  So,  3333. xyyzzxxyyzzx 

112. Let a =2x –3y, b =3y –5z,and c =5z –3x.Then  

   2335530.abcxyyzzx  Fromexercise110,if0, abc then3333. abcabc  So,  333 2335523233552. xyyzzxxyyzzx 

Copyright©2023PearsonEducationInc.

113. Fromexercise109,    2223333. abcabcabbcacabcabc 

If8 abc and19, abbcac wehave  

222222333 222333 3 8193(1)

abcabcabbcacabcabcabbcacabcabc abcabcabc  

Fromexercise103,   2222222 2222222222 2222 8219643826

abcabcabbcacabcabbcac abcabcabc

  Substitutingintoequation(1)givesus  333333 826193563. abcabcabcabc

114. Fromexercise109,    2223333. abcabcabbcacabcabc  If9 abc and11, abbcca wehave

222222333 222333 3 9113(1) abcabcabbcacabcabcabbcacabcabc abcabcabc  

Fromexercise103,

2222222 2222222222 2222 9211812259 abcabcabbcacabcabbcac abcabcabc 

Substitutingintoequation(1)givesus  333333 9591134323. abcabcabcabc

Getting Ready for the Next Section

GR1.  2 252525 xxxxxxx 

GR2.  27327231462 xxxxxxx 

GR3. 

  223 5155155 xxxxxxx 

GR4. True.Thisisanexampleofthecommutative propertyformultiplication.

a b a + b ab

GR5. 34712

GR6. –352–15

GR7. 4268

GR8. 3–5–2–15

GR9. 25710

GR10. 35815

GR11. –572–35

GR12. 5–7–2–35

GR13. –2–3–56

GR14. 2356

P.4 Factoring Polynomials

Practice Problems

1. a.   5332 614237 xxxx

b.   542232 72135735  xxxxxx

c.    22 5252 xxyxyxyx

2. a  26842  xxxx

b.  231052  xxxx

3. a.  22 442xxx

b.  22 96131 xxx

4. a.  21644 xxx

b.  2 4252525  xxx

5.       422 2 8199 339 xxx xxx  

Copyright©2023PearsonEducationInc.

6.

7. FollowingthereasoninginExample7,infour years,thecompanywillhaveinvestedthe initial12milliondollars,plusanadditional4 milliondollars.Thus,thetotalinvestmentis 16milliondollars.Tofindtheprofitorloss with16milliondollarsinvested,let x =16in theprofit-losspolynomial:

Thecompanywillhavemadeaprofitof 16.224milliondollarsinfouryears.

8.

42422 422 2 22 22 22 5969 69 3 33 33 xxxxx xxx xx

Concepts and Vocabulary

1. Thepolynomials x +2and x 2arecalled factorsofthepolynomial24. x

2. Thepolynomial3y isthegreatestcommon monomialfactorofthepolynomial236.  yy

3. TheGCFofthepolynomial32 1030  xx is 2 10. x

4. Apolynomialthatcannotbefactoredasa productoftwopolynomials(excluding constantpolynomials1)  issaidtobe irreducible.

5. True

6. True

7. False.Thepolynomial24 x canbefactored as     22.xx Therefore,itisnot irreducible.

8. True

Building Skills

9. 8248(3) xx

10. 5255(5) xx

11. 2 6126(2) xxxx 

12. 22 3213(7) xx 

13. 232 7147(12) xxxx 

14. 343 9189(12) xxxx 

15.   43222221xxxxxx 

16.   432225757xxxxxx 

17. 322 3(31) xxxx

18. 322 222(1) xxxx

19. 322 844(21) axaxaxx 

20.   423221axaxaxaxxx 

21.        33xxyxyxyx 

22.        2131123 aaaaa 

37. 2712(3)(4) xxxx 

38. 2815(3)(5) xxxx 

39. 268(2)(4) xxxx 

40. 2914(2)(7) xxxx  41. 234(1)(4) xxxx 

42. 256(1)(6) xxxx 

43. Irreducible 44. Irreducible

45. 2 236(29)(4) xxxx 

46. 2 2327(29)(3) xxxx 

47. 2 61712(23)(34) xxxx 

48. 2 8103(23)(41) xxxx 

49. 2 3114(31)(4) xxxx 

50. 2 572(52)(1) xxxx 

51. Irreducible 52. Irreducible

53.  222045 xxyyxyxy 

54.  22 82154523 ppqqpqpq 

55.  22 15281528 3457 xxxx xx  

56.  22 2435442435 2725 yyyy yy  

57. 22 69(3)xxx

58. 22 816(4)xxx

59. 22 961(31) xxx

60. 22 36121(61) xxx

61. 22 25204(52) xxx

62. 22 2 643244(1681) 4(41) xxxx x  

63. 22 49429(73) xxx

64. 22 92416(34) xxx

65. 264(8)(8) xxx

66. 2121(11)(11) xxx 

67. 2 41(21)(21) xxx

68. 2 91(31)(31) xxx

69. 2 169(43)(43) xxx

70. 2 2549(57)(57) xxx 

71.

72.

4222 111111xxxxxx 

422 2 8199 339 xxx xxx   73.

74.

4422 20554152121 xxxx 

4422 1275342532525 xxxx 

75.  

76.

77.

78.

33326444416xxxxx 

 333212555525xxxxx 

3332273339xxxxx 

333221666636xxxxx 

79.    333282242xxxxx 

80.

3332273393xxxxx 

81. 

3332 827(2)323469 xxxxx

42422 422 2 22 22 22 121 21 1 11 11 xxxxx xxx xx xxxx xxxx

422 2 22 22 22 7969 69 3 33 33 xxxxx xxx xx xxxx xxxx

42422 422 2 22 22 22 168916 8169 49 4343 3434 xxxxx xxx xx xxxx xxxx

Copyright©2023PearsonEducationInc.

90.

91.

42422 422 2 22 22 22 163612436 12364 64 6262 2626 xxxxx xxx xx xxxx xxxx

4422 422 2 22 22 22 4444 444 24 2222 2222 xxxx xxx xx xxxx xxxx

92.

4422 422 2 22 22 22 64161664 166416 816 8484 4848 xxxx xxx xx xxxx xxxx

93. 2 116(14)(14) xxx

94. 2 425(25)(25) xxx

95. 22 69(3)xxx

96. 22 816(4)xxx

97. 22 441(21) xxx

98. 22 1681(41) xxx

99.

100.

22 2810245 2(1)(5) xxxx xx  

22 51040528 524 xxxx xx

101. 2 2320(25)(4) xxxx 

102. 2 2730(25)(6) xxxx 

103. 22436xx isirreducible.

104. 22025xx isirreducible.

105. 54332 32 312123(44) 3(2) xxxxxx xx  

106. 54332 32 216322(816) 2(4) xxxxxx xx  

107. 2 91(31)(31) xxx

108. 2 1625(45)(45) xxx 

109. 22 16249(43) xxx

110. 22 42025(25) xxx

111. 215  x isirreducible.

112. 224  x isirreducible.

113.

114.

322 45844584 5292 xxxxxx xxx  

322 2540925409 5951 xxxxxx xxx   115.

22322 7878 8 axaxaaxaxa axaxa   116.

22322 10241024 212 axaxaaxaxa axaxa 

2222 22 1681681616 416 4444 xaxxxa xa xaxa 

2222 22 36696936 336 3636 xaxxxa xa xaxa

5432322 32 31212344 32 xxyxyxxxyy xxy

5432322 32 42436469 43 xxyxyxxxyy xxy

2222 22 25444425 225 2525 xaxxxa xa xaxa

122.

123.

Applying the Concepts

125.

Ifonesideofthegardenis x feet,andthe perimeteris16feet,then1628 2 x x  givestheotherdimensionoftherectangle.So, theareaofthegardenis(8). xx

126.

Ifonesideofthetrayis x inches,andthe perimeteris42inches,then 422 21 2 x x  givestheotherdimensionofthetray.So,the areaofthetrayis(21). xx

127. a. Mateowillbreakevenwhentheprofitor lossis0,sowemustdetermineinhow manymonthsthatwilloccur.Evaluatethe polynomialthatrepresentsMateo’sprofit orlossfordifferentvaluesuntilthevalue ofthepolynomialis0.Thenumberof monthsisrepresentedby x x 32 10309050 xxx Polynomial value

32 1003009005050

32 10130190150160

x 32 10309050 xxx Polynomial value

32 10230290250270

32 10330390350320 4

32 10430490450250

32 105305905500

Mateowillbreakevenin5months.

b. Evaluatetheprofitorlossafter10months byletting x =10.  32 101030109010506050  After10months,thereisaprofitof$6050.

128. a. Thecompanywillbreakevenwhenthe profitorlossis0,sowemustdeterminein howmanymonthsthatwilloccur.Evaluate thepolynomialthatrepresentsthe company’sprofitorlossfordifferent valuesuntilthevalueofthepolynomialis 0.Thenumberofmonthsisrepresented by x x 32 903606302520 xxx Polynomial value 0

 32 900360063002520  2520 1  32 901360163012520  2160 2  32 902360263022520  1980

3  32 903360363032520  1440 4

 32 904360463042520  0 Thecompanywillbreakevenin4months.

b. Evaluatetheprofitorlossafter10months byletting x =10.

 32 901036010630102520 57,780   After10months,thereisaprofitof $57,780.

Usethefigurebelowforexercises129and130.

129. If x =thelengthofthecutcorner,then36–2x =thelengthofthebox,and16–2x =thewidthofthebox. Theheightoftheboxis x.So,(362)(162)(2(18))(2(8))4(18)(8). vxxxxxxxxx 

130. 222 22 ..(362)(162)2(362)2(162)5761044724324 57644(144)4(12)(12) SAxxxxxxxxxxxx xxxx

131. Theareaoftheoutsidecircle=2 4cm.  Theareaoftheinsidecircle=22cm. x  So,theareaofthedisk= areaofoutsidecircle–areaofinsidecircle=22 4(4) xx  2 (2)(2)cm. xx

132. Thevolumeoftheinsidecylinderis238   72ft3  ,andthevolumeof theoutsidecylinderis223 88ft.xx   Sothevolumebetweenthecylindersis 22 8728(9) xx  3 8(3)(3)ft. xx  

133. Ifonesideofthefenceis x feet,andtherancherneedsatotalof2800feetof fencing,thenthewidthofthefenceis2800–2x.So,theareaofthepenis (28002)280022 xxxx

2 2(1400)ft. xx

.Theperimeterofthefigureis48,sothelength

134. Theareaofthefigure=theareaoftherectangleplustheareaofthecircle.Findthelengthoftherectangle asfollows:Thecircumferenceofthecircle=2 2 x x 

andtheareaoftherectangleis

Copyright©2023PearsonEducationInc.

143. Fromexercise109inSectionP.3,wehave

Then,



144. Seeexercise111insectionP.3.

145. Let

333 3333 zxyxyzyzxxyzxyyzzx 

146.

Inthenumerator,let2222 ,,axybyz  and22. czx  Then a + b + c =0,andwecanapply SectionP.3exercise111.Usetheresultfromexercise144aboveforthedenominator.

Getting Ready for the Next Section

GR1.

Notethat2.

3. Notethat0,4,1

Notethat6,6.

P.5 Rational Expressions

Practice Problems

1.

Thelikelihoodthatastudentwhotests positiveisanonuserwhenthetestthatisused is95%accurateisabout32%.

2.

5. a. Notethat2,5. xx

b. Notethat4,3. xx

6. a.

22 222 341 , 2232 xxx xxxxx

222LCD322

b. 2 22 2137 , 2545 xx

2 2 2555 4515 LCD155 xxx xxxx xxx

7. a. Notethat2,2. xx

22 2 22 22 22 4 444 4 222 422 2222

b. Notethat0,5. xx

TheLCDis   2 65. xx

222 22 22 418901490 6565 2745745 6535 xxxxx xxxx xxx xxx

8. Notethat0,5,5. xxx 22 2 51513 33335 2525 25 3 33 5 x xxx xx x x xx x

9. Notethat 4 5

Concepts and Vocabulary

1. Theleastcommondenominatoroftwo rationalexpressionsisthepolynomialofleast degreethatcontainseachdenominatorasa factor.

2. ThefirststepinfindingtheLCDoftwo rationalexpressionsistofactorthe denominatorscompletely.

3. Ifthedenominatorsoftworational expressionsare22xx and22, xx then theLCDis     21.xxx

4. Arationalexpressionthatcontainsanother rationalexpressioninitsnumeratoror denominatoriscalledacomplexrational expression.

5. False 6. True 7. False 8. True Building Skills

9. 22 222(1)2,1 21(1)1 xx x xxxx

10. 22 363(2)3,2 44(2)2 xx x xxxx 

11. 2 333(1)3,1,1 1(1)(1)1 xx xx xxxx

12. 2 1055(2)5,2,2 4(2)(2)2 xx xx xxxx 

13. 2 262(3)2(3) 9(3)(3)(3)(3) 2 3,3,3 xxx xxxxx xx x

14. 2 1533(5)3,5,5 25(5)(5)5 xx xx xxxx

15. 211(12)1 1, 12122 xx x xx 

16. 251(52)2 1, 52525 xx x xx 

17. 2269(3)3,34124(3)4 xxxx x xx

18. 221025(5)5,5 3153(5)3 xxxx x xx  

19. 2 22 777(1)7,1 21(1)1 xxxxx x xxxx

20. 2 22 4124(3)4,3 69(3)3 xxxxx x xxxx

21. 2 2 1110(10)(1) 67(7)(1) 10 7,7,1 xxxx xxxx x xx x

22. 2 2 215(5)(3) 712(4)(3) 5 4,3,4 xxxx xxxx x xx x

43222 43222 2 2 61442372 61042352 2312 2312 21 ,,0,223 xxxxxx xxxxxx

322 43222 2 2 331 31143114 31 314 11 ,,0,443 xxxx xxxxxx xx xxx xxx x

31020310(2)1 245152(2)5(3)

xxxx xxxx 26. 6442(32)41 28962(4)3(32)3

xxxx xxxx

27. 2 2 2662(3)(3)(2) 484(2)(3)(3) 9 3 2(3) xxxxxx xxxx x x x

28. 222594 42106 (53)(53)(2)(2) 2(2)2(53) (53)(2) 4 xx xx xxxx xx xx

29. 22 22 2 71 67 (7)(1)(1)1 (1)(7) xxx xxx xxxxx xxx x

30. 2 2 9515(3)(3)5(3) 693(3)(3)3 5 xxxxx xxxxxx

31. 22 22 61 329 (3)(2)(1)(1)1 (1)(2)(3)(3)3 xxx xxx xxxxx xxxxx

32. 22 22 2816(2)(4)(4)(4)(2)(4) 2054(4)(5)(1)(4)(5)(1) xxxxxxxxx xxxxxxxxxx

33. 2 2 2321(2)(1)(2)1 11(2)(2) 4 xxxxxx xxxx x

34. 2 2 38151(3)(3)(5)1 55(3)(3) 9 xxxxxx xxxx x

35. 248293 6964(2)8

xxx x

36. 3412399 209204(3)80

37. 22 2 926(3)(3)55(3) 52(3)2 xxxxxxx xxx x

38. 22 2 177(1)(1)(1)(1) 337(1)21 xxxxxxx xxx

39. 2 22 231(1)(3)3(4)3(3) 31214816(4) xxxxxxx xxxxxx

40. 22 22 5632(2)(3)(3)(4)4 69712(3)(3)(1)(2)1 xxxxxxxxx xxxxxxxxx

41. 22 3322222 931(3)(3)(1)(2)13 3 8221(2)(24)124 xxxxxxx x xxxxxxxxxxx

42. 22 22 253102(5)(5)(1)(1)21 3415(4)(1)(5)(2)54 xxxxxxxxxx xxxxxxxxxx

43. 33 555 xx

44. 77 444 xx

45. 44 212121 xx xxx

46. 23 737373 xxx

47. 22221(1)1 1111 xxxx

48. 272(27)(2)9 32323232 xxxxx

49. 4242 331(3)3 422(2) 33 xx xxxx xx

50. 2222 1111(1) 224 111 44 or 11 xx xxxx xx xxx xx

51. 222 527 111 xxx xxx

52. 2222 342 2(1)2(1)2(1)(1) xxxx xxxx

Copyright©2023PearsonEducationInc.

53. 784 2(3)2(3)2(3)3 xxxx xxxx

54. 2222 48123 4(5)4(5)4(5)(5) xxxx xxxx

55. 22 221 44(2)(2)2 xx

56. 22 55555(1)5 11(1)(1)(1)(1)1 xxx xxxxxxx

57. 22 2(2)(21)(21)(252)(2) 2121(21)(21)(21)(21)(21)(21) 622(13) (21)(21)(21)(21)

58. 22 212(21)(41)2(41)(861)(82)18 4141(41)(41)(41)(41)(41)(41)(41)(41)

59.

222 323232 3232 2(2)(2)(2)(2) 22(2)(2)(2)(2)(2)(2) (2)(248)(2) (2)(2)(2)(2)(2)(2) 248248 (2)(2)(2)(2)

60. 222 32323232 3123(1)(1)(1)2(1) 11(1)(1)(1)(1)(1)(1) 33122261 (1)(1)(1)(1)(1)(1)(1)(1) xxxxxxxxx xxxxxxxxxxxx xxxxxxxxxx

 Inexercises61–68,tofindtheLCD,firstfactoreachdenominatorcompletely,formaproductofthedistinct irreduciblefactorsofeachpolynomial,andthenattachtoeachfactorinthisproductthegreatestexponentthat appearsonthisfactorinanyofthefactoreddenominators.

61. Thedenominatorsare363(2) xx and484(2) xx LCD=34(2)12(2)  xx

62. Thedenominatorsare7217(13)and393(13) xxxx  LCD=73(13)21(13) xx

63. Thedenominatorsare241(21)(21) xxx and2 (21) x  (21)(21) xx LCD=2 (21)(21) xx

64. Thedenominatorsare2(31)(31)(31) xxx  and291 x  (31)(31) xx LCD=2(31)(31) xx

65. Thedenominatorsare232(1)(2) xxxx  and21 x  (1)(1)LCD(1)(1)(2) xxxxx 

66. Thedenominatorsare26(3)(2) xxxx  and29 x  (3)(3)LCD(3)(3)(2) xxxxx 

67. Thedenominatorsare254(1)(4) xxxx  and 22xx (1)(2)LCD(1)(4)(2) xxxxx 

68. Thedenominatorsare223(3)(1) xxxx  and 232xx (1)(2) xx LCD(3)(1)(2) xxx  Forexercises69–84,remembertofindtheLCDfirst,andthenrewriteeachrationalexpressionasarational expressionwiththeLCDasthedenominator.Nextaddorsubtractnumerators,followingtherulesfororderof operations.Finallysimplifythefinalrationalexpression.Leaveyouranswerinfactoredform.

69. 2 52525(3)25152715 33(3)(3)(3)(3)(3)(3)(3)(3)(3)(3) 9

xxxxxxxxxxxx x

70. 22 2 333(1)3334 11(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) 1 (34) (1)(1) xxxxxxxxxxxx xxxxxxxxxxxx x xx xx  

71. 2 22 222(2) 42(2)(2)2(2)(2)(2)(2) 2(2)4(4) (2)(2)(2)(2)(2)(2) xxxxxxx xxxxxxxxx xxxxxxx xxxxxx

72. 2 222 3121312131(21)(4) 164(4)(4)4(4)(4)(4)(4) 31(294)265265 (4)(4)(4)(4)(4)(4) xxxxxxx

73. 22 232311 3106(2)(5)(2)(3)52 2523 (5)(2)(5)(2)(2)(5) xxxx xxxxxxxxxx xxx xxxxxx  

74. 22 222 2 3131(3)(1)(1)(2) 221(2)(1)(1)(1)(2)(1)(1)(1)(1)(2) (43)(32)25 (2)(1)(1)(2)(1) xxxxxxxx xxxxxxxxxxxxxx xxxxxx xxxxx

       

      

75. 22222 2222 222 23412341(23)(31)(41)(31) (31)(31) 91(31)(31)(31)(31)(31)(31) (6113)(121)181022(951) (31)(31)(31)(31)(31)(31) xxxxxxxx xx xxxxxxx xxxxxxxx xxxxxx

76. 22222 2222 222 313313(31)(21)(3)(21) (21)(21) (21)41(21)(21)(21)(21)(21) (61)(273)8622(431) (21)(21)(21)(21)(21)(21) xxxxxxxx xx xxxxxxx xxxxxxxx xxxxxx      

77. 22 22 3333(3)(4)(3)(5) 25920(5)(5)(4)(5)(5)(5)(4)(4)(5)(5) (12)(815)9279(3) (5)(5)(4)(5)(5)(4)(5)(5)(4) xxxxxxxx xxxxxxxxxxxxx xxxxxx xxxxxxxxx  

78. 22 22 2272272(3)(27)(4) 16712(4)(4)(4)(3)(4)(4)(3)(4)(4)(3) (26)(228)728 (4)(4)(3)(4)(4)(3) 7(4)7 (4)(4)(3)(4)(3) xxxxxxxx xxxxxxxxxxxxx

79. 22 311311311 2222(2)(2)2244 31(2)1(2)3(2)(2)23 (2)(2)(2)(2)(2)(2)(2)(2)(2)(2) xxxxxxxx

80. 22 257257257 55555(5)(5)5 2525 2(5)57(5) (5)(5)(5)(5)(5)(5) (102)5(357)5405(8) (5)(5)(5)(5)(5)(5) xxxxxxxx xx xx xxxxxx xxxx xxxxxx  

81. 22222 35(3)(3)(5)(5)(9)(25)16 53(5)(3)(3)(5)(5)(3)(5)(3) xaxaxaxaxaxaxaxaa xaxaxaxaxaxaxaxaxaxa

82.

22222 32(3)(3)(2)(2)(9)(4)5 23(2)(3)(3)(2)(2)(3)(2)(3) xaxaxaxaxaxaxaxax xaxaxaxaxaxaxaxaxaxa

84. 22 222222 22 22 222 22 2 2222 111() ()()() () () (2) () 2( 2) ()() xxh xhxxxhxxh xxh xxh xxxhh xxh xhhhxh xxhxxh

87. UsingMethod1: 111 1 11111 1 1,0,1 xxxx xxxx xxxx x x

88. UsingMethod1: 2222 2222 2222 2 111 1 1111 1 11 1(1)(1),1,0,1 xxxx xxxx xxxx x xxx

89. UsingMethod2: 11111 1,0,1 111 1 x xxx xx x x xx

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.