INSTRUCTOR’S SOLUTIONS MANUAL DITION M odern C ontrol S ySteMS Fourteenth E Richard C. Dorf University of California, Davis
Robert H. Bishop
University of South Florida
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Copyright © 2022, 2017, 2011 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.
ISBN-13: 978-0-13-730729ISBN-10: 0-13- 27307296
PREFACE Ineachchapter,therearefiveproblemtypes: Exercises Problems
AdvancedProblems
DesignProblems/ContinuousDesignProblem ComputerProblems
Intotal,thereareover980problems.Theabundanceofproblemsofincreasingcomplexitygivesstudentsconfidenceintheirproblem-solving abilityastheyworktheirwayfromtheexercisestothedesignand computer-basedproblems.
Itisassumedthatinstructors(andstudents)haveaccessto MATLAB and theControlSystemToolboxortoLabVIEWandtheMathScriptRTModule.Allofthecomputersolutionsinthis SolutionManual weredeveloped andtestedonanAppleMacBookProplatformusingMATLAB R2020a andtheControlSystemToolboxVersion9.6andLabVIEW2020. Itisnot possibletoverifyeachsolutiononalltheavailablecomputerplatforms thatarecompatiblewithMATLAB andLabVIEWMathScriptRTModule.Pleaseforwardanyincompatibilitiesyouencounterwiththescripts toProf.Bishopattheemailaddressgivenbelow.
TheauthorsandthestaffatPearsonEducationwouldliketoestablish anopenlineofcommunicationwiththeinstructorsusing ModernControlSystems.WeencourageyoutocontactPearsonwithcommentsand suggestionsforthisandfutureeditions.
RobertH.Bishoprobertbishop@usf.edu
1.IntroductiontoControlSystems.....................
2.MathematicalModelsofSystems...................... ..........23
3.StateVariableModels..............................
4.FeedbackControlSystemCharacteristics............. ..........136
5.ThePerformanceofFeedbackControlSystems...........
6.TheStabilityofLinearFeedbackSystems.............. ........237
7.TheRootLocusMethod...............................
8.FrequencyResponseMethods.........................
9.StabilityintheFrequencyDomain....................
10.TheDesignofFeedbackControlSystems...............
11.TheDesignofStateVariableFeedbackSystems......... .......604
12.RobustControlSystems............................
13.DigitalControlSystems...........................
IntroductiontoControlSystems Thereare,ingeneral,nouniquesolutionstothefollowingexercisesand problems.Otherequallyvalidblockdiagramsmaybesubmittedbythe student.
Exercises E1.1 Describetypicalsensorsthatcanmeasureeachofthefollowing:
a.Linearposition → ultrasonictransducer
b.Velocity(orspeed) → Dopplerradar
c.Non-gravitationalacceleration → inertialmeasurementunit
d.Rotationalposition(orangle) → rotaryencoder
e.Rotationalvelocity → gyroscope
f.Temperature → thermocouple
g.Pressure → barometer
h.Liquid(orgas)flowrate → velocimeter
i.Torque → torquemeter
j.Force → loadcell
k.Earth’smagneticfield → magnetometer
l.Heartrate → electrocardiograph
E1.2 Describetypicalactuatorsthatcanconvertthefollowing:
a.Fluidicenergytomechanicalenergy → hydrauliccylinder
b.Electricalenergytomechanicalenergy → electricmotor
c.Mechanicaldeformationtoelectricalenergy → piezoelectricactuator
d.Chemicalenergytokineticenergy → automobileengine
e.Heattoelectricalenergy → thermoelectricgenerator
E1.3 Amicroprocessorcontrolledlasersystem:
E1.4 Adrivercontrolledcruisecontrolsystem:
E1.5 Althoughtheprincipleofconservationofmomentumexplainsmuchof theprocessoffly-casting,theredoesnotexistacomprehensivescientific explanationofhowafly-fisherusesthesmallbackwardandforwardmotionoftheflyrodtocastanalmostweightlessflylurelongdistances(the currentworld-recordis236ft).Theflylureisattachedtoashortinvisible leaderabout15-ftlong,whichisinturnattachedtoalonger andthicker Dacronline.Theobjectiveiscasttheflyluretoadistantspotwithdeadeyeaccuracysothatthethickerpartofthelinetouchesthewaterfirst andthentheflygentlysettlesonthewaterjustasaninsectmight.
Anautofocuscameracontrolsystem:
Tackingasailboatasthewindshifts:
E1.8 Anautomatedhighwaycontrolsystemmergingtwolanesoftraffic:
E1.9 Askateboardridermaintainingverticalorientationanddesiredspeed:
E1.10
Humanbiofeedbackcontrolsystem:E1.11 Measurement
E1.11 E-enabledaircraftwithground-basedflightpathcontrol:
Desired Flight Path Flight Path
Exercises 5
E1.12 Unmannedaerialvehicleusedforcropmonitoringinanautonomous mode:
E1.13 Aninvertedpendulumcontrolsystemusinganopticalencodertomeasure theangleofthependulumandamotorproducingacontroltorque:
E1.14 Inthevideogame,theplayercanserveasboththecontroller andthesensor.Theobjectiveofthegamemightbetodriveacaralongaprescribed path.Theplayercontrolsthecartrajectoryusingthejoystickusingthe visualqueuesfromthegamedisplayedonthecomputermonitor.
E1.15 Aclosed-loopbloodglucosesystemwithacontinuousglucosemeasurementinformingthedecisiontoinjectinsulinornot:
P1.1
Anautomobileinteriorcabintemperaturecontrolsystemblockdiagram:
P1.2 Ahumanoperatorcontrolledvalvesystem:
P1.3 Achemicalcompositioncontrolblockdiagram:
P1.4 Anuclearreactorcontrolblockdiagram:
P1.5 Alightseekingcontrolsystemtotrackthesun:
P1.6 Ifyouassumethatincreasingworker’swagesresultsinincreasedprices, thenbydelayingorfalsifyingcost-of-livingdatayoucouldreduceoreliminatethepressuretoincreaseworker’swages,thusstabilizingprices.This wouldworkonlyiftherewerenootherfactorsforcingthecost-of-living up.Governmentpriceandwageeconomicguidelineswouldtaketheplace ofadditional“controllers”intheblockdiagram,asshownintheblock diagram.
P1.7 Assumethatthecannonfiresinitiallyatexactly5:00p.m..Wehavea positivefeedbacksystem.Denoteby∆t thetimelostperday,andthe nettimeerrorby ET .Thenthefollwoingrelationshipshold:
3min
P1.8
and
Therefore,thenettimeerrorafter15daysis
Thestudent-teacherlearningprocess:
P1.9
Ahumanarmcontrolsystem:
P1.10
CHAPTER1IntroductiontoControlSystems AnaircraftflightpathcontrolsystemusingGPS:
P1.11
P1.12
Theaccuracyoftheclockisdependentuponaconstantflowfromthe orifice;theflowisdependentupontheheightofthewaterinthefloat tank.Theheightofthewateriscontrolledbythefloat.Thecontrolsystem controlsonlytheheightofthewater.Anyerrorsduetoenlargementof theorificeorevaporationofthewaterinthelowertankisnot accounted for.Thecontrolsystemcanbeseenas:
Assumethattheturretandfantailareat90◦,if θw = θF -90◦.Thefantail operatesontheerrorsignal θw - θT ,andasthefantailturns,itdrivesthe turrettoturn.
P1.13 Thisschemeassumesthepersonadjuststhehotwaterfortemperature control,andthenadjuststhecoldwaterforflowratecontrol.
P1.14 Iftherewardsinaspecifictradeisgreaterthantheaveragereward,there isapositiveinfluxofworkers,since
Ifaninfluxofworkersoccurs,thenrewardinspecifictradedecreases, since
P1.15 Acomputercontrolledfuelinjectionsystem:
CHAPTER1IntroductiontoControlSystems P1.16 Withtheonsetofafever,thebodythermostatisturnedup.Thebody adjustsbyshiveringandlessbloodflowstotheskinsurface. Aspirinacts tolowersthethermalset-pointinthebrain.
P1.17 Hittingabaseballisarguablyoneofthemostdifficultfeatsinallofsports. Giventhatpitchersmaythrowtheballatspeedsof90mph(orhigher!), battershaveonlyabout0.1secondtomakethedecisiontoswing—with batspeedsaproaching90mph.Thekeytohittingabaseballalongdistanceistomakecontactwiththeballwithahighbatvelocity.Thisis moreimportantthanthebat’sweight,whichisusuallyaround33ounces. Sincethepitchercanthrowavarietyofpitches(fastball,curveball,slider, etc.),abattermustdecideiftheballisgoingtoenterthestrikezoneand ifpossible,decidethetypeofpitch.Thebatteruseshis/hervisionasthe sensorinthefeedbackloop.Ahighdegreeofeye-handcoordinationiskey tosuccess—thatis,anaccuratefeedbackcontrolsystem.
P1.18 Definethefollowingvariables: p =outputpressure, fs =springforce = Kx, fd =diaphragmforce= Ap,and fv =valveforce= fs - fd Themotionofthevalveisdescribedby¨ y = fv/m where m isthevalve mass.Theoutputpressureisproportionaltothevalvedisplacement,thus p = cy, where c istheconstantofproportionality.
P1.19 Acontrolsystemtokeepacaratagivenrelativepositionoffsetfroma leadcar:
P1.20 Acontrolsystemforahigh-performancecarwithanadjustablewing:
P1.21 Acontrolsystemforatwin-lifthelicoptersystem:
CHAPTER1IntroductiontoControlSystems P1.22 Thedesiredbuildingdeflectionwouldnotnecessarilybezero.Ratherit wouldbeprescribedsothatthebuildingisallowedmoderate movement uptoapoint,andthenactivecontrolisappliedifthemovementislarger thansomepredeterminedamount.
P1.23 Thehuman-likefaceoftherobotmighthavemicro-actuators placedat strategicpointsontheinteriorofthemalleablefacialstructure.Cooperativecontrolofthemicro-actuatorswouldthenenabletherobottoachieve variousfacialexpressions.
P1.24 Wemightenvisionasensorembeddedina“gutter”atthebaseofthe windshieldwhichmeasureswaterlevels—higherwaterlevelscorresponds tohigherintensityrain.Thisinformationwouldbeusedtomodulatethe wiperbladespeed.
P1.25 Afeedbackcontrolsystemforthespacetrafficcontrol:
P1.26 Earth-basedcontrolofamicrorovertopointthecamera:
P1.27 Controlofamethanolfuelcell:
AdvancedProblems AP1.1 Controlofaroboticmicrosurgicaldevice:
AP1.2 Anadvancedwindenergysystemviewedasamechatronicsystem:
AP1.3 Theautomaticparallelparkingsystemmightusemultipleultrasound sensorstomeasuredistancestotheparkedautomobilesandthecurb. Thesensormeasurementswouldbeprocessedbyanon-boardcomputer todeterminethesteeringwheel,accelerator,andbrakeinputstoavoid collisionandtoproperlyalignthevehicleinthedesiredspace.
AP1.4
Eventhoughthesensorsmayaccuratelymeasurethedistance between thetwoparkedvehicles,therewillbeaproblemiftheavailablespaceis notbigenoughtoaccommodatetheparkingcar.
AP1.5
Therearevariouscontrolmethodsthatcanbeconsidered,includingplacingthecontrollerinthefeedforwardloop(asinFigure1.3).Theadaptive opticsblockdiagrambelowshowsthecontrollerinthefeedbackloop,as analternativecontrolsystemarchitecture.
Thecontrolsystemmighthaveaninnerloopforcontrollingtheaccelerationandanouterlooptoreachthedesiredfloorlevelprecisely.
AP1.6 Anobstacleavoidancecontrolsystemwouldkeeptherobotic vacuum cleanerfromcollidingwithfurniturebutitwouldnotnecessarilyputthe vacuumcleaneronanoptimalpathtoreachtheentirefloor.Thiswould requireanothersensortomeasurepositionintheroom,adigitalmapof theroomlayout,andacontrolsystemintheouterloop.
AP1.7 Theattitudecontrolofthedroneshiprequiresmeasuringtheyawand rollusingagyro.Oftenthegyromeasuresattituderate,therefore,itmay benecessarytointegratethegyrooutputtocomputethemeasuredroll andyaw.
DesignProblems 19
DesignProblems
CDP1.1 ration:
Themachinetoolwiththemovabletableinafeedbackcontrol configu-
DP1.1 Usethestereosystemandamplifierstocanceloutthenoiseby emitting signals180◦ outofphasewiththenoise.
DP1.2 Anautomobilecruisecontrolsystem:
DP1.3 Utilizingasmartphonetoremotelymonitorandcontrolawashingmachine:
DP1.4 Anautomatedcowmilkingsystem:
DP1.5 Afeedbackcontrolsystemforarobotwelder:
DesignProblems
DP1.6 Acontrolsystemforonewheelofatractioncontrolsystem:
DP1.7 AvibrationdampingsystemfortheHubbleSpaceTelescope:
DP1.8 Acontrolsystemforananorobot:
Manyconceptsfromunderwaterroboticscanbeappliedtonanorobotics withinthebloodstream.Forexample,planesurfacesandpropellerscan
DP1.9
providetherequiredactuationwithscrewdrivesproviding thepropulsion.Thenanorobotscanusesignalsfrombeaconslocatedoutsidethe skinassensorstodeterminetheirposition.Thenanorobots useenergy fromthechemicalreactionofoxygenandglucoseavailableinthehuman body.Thecontrolsystemrequiresabio-computer–aninnovationthatis notyetavailable.
Thefeedbackcontrolsystemmightusegyrosand/oraccelerometersto measureanglechangeandassumingtheHTVwasoriginallyinthevertical position,thefeedbackwouldretaintheverticalpositionusingcommands tomotorsandotheractuatorsthatproducedtorquesandcouldmovethe HTVforwardandbackward.
DP1.10
Therearetwoloopsinthiscontrolsystem,onetocontrolthe automobilevelocityandonetocontroltherelativepositionofthe twovehicles. Sincewehavenowaytomeasurethevelocityoftheforwardvehicle,we relyontheradartoproviderelativepositioning.Thecontrollerwillneed toaccountforboththevelocityerrorandtherelativepositionerrorin computingthedesiredacceleration.
CHAPTER2 MathematicalModelsofSystems Exercises E2.1 Wehavefortheopen-loop y = r 2 andfortheclosed-loop e = r y and y = e 2
So, e = r e2 and e2 + e r =0 .
FIGUREE2.1 Plotofopen-loopversusclosed-loop.
Forexample,if r =1,then e2 + e 1=0impliesthat e =0 618.Thus, y =0.382.Aplot y versus r isshowninFigureE2.1.
E2.2 Define
and
Then,
when R0 =10, 000Ω.Thus,thelinearapproximationiscomputedby consideringonlythefirst-ordertermsintheTaylorseriesexpansion,and isgivenby
R = 135∆T.
E2.3 Thespringconstantfortheequilibriumpointisfoundgraphicallyby estimatingtheslopeofalinetangenttotheforceversusdisplacement curveatthepoint y =0.5cm,seeFigureE2.3.Theslopeofthelineis K ≈ 1.
y=Displacement (cm) For ce (n) Spring compresses Spring breaks
FIGUREE2.3 Springforceasafunctionofdisplacement.
Copyright ©2022 Pearson Education, Inc.
Exercises 25
E2.4 Since R(s)= 1 s wehave Y (s)= 4(s +50) s(s +20)(s +10)
Thepartialfractionexpansionof Y (s)isgivenby Y (s)= A1 s + A2 s +20 + A3 s +10 where
UsingtheLaplacetransformtable,wefindthat
Thefinalvalueiscomputedusingthefinalvaluetheorem: lim t→∞ y(t)=lim s→0 s 4(s +50) s(s2 +30s +200) =1
E2.5 ThecircuitdiagramisshowninFigureE2.5.
FIGUREE2.5 Noninvertingop-ampcircuit.
Withanidealop-amp,wehave
CHAPTER2MathematicalModelsofSystems
where A isverylarge.Wehavetherelationship v = R1 R1 + R2 vo
Therefore,
vo = A(vin R1 R1 + R2 vo), andsolvingfor vo yields vo = A 1+ AR1 R1 +R2 vin
Since A ≫ 1,itfollowsthat1+ AR1 R1+R2 ≈ AR1 R1 +R2 .Thentheexpressionfor vo simplifiesto
E2.6 Given
vo = R1 + R2 R1 vin
y = f (x)= ex
andtheoperatingpoint xo =1,wehavethelinearapproximation y = f (x)= f (xo)+ ∂f
x=xo (x xo)+ ···
where f (xo)= e, df dx x=xo=1 = e, and x xo = x 1
Therefore,weobtainthelinearapproximation y = ex
E2.7 TheblockdiagramisshowninFigureE2.7.
FIGUREE2.7 Blockdiagrammodel. Copyright ©2022 Pearson Education, Inc.
Exercises 27
Startingattheoutputweobtain I(s)= G1(s)G2(s)E(s).
But E(s)= R(s) H(s)I(s),so I(s)= G1(s)G2(s)[R(s) H(s)I(s)] .
Solvingfor I(s)yieldstheclosed-looptransferfunction I(s) R(s) = G1(s)G2(s) 1+ G1(s)G2(s)H(s)
E2.8 TheblockdiagramisshowninFigureE2.8.
FIGUREE2.8 Blockdiagrammodel.
Startingattheoutputweobtain
), so
Substituting W (s)= KE(s) H1(s)Z(s)intotheaboveequationyields
)Z(s)]
CHAPTER2MathematicalModelsofSystems
andwith E(s)= R(s) Y (s)and Z(s)= sY (s)thisreducesto
Y (s)=[ G1(s)G2(s)(H2(s)+ H1(s)) G1(s)H3(s) 1 s G1(s)G2 (s)K]Y (s)+ 1 s G1(s)G2(s)KR(s)
Solvingfor Y (s)yieldsthetransferfunction
Y (s)= T (s)R(s), where T (s)= KG1(s)G2(s)/s 1+ G1(s)G2(s)[(H2(s)+ H1(s)]+ G1(s)H3(s)+ KG1(s)G2(s)/s
E2.9 FromFigureE2.9,weobservethat
Ff (s)= G2(s)U (s) and FR(s)= G3(s)U (s)
Then,solvingfor U (s)yields U (s)= 1 G2(s) Ff (s)
anditfollowsthat
Again,consideringtheblockdiagraminFigureE2.9wedetermine
But,fromthepreviousresult,wesubstitutefor FR(s)resultingin
Solvingfor Ff (s)yields
FIGUREE2.9 Blockdiagrammodel.
E2.10 TheshockabsorberblockdiagramisshowninFigureE2.10.Theclosedlooptransferfunctionmodelis
Piston travel measurement
FIGUREE2.10
Shockabsorberblockdiagram.
E2.11 Let f denotethespringforce(n)and x denotethedeflection(m).Then K = ∆f ∆x . Computingtheslopefromthegraphyields:
(a) xo = 0.14m → K =∆f/∆x =10n/0.04m=250n/m
(b) xo =0m → K =∆f/∆x =10n/0.05m=200n/m
(c) xo =0.35m → K =∆f/∆x =3n/0.05m=60n/m
CHAPTER2MathematicalModelsofSystems
E2.12 ThesignalflowgraphisshowninFig.E2.12.Find Y (s)when R(s)=0. Y(s) -1 K 2 G(s) -K 1 1 Td(s)
FIGUREE2.12 Signalflowgraph.
Thetransferfunctionfrom Td(s)to Y (s)is Y (s)= G(s)Td(s) K1K2G(s)Td(s) 1 ( K2G(s)) = G(s)(1 K1K2)Td(s) 1+ K2G(s)
Ifweset K1K2 =1 , then Y (s)=0forany Td(s).
E2.13 Thetransferfunctionfrom R(s), Td(s),and N (s)to Y (s)is
)=
Therefore,wefindthat Y (s)/Td(s)= 1 s2 +25s + K and Y (s)/N (s)= K s2 +25s + K
E2.14 Sincewewanttocomputethetransferfunctionfrom R2(s)to Y1(s),we canassumethat R1 =0(applicationoftheprincipleofsuperposition). Then,startingattheoutput Y1(s)weobtain Y1(s)= G3(s)[ H1(s)Y1(s)+ G2(s)G8(s)W (s)+ G9(s)W (s)] , or
Consideringthesignal W (s)(seeFigureE2.14),wedeterminethat W (s)= G5(s)[G4(s)R2(s) H2(s)W (s)] ,
FIGUREE2.14
Blockdiagrammodel. or
Substitutingtheexpressionfor W (s)intotheaboveequationfor Y1(s) yields
E2.15 Forloop1,wehave
Andforloop2,wehave
E2.16 Thetransferfunctionfrom R(
TheblockdiagramisshowninFigureE2.16a.Thecorrespondingsignal flowgraphisshowninFigureE2.16bfor P (s)/R(
FIGUREE2.16
(a)Blockdiagram,(b)Signalflowgraph.
E2.17 Alinearapproximationfor f isgivenby
where xo =1/2,∆f = f (x) f (xo),and∆x = x xo
E2.18 Thelinearapproximationisgivenby
(a)When xo =1,wefindthat yo =2 4,and yo =13 2when xo =2.
(b)Theslope m iscomputedasfollows: m = ∂y ∂x x=xo =1+4 2x 2 o
Therefore, m =5 2at xo =1,and m =18 8at xo =2.
Copyright ©2022 Pearson Education, Inc.
Exercises 33
E2.19 Theoutput(withastepinput)is
Y (s)= 30(s +1) s(s +5)(s +6)
Thepartialfractionexpansionis
Y (s)= 5 s 20 s +3 + 15 s +2 .
TakingtheinverseLaplacetransformyields
y(t)=5 20e 3t +15e 2t
E2.20 Theinput-outputrelationshipis Vo V = A(K 1) 1+ AK where K = Z1 Z1 + Z2
Assume A ≫ 1.Then, Vo V = K 1 K = Z2 Z1 where Z1 = R1 R1C1s +1 and Z2 = R2 R2C2s +1 .
Therefore, Vo(s) V (s) = R2(R1C1s +1) R1(R2C2s +1) = 2(s +1) s +2
E2.21 Theequationofmotionofthemass mc is
TakingtheLaplacetransformwithzeroinitialconditionsyields
So,thetransferfunctionis
(
)
CHAPTER2MathematicalModelsofSystems
E2.22 Therotationalvelocityis ω(s)= 2(s +4) (s +5)(s +1)2 1 s .
Expandinginapartialfractionexpansionyields
TakingtheinverseLaplacetransformyields
E2.23 Theclosed-looptransferfunctionis
(s) R(s) = T (s)=
E2.24 Let x =0.6and y =0.8.Then,with y = ax3,wehave 0.8= a(0.6)3 .
Solvingfor a yields a =3 704.Alinearapproximationis y yo =3ax 2 o(x xo) or y =4x 1 6,where yo =0 8and xo =0 6.
E2.25 Theclosed-looptransferfunctionis Y (s) R(s) = T (s)= 10 s2 +21s +10
E2.26 Theequationsofmotionare
TakingtheLaplacetransform(withzeroinitialconditions)andsolving for X2(s)yields X2(s)= k (
Then,with m1 = m2 = k =1,wehave
X2(s)/F (s)= 1 s2(s2 +2)
Copyright ©2022 Pearson Education, Inc.
E2.27 Thetransferfunctionfrom Td(s)to Y (s)is Y (s)/Td(s)= G2(s) 1+ G1G2H(s) .
E2.28 Thetransferfunctionis
E2.29 (a)If G(s)= 1 s2 +15s +50 and H(s)=2s +15 , thentheclosed-looptransferfunctionofFigureE2.28(a)and(b)(in Dorf&Bishop)areequivalent.
(b)Theclosed-looptransferfunctionis
T (s)= 1 s2 +17s +65
E2.30 (a)Theclosed-looptransferfunctionis
FIGUREE2.30 Stepresponse. Copyright ©2022 Pearson Education, Inc.
CHAPTER2MathematicalModelsofSystems
(b)Theoutput Y (s)(when R(s)=1/s)is
or
(c)Theplotof y(t)isshowninFigureE2.30.Theoutputisgivenby y(t)=0 5(1 1 1239e 2 5t sin(4 8734t +1 0968));
E2.31 Thepartialfractionexpansionis
V (s)= a s + p1 + b s + p2 where p1 =5 8 66j and p2 =5+8 66j.Then,theresiduesare a = 5 77jb =5 77j.
TheinverseLaplacetransformis