Solutions for Modern Control Systems 14th Us Edition by Dorf

Page 1


INSTRUCTOR’S

SOLUTIONS MANUAL DITION

M odern C ontrol S ySteMS

Fourteenth E

Richard C. Dorf

University of California, Davis

Robert H. Bishop

University of South Florida

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2022, 2017, 2011 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-730729ISBN-10: 0-13- 27307296

PREFACE

Ineachchapter,therearefiveproblemtypes: Exercises Problems

AdvancedProblems

DesignProblems/ContinuousDesignProblem ComputerProblems

Intotal,thereareover980problems.Theabundanceofproblemsofincreasingcomplexitygivesstudentsconfidenceintheirproblem-solving abilityastheyworktheirwayfromtheexercisestothedesignand computer-basedproblems.

Itisassumedthatinstructors(andstudents)haveaccessto MATLAB and theControlSystemToolboxortoLabVIEWandtheMathScriptRTModule.Allofthecomputersolutionsinthis SolutionManual weredeveloped andtestedonanAppleMacBookProplatformusingMATLAB R2020a andtheControlSystemToolboxVersion9.6andLabVIEW2020. Itisnot possibletoverifyeachsolutiononalltheavailablecomputerplatforms thatarecompatiblewithMATLAB andLabVIEWMathScriptRTModule.Pleaseforwardanyincompatibilitiesyouencounterwiththescripts toProf.Bishopattheemailaddressgivenbelow.

TheauthorsandthestaffatPearsonEducationwouldliketoestablish anopenlineofcommunicationwiththeinstructorsusing ModernControlSystems.WeencourageyoutocontactPearsonwithcommentsand suggestionsforthisandfutureeditions.

RobertH.Bishoprobertbishop@usf.edu

1.IntroductiontoControlSystems.....................

2.MathematicalModelsofSystems...................... ..........23

3.StateVariableModels..............................

4.FeedbackControlSystemCharacteristics............. ..........136

5.ThePerformanceofFeedbackControlSystems...........

6.TheStabilityofLinearFeedbackSystems.............. ........237

7.TheRootLocusMethod...............................

8.FrequencyResponseMethods.........................

9.StabilityintheFrequencyDomain....................

10.TheDesignofFeedbackControlSystems...............

11.TheDesignofStateVariableFeedbackSystems......... .......604

12.RobustControlSystems............................

13.DigitalControlSystems...........................

IntroductiontoControlSystems

Thereare,ingeneral,nouniquesolutionstothefollowingexercisesand problems.Otherequallyvalidblockdiagramsmaybesubmittedbythe student.

Exercises

E1.1 Describetypicalsensorsthatcanmeasureeachofthefollowing:

a.Linearposition → ultrasonictransducer

b.Velocity(orspeed) → Dopplerradar

c.Non-gravitationalacceleration → inertialmeasurementunit

d.Rotationalposition(orangle) → rotaryencoder

e.Rotationalvelocity → gyroscope

f.Temperature → thermocouple

g.Pressure → barometer

h.Liquid(orgas)flowrate → velocimeter

i.Torque → torquemeter

j.Force → loadcell

k.Earth’smagneticfield → magnetometer

l.Heartrate → electrocardiograph

E1.2 Describetypicalactuatorsthatcanconvertthefollowing:

a.Fluidicenergytomechanicalenergy → hydrauliccylinder

b.Electricalenergytomechanicalenergy → electricmotor

c.Mechanicaldeformationtoelectricalenergy → piezoelectricactuator

d.Chemicalenergytokineticenergy → automobileengine

e.Heattoelectricalenergy → thermoelectricgenerator

E1.3 Amicroprocessorcontrolledlasersystem:

E1.4 Adrivercontrolledcruisecontrolsystem:

E1.5 Althoughtheprincipleofconservationofmomentumexplainsmuchof theprocessoffly-casting,theredoesnotexistacomprehensivescientific explanationofhowafly-fisherusesthesmallbackwardandforwardmotionoftheflyrodtocastanalmostweightlessflylurelongdistances(the currentworld-recordis236ft).Theflylureisattachedtoashortinvisible leaderabout15-ftlong,whichisinturnattachedtoalonger andthicker Dacronline.Theobjectiveiscasttheflyluretoadistantspotwithdeadeyeaccuracysothatthethickerpartofthelinetouchesthewaterfirst andthentheflygentlysettlesonthewaterjustasaninsectmight.

Anautofocuscameracontrolsystem:

Tackingasailboatasthewindshifts:

E1.8 Anautomatedhighwaycontrolsystemmergingtwolanesoftraffic:

E1.9 Askateboardridermaintainingverticalorientationanddesiredspeed:

E1.10

Humanbiofeedbackcontrolsystem:E1.11 Measurement

E1.11 E-enabledaircraftwithground-basedflightpathcontrol:

Desired Flight Path Flight Path

Exercises 5

E1.12 Unmannedaerialvehicleusedforcropmonitoringinanautonomous mode:

E1.13 Aninvertedpendulumcontrolsystemusinganopticalencodertomeasure theangleofthependulumandamotorproducingacontroltorque:

E1.14 Inthevideogame,theplayercanserveasboththecontroller andthesensor.Theobjectiveofthegamemightbetodriveacaralongaprescribed path.Theplayercontrolsthecartrajectoryusingthejoystickusingthe visualqueuesfromthegamedisplayedonthecomputermonitor.

E1.15 Aclosed-loopbloodglucosesystemwithacontinuousglucosemeasurementinformingthedecisiontoinjectinsulinornot:

P1.1

Anautomobileinteriorcabintemperaturecontrolsystemblockdiagram:

P1.2 Ahumanoperatorcontrolledvalvesystem:

P1.3 Achemicalcompositioncontrolblockdiagram:

P1.4 Anuclearreactorcontrolblockdiagram:

P1.5 Alightseekingcontrolsystemtotrackthesun:

P1.6 Ifyouassumethatincreasingworker’swagesresultsinincreasedprices, thenbydelayingorfalsifyingcost-of-livingdatayoucouldreduceoreliminatethepressuretoincreaseworker’swages,thusstabilizingprices.This wouldworkonlyiftherewerenootherfactorsforcingthecost-of-living up.Governmentpriceandwageeconomicguidelineswouldtaketheplace ofadditional“controllers”intheblockdiagram,asshownintheblock diagram.

P1.7 Assumethatthecannonfiresinitiallyatexactly5:00p.m..Wehavea positivefeedbacksystem.Denoteby∆t thetimelostperday,andthe nettimeerrorby ET .Thenthefollwoingrelationshipshold:

3min

P1.8

and

Therefore,thenettimeerrorafter15daysis

Thestudent-teacherlearningprocess:

P1.9

Ahumanarmcontrolsystem:

P1.10

CHAPTER1IntroductiontoControlSystems

AnaircraftflightpathcontrolsystemusingGPS:

P1.11

P1.12

Theaccuracyoftheclockisdependentuponaconstantflowfromthe orifice;theflowisdependentupontheheightofthewaterinthefloat tank.Theheightofthewateriscontrolledbythefloat.Thecontrolsystem controlsonlytheheightofthewater.Anyerrorsduetoenlargementof theorificeorevaporationofthewaterinthelowertankisnot accounted for.Thecontrolsystemcanbeseenas:

Assumethattheturretandfantailareat90◦,if θw = θF -90◦.Thefantail operatesontheerrorsignal θw - θT ,andasthefantailturns,itdrivesthe turrettoturn.

P1.13 Thisschemeassumesthepersonadjuststhehotwaterfortemperature control,andthenadjuststhecoldwaterforflowratecontrol.

P1.14 Iftherewardsinaspecifictradeisgreaterthantheaveragereward,there isapositiveinfluxofworkers,since

Ifaninfluxofworkersoccurs,thenrewardinspecifictradedecreases, since

P1.15 Acomputercontrolledfuelinjectionsystem:

CHAPTER1IntroductiontoControlSystems

P1.16 Withtheonsetofafever,thebodythermostatisturnedup.Thebody adjustsbyshiveringandlessbloodflowstotheskinsurface. Aspirinacts tolowersthethermalset-pointinthebrain.

P1.17 Hittingabaseballisarguablyoneofthemostdifficultfeatsinallofsports. Giventhatpitchersmaythrowtheballatspeedsof90mph(orhigher!), battershaveonlyabout0.1secondtomakethedecisiontoswing—with batspeedsaproaching90mph.Thekeytohittingabaseballalongdistanceistomakecontactwiththeballwithahighbatvelocity.Thisis moreimportantthanthebat’sweight,whichisusuallyaround33ounces. Sincethepitchercanthrowavarietyofpitches(fastball,curveball,slider, etc.),abattermustdecideiftheballisgoingtoenterthestrikezoneand ifpossible,decidethetypeofpitch.Thebatteruseshis/hervisionasthe sensorinthefeedbackloop.Ahighdegreeofeye-handcoordinationiskey tosuccess—thatis,anaccuratefeedbackcontrolsystem.

P1.18 Definethefollowingvariables: p =outputpressure, fs =springforce = Kx, fd =diaphragmforce= Ap,and fv =valveforce= fs - fd Themotionofthevalveisdescribedby¨ y = fv/m where m isthevalve mass.Theoutputpressureisproportionaltothevalvedisplacement,thus p = cy, where c istheconstantofproportionality.

P1.19 Acontrolsystemtokeepacaratagivenrelativepositionoffsetfroma leadcar:

P1.20 Acontrolsystemforahigh-performancecarwithanadjustablewing:

P1.21 Acontrolsystemforatwin-lifthelicoptersystem:

CHAPTER1IntroductiontoControlSystems

P1.22 Thedesiredbuildingdeflectionwouldnotnecessarilybezero.Ratherit wouldbeprescribedsothatthebuildingisallowedmoderate movement uptoapoint,andthenactivecontrolisappliedifthemovementislarger thansomepredeterminedamount.

P1.23 Thehuman-likefaceoftherobotmighthavemicro-actuators placedat strategicpointsontheinteriorofthemalleablefacialstructure.Cooperativecontrolofthemicro-actuatorswouldthenenabletherobottoachieve variousfacialexpressions.

P1.24 Wemightenvisionasensorembeddedina“gutter”atthebaseofthe windshieldwhichmeasureswaterlevels—higherwaterlevelscorresponds tohigherintensityrain.Thisinformationwouldbeusedtomodulatethe wiperbladespeed.

P1.25 Afeedbackcontrolsystemforthespacetrafficcontrol:

P1.26 Earth-basedcontrolofamicrorovertopointthecamera:

P1.27 Controlofamethanolfuelcell:

AdvancedProblems

AP1.1 Controlofaroboticmicrosurgicaldevice:

AP1.2 Anadvancedwindenergysystemviewedasamechatronicsystem:

AP1.3 Theautomaticparallelparkingsystemmightusemultipleultrasound sensorstomeasuredistancestotheparkedautomobilesandthecurb. Thesensormeasurementswouldbeprocessedbyanon-boardcomputer todeterminethesteeringwheel,accelerator,andbrakeinputstoavoid collisionandtoproperlyalignthevehicleinthedesiredspace.

AP1.4

Eventhoughthesensorsmayaccuratelymeasurethedistance between thetwoparkedvehicles,therewillbeaproblemiftheavailablespaceis notbigenoughtoaccommodatetheparkingcar.

AP1.5

Therearevariouscontrolmethodsthatcanbeconsidered,includingplacingthecontrollerinthefeedforwardloop(asinFigure1.3).Theadaptive opticsblockdiagrambelowshowsthecontrollerinthefeedbackloop,as analternativecontrolsystemarchitecture.

Thecontrolsystemmighthaveaninnerloopforcontrollingtheaccelerationandanouterlooptoreachthedesiredfloorlevelprecisely.

AP1.6 Anobstacleavoidancecontrolsystemwouldkeeptherobotic vacuum cleanerfromcollidingwithfurniturebutitwouldnotnecessarilyputthe vacuumcleaneronanoptimalpathtoreachtheentirefloor.Thiswould requireanothersensortomeasurepositionintheroom,adigitalmapof theroomlayout,andacontrolsystemintheouterloop.

AP1.7 Theattitudecontrolofthedroneshiprequiresmeasuringtheyawand rollusingagyro.Oftenthegyromeasuresattituderate,therefore,itmay benecessarytointegratethegyrooutputtocomputethemeasuredroll andyaw.

DesignProblems 19

DesignProblems

CDP1.1 ration:

Themachinetoolwiththemovabletableinafeedbackcontrol configu-

DP1.1 Usethestereosystemandamplifierstocanceloutthenoiseby emitting signals180◦ outofphasewiththenoise.

DP1.2 Anautomobilecruisecontrolsystem:

DP1.3 Utilizingasmartphonetoremotelymonitorandcontrolawashingmachine:

DP1.4 Anautomatedcowmilkingsystem:

DP1.5 Afeedbackcontrolsystemforarobotwelder:

DesignProblems

DP1.6 Acontrolsystemforonewheelofatractioncontrolsystem:

DP1.7 AvibrationdampingsystemfortheHubbleSpaceTelescope:

DP1.8 Acontrolsystemforananorobot:

Manyconceptsfromunderwaterroboticscanbeappliedtonanorobotics withinthebloodstream.Forexample,planesurfacesandpropellerscan

DP1.9

providetherequiredactuationwithscrewdrivesproviding thepropulsion.Thenanorobotscanusesignalsfrombeaconslocatedoutsidethe skinassensorstodeterminetheirposition.Thenanorobots useenergy fromthechemicalreactionofoxygenandglucoseavailableinthehuman body.Thecontrolsystemrequiresabio-computer–aninnovationthatis notyetavailable.

Thefeedbackcontrolsystemmightusegyrosand/oraccelerometersto measureanglechangeandassumingtheHTVwasoriginallyinthevertical position,thefeedbackwouldretaintheverticalpositionusingcommands tomotorsandotheractuatorsthatproducedtorquesandcouldmovethe HTVforwardandbackward.

DP1.10

Therearetwoloopsinthiscontrolsystem,onetocontrolthe automobilevelocityandonetocontroltherelativepositionofthe twovehicles. Sincewehavenowaytomeasurethevelocityoftheforwardvehicle,we relyontheradartoproviderelativepositioning.Thecontrollerwillneed toaccountforboththevelocityerrorandtherelativepositionerrorin computingthedesiredacceleration.

CHAPTER2

MathematicalModelsofSystems

Exercises

E2.1 Wehavefortheopen-loop y = r 2 andfortheclosed-loop e = r y and y = e 2

So, e = r e2 and e2 + e r =0 .

FIGUREE2.1 Plotofopen-loopversusclosed-loop.

Forexample,if r =1,then e2 + e 1=0impliesthat e =0 618.Thus, y =0.382.Aplot y versus r isshowninFigureE2.1.

E2.2 Define

and

Then,

when R0 =10, 000Ω.Thus,thelinearapproximationiscomputedby consideringonlythefirst-ordertermsintheTaylorseriesexpansion,and isgivenby

R = 135∆T.

E2.3 Thespringconstantfortheequilibriumpointisfoundgraphicallyby estimatingtheslopeofalinetangenttotheforceversusdisplacement curveatthepoint y =0.5cm,seeFigureE2.3.Theslopeofthelineis K ≈ 1.

y=Displacement (cm) For ce (n) Spring compresses Spring breaks

FIGUREE2.3 Springforceasafunctionofdisplacement.

Copyright ©2022 Pearson Education, Inc.

Exercises 25

E2.4 Since R(s)= 1 s wehave Y (s)= 4(s +50) s(s +20)(s +10)

Thepartialfractionexpansionof Y (s)isgivenby Y (s)= A1 s + A2 s +20 + A3 s +10 where

UsingtheLaplacetransformtable,wefindthat

Thefinalvalueiscomputedusingthefinalvaluetheorem: lim t→∞ y(t)=lim s→0 s 4(s +50) s(s2 +30s +200) =1

E2.5 ThecircuitdiagramisshowninFigureE2.5.

FIGUREE2.5 Noninvertingop-ampcircuit.

Withanidealop-amp,wehave

CHAPTER2MathematicalModelsofSystems

where A isverylarge.Wehavetherelationship v = R1 R1 + R2 vo

Therefore,

vo = A(vin R1 R1 + R2 vo), andsolvingfor vo yields vo = A 1+ AR1 R1 +R2 vin

Since A ≫ 1,itfollowsthat1+ AR1 R1+R2 ≈ AR1 R1 +R2 .Thentheexpressionfor vo simplifiesto

E2.6 Given

vo = R1 + R2 R1 vin

y = f (x)= ex

andtheoperatingpoint xo =1,wehavethelinearapproximation y = f (x)= f (xo)+ ∂f

x=xo (x xo)+ ···

where f (xo)= e, df dx x=xo=1 = e, and x xo = x 1

Therefore,weobtainthelinearapproximation y = ex

E2.7 TheblockdiagramisshowninFigureE2.7.

FIGUREE2.7 Blockdiagrammodel. Copyright ©2022 Pearson Education, Inc.

Exercises 27

Startingattheoutputweobtain I(s)= G1(s)G2(s)E(s).

But E(s)= R(s) H(s)I(s),so I(s)= G1(s)G2(s)[R(s) H(s)I(s)] .

Solvingfor I(s)yieldstheclosed-looptransferfunction I(s) R(s) = G1(s)G2(s) 1+ G1(s)G2(s)H(s)

E2.8 TheblockdiagramisshowninFigureE2.8.

FIGUREE2.8 Blockdiagrammodel.

Startingattheoutputweobtain

), so

Substituting W (s)= KE(s) H1(s)Z(s)intotheaboveequationyields

)Z(s)]

CHAPTER2MathematicalModelsofSystems

andwith E(s)= R(s) Y (s)and Z(s)= sY (s)thisreducesto

Y (s)=[ G1(s)G2(s)(H2(s)+ H1(s)) G1(s)H3(s) 1 s G1(s)G2 (s)K]Y (s)+ 1 s G1(s)G2(s)KR(s)

Solvingfor Y (s)yieldsthetransferfunction

Y (s)= T (s)R(s), where T (s)= KG1(s)G2(s)/s 1+ G1(s)G2(s)[(H2(s)+ H1(s)]+ G1(s)H3(s)+ KG1(s)G2(s)/s

E2.9 FromFigureE2.9,weobservethat

Ff (s)= G2(s)U (s) and FR(s)= G3(s)U (s)

Then,solvingfor U (s)yields U (s)= 1 G2(s) Ff (s)

anditfollowsthat

Again,consideringtheblockdiagraminFigureE2.9wedetermine

But,fromthepreviousresult,wesubstitutefor FR(s)resultingin

Solvingfor Ff (s)yields

FIGUREE2.9 Blockdiagrammodel.

E2.10 TheshockabsorberblockdiagramisshowninFigureE2.10.Theclosedlooptransferfunctionmodelis

Piston travel measurement

FIGUREE2.10

Shockabsorberblockdiagram.

E2.11 Let f denotethespringforce(n)and x denotethedeflection(m).Then K = ∆f ∆x . Computingtheslopefromthegraphyields:

(a) xo = 0.14m → K =∆f/∆x =10n/0.04m=250n/m

(b) xo =0m → K =∆f/∆x =10n/0.05m=200n/m

(c) xo =0.35m → K =∆f/∆x =3n/0.05m=60n/m

CHAPTER2MathematicalModelsofSystems

E2.12 ThesignalflowgraphisshowninFig.E2.12.Find Y (s)when R(s)=0. Y(s) -1 K 2 G(s) -K 1 1 Td(s)

FIGUREE2.12 Signalflowgraph.

Thetransferfunctionfrom Td(s)to Y (s)is Y (s)= G(s)Td(s) K1K2G(s)Td(s) 1 ( K2G(s)) = G(s)(1 K1K2)Td(s) 1+ K2G(s)

Ifweset K1K2 =1 , then Y (s)=0forany Td(s).

E2.13 Thetransferfunctionfrom R(s), Td(s),and N (s)to Y (s)is

)=

Therefore,wefindthat Y (s)/Td(s)= 1 s2 +25s + K and Y (s)/N (s)= K s2 +25s + K

E2.14 Sincewewanttocomputethetransferfunctionfrom R2(s)to Y1(s),we canassumethat R1 =0(applicationoftheprincipleofsuperposition). Then,startingattheoutput Y1(s)weobtain Y1(s)= G3(s)[ H1(s)Y1(s)+ G2(s)G8(s)W (s)+ G9(s)W (s)] , or

Consideringthesignal W (s)(seeFigureE2.14),wedeterminethat W (s)= G5(s)[G4(s)R2(s) H2(s)W (s)] ,

FIGUREE2.14

Blockdiagrammodel. or

Substitutingtheexpressionfor W (s)intotheaboveequationfor Y1(s) yields

E2.15 Forloop1,wehave

Andforloop2,wehave

E2.16 Thetransferfunctionfrom R(

TheblockdiagramisshowninFigureE2.16a.Thecorrespondingsignal flowgraphisshowninFigureE2.16bfor P (s)/R(

FIGUREE2.16

(a)Blockdiagram,(b)Signalflowgraph.

E2.17 Alinearapproximationfor f isgivenby

where xo =1/2,∆f = f (x) f (xo),and∆x = x xo

E2.18 Thelinearapproximationisgivenby

(a)When xo =1,wefindthat yo =2 4,and yo =13 2when xo =2.

(b)Theslope m iscomputedasfollows: m = ∂y ∂x x=xo =1+4 2x 2 o

Therefore, m =5 2at xo =1,and m =18 8at xo =2.

Copyright ©2022 Pearson Education, Inc.

Exercises 33

E2.19 Theoutput(withastepinput)is

Y (s)= 30(s +1) s(s +5)(s +6)

Thepartialfractionexpansionis

Y (s)= 5 s 20 s +3 + 15 s +2 .

TakingtheinverseLaplacetransformyields

y(t)=5 20e 3t +15e 2t

E2.20 Theinput-outputrelationshipis Vo V = A(K 1) 1+ AK where K = Z1 Z1 + Z2

Assume A ≫ 1.Then, Vo V = K 1 K = Z2 Z1 where Z1 = R1 R1C1s +1 and Z2 = R2 R2C2s +1 .

Therefore, Vo(s) V (s) = R2(R1C1s +1) R1(R2C2s +1) = 2(s +1) s +2

E2.21 Theequationofmotionofthemass mc is

TakingtheLaplacetransformwithzeroinitialconditionsyields

So,thetransferfunctionis

(

)

CHAPTER2MathematicalModelsofSystems

E2.22 Therotationalvelocityis ω(s)= 2(s +4) (s +5)(s +1)2 1 s .

Expandinginapartialfractionexpansionyields

TakingtheinverseLaplacetransformyields

E2.23 Theclosed-looptransferfunctionis

(s) R(s) = T (s)=

E2.24 Let x =0.6and y =0.8.Then,with y = ax3,wehave 0.8= a(0.6)3 .

Solvingfor a yields a =3 704.Alinearapproximationis y yo =3ax 2 o(x xo) or y =4x 1 6,where yo =0 8and xo =0 6.

E2.25 Theclosed-looptransferfunctionis Y (s) R(s) = T (s)= 10 s2 +21s +10

E2.26 Theequationsofmotionare

TakingtheLaplacetransform(withzeroinitialconditions)andsolving for X2(s)yields X2(s)= k (

Then,with m1 = m2 = k =1,wehave

X2(s)/F (s)= 1 s2(s2 +2)

Copyright ©2022 Pearson Education, Inc.

E2.27 Thetransferfunctionfrom Td(s)to Y (s)is Y (s)/Td(s)= G2(s) 1+ G1G2H(s) .

E2.28 Thetransferfunctionis

E2.29 (a)If G(s)= 1 s2 +15s +50 and H(s)=2s +15 , thentheclosed-looptransferfunctionofFigureE2.28(a)and(b)(in Dorf&Bishop)areequivalent.

(b)Theclosed-looptransferfunctionis

T (s)= 1 s2 +17s +65

E2.30 (a)Theclosed-looptransferfunctionis

FIGUREE2.30 Stepresponse. Copyright ©2022 Pearson Education, Inc.

CHAPTER2MathematicalModelsofSystems

(b)Theoutput Y (s)(when R(s)=1/s)is

or

(c)Theplotof y(t)isshowninFigureE2.30.Theoutputisgivenby y(t)=0 5(1 1 1239e 2 5t sin(4 8734t +1 0968));

E2.31 Thepartialfractionexpansionis

V (s)= a s + p1 + b s + p2 where p1 =5 8 66j and p2 =5+8 66j.Then,theresiduesare a = 5 77jb =5 77j.

TheinverseLaplacetransformis

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solutions for Modern Control Systems 14th Us Edition by Dorf by 6alsm - Issuu