Solutions for Foundations Of Geometry 3rd Us Edition by Venema

Page 1


INSTRUCTOR’S SOLUTIONS MANUAL

F OUNDATION S OF G EO M ET RY

THIRD EDITION

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2022 by Pearson Education, Inc., 221 River Street, Hoboken, NJ 07030. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-684520-1

ISBN-10: 0-13-684520-7

Teachingfrom FOUNDATIONSOFGEOMETRY,thirdedition

Thefollowingsuggestionsforteachingfromthethirdeditionof FOUNDATIONSOF GEOMETRY arequitesubjective.Theyarepresentedinthehopethattheywillbeusefulto someinstructors,buttheyarenotmeanttobeatallprescriptive.Thisfirstsectioncontains afewgeneralcommentsandatableshowingtopicdependencies.Thesecondpartcontains commentsabouthowtocoverindividualchaptersfromthebook.

GettingStarted

Themainconsiderationingettingthecourseoffthegroundisthatyouwantgetto Chapter4asquicklyaspossible.Chapters1and2shouldbetreatedasintroductoryand thecourseshouldnotbeallowedtogetboggeddowninthem.Thecommentsbelowon individualchapterscontainspecificsuggestionsabouthowtoachievethis.

Onethingstudentsmaynotunderstandattheoutsetiswhatitmeanstostudythe foundations ofgeometryandwhyunderstandingthefoundationsmightbeanimportant goal.TheVanHielemodelisusefulinhelpingtoexplainthis.Ideallystudentsshouldbeat Level3whentheyenterthecourseandthecourseshouldbringthemtoLevel4.(Assuming thestepsarenumberedasinAppendixD.)OfcoursesomestudentsarenotatLevel3when theyenterthecourse.Thefirstthreeandahalfchaptersaredesignedtohelpbringstudents tothatlevel.ItisimportantthatstudentsreachLevel3beforetheyarepushedtogetto Level4.

SupplementaryReading

Itissuggestedthatstudentsreadsomethingaboutthehistoryofgeometrywhileworking throughthisbook. Euclid’sWindow [Mlo01]hasaterriblereputation(see[Lan02]),butit isreallynotsuchabadchoice—forthisparticularcourse,atleast.ItistheonlybookIhave foundthatisexclusivelydevotedtogeometryandwhichdescribesthevariousrevolutions thathavetakenplaceintheconventionalunderstandingoftherelationshipbetweenthe theoremsofgeometryandtherealworld.Thechapteronstringtheoryisratherthin.The bookiswritteninastylethatstudentswillappreciateandenjoyevenifyoudon’t.

Chooseoneofthebookslistedinthesuggestedreadingsattheendofthechaptersand stickwithit.Assignreadingsfromyourselectedbookasthetopicsarise.

Continuity

Thereareoccasionalproofsthatinvolve( ,δ)-arguments.Ifyourclassisnotcomfortable withsuchproofs,theycanbeomittedwithoutseriousconsequence.Noharmisdoneby simplyacceptingthecontinuityresultsasadditionalaxioms.

LogicalRelationshipsBetweenTopics

Thefollowingchartindicatesrelationshipsbetweentopicsandisdesignedtoassistan instructorinmakingdecisionsaboutwhattocoverandwhattoomit.

Section Topic Prerequisites Neededfor

§3.5 ContinuityAxiom CrossbarTheorem CircularContinuity(§8.4)

§4.3 ContinuityofDistance TriangleInequality DissectionTheorem(7.3.2), Bolyai’sTheorem(7.6.1),and ElementaryCircularContinuity (8.1.12)

§4.8 PropertiesofSaccheri andLambertquadrilaterals

§5.6 Exploringthegeometry ofthetriangle

§6.1 Theorem6.1.12

§6.7 Propertiesofangleof parallelism

§7.6 Hyperbolicdissection theoryandBolyai’s Theorem

§§4.6,4.8 Chapter6

§§5.1–5.4

§8.6

§6.1 Bolyai’sTheorem(7.6.1)

§§6.3–6.6 Propertiesofdefect(§6.8)and Bolyai’sTheorem(7.6.1)

§7.5, §6.1,andContinuity ofdefect(Theorem6.8.5)

§§8.1–8.2 Circlesinneutralgeometry Chapter4

§8.3 CirclesinEuclideangeometry

§8.4 Circularcontinuity

§8.5

Areaandcircumference ofEuclideancircles

§§8.1,8.2,5.1–5.4

§§8.1,8.2

§§5.3,7.2,8.3

§8.6 ExploringEuclideancircles §§5.6,8.3

Chap.9 Compass&straightedgeconstructions

Circularcontinuity(§8.4), whichmaybeassumedas anaxiom

Notusedelsewhere

§8.3,Chapter9

§§8.6,9.3,10.7

Chapter9(seecommentbelow)

Notusedelsewhere

Notusedelsewhere

Notusedelsewhere

§10.1 PropertiesofIsometries Chapter4 §§10.2–10.7

§§10.3, 10.4 Classificationofrigid motions §10.2

§10.5 ReflectionPostulate §10.1

§10.6 SimilarityTransformations §10.3

§10.7 Inversionsincircles

Chap. 11 Proofsthatthemodels satisfytheneutralpostulates

Chap. 12

Polygonalmodelsand geometryofspace

§§5.3,8.3

§§10.5and10.7

AtleastsomeofChapter6

Notusedelsewhere

ProofthatPoincar´emodelssatisfyneutralpostulates(§11.2)

Notusedelsewhere

ProofthatPoincar´emodelssatisfyneutralpostulates(§11.2)

Notusedelsewhere

Notusedelsewhere

GeoGebra

Asindicatedinthetextbook,theuseofGeoGebraisrecommended.Thesoftwareisbeing continuouslyimproved,sosomesuperficialaspectsofthecurrentversionofthesoftwaremay bedifferentfromwhatisdescribedinthetext.TheversionofGeoGebrathatwasinuse whenthetextbookwasoriginallywrittenisnowcalled“GeoGebraClassic”anditisstillthe recommendedtoolforusewiththistextbook.WhenyouopenGeoGebraClassicyouwill seeanumberofoptions;clickon“Geometry”togetstarted.

CommentsonIndividualChapters

Chapter1. Thischaptershouldnotbeomittedbecauseitprovidesthebackgroundfor therestofthecourse.Butthereisnoneedtospendmorethanoneortwodaysonit.It isimportanttodiscussthestatementsofEuclid’spostulatesandtheirplaceinthelogical arrangementofthe Elements.Itisalsoagoodideatogostep-by-stepthroughoneortwo oftheproofsfromEuclidthatareincludedandtodiscussboththeproofasEuclidwould haveunderstooditandalsothegapsthatwenowseeinEuclid’sproofs.

Moststudentswillnotbepreparedtofullyappreciatethesubtletiesofthecritiqueof Euclid’sproofs.ItmightbeagoodideatoreviewEuclid’sproofsagainlaterinconnection withtheneutralgeometryofChapters3and4.Bythattimethestudentsmayhavegained thenecessarymaturitytounderstandwhysomeofEuclid’sproofsareconsideredtobe incomplete.

ItwillbeapparenttothereaderthatIhavearatherhighregardforEuclidandhiswork. Inparticular,IthinkitisamistaketotellstudentsthatEuclid’sproofsare“flawed”just becausetheydonotconformtomodernstandardsofrigor.ReferringtoEuclid’sproofsas flawedleadsstudentstoconcludethatEuclidisnotworthstudyingwhen,infact,nothing couldbefurtherfromthetruth.Ithinkitisimportanttotry,asbestwecan,tounderstand howEuclidunderstoodtheroleofaxiomsandtorecognize(inthenextchapter)thatthe modernunderstandingisdifferent.

MuchofChapter1canbeassignedasreading.

Suggestion:AfterthestudentshavetriedtoworkExercise1.7.11byhand,havethem drawthediagramusingGeoGebra.Theycanvarytheshapeofthetriangleandseethat thediagramsshowninthetextneveractuallyoccur.

Chapter2. Thischapterisalsoimportanttowhatcomeslaterandshouldnotbe omitted.Butagainyoushouldnotspendtoomuchtimeonthechapter.Twodayssuffice forsections2.1through2.3andsection2.4canbeassignedasreading.

Incidencegeometryisakindof“laboratory”inwhichtotryoutsomeoftheideasin thecourse.Itisimportantforthecourseintwoways.First,itprovidesasettinginwhich tounderstandwhatitmeanstosaythataparallelpostulateisindependentoftheother postulates.Second,itisasettinginwhichtolearntowriteproofsandtobasethoseproofs onwhatisactuallystatedinthepostulates(andnothingelse).

Thephilosophyofthebookisthatgeometryshouldbeseenasasubjectthatisclosely tiedtoactualspatialrelationshipsintherealworld.Inkeepingwiththatphilosophy,the onlyexampleofanaxiomaticsystemincludedinthechapterisincidencegeometry.An instructormaywanttoincludeoneormoreexamplesthatinvolveundefinedtermsthatdo notcarryasmuchintuitivefreightastheterms“point”and“line.”Somethinglikethe “ScorplingFlugs”exampleonpages164–168of[Tru01]wouldbegood.

Howmuchtimeyouspendonhowtowriteproofswilldependonthebackgroundof thestudents.Ifthestudentshaveneverwrittenproofsbefore,youcouldspendtwoor

threedaysdiscussingsomeoftheprinciplesexplainedin §2.5.Ifthestudentsalreadyhave experiencewritingproofs,youcouldsimplyaskthemtoreadthesectionasreviewand godirectlytotheproofsofthetheoremsfromincidencegeometryin §2.6.Inanycase, thetheoremsfromincidencegeometryshouldbediscussedandseveraloftheproofsshould beassignedasexercises.Inmyexperiencemoststudentsmakeratherfundamentallogical errorsintheirfirstattemptstoprovethesetheorems.Inparticular,moststudentswantto readIncidenceAxiom3tosaywhatTheorems2.6.8and2.6.9say.(Seethenotesafterthe solutionstoExercises2.6.3,and2.6.4,below.)Ihavenotfoundawaytopreventstudents frommakingthiserror,buttheyseemtolearnsomethingwhentheymaketheerrorandit isthenexplainedtothem.Asaresult,theexperienceofwritingproofsofthetheoremsin neutralgeometrycanbeanimportantstepofthedevelopmentofstudentthinking.

Itmightbehelpfultodistinguishbetweenthestyleofawrittenproofandthestyleof aproofthatiscommunicatedorally.Inthischapteryouwillwanttouseclasstimetogo line-by-linethroughatleastonewrittenproof,butlaterinthecourseyoushouldnotuse valuableclasstimetopresentthedetailsofwrittenproofs.Ifyoumakethisdistinctionclear, youwillbeabletorequirestudentstosubmitcarefulproofsthatincludecompletewritten justificationsforeachstepeventhoughtheproofsyoupresentinclassmayfollowadifferent style.Whateveryoudoinclass,thestudentscanusetheproofsinthetextasmodelsfor theirwrittenproofs.

Chapter3. Inthischapterthefoundationsoftheremainderofthecoursearelaid,so thechaptershouldbecoveredcarefully.Atthesametime,thisisnotwheretheinteresting andbeautifultheoremsofgeometryaretobefound,soyoudon’twanttogetboggeddown inthechapter.Studentswillprobablynotlearntoappreciateproofsinthischaptereither (thatwillhappeninthenextchapter),soonlyalimitednumberofproofsshouldbeassigned. Itisimportantthatfutureteachershavesomeideaofthekindofthinkingthatgoesinto theselectionofasystemofaxiomsaswellassomeknowledgeoftherangeofoptionsavailable whenasystemofaxiomsisbeingchosen.Forthatreason,atleastsomeofAppendicesB andCshouldbediscussedinsomeform.Butitmightbebetternottoslowdownforthat discussionatthispointinthecourse.Thetwoappendicescanbeassignedlaterinthecourse, afterthestudentshaveseenhowtheaxiomssupporttherestofthecourseingeometry,and discussedatthattime.

Thereisanotherreasonforpreferringmetricaxiomsthatisnotemphasizedinthetext: essentiallyallmodernworkingeometryisdoneinthecontextofametric.Fromthatpoint ofview,theaxiomsofMacLanearetobepreferredoveranyoftheothersystemsmentioned inthetext.ThedecisiontousethemoreSMSG-likeaxiomsinChapter3isbasedonthe needtomakedirectconnectionswithwhatisactuallydoneinhighschoolgeometry.

Allthestatementsofthesixneutralaxiomsandtherelateddefinitionsshouldbecovered carefully.TheexamplesandexplanatorymaterialinthesecondhalfofSection3.2are somewhatoptional.TheyaddtostudentunderstandingofwhatisbeingassertedintheRuler Postulate,butcoordinatefunctions,forexample,arenotessentialtothelogicaldevelopment ofthecourse.TheRayTheoremandtheConsistencyofBetweennessTheoremareused repeatedlyinChapter4tofillinsomeofthegapsinEuclid’sproofs.Forthatreasonthey shouldatleastbediscussed.Buttheproofscouldbeomittedandtheresultsacceptedas additionalaxiomsiftimepressurerequiresit.

Section3.5containstworesultsthatarealsoimportantforthelaterdevelopmentofthe course.Ataminimum,studentsneedtoknowthestatementsofthenamedtheoremsinthe

sectionandallthedefinitions.Theproofsinthesectionarenotdifficult;theproblemisthat theyarealsonotinteresting.MoststudentsfindtheproofsinChapter4tobemuchmore satisfying.Itisperfectlyrespectableandlogicallycorrecttosimplyassumethemainresults ofthesectionasaxiomsandmoveon.Anotherpossibilityistoskipmanyoftheproofsin thissectiontemporarilyandcomebacktothemlater,afterthenextfewchaptershavebeen studied.Ontheotherhand,astrongargumentinfavorofstudyingthissectioncarefullyis thefactthattheseresultsareanessentialpartofthefoundationsofgeometryandonlyby masteringthemwillyoureallycometounderstandthefoundations.Inparticular,thatisthe onlywaytoappreciatewhatisnormallyomittedfromhighschooltreatmentsofEuclidean geometry.

In §10.5itwillbeimportanttoknowthattheExistenceofPerpendicularBisectorscan beprovedwithoutSide-Angle-Side.

MostinstructorswillwanttoincludesomeoftheproofsfromChapter3andomitothers. Itis,forexample,quiteacceptabletotreattheBetweennessTheoremforRaysandthe LinearPairTheoremastwoadditionalpartsoftheProtractorPostulate.Afterall,exactly thatisquiteoftendoneincoursesatthislevel—see[WW04],[Kay01],[SMS61],[Moi90], and[UCS09],forexample.Theinstructorcansimplypointtothefactthatthereisaproof inthebookasevidencethattheseaxiomscanbeprovedasconsequencesoftheothers.It isnotnecessaryforeverystudentofthesubjecttoverifythis.

BecarefulwiththeexercisesinChapter3.Someofthem(suchas3.2.20,3.2.21,3.2.22, 3.2.26,3.2.27,3.3.6,and3.3.7)mayrequiremathematicalmaturitythatthestudentsdonot yethave.Thinkcarefullybeforeassigningtheseexercises.Ontheotherhand,theproofsof existenceanduniquenessofmidpointsandbisectorsshoulddefinitelybeassigned.

Chapter4. Thischapteristheheartofthecourse.Intheprecedingchaptersitwas importanttokeepmoving.Nowitistimetoslowdownandenjoythematerialinthis chapter.It’sclassicandbeautifulmathematics,butunderstandingitiswellwithinthe graspofstudentsofaverageability.

Itisinthischapterthatthestudentslearntowritegoodproofsandbegintoreally appreciateproofs.Studentabilitytowriteproofsandtoconstructmathematicalarguments shoulddevelopsignificantlyinthischapter.Theproofsinthefirstpartofthechapterare straightforwardargumentsthataregoodpracticeforwhatistocome.Theproofsofthe equivalenceswiththeEuclideanParallelPostulate(EPP)requireasubstantialincreasein thelevelofthinkinginvolved.Oncestudentsreachthisleveltheyfeelgoodaboutthefact thattheycanprovesomanystatementsareequivalenttoEPP.

Trytoassignasmanyoftheomittedproofsaspossible.Studentscometoadeep understandingofthematerialbyworkingouttheseproofsforthemselves.Ifyouarenot abletoassignallofthemashomework,youcoulddiscusssomeoftheminclass.Theseproofs arenotdifficultandstudentslearnalotfromworkingthroughthedetailsforthemselves.It mayappearthatsomeofthehintsgiveawaytoomuch,butmostofthestudentsdonotsee itthatway.Iftheyknowthebasicoutlineoftheprooftheycanconcentrateontheformof theproof.

Ithinkitisimportantintheseearlyproofsthatstudentsincludeajustificationforevery stepintheargument.Learningthisdisciplineearlyheadsofflotsofsloppinessthatleads totroublelater.Eachinstructorwillhavetosetastandardthatisappropriateforhisor herownclass.Thesolutionsprovidedinthismanualincludeajustificationfornearlyevery step.

INSTRUCTOR’S SOLUTIONS MANUAL

F OUNDATIONS OF G EOMETRY

SECOND EDITION

Gerard A. Venema

Calvin College Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author

Copyright © 2012 Pearson Education, Inc.

Publishing as Pearson, 75 Arlington Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN 0136020593

1 2 3 4 5 6 XX 15 14 13 12 11

www.pearsonhighered.com

SolutionstoExercisesinChapter11

SolutionstoExercisesinChapter26

SolutionstoExercisesinChapter314

SolutionstoExercisesinChapter427

SolutionstoExercisesinChapter550

SolutionstoExercisesinChapter672

SolutionstoExercisesinChapter786

SolutionstoExercisesinChapter896

SolutionstoExercisesinChapter10106

SolutionstoExercisesinChapter11127

SolutionstoExercisesinChapter12137

Bibliography143

SolutionstoExercisesinChapter1

1.6.1 Checkthattheformula A D 1 4 a C c b C d worksforrectanglesbutnotfor parallelograms.

FIGURES1.1: Exercise1.6.1.Arectangleandaparallelogram

Forrectanglesandparallelograms, a D c and b D d and Area=base∗height Forarectangle,thebaseandtheheightwillbeequaltothelengthsoftwoadjacent sides.Therefore

Inthecaseofaparallelogram,theheightissmallerthanthelengthofthesideso theformuladoesnotgivethecorrectanswer.

1.6.2 Theareaofacircleisgivenbytheformula A D π d 2 2.AccordingtheEgyptians, A isalsoequaltotheareaofasquarewithsidesequalto

;thus

. Equatingandsolvingfor π gives

1.6.3 Thesumofthemeasuresofthetwoacuteanglesin ^ABC is90◦,sothefirstshaded regionisasquare.Wemustshowthattheareaoftheshadedregioninthefirst square c2 isequaltotheareaoftheshadedregioninthesecondsquare a2 C b2 . Thetwolargesquareshavethesameareabecausetheybothhavesidelength a C b.Alsoeachofthesesquarescontainsfourcopiesoftriangle ^ABC (in white).Therefore,bysubtraction,theshadesdregionsmusthaveequalareaandso

1.6.4(a) Suppose

.Wemustshowthat

(b) Let u and v beodd.Wewillshowthat a, b and c arealleven.Since u and v are bothodd,weknowthat u2 and v2 arealsoodd.Therefore a D u2 v2 iseven (thedifferencebetweentwooddnumbersiseven).Itisobviousthat

iseven,and c D u2 C v2 isalsoevensinceitisthesumoftwooddnumbers.

(c) Supposeoneof u and v isevenandtheotherisodd.Wewillshowthat a,b, and c donothaveanycommonprimefactors.Now a and c arebothodd,so2 isnotafactorof a or c.Suppose x Z 2isaprimefactorof b.Theneither x divides u or x divides v,butnotbothbecause u and v arerelativelyprime.If x divides u,thenitalsodivides u2 butnot v2.Thus x isnotafactorof a or c.

If x divides v,thenitdivides v2 butnot u2.Again x isnotafactorof a or c Therefore a,b,c isaprimitivePythagoreantriple.

1.6.5 Let h C x betheheightoftheentire(untruncated)pyramid.Weknowthat

(bytheSimilarTrianglesTheorem),so x D h b a b (algebra).Thevolumeofthe truncatedpyramidisthevolumeofthewholepyramidminusthevolumeofthetop pyramid.Therefore

1.6.6 Constructionsusingacompassandastraightedge.Therearenumerouswaysin whichtoaccomplisheachoftheseconstructions;justoneisindicatedineachcase.

(a) Theperpendicularbisectorofalinesegment AB. Usingthecompass,constructtwocircles,thefirstabout A through B,the secondabout B through A.Thenusethestraightedgetoconstructaline throughthetwopointscreatedbytheintersectionofthetwocircles.

(b) Alinethroughapoint P perpendiculartoaline UsethecompasstoconstructacircleaboutP,makingsurethecircleisbig enoughsothatitintersects attwopoints, A and B.Thenconstructthe perpendicularbisectorofsegment AB asinpart(a).

FIGURES1.2: Exercise1.6.5.Atruncatedpyramid.

Exercise1.6(a)Constructionofaperpendicularbisector

FIGURES1.4: Exercise1.6.6(b)ConstructionofalinethroughP,perpendicularto

(c) Theanglebisectorof jBAC. Usingthecompass,constructacircleabout A thatintersects AB and AC Callthosepointsofintersection D and E respectively.Thenconstructthe perpendicularbisectorof DE.Thislineistheanglebisector.

1.6.7(a) No.Euclid’spostulatessaynothingaboutthenumberofpointsonaline. (b) No.

(c) No.Thepostulatesonlyassertthatthereisaline;theydonotsaythereisonly one.

1.6.8 TheproofofProposition29.

1.6.9 Let nABCD bearhombus(allfoursidesareequal),andlet E bethepointof intersectionbetween AC and DB 1 Wemustshowthat ^AEB ^CEB ^CED ^AED.Now jBAC jACB and jCAD jACD byProposition5.Byaddition wecanseethat jBAD jBCD andsimilarly, jADC jABC.Nowweknowthat ^ABC ^ADC byProposition4.Similarly, ^DBA ^DBC.Thisimpliesthat jBAC jDAC jBCA jDCA and jBDA jDBA jBDC jDBC

1Inthissolutionandthenext,theexistenceofthepoint E istakenforgranted.Itsexistence isobviousfromthediagram.Provingthat E existsisoneofthegapsthatmustbefilledinthese proofs.ThispointwillbeaddressedinChapter6.

FIGURES1.3:

Exercise1.6.6(c)Constructionofananglebisector Thus ^AEB ^AED ^CEB ^CED,againbyProposition4.2

Exercise1.6.9Rhombus nABCD

1.6.10 Let nABCD bearectangle,andlet E bethepointofintersectionof AC and BD.We mustprovethat AC BD andthat AC and BD bisecteachother(i.e., AE EC and BE ED).ByProposition28, (' DA (' CB and (' DC (' AB .Therefore,by Proposition29, jCAB jACD and jDAC jACB.Hence ^ABC ^CDA and ^ADB ^CBD byProposition26(ASA).Sincethosetrianglesarecongruent weknowthatoppositesidesoftherectanglearecongruentand ^ABD ^BAC (byProposition4),andtherefore BD AC. Nowwemustprovethatthesegmentsbisecteachother.ByProposition29, jCAB jACD and jDBA jBDC.Hence ^ABE ^CDE (byProposition26) whichimpliesthat AE CE and DE BE.Thereforethediagonalsareequaland bisecteachother.

1.6.11 Theargumentworksforthefirstcase.Thisisthecaseinwhichthetriangleactually isisosceles.Thesecondcaseneveroccurs(D isneverinsidethetriangle).Theflaw liesinthethirdcase(D isoutsidethetriangle).Ifthetriangleisnotisoscelesthen either E willbeoutsidethetriangleand F willbeontheedge AC,or E willbeon theedge AB and F willbeoutside.Theycannotbothbeoutsideasshowninthe diagram.Thiscanbecheckedbydrawingacarefuldiagrambyhandorbydrawing thediagramusingGeoGebra(orsimilarsoftware).

2Itshouldbenotedthatthefactaboutrhombicanbeprovedusingjustpropositionsthatcome earlyinBookIanddonotdependontheFifthPostulate,whereastheproofinthenextexercise requirespropositionsaboutparallelismthatEuclidprovesmuchlaterinBookIusinghisFifth Postulate.

FIGURES1.5:
FIGURES1.6:

FIGURES1.7: Exercise1.6.10Rectangle nABCD

SolutionstoExercisesinChapter2

2.4.1 ThisisnotamodelforIncidenceGeometrysinceitdoesnotsatisfyIncidence Axiom3.Thisexampleisisomorphictothe3-pointline.

2.4.2 One-pointGeometrysatisfiesAxioms1and2butnotAxiom3.Everypairof distinctpointsdefinesauniqueline(vacuously—thereisnopairofdistinctpoints). Theredonotexistthreedistinctpoints,sotherecannotbethreenoncollinearpoints. One-pointGeometrysatisfiesallthreeparallelpostulates(vacuously—thereisno line).

2.4.3 Ithelpstodrawaschematicdiagramoftherelationships.

FIGURES2.1: Aschematicrepresentationofthecommitteestructures

(a) Notamodel.ThereisnolinecontainingBandD.Therearetwolines containingBandC.

(b) Notamodel.ThereisnolinecontainingCandD.

(c) Notamodel.ThereisnolinecontainingAandD.

2.4.4(a) TheThree-pointplaneisamodelforThree-pointgeometry.

(b) EverymodelforThree-pointgeometryhas3lines.Ifthereare3points,then therearealso3pairsofpoints

(c) SupposetherearetwomodelsforThree-pointgeometry,modelAand modelB.Chooseany1-1correspondenceofthepointsinmodelAtothe pointsinmodelB.AnylineinAisdeterminedbytwopoints.Thesetwo pointscorrespondtotwopointsinB.ThosetwopointsdeterminealineinB. TheisomorphismshouldmapthegivenlineinAtothislineinB.Thenthe functionwillpreservebetweennes.ThereforemodelsAandBareisomorphic tooneanother.

2.4.5 Axiom1doesnothold,butAxioms2and3do.TheEuclideanParallelPostulate holds.Theotherparallelpostulatesarefalseinthisinterpretation.

2.4.6 SeeFigureS2.2.

2.4.7 Fano’sGeometrysatisfiestheEllipticParallelPostulatebecauseeverylineshares atleastonepointwitheveryotherline;therearenoparallellines.Itdoesnotsatisfy eitheroftheotherparallelpostulates.

2.4.8 Thethree-pointlinesatisfiesallthreeparallelpostulates(vacuously).

2.4.9 Iftherearesofewpointsandlinesthatthereisnolinewithanexternalpoint, thenallthreeparallelpostulatesaresatisfied(vacuously).Ifthereisalinewithan externalpoint,thentherewilleitherbeaparallellinethroughtheexternalpointor therewillnotbe.Henceatmostoneoftheparallelpostulatescanbesatisfiedin

Five-pointGeometry

thatcase.Sinceeveryincidencegeometrycontainsthreenoncollinearpoints,there mustbealinewithanexternalpoint.Henceanincidencegeometrycansatisfyat mostoneoftheparallelpostulates.

2.10 Startwithalinewiththreepointsonit.Theremustexistanotherpointnotonthat line(IncidenceAxiom3).Thatpoint,togetherwiththepointsontheoriginalline, determinesthreemorelines(IncidenceAxiom1).Buteachofthoselinesmust haveathirdpointonit.Sotheremustbeatleastthreemorepoints,foratotalof atleastsevenpoints.SinceFano’sGeometryhasexactlysevenpoints,sevenisthe minimum.

2.4.11 SeeFiguresS2.3andS2.4.

Anunbalancedgeometry

FIGURES2.4: Asimplerexample

2.4.12(a) Thethree-pointline(Example2.2.3). (b) Thesquare(Exercise2.4.5)orthesphere(Example2.2.9).

FIGURES2.2:
FIGURES2.3:

(c) One-pointgeometry(Exercise2.4.2).

2.4.13(a) ThedualoftheThree-pointplaneisanotherThree-pointplane.Itisamodel forincidencegeometry.

(b) ThedualoftheThree-pointlineisapointwhichisincidentwith3lines.This isnotamodelforincidencegeometry.

(c) ThedualofFour-pointGeometryhas6pointsand4lines.Eachpointis incidentwithexactly2lines,andeachlineisincidentwith3points.Itisnota modelforincidencegeometrybecauseitdoesnotsatisfyIncidenceAxiom1.

(d) ThedualofFano’sGeometryisisomorphictoFano’sGeometry,soitisa modelforincidencegeometry.

2.5.1(a) H:itrains

C:Igetwet

(b) H:thesunshines

C:wegohikingandbiking

(c) H: x> 0

C: E a y suchthat y2 D 0

(d) H:2x C 1 D 5

C: x D 2or x D 3

2.5.2(a) Converse:IfIgetwet,thenitrained. Contrapositive:IfIdonotgetwet,thenitdidnotrain.

(b) Converse:Ifwegohikingandbiking,thenthesunshines. Contrapositive:Ifwedonotgohikingandbiking,thenthesundoesnotshine.

(c) Converse:If E a y suchthat y2 D 0,then x> 0. Contrapositive:If 5 y, y2 Z 0,then x ≤ 0.

(d) Converse:If x D 2or x D 3,then2x C 1 D 5. Contrapositive:If x Z 2and x Z 3,then2x C 1 Z 5

2.5.3(a) ItrainsandIdonotgetwet.

(b) Thesunshinesbutwedonotgohikingorbiking.

(c) x> 0and 5y, y2 Z 0.

(d) 2x C 1 D 5but x isnotequalto2or3.

2.5.4(a) IfthegradeisanA,thenthescoreisatleast90%.

(b) Ifthescoreisatleast50%,thenthegradeisapassinggrade.

(c) Ifyoufail,thenyouscoredlessthan50%.

(d) Ifyoutryhard,thenyousucceed.

2.5.5(a) Converse:Ifthescoreisatleast90%,thenthegradeisanA. Contrapositive:Ifthescoreislessthan90%,thenthegradeisnotanA.

(b) Converse:Ifthegradeisapassinggrade,thenthescoreisatleast50%. Contrapositive:Ifthegradesisnotapassinggrade,thenthescoreislessthan 50%.

(c) Converse:Ifyouscorelessthan50%,thenyoufail. Contrapositive:Ifyouscoreatleast50%,thenyoupass.

(d) Converse:Ifyousucceed,thenyoutriedhard. Contrapositive:Ifyoudonotsucceed,thenyoudidnottryhard.

2.5.6(a) ThegradeisanAbutthescoreislessthan90%.

(b) Thegradeisatleast50%butthegradeisnotapassinggrade.

(c) Youfailandyourscoreisatleast50%.

(d) Youtryhardbutdonotsucceed.

2.5.8(a) H:Ipassgeometry

C:Icantaketopology

(b) H:itrains

C:Igetwet

(c) H:thenumber x isdivisibleby4

C: x iseven

2.5.9(a) 5 triangles T ,theanglesumof T is180◦

(b) E triangle T suchthattheanglesumof T islessthan180◦ .

(c) E triangle T suchthattheanglesumof T isnotequalto180◦

(d) 5 greatcircles α and β, α ∩ β Z ∅.

(e) 5 point P and 5 line E line m suchthat P lieson and m .

2.5.10(a) 5 modelforincidencegeometry,theEuclideanParallelPostulatedoesnot holdinthatmodel.

(b) E amodelforincidencegeometryinwhichtherearenotexactly7points(the numberofpointsiseither ≤ 6or ≥ 8).

(c) E atrianglewhoseanglesumisnot180◦ .

(d) E atrianglewhoseanglesumisatleast180◦

(e) Itisnothotoritisnothumidoutside.

(f) Myfavoritecolorisnotredanditisnotgreen.

(g) Thesunshinesand(but?)wedonotgohiking.(Seeexplanationinlastfull paragraphonpage36.)

(h) E ageometrystudentwhodoesnotknowhowtowriteproofs.

2.5.11(a) NegationofEuclideanParallelPostulate.Thereexistaline andapoint P not on suchthateitherthereisnoline m suchthat P lieson m and m isparallel to orthereare(atleast)twolines m and n suchthat P liesonboth m and n, m ,and n .

(b) NegationofEllipticParallelPostulate.Thereexistaline andapoint P that doesnotlieon suchthatthereisatleastoneline m suchthat P lieson m and m .

(c) NegationofHyperbolicParallelPostulate.Thereexistaline andapoint P thatdoesnotlieon suchthateitherthereisnoline m suchthat P lieson m and m orthereisexactlyoneline m withtheseproperties.

Note. Youcouldemphasizetheseparateexistenceof and P bystartingeachofthe statementsabovewith,‘‘Thereexistaline andthereexistsapoint P noton such that....’’

2.5.12 not (S and T ) K (not S) or (not T ).

S T S and T not (S and T ) not S not T (not C)or(not H)

True True True False False False False

True False False True False True True False True False True True False True False False False True True True True

not (S or T ) K (not S) and (not T ).

S T S or T not (S or T ) not S not T (not C)and(not H)

True True True False False False False

True False True False False True False

False True True False True False False

False False False True True True True

2.5.13 H * C K (not H) or C.

H C H * C not H (not H)or C

True True True False True

True False False False False

False True True True True

False False True True True

ByDeMorgan, not (H and (not C))islogicallyequivalentto(not H) or C

2.5.14 not (H * C) K (H and (not C)).

H C H * C not(H * C) not C H and (not C)

True True True False False False

True False False True True True

False True True False False False

False False True False True False

2.5.15 If ^ABC isrighttrianglewithrightangleatvertex C,and a, b,and c arethelengths ofthesidesoppositevertices A, B,and C respectively,then a2 C b2 D c2

2.5.16(a) Euclidean.If isalineand P isapointthatdoesnotlieon ,thenthereexists exactlyoneline m suchthat P lieson m and m

(b) Elliptic.If isalineand P isapointthatdoesnotlieon ,thentheredoesnot existaline m suchthat P lieson m and m . (c) Hyperbolic.If isalineand P isapointthatdoesnotlieon ,thenthereexist atleasttwodistinctlines m and n suchthat P liesonboth m and n and is paralleltoboth m and n.

2.6.1 ConversetoTheorem2.6.2.

Proof. Let and m betwolines(notation).Assumethereexistsexactlyonepoint thatliesonboth and m (hypothesis).Wemustshowthat Z m and ∦ m Suppose D m (RAAhypothesis).Thereexiststwodistinctpoints Q and R that lieon (IncidenceAxiom2).Since m D , Q and R lieonboth and m.This contradictsthehypothesisthat and m intersectinexactlyonepoint,sowecan rejecttheRAAhypothesisandconcludethat Z m Since and m haveapointincommon, ∦ m (definitionofparallel).

Note. Inthenextfewproofsitisconvenienttointroducethenotation (' AB forthe linedeterminedby A and B (IncidenceAxiom1).Thisnotationisnotdefinedinthe textbookuntilChapter3,butitfitswithIncidenceAxiom1andallowstheproofs belowtobewrittenmoresuccinctly.

2.6.2 Theorem2.6.3.

Proof. Let bealine(hypothesis).Wemustprovethatthereexistsapoint P such that P doesnotlieon .Thereexistthreenoncollinearpoints A, B,and C (Axiom3). Thethreepoints A, B and C cannotalllieon becauseiftheydidthentheywould becollinear(definitionofcollinear).Henceatleastoneofthemdoesnotlieon andtheproofiscomplete.

Note. Many(ormost)studentswillgetthelastproofwrong.Thereasonisthat theywanttoassumesomerelationshipbetweenthelinegiveninthehypothesisof thetheoremandthepointsgivenbyAxiom3.Inparticular,manystudentswill startwiththefirstthreesentencesoftheproofabove,butwilltheneitherassertor assumethat D (' AB

Thisisanimportantopportunitytopointoutthattheaxiomsmeanexactlywhatthey sayandwemustbecarefulnottoimposeourownassumptionsonthem.Thefact thatweareimposinganunstatedassumptionontheaxiomsisoftencoveredupby thefactthatthesamelettersareusedforthethreepointsgivenbyAxiom3andthe twopointsgivenbyAxiom2.Sothisexerciseisalsoanopportunitytodiscussnotationandhowweassignnamestomathematicalobjects.(Thefactthatwehappento usethesamelettertonametwodifferentpointsdoesnotmakethemthesamepoint.)

Similarcommentsapplytothenextthreeproofs.

2.6.3 Theorem2.6.4.

Proof. Let P beapoint(hypothesis).Wemustshowthattherearetwodistinct lines and m suchthat P liesonboth and m.Thereexistthreenoncollinearpoints A, B,and C (Axiom3).Therearetwocasestoconsider:either P isequaltooneof thethreepoints A, B,and C oritisnot.

Suppose,first,that P D A.Define D (' AB and m D (' AC (Axiom1).Obviously P D A liesonboththeselines.Itcannotbethat D m becauseinthatcase A, B, and C wouldbecollinear.Sotheproofofthiscaseiscomplete.Theproofsofthe casesinwhich P D B and P D C aresimilar.

Nowsupposethat P isdistinctfromallthreeofthepoints A, B,and C.Inthat casewecandefinethreelines D (' PA , m D (' PB ,and n D (' PC (Axiom1).These threelinescannotallbethesamebecauseiftheywerethen A, B,and C wouldbe collinear.Thereforeatleasttwoofthemaredistinctandtheproofiscomplete.

Note. Manystudentswillassertthatthethreelinesinthelastparagrapharedistinct. Butthatisnotnecessarilythecase,asFig.S2.5shows. Outlineofanalternativeproof: Findoneline suchthat P lieson .Thenusethe previoustheoremtofindapoint R thatdoesnotlieon .Thelinethrough P and R isthesecondline.Thisproofissimplerandbetterthantheonegivenabove,but moststudentsdonotthinkofit.Youmightwanttoleadtheminthatdirection bysuggestingthattheyprovetheexistenceofonelinefirstratherthanprovingthe existenceofbothatthesametime.

FIGURES2.5: Twoofthelinescouldbethesame

2.6.4 Theorem2.6.5.

Proof. Let bealine(hypothesis).Wemustshowthatthereexisttwolines m and n suchthat , m and n aredistinctandboth m and n intersect Thereexisttwodistinctpoints P and Q suchthat P and Q lieon (Axiom2).There existsapoint R suchthat R doesnotlieon (Theorem2.6.3).Let m betheline determinedby P and R andlet n bethelinedeterminedby Q and R (Axiom1). Since P liesonboth amd m, m intersects .Since Q liesonboth amd n, n intersects .Since R doesnotlieon ,neither m nor n isequalto .Tocompletethe proofwemustshowthat m Z n

Suppose m D n (RAAhypothesis).Thenboth P and Q lieon m aswellas ,so m D (theuniquenesspartofAxiom1).Butthiscontradictsanearlierstatement intheproof,sowemustrejecttheRAAhypothesisandconcludethat m Z n.

2.6.5 Theorem2.6.6.

Proof. Let P beapoint(hypothesis).Wemustprovethatthereisatleastoneline suchthat P doesnotlieonthatline.

Let A,B and C bethreenon-collinearpoints(Axiom3).Define D (' AB , m D (' AC and n D (' BC (Axiom1).Therearetwocasestoconsider:eitherPisequal tooneofthethreepoints A,B or C oritisnot.

Suppose,first,that P D A.Then P D A doesnotlieon n becauseifitdid, A,B and C wouldbecollinear.Sotheproofforthefirstcaseiscomplete.Thereare similarproofsfor P D B and P D C

Nowassume P isdistinctfrom A,B and C.Wewillshowthat P cannotlieon allthreeofthelines , m,and n.Suppose P liesonallthreeof ,m,and n (RAA hypothesis).Thefactthat P and A lieonboth m and impliesthat m D (Axiom1). Thefactthat P and B lieonboth n and impliesthat n D (Axiom1).Thus D m D n.Butthiscannotbebecause A,B and C arenon-collinear.Thereforewe mustrejecttheRAAhypothesisandtheproofiscomplete.

2.6.6 Theorem2.6.7.

Proof. Let A,B and C bethreenon-collinearpoints(Axiom3).Define D (' AB , m D (' AC and n D (' BC (Axiom1).Inordertocompletetheproofwemustshow that , m,and n aredistinctlinesandthattheredoesnotexistapoint P suchthat P liesonallthreeofthelines.

C

Notwoofthelinescanbeequalbecause A, B,and C arenoncollinear.The argumentthatthereisnopoint P thatliesonallthreeofthelinesisthesameasthat inthelasttwoparagraphsoftheprecedingproof.

2.6.7 Theorem2.6.8.

Proof. Let P beapoint(hypothesis).Wemustprovethatthereexistpoints Q and R suchthat P, Q,and R arenoncollinear.

Thereexistsapoint Q suchthat Q Z P (byAxiom3thereareatleastthree points,so P isnottheonlypoint).Thereexistsapoint R suchthat R doesnotlieon (' PQ (Theorem2.6.3).Thereisnolineonwhichallthreeof P, Q,and R liebecause theonlylineonwhichthefirsttwolieis (' PQ and R doesnotlieonthatline.

2.6.8 Theorem2.6.9.

Proof. Let P and Q betwopointssuchthat P Z Q (hypothesis).Wemustprove thatthereexistsapoint R suchthat P, Q,and R arenoncollinear.

Thereexistsauniqueline suchthatboth P and Q lieon (IncidenceAxiom1). Thereisapoint R suchthat R doesnotlieon (Theorem2.6.3).Wewillcomplete theproofbyshowingthat P, Q,and R arenoncollinear.Supposethereexistsaline m suchthatallthreeofthepoints P, Q,and R lieon m (RAAhypothesis).Then m D bytheuniquenesspartofIncidenceAxiom1.Butthisisimpossiblesince R doesnotlieon butdoeslieon m.HencewemustrejecttheRAAhypothesisand concludethat P, Q,and R arenoncollinear.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solutions for Foundations Of Geometry 3rd Us Edition by Venema by 6alsm - Issuu