Solutions for Precalculus Enhanced With Graphing Utilities 8th Us Edition by Sullivan

Page 1


Chapter 1 Graphs

Section 1.1

1. 0

2.

3. x-coordinate; y-coordinate;quadrants

4. False;pointsthatlieinQuadrantIVwillhavea positive x-coordinateandanegative y-coordinate. Thepoint 1,4liesinQuadrantII.

5. d

6. c

7. (a)QuadrantII (b) x-axis (c)QuadrantIII (d)QuadrantI (e) y-axis (f)QuadrantIV

8. (a)QuadrantI (b)QuadrantIII (c)QuadrantII (d)QuadrantI (e) y-axis (f) x-axis

9. Thepointswillbeonaverticallinethatistwo unitstotherightofthe y-axis.

10. Thepointswillbeonahorizontallinethatis threeunitsabovethex-axis.

11. 1,4;QuadrantII

12. (3,4);QuadrantI

13. (3,1);QuadrantI

14. 6,4;QuadrantIII

15. min11 max5

scl1 min3 max6 scl1 X X X Y Y Y

16. min3 max7 scl1 min4 max9 scl1 X X X Y Y Y

17. min30 max50 scl10 min90 max50 scl10 X X X Y Y Y

18. min90 max30 scl10 min50 max70 scl10 X X X Y Y Y

19. min10 max110 scl10 min10 max160 scl10 X X X Y Y Y

20. min20 max110 scl10 min10 max60 scl10 X X X Y Y Y

21. min6 max6 scl2 min4 max4 scl2 X X X Y Y Y

22. min3 max3 scl1 min2 max2 scl1 X X X Y Y Y

23. min6 max6 scl2 min1 max3 scl1 X X X Y Y Y

24. min9 max9 scl3 min12 max4 scl4 X X X Y Y Y

25. min3 max9 scl1 min2 max10 scl2 X X X Y Y Y

26. min22 max10 scl2 min4 max8 scl1 X X X Y Y Y

27.

28.

(0,0)and(1,–1)areonthegraphofthe equation.

29. 229yx

30.

(0,1)and(–1,0)areonthegraphofthe equation.

31. 224xy 22 024 44 

(0,2)and2,2areonthegraphofthe equation.

32. 2244xy 22 0414 44   22 2404

 (0,1)and(2,0)areonthegraphoftheequation.

33. (–1,0),(1,0)

34. (0,1)

35. ,0,,0,(0,1)22  

36. (–2,0),(2,0),(0,–3)

37. 1,0, 0,2,  0,2

38. (2,0),(0,2),(–2,0),(0,–2)

39. (–4,0),(–1,0),(4,0),(0,–3)

40. (–2,0),(2,0),(0,3)

41. 2 yx 42. 6 yx

43. 28yx

39yx
21 yx
46. 29 yx
47. 24 yx
48. 21 yx
49. 236 xy
50. 5210 xy

51. 2 9436 xy

52. 2 44 xy

53. 213yx

Section1.1: Graphing Utilities; Introduction to Graphing Equations

54. 314yx

Thex-interceptis4.67 x  andthey-interceptis 14 y  .

55. 2 215yx

Thex-interceptis6.5 x  andthey-interceptis 13 y

Thex-interceptsare2.74 x  and2.74 x  They-interceptis15 y

56. 2 319yx

59. 2 25375337or 3 x xyy  

Thex-interceptsare2.52 x  and2.52 x 

They-interceptis19 y  .

57. 3243343 or 2 x xyy 

Thex-interceptis14.33 x  andthey-intercept is21.5 y 

58. 4582482 or 5 x xyy  

Thex-interceptis20.5 x  andthey-interceptis 16.4 y 

Thex-interceptsare2.72 x  and2.72 x  They-interceptis12.33 y  .

60. 2 22352335or 3 x xyy

Thex-interceptsare4.18 x  and4.18 x  They-interceptis11.67 y  .

61. If   2,5isshifted3unitsrightthenthex coordinatewouldbe23  .Ifitisshifted2units downthenthey-coordinatewouldbe5(2) 

Thusthenewpointwouldbe  23,5(2)(5,3)  .

62. If 1,6isshifted2unitsleftthenthex coordinatewouldbe1(2)  .Ifitisshifted4 unitsupthenthey-coordinatewouldbe64 

Thusthenewpointwouldbe 1(2),64(3,10) 

63. a. 25feet

b. 23.2ft;34.1ft

c. (0,6),Theshotisreleasedataheightof6 feet;(48.7,0),theshothitsthegroundafter travelingahorizontaldistanceof48.7feet.

64. a. 20meters

b. 12seconds;36meters

c. (0,2),Thediscusisreleasedataheightof2 meters;(18,0),thediscushitstheground after18seconds.

65. a. $19.95;$19.95

b. $182.45

c. (0,19.95),Themembershipplancosts $19.95permonth.

66. a. 1.5miles

b. 1mile

c. (0,2),Caleb’sfriendlives2milesfromhis house;(28,0),ittakesCaleb28minutesto ridehome.

67. (1,0),(1,0),(0,1),(0,1)

68. (2,0),(3,0),(0,2),(0,0),(0,2)

69. Answerswillvary

70. a.

b. Since2 x x  forall x ,thegraphsof 2and y xyx arethesame.

c. For  2 yx  ,thedomainofthevariable x is0 x  ;for yx  ,thedomainofthe variable x isallrealnumbers.Thus,  2 onlyfor0.xxx

d. For2 yx  ,therangeofthevariable y is 0 y  ;for yx  ,therangeofthevariable y isallrealnumbers.Also, 2onlyif0. xxx

71. Answerswillvary

72. Answerswillvary.Acompletegraphpresents enoughofthegraphtotheviewersotheycan “see”therestofthegraphasanobvious continuationofwhatisshown.

73. Answerswillvary.

Section 1.2

1.  5388 

2. 22 34255 

3. 222 11601213600372161 

Sincethesumofthesquaresoftwoofthesides ofthetriangleequalsthesquareofthethirdside, thetriangleisarighttriangle.

4.  0,0

5. 1 2 bh

6. true

7. midpoint

8. False;thedistancebetweentwopointsisnever negative.

9. True;1212 , 22

10. a

22 12 22 (,)(20)(10) 21415

12. 22 12 22 (,)(20)(10) (2)1415

319110 dPP

16.

 22 12 22 (,)(53)44 2846468217 dPP

   22 12 22 (,)2140 34916255 dPP

dPP

17.  22 12 22 (,)4(7)(03) 11(3)1219130



18.

 22 12 22 (,)422(3) 2542529 dPP

19.  22 12 22 (,)(65)1(2) 131910 

20.

 dPP

 22 12 22 (,)6(4)2(3) 10510025 12555 dPP







21.

 dPP





 22 12 22 (,)2.3(0.2)1.1(0.3) 2.50.86.250.64 6.892.62

22.



  dPP

 22 12 22 (,)0.31.21.12.3 (1.5)(1.2)2.251.44 3.691.92



23. 22 12 2222 (,)(0)(0) ()() dPPab abab





24. 22 12 22 222 (,)(0)(0) ()() 22 dPPaa aa aaaa

 

Section1.2: The Distance and Midpoint Formulas

25. (2,5),(1,3),(1,0)ABC 

  22 22 22 22 22 22 (,)1(2)(35) 3(2)9413 (,)11(03) (2)(3)4913 (,)1(2)(05) 1(5)12526 dAB dBC dAC













Verifyingthat ∆ ABCisarighttrianglebythe PythagoreanTheorem: 

  222 222 (,)(,)(,) 131326 131326 2626 dABdBCdAC 

Theareaofatriangleis1 2 A bh  .Inthis problem,

 1(,)(,) 2 11131313 22 13squareunits 2 A dABdBC



26. (2,5),(12,3),(10,11)ABC     22 22 22 22 22 22 (,)12(2)(35) 14(2) 1964200 102 (,)1012(113) (2)(14) 4196200 102 (,)10(2)(115) 12(16) 144256400 20 dAB dBC dAC

Verifyingthat ∆ ABCisarighttrianglebythe PythagoreanTheorem: 

 222 222 (,)(,)(,) 10210220 200200400 400400 dABdBCdAC 

Theareaofatriangleis1 2 A bh  .Inthis problem,

1(,)(,) 2 1102102 2 11002100squareunits 2 AdABdBC 

27. (5,3),(6,0),(5,5)ABC 

dAB

130 (,)56(50) (1)5125

dBC dAC

(,)5(5)(53) 1021004

  22 22 22 22 22 22 (,)6(5)(03) 11(3)1219

Verifyingthat ∆ ABCisarighttrianglebythe PythagoreanTheorem: 

 222 222 (,)(,)(,) 10426130 10426130 130130 dACdBCdAB     Theareaofatriangleis1 2 A bh  .Inthis problem,  1(,)(,) 2 110426 2 122626 2 1226 2 26squareunits A dACdBC

28. (6,3),(3,5),(1,5)ABC     22 22 22 22 22 22 (,)3(6)(53) 9(8)8164 145 (,)13(5(5)) (4)1016100 116229 (,)1(6)(53) 52254

29 dAB dBC dAC



Verifyingthat ∆ ABCisarighttrianglebythe PythagoreanTheorem:

    222 222 (,)(,)(,) 29229145 29429145 29116145 145145 dACdBCdAB  



 

Theareaofatriangleis1 2 A bh  .Inthis problem,

 1(,)(,) 2 129229 2 1229 2 29squareunits A dACdBC   

29. (4,3),(0,3),(4,2)ABC 

22 22 22 22 22 22 (,)(04)3(3) (4)0160 16 4 (,)402(3) 451625 41 (,)(44)2(3) 05025 25 5

Verifyingthat ∆ ABCisarighttrianglebythe PythagoreanTheorem:   222 222 (,)(,)(,) 4541 162541 4141 dABdACdBC 

 Theareaofatriangleis1 2 A bh  .Inthis problem,

1(,)(,) 2 145 2 10squareunits A dABdAC

Section1.2: The Distance and Midpoint Formulas

30. (4,3),(4,1),(2,1)ABC  

 22 22 22 22 22 22 (,)(44)1(3) 04 016 16 4 (,)2411 (2)040 4 2 (,)(24)1(3) (2)4416 20 25 dAB dBC dAC

Verifyingthat ∆ ABCisarighttrianglebythe PythagoreanTheorem:

  222 222 (,)(,)(,) 4225 16420 2020 dABdBCdAC     Theareaofatriangleis1 2 A bh  .Inthisproblem,

1(,)(,) 2 142 2 4squareunits A dABdBC

31. Thecoordinatesofthemidpointare:

xyy xy

1212(,),22 3544 , 22

80 , 22 (4,0)

32. Thecoordinatesofthemidpointare:

1212(,),22 2204 , 22 04 , 22 0,2

33. Thecoordinatesofthemidpointare: 1212(,),22 1840 , 22 74 , 22 7,2 2

34. Thecoordinatesofthemidpointare: 1212(,),22 2432 , 22 61 , 22 3,1 2 x xyy

35. Thecoordinatesofthemidpointare: 1212(,),22 7951 , 22 164 , 22 (8,2)

x xyy

36. Thecoordinatesofthemidpointare: 1212(,),22 4232 , 22 21 , 22 1,1 2 x xyy xy

37. Thecoordinatesofthemidpointare: 1212(,),22 00 , 22 , 22 x xyy xy ab ab

38. Thecoordinatesofthemidpointare: 1212(,),22 00 , 22 , 22 x xyy xy aa

39.

121,3;5,15PP

22 12 22 ,51153 412 16144 160410

Thecoordinatesofthemidpointare: 1212(,),22 15315 , 22 618 , 22 (3,9)

x xyy xy

Section1.2: The Distance and Midpoint Formulas

40. 128,4;2,3PP

22 12 22 ,2834 107

Thecoordinatesofthemidpointare: 1212(,),22 8243 , 22 61 , 22 3,1 2

124,6;4,8PP

x xyy xy 41.

22 12 22 ,4486 814 64196

Thecoordinatesofthemidpointare:

1212(,),22 446(8) , 22 02 , 22 (0,1)

Thecoordinatesofthemidpointare: 1212(,),22 036(8) , 22 32 , 22 3,1 2

43. a. Ifweusearighttriangletosolvethe problem,weknowthehypotenuseis13unitsin length.Oneofthelegsofthetrianglewillbe 2+3=5.Thustheotherlegwillbe:

222 2 2 513 25169 144 12 b b b b 

Thusthecoordinateswillhaveanyvalueof 11213 and11211  .Sothepoints are 3,11and 3,13.

b. Considerpointsoftheform  3, y thatarea distanceof13unitsfromthepoint  2,1

 22 2121 22 22 2 2 3(2)1 51 2512 226 dxxyy y y yy yy    

   2 2 22 2 2 13226 13226 169226 02143 01113 yy yy yy yy yy      110 11 y y   or130 13 y y  

Thus,thepoints 3,11and 3,13area distanceof13unitsfromthepoint  2,1

44. a. Ifweusearighttriangletosolvethe problem,weknowthehypotenuseis17unitsin length.Oneofthelegsofthetrianglewillbe 2+6=8.Thustheotherlegwillbe: 222 2 2 817 64289 225 15 b b b b 

Thusthecoordinateswillhaveanxvalueof 11514  and11516  .Sothepointsare 14,6and  16,6.

b. Considerpointsoftheform  ,6 x thatare adistanceof17unitsfromthepoint 1,2.

2 2 22 2 2 17265 17265 289265 02224 01416 xx xx xx xx xx

140 14 x x   or160 16 x x   Thus,thepoints 14,6and  16,6area distanceof13unitsfromthepoint   1,2

45. Pointsonthe x-axishavea y-coordinateof0.Thus, weconsiderpointsoftheform  ,0x thatarea distanceof6unitsfromthepoint 4,3.

22 2121 22 22 2 2 430 1683 1689 825 dxxyy x xx xx xx

 2 2 22 2 2 2 6825 6825 36825 0811 (8)(8)4(1)(11) 2(1) 864448108 22 863 433 2

433 x  or433 x  Thus,thepoints  433,0  and  433,0are onthe x-axisandadistanceof6unitsfromthe point 4,3.

46. Pointsonthe y-axishavean x-coordinateof0. Thus,weconsiderpointsoftheform  0, y that areadistanceof6unitsfromthepoint  4,3







 22 2121 22 22 2 2 403 496 1696 625 dxxyy y yy yy yy





  2 2 22 2 2 2 6625 6625 36625 0611 (6)(6)4(1)(11) 2(1) 63644680 22 645 325 2 yy yy yy yy y





   

 

 

325 y  or325 y 

Thus,thepoints  0,325  and  0,325

areonthe y-axisandadistanceof6unitsfromthe point 4,3.

47. Forthe x coordinateof B

Thus,thepoint B is

48. Letthecoordinatesofpoint B be  ,x y .Using themidpointformula,wecanwrite

18 2,3, 22 x y 

Thisleadstotwoequationswecansolve.

Section1.2: The Distance and Midpoint Formulas

49.

Point B hascoordinates 

ThemidpointofACis:

ThemidpointofBCis:

22 22 (,)04(34) (4)(1)16117 dCD 

22 22 (,)26(20) (4)2164 2025 dBE  

 22 22 (,)(20)(50) 25425 29 dAF 

 

52. Let12(0,0),(0,4),(,) PPPxy     22 12 22 1 22 22 22 2 22 22 ,(00)(40) 164 ,(0)(0) 4 16 ,(0)(4) (4)4 (4)16 dPP dPPxy xy xy dPPxy xy xy





   

  Therefore,

Chapter1: Graphs

 22 22 4 816 816 2 yy yyy y y     whichgives 22 2 216 12 23 x x x    Twotrianglesarepossible.Thethirdvertexis  23,2or23,2

53. 22 12 22 (,)(42)(11) (6)0 36 6 dPP 

 

 22 23 22 (,)4(4)(31) 0(4) 16 4 dPP 

  22 13 22 (,)(42)(31) (6)(4) 3616 52 213 dPP 

Since   222 122313 (,)(,)(,) dPPdPPdPP  , thetriangleisarighttriangle.



 22 13 22 (,)4(1)(54) 5(9) 2581 106 dPP

  

Since   222 122313 (,)(,)(,) dPPdPPdPP  , thetriangleisarighttriangle.

Since  1223 ,, dPPdPP  ,thetriangleis isosceles. Therefore,thetriangleisanisoscelesright triangle. 55.

22 12 22 (,)0(2)7(1) 2846468 217 dPP 

22 23 22 (,)30(27) 3(5)925 34 dPP



22 13 22 (,)3(2)2(1) 53259 34 dPP   

Since2313 (,)(,) dPPdPP  ,thetriangleis isosceles.

Since   222 132312 (,)(,)(,) dPPdPPdPP  , thetriangleisalsoarighttriangle. Therefore,thetriangleisanisoscelesright triangle.

54.  22 12 22 (,)6(1)(24) 7(2) 494

53 dPP  

  22 23 22 (,)46(52) (2)(7) 449

53 dPP    

56.

55 dPP    

 22 12 22 (,)4702 (11)(2) 1214125

100 10 dPP    

 22 23 22 (,)4(4)(60) 866436

Copyright©2021PearsonEducation,Inc.

Since   222 132312 (,)(,)(,) dPPdPPdPP  , thetriangleisarighttriangle.

57. UsingthePythagoreanTheorem: 222 2 2 9090 81008100 16200 16200902127.28feet

58. UsingthePythagoreanTheorem: 222 22 6060 360036007200 720060284.85feet

59. a. First:(90,0),Second:(90,90), Third:(0,90) (0,0)

(90,0) (90,90) X Y

Section1.2: The Distance and Midpoint Formulas

b. Usingthedistanceformula: 22 22 (31090)(1590) 220(75)54025 52161232.43feet

d  

c. Usingthedistanceformula: 22 22 (3000)(30090) 300210134100 30149366.20feet d   

60. a. First:(60,0),Second:(60,60) Third:(0,60) (0,0) (0,60) (60,0) (60,60) x y

b. Usingthedistanceformula: 22 22 (18060)(2060) 120(40)16000 4010126.49feet

d 

 

c. Usingthedistanceformula: 22 22 (2200)(22060) 22016074000 20185272.03feet

d 

 

61. TheFocusheadingeastmovesadistance60t after t hours.Thetruckheadingsouthmovesa distance40t after t hours.Theirdistanceapart after t hoursis:

22 2 (60)(45) 36002025 5625

62. 15miles5280ft1hr22ft/sec 1hr1mile3600sec 

63. a. Theshortestsideisbetween1(2.6,1.5) P  and2(2.7,1.7) P  .Theestimateforthe desiredintersectionpointis:

12122.62.71.51.7 ,, 2222

b. Usingthedistanceformula: 22 22 (2.651.4)(1.61.3) (1.25)(0.3) 1.56250.09

64. Let1(2014,110.21)  P and 2(2018,138.43)  P .Themidpointis:

1212 ,,22 20142018110.21138.43 , 22 4032248.64 , 22 2016,124.32

Theestimatefor2016is$124.32billion.The estimatenetsalesofCostcoWholesale Corporationin2016ishigherthanthereported valueof$116.07billion.

65. For2010wehavetheorderedpair   2010,22113andfor2018wehavetheordered pair  2018,25465.Themidpointis

  year,201020182211325465 $,22

402847578 , 22 2014,23789

Usingthemidpoint,weestimatethepoverty levelin2014tobe$23,789.Thisislowerthan theactualvalue.

66. Let 10,0P  , 2,0Pa  ,and 3 3 , 22 aa P      .Then   22 122121 222 , 000 dPPxxyy aaa  

 22 232121 22 222 2 , 3 0 22 34 444 dPPxxyy aa a aaa aa

 22 132121 22 222 2 , 3 00 22 34 444 dPPxxyy aa aaa aa

 Sincethelengthsofthethreesidesareallequal,

thetriangleisanequilateraltriangle. Themidpointsofthesaidsare

Sincethelengthsofthesidesofthetriangle formedbythemidpointsareallequal,the triangleisequilateral.

Section1.2: The Distance and Midpoint Formulas

67. Let 10,0P  , 20, Ps  , 3,0Ps  ,and

4, Pss  betheverticesofthesquare.

Thepoints1 P and4 P areendpointsofone diagonalandthepoints2 P and3 P arethe endpointsoftheotherdiagonal. 14 00 ,, 2222

PP s sss M 23 00 ,, 2222

Themidpointsofthediagonalsarethesame. Therefore,thediagonalsofasquareintersectat theirmidpoints.

68. Let  ,2  Paa .Then

2222 2222 22 521424 521424 56265832 626832 26 3

   aaaa aaaa aaaa aa a a Then(3,6)  P

69. Arrangetheparallelogramonthecoordinate planesothattheverticesare

 12340,0,(,0),(,)and(,)  PPaPabcPbc Thenthelengthsofthesidesare:  22 12 2 (,)000   dPPa aa   22 23 22 (,)()0   dPPabac bc

 22 34 2 (,)()  dPPbabcc aa and y x (0,)s (0,0) (,0) s (,) ss

Chapter1: Graphs

 dPPbc bc

 22 14 22 (,)00 

13 and PP aretheendpointsofonediagonal,and 24 and PP aretheendpointsoftheother diagonal.Thelengthsofthediagonalsare

5. y-axis

6. 4 7.  3,4

8. True

 dPPabc aabbc and  22 24 222 (,)()0 2 

  22 13 222 (,)()00 2 

 dPPbac aabbc

Sumofthesquaresofthesides: 22222222 222 ()() 222   abcabc abc

Sumofthesquaresofthediagonals:

 aabbcaabbc abc

22 222222 222 22 222 

Section 1.3

1.   2317 236 33 6 x x x x

Thesolutionsetis 6.

2. 2 2 90 9 93 x x x   

Thesolutionsetis 3,3.

3. intercepts

4. 0 y 

9. False;the y-coordinateofapointatwhichthe graphcrossesortouchesthe x-axisisalways0. The x-coordinateofsuchapointisan x-intercept.

10. False;agraphcanbesymmetricwithrespectto bothcoordinateaxes(insuchcasesitwillalsobe symmetricwithrespecttotheorigin).

Forexample:221 xy 11. d 12. c

13. 2 yx x-intercept: y-intercept: 02 2 x x   02 2 y y  

Theinterceptsare   2,0and 0,2.

14. 6 yx x-intercept: y-intercept: 06 6 x x   06 6 y y  

Section1.3: Intercepts; Symmetry; Graphing Key Equations

Theinterceptsare 2,0, 2,0,and  0,4

20. 21 yx

x-intercepts: y-intercept: 2 2 01 1 1 x x x

Theinterceptsare

21. 236 xy

x-intercepts: y-intercept:

2306 26 3 x x x

Theinterceptsare

22. 5210 xy x-intercepts: y-intercept:  52010 510 2 x x x

Theinterceptsare   2,0and   0,5

23. 2 9436 xy

x-intercepts: y-intercept:

2 2 2 94036 936 4 2 x x x x

2 90436 436 9 y y y

Theinterceptsare 2,0, 2,0,and 0,9.

24. 2 44 xy

x-intercepts: y-intercept: 2 2 2 404 44 1 1 x x x x   

2 404 4 y y  

Theinterceptsare 1,0, 1,0,and  0,4

Section1.3: Intercepts; Symmetry; Graphing Key Equations

35. a. Intercepts:   1,0and  1,0

b. Symmetricwithrespecttothe x-axis, y-axis, andtheorigin.

36. a. Intercepts:  0,1

b. Notsymmetrictothe x-axis,the y-axis,nor theorigin

37. a. Intercepts:  20 ,  ,   0,1,and  2,0

b. Symmetricwithrespecttothe y-axis.

38. a. Intercepts: 2,0, 0,3,and  2,0

b. Symmetricwithrespecttothe y-axis.

39. a. Intercepts:  0,0

b. Symmetricwithrespecttothe x-axis.

40. a. Intercepts: 2,0, 0,2, 0,2,and  2,0

b. Symmetricwithrespecttothe x-axis, y-axis, andtheorigin.

41. a. Intercepts: 2,0, 0,0,and  2,0

b. Symmetricwithrespecttotheorigin.

42. a. Intercepts: 4,0, 0,0,and  4,0

b. Symmetricwithrespecttotheorigin.

43. a. x-intercepts:   2,1, y-intercept0

b. Notsymmetricto x-axis, y-axis,ororigin.

44. a. x-intercepts:   1,2, y-intercept0

b. Notsymmetricto x-axis, y-axis,ororigin.

45. a. Intercepts:none

b. Symmetricwithrespecttotheorigin.

46. a. Intercepts:none

b. Symmetricwithrespecttothe x-axis.

51. 216 yx

x-intercepts: y-intercepts: 2 016 16   x x 2 2 016 16 4    y y y

Theinterceptsare 16,0, 0,4and 0,4.

Test x-axissymmetry:Let yy 

 2 2 16 16same 

 yx yx

Test y-axissymmetry:Let x x  216 yx different

Testoriginsymmetry:Let x x  and yy 

yx yx

2 2 16 16different

Therefore,thegraphwillhave x-axissymmetry.

52. 29yx

x-intercepts: y-intercepts: 2 (0)9 09 9 x x x 

2 2 09 9 3 y y y  

Theinterceptsare 9,0, 0,3and 0,3.

Test x-axissymmetry:Let yy   2 2 9 9same yx yx  

Test y-axissymmetry:Let x x  29yx different

Testoriginsymmetry:Let x x  and yy   2 2 9 9different yx yx  

Therefore,thegraphwillhave x-axissymmetry.

53. 3 y x 

x-intercepts: y-intercepts: 03 0 x x   300 y 

Theonlyinterceptis 0,0.

Test x-axissymmetry:Let yy  3differentyx

Section1.3: Intercepts; Symmetry; Graphing Key Equations

Test y-axissymmetry:Let x x  33differentyxx 

Testoriginsymmetry:Let x x  and yy  33 3same y xx yx

Therefore,thegraphwillhaveoriginsymmetry.

54. 5 y x 

x-intercepts: y-intercepts: 03 0 x x   500 y 

Theonlyinterceptis  0,0

Test x-axissymmetry:Let yy  5differentyx

Test y-axissymmetry:Let x x  55differentyxx

Testoriginsymmetry:Let x x  and yy  55 5same y xx yx  

Therefore,theissymmetricwithrespecttothe origin.

55. 290xy x-intercepts: y-intercepts: 2 2 90 9 3 x x x

Theinterceptsare 3,0, 3,0,and 0,9.

Test x-axissymmetry:Let yy  290differentxy

Test y-axissymmetry:Let x x 

2 2 90 90same xy xy

Testoriginsymmetry:Let x x  and yy 

2 2 90 90different xy xy

Therefore,thegraphhas y-axissymmetry.

56. 240xy

x-intercepts: y-intercept: 2 2 040 4 2 x x x

Theinterceptsare 2,0, 2,0,and  0,4

Test x-axissymmetry:Let yy 

2 2 40 40different xy xy

Test y-axissymmetry:Let x x 

2 2 40 40same xy xy

Testoriginsymmetry:Let

2 2 40 40different xy xy

Therefore,thegraphhas y-axissymmetry.

57. 22 254100 xy x-intercepts: y-intercepts:

22 2

Theinterceptsare 2,0, 2,0, 0,5,and 0,5.

Test x-axissymmetry:Let yy 

22 22 254100 254100same 

xy xy

Test y-axissymmetry:Let x x   22 22 254100 254100same   xy xy

Testoriginsymmetry:Let x x  and yy   22 22 254100 254100same   xy xy

Therefore,thegraphhas x-axis, y-axis,and originsymmetry.

58. 22 44 xy x-intercepts: y-intercepts: 22 2 2 404 44 1 1 x x x x   

Theinterceptsare

0,2.

22 2 404 4 2 y y y   

 0,2,and

Test x-axissymmetry:Let yy 

22 22 44 44same xy xy 

Test y-axissymmetry:Let x x 

22 22 44 44same xy xy

Testoriginsymmetry:Let x x  and yy 

22 22 44 44same xy xy  

Therefore,thegraphhas x-axis, y-axis,and originsymmetry.

59. 364yx

x-intercepts: y-intercepts: 3 3 064 64 4    x x x 3 064 64   y y

Theinterceptsare 4,0and  0,64

Test x-axissymmetry:Let yy  364different yx

Test y-axissymmetry:Let x x  3 3 64 64different

yx yx

Testoriginsymmetry:Let x x  and yy  3 3 64 64different   yx yx

Therefore,thegraphhasnosymmetry.

60. 41 yx

x-intercepts: y-intercepts: 4 4 01 1 1 x x x  

Theinterceptsare

4

Section1.3: Intercepts; Symmetry; Graphing Key Equations

Test x-axissymmetry:Let yy  24different yx 

Test y-axissymmetry:Let x x   2 2 4 4same yx yx

0,1

Test x-axissymmetry:Let yy  41different yx 

Test y-axissymmetry:Let x x 

4 4 1 1same yx yx

Testoriginsymmetry:Let x x  and yy 

4 4 1 1different yx yx

Therefore,thegraphhas y-axissymmetry.

61. 228 y xx

x-intercepts: y-intercepts:

Testoriginsymmetry:Let x x  and yy 

2 2 4 4different yx yx

Therefore,thegraphhas y-axissymmetry.

63. 2 4 16   x y x

x-intercepts: y-intercepts: 2 4 0 16 40 0  

2 400 0 01616

Theonlyinterceptis 0,0.

xx xx x x

2 028 042 4or2

2 0208 8

Theinterceptsare 4,0,   2,0,and   0,8

Test x-axissymmetry:Let yy  228different

yxx

Test y-axissymmetry:Let x x 

yxx yxx

2 2 28 28different

Testoriginsymmetry:Let x x  and yy 

yxx yxx

2 2 28 28different

Therefore,thegraphhasnosymmetry.

62. 24 yx

x-intercepts: y-intercepts: 2 2 04 4 norealsolution x x 

2 04 4 y y

Theonlyinterceptis 0,4.

Test x-axissymmetry:Let yy  2 4 different 16   x y x

Test y-axissymmetry:Let x x    2 2 4 16 4 different 16

 x y x x y x

Testoriginsymmetry:Let x x  and yy 

 2 2 2 4 16 4 16 4 same 16

     x y x x y x x y x Therefore,thegraphhasoriginsymmetry.

Testoriginsymmetry:Let

Theinterceptsare

Therefore,thegraphhasoriginsymmetry.

norealsolution

Therearenointerceptsforthegraphofthis equation.

Therefore,thegraphhasoriginsymmetry.

Test

Testoriginsymmetry:Let

Therefore,thegraphhasoriginsymmetry.

67. 3 y x 

68. 2 x y 

69. y x 

70. 1 y x 

Section1.3: Intercepts; Symmetry; Graphing Key Equations

71. Ifthepoint  ,4 a isonthegraphof 23 y xx ,thenwehave

2 2 43 034 041 aa aa aa

40 4 a a

or10 1 a a  

Thus,4 a  or1 a 

72. Ifthepoint  ,5 a isonthegraphof 26 y xx ,thenwehave

2 2 56 065 051 aa aa aa

50 5 a a 

or10 1 a a  

Thus,5 a  or1 a 

73. a. 2 2 05 5 5 x x x   

Thex-interceptsare5 x  and5 x  .

 2 055 y 

They-interceptis5 y 

Theinterceptsare 5,0, 5,0,and  0,5

b. x-axis(replace y by y ): 2 2 5 5different yx yx

  y-axis(replace x by x ):

 2255yxx same origin(replace x by x and y by y ):



 2 2 5 5different yx yx



Theequationhasy-axissymmetry.

c. 25 yx

Additionalpoints:

Chapter1: Graphs

2 2 2 5, 11541,4 1fromsymmetry1,4 22512,1 2fromsymmetry2,1 xyxxy

74. a. 2 2 08 8 22 x x x   

Thex-interceptsare22 x  and 22 x  .

2 088 y 

They-interceptis8 y 

Theinterceptsare 22,0, 22,0,and

 0,8

b. x-axis(replace y by y ): 2 2 8 8different yx yx

y-axis(replace x by x ):

2288yxx same

origin(replace x by x and y by y ):  2 2 8 8different yx yx  

Theequationhasy-axissymmetry.

c. 28 yx

Additionalpoints:

2 2 2 5, 11871,7 1fromsymmetry1,7 22842,4 2fromsymmetry2,4 xyxxy y y 

75. a.  2 09 9 x x 

Thex-interceptis9 x 

2 2 2 09 9 93 y y yy

They-interceptsare3 y  and3 y 

Theinterceptsare 9,0, 0,3,and 0,3.

b. x-axis(replace y by y ):

 2 2 9 9same xy xy   y-axis(replace x by x ): 2 2 9 9different xy xy

  origin(replace x by x and y by y ):  2 2 2 9 9 9different xy xy xy

Theequationhasx-axissymmetry.

c. 29 xy or 29 xy

Additionalpoints:

2 2 9, 22955,2 2fromsymmetry5,2 yxyxy x 

5 5 52

76. a.  2 04 4 x x  

Thex-interceptis4 x  .

2 2 04 42 y yy  

They-interceptsare2 y  and2 y 

Theinterceptsare 4,0, 0,2,and  0,2

b. x-axis(replace y by y ):  2 2 4 4same xy xy 

y-axis(replace x by x ): 2 2 4 4different xy xy 



origin(replace x by x and y by y ):



 2 2 2 4 4 4different xy xy xy

 

Theequationhasx-axissymmetry.

c. 24 xy or 42 x y 

Additionalpoints:

Section1.3: Intercepts; Symmetry; Graphing Key Equations

  2 2 4, 14133,1 1fromsymmetry3,1 yxyxy x  

77. a.  22 2 09 9 3 x x x   

Thex-interceptsare3 x  and3 x 

 22 2 09 9 3 y y y   

They-interceptsare3 y  and3 y 

Theinterceptsare 3,0, 3,0, 0,3, and  0,3

b. x-axis(replace y by y ):  22 22 9 9same xy xy

 

y-axis(replace x by x ):



 22 22 9 9same xy xy



origin(replace x by x and y by y ):

 22 22 9 9same xy xy

 

Theequationhasx-axissymmetry,y-axis symmetry,andoriginsymmetry.

c. 229xy

78. a.  22 2 016 16 4 x x x   

Thex-interceptsare4 x  and4 x  .

 22 2 016 16 4 y y y   

They-interceptsare4 y  and4 y 

Theinterceptsare 4,0, 4,0, 0,4, and 0,4.

b. x-axis(replace y by y ):

 22 22 16 16same xy xy

 

y-axis(replace x by x ):



 22 22 16 16same xy xy



origin(replace x by x and y by y ):

 22 22 16 16same xy xy

 

Theequationhasx-axissymmetry,y-axis symmetry,andoriginsymmetry.

c. 2216xy

79. a.  3 2 04 04 x x xx   0 x  or 2 2 40 4 2 x x x   

Thex-interceptsare0 x  ,2 x  ,and 2 x   3 0400 y 

They-interceptis0 y 

Theinterceptsare 0,0, 2,0,and  2,0

b. x-axis(replace y by y ): 3 3 4 4different yxx yxx   y-axis(replace x by x ):  3 3 4 4different yxx yxx 

 origin(replace x by x and y by y ):

 3 3 3 4 4 4same y xx yxx yxx  



Theequationhasoriginsymmetry.

c. 34 y xx

Additionalpoints:    3 3 4, 114131,3 1fromsymmetry1,3 x yxxxy y  

80. a.

3 2 0 01 x x xx  

0 x  or 2 2 10 1 1 x x x   

Thex-interceptsare0 x  ,1 x  ,and 1 x 

3 000 y 

They-interceptis0 y 

Theinterceptsare 0,0, 1,0,and  1,0

b. x-axis(replace y by y ): 3 3different yxx yxx

y-axis(replace x by x ):

3 3different yxx yxx

origin(replace x by x and y by y ):

3 3 3 same y xx yxx yxx

Theequationhasoriginsymmetry.

c. 3 y xx

Additionalpoints:

3 3 4, 22262,6 2fromsymmetry2,6 xyxxxy y 

Section1.3: Intercepts; Symmetry; Graphing Key Equations

81. Foragraphwithoriginsymmetry,ifthepoint  , ab isonthegraph,thensoisthepoint  , ab .Sincethepoint 1,2isonthegraph ofanequationwithoriginsymmetry,thepoint 1,2mustalsobeonthegraph.

82. Foragraphwith y-axissymmetry,ifthepoint  , ab isonthegraph,thensoisthepoint  , ab .Since6isan x-interceptinthiscase,the point 6,0isonthegraphoftheequation.Due tothe y-axissymmetry,thepoint 6,0must alsobeonthegraph.Therefore,6isanother xintercept.

83. Foragraphwithoriginsymmetry,ifthepoint  , ab isonthegraph,thensoisthepoint  , ab .Since4isan x-interceptinthiscase, thepoint 4,0isonthegraphoftheequation. Duetotheoriginsymmetry,thepoint  4,0 mustalsobeonthegraph.Therefore,4is another x-intercept.

84. Foragraphwith x-axissymmetry,ifthepoint  , ab isonthegraph,thensoisthepoint  , ab .Since2isa y-interceptinthiscase,the point 0,2isonthegraphoftheequation.Due tothe x-axissymmetry,thepoint 0,2must alsobeonthegraph.Therefore,2isanother yintercept.

85. a.  2 2222 x yxxy x-intercepts:

Theinterceptsare

b. Test x-axissymmetry:Let yy

Test y-axissymmetry:Let x

Testoriginsymmetry:Let x x  and yy 

Thus,thegraphwillhave x-axissymmetry. 86. a. 2 16120225 yx

y-intercepts:

2 2 2 161200225 16225 225 16 norealsolution y y y

x-intercepts:  2 160120225 0120225 120225 22515 1208 x x x x 

Theonlyinterceptis15,0 8

b. Test x-axissymmetry:Let yy 

2 2 16120225 16120225same yx yx

Test y-axissymmetry:Let x x 

2 2 16120225 16120225different yx yx 

Testoriginsymmetry:Let x x  and yy 

2 2 16120225 16120225different yx yx  

Thus,thegraphhas x-axissymmetry.

87. Let y =0. 222222 422 422 222 222 22 (0)(0) () 0 ()0 0or()0 0or ,

xax xax xax xxa xxa xxa xaa Let x =0. 222222 422 422 222 (0)(0) () 0 ()0 0      yay yay yay yya y (Notethatthesolutionsto220 ya arenot real)

Sotheinterceptsareare(0,0),(a,0)and(-a,0). Test x-axissymmetry:Replace y by-y 222222 222222 (())(()) ()()equivalent

 xyaxy xyaxy

Section1.3: Intercepts; Symmetry; Graphing Key Equations

Test y-axissymmetry:replace x by-x 222222 222222



(())(()) ()()equivalent

 xyaxy xyaxy

Testoriginsymmetry:replace x by-x and y by -y 222222 222222

89. Answerswillvary.Oneexample: y x

(()())(()()) ()()equivalent

 x yaxy xyaxy

Thegraphissymmetricbyrespecttothe xaxis,the y-axis,andtheorigin.

88. Let y =0.

90. Answerswillvary.

Case1:Graphhas x-axisand y-axissymmetry, showoriginsymmetry.

222222 432222 2 (0)(0) 20 (()(()0 0or or 

xaxbx xaxaxbx xxabxab x xab xab

Let x =0. 222222

 yaby yby yybyb yybyb

Sotheinterceptsare(0,0),(a-b,0),(a+b,0), (0,-b),(0, b).

Test x-axissymmetry:replace y by-y 2 22222 222222 ()() ()()Equivalent

  xyaxbxy xyaxbxy

Test y-axissymmetry:replace x by-x 2 22222 222222 ()()() ()()Notequivalent   

 xyaxbxy xyaxbxy

Testoriginsymmetry:replace x by-x and y by -y 2 22222 222222 ()()()()() ()()Noequivalent

x yaxbxy xyaxbxy

Thegraphissymmetricwithrespecttothe x-axisonly.

 ,ongraph,ongraph (from-axissymmetry) xyxy x 

  ,ongraph,ongraph from-axissymmetry xyxy y 

Sincethepoint  ,x y isalsoonthegraph,the graphhasoriginsymmetry.

Case2:Graphhas x-axisandoriginsymmetry, show y-axissymmetry.



 ,ongraph,ongraph from-axissymmetry xyxy x 

  ,ongraph,ongraph fromoriginsymmetry xyxy 

Sincethepoint  ,x y isalsoonthegraph,the graphhas y-axissymmetry.

Case3:Graphhas y-axisandoriginsymmetry, show x-axissymmetry.

  ,ongraph,ongraph from-axissymmetry xyxy y 

  ,ongraph,ongraph fromoriginsymmetry xyxy 

Sincethepoint  ,x y isalsoonthegraph,the graphhas x-axissymmetry.

91. Answersmayvary.Thegraphmustcontainthe points   2,5, 1,3,and 0,2.Forthe graphtobesymmetricaboutthe y-axis,thegraph mustalsocontainthepoints 2,5and  1,3 (notethat(0,2)isonthe y-axis).

Forthegraphtoalsobesymmetricwithrespect tothe x-axis,thegraphmustalsocontainthe

Chapter1: Graphs

points   2,5, 1,3,   0,2,   2,5,and 1,3.Recallthatagraphwithtwoofthe symmetries(x-axis,y-axis,origin)will necessarilyhavethethird.Therefore,ifthe originalgraphwithy-axissymmetryalsohasxaxissymmetry,thenitwillalsohaveorigin symmetry.

Section 1.4

1.

2.

2 2520 2120 xx xx

210 21 1 2 x x x

Thesolutionsetis 1 2, 2

23411 23441 2343 233 26 3 xx xx xx x x x 

Thesolutionsetis

3. ZERO(ROOT)

4. False;exactsolutionsareobtained,ingeneral,if thesolutionisarationalnumber.Forirrational solutions,approximateanswersaretypically given,thoughsomeutilitiescanexpresscertain irrationalexpressionsinexactform.

5. 3420xx ;UseZERO(orROOT)onthe graphof3142 yxx

Thesolutionsetis   2.21,0.54,1.68.

6. 3810xx ;UseZERO(orROOT)onthe graphof3181y xx  .

Thesolutionsetis   2.89,0.13,2.76.

7. 4 2532 xx  ;UseINTERSECTonthe

graphsof4125yx and232 yx

Thesolutionsetis  1.55,1.15

8. 42123xx  ;UseINTERSECTonthe

graphsof411yx and2223yx

Thesolutionsetis  1.11,1.11

9. 432310xxx ;UseZERO(orROOT)on thegraphof431231y xxx 

Thesolutionsetis  1.12,0.36

10. 432 3450 xxx ;UseZERO(orROOT) onthegraphof4321345 yxxx

Thesolutionsetis

0.85,0.94

Section1.4: Solving Equations Using a Graphing Utlilty

11. 325720 32 xxx  ; UseZERO(orROOT)onthegraphof     32 15/37/22 yxxx  .

Thesolutionsetis

2.69,0.49,1.51.

12. 432715 320 32 xxxx  ;UseZERO(or ROOT)onthegraphof

432 137/315/22 yxxxx

13. 432 2521 2 3232 xxxx  UseINTERSECTonthegraphsof

43 12/325/2 yxxx  and 2 2(2/3)1/2 yx .

Chapter1: Graphs

Thesolutionsetis  2.86,1.34,0.20,1.00

14. 321154 45 xxx

UseINTERSECTonthegraphsof 3 1/45y xx and22/54yx anda standardviewingwindow(10to10forboth x and y).

Thesolutionsetis  4.47,0.80,4.47

15. 4252110xxx UseZERO(orROOT)onthegraphof 42 15211 yxxx

Therearenorealsolutions.

16. 42 38290 xxx  UseZERO(orROOT)onthegraphof 42 13829 yxxx  .     Therearenorealsolutions.

17. 2(32)3(4) xx  64312 6463126 4318 433183 18 xx xx xx x xxx x     

Thesolutionsetis   18.

18. 3(2)21 x x  6321 636216 327 32272 57 57 55 7 5 xx xx xx x xxx x x x

  Thesolutionsetis   7 5

19.   821313 821313 61313 6113131 6312 633123 312 xxx xxx xx xx xx x xxx x 

 312 33 4 x x   Thesolutionsetis   4.

20.  52110 52110 2610 262102 610 6101010 4 xx xx xx x xxx x x x

Thesolutionsetis

21.

125 37 12 2121215 37 7736105 xx

Thesolutionsetis46 5

22. 21163 3 x x   21 31633 3 21489 2499 249292 497 497 77 7 x x xx xx x

Thesolutionsetis

23. 543 93 yy y   1 91 3 1 93 991 93 3 y y y y

Thesolutionsetis   3.

24. 418 5 2 418252 2 yy yy yy

81018 8108188 1010 1010 1010 1 y y y y y

Thesolutionsetis  1

25.

26.

27.

Thesolutionsetis

23280 7428 xx xx

Thesolutionsetis   4,7.

28.

 27180 920 xx xx

90 9 x x 

29.

2 2 5136 51360 5230 xx xx xx 

520 52 2 5 x x x 

or30 3 x x  

Thesolutionsetis 2 ,3 5    31.

32 32 2 2 440 440 1410 140 1220 xxx xxx xxx xx xxx

10 1 x x   or20 2 x x   or20 2 x x  

Thesolutionsetis  2,1,2

32.

or20 2 x x 

Thesolutionsetis  2,9

 2 2 344 3440 3220 xx xx xx 

320 32 2 3 x x x

or20 2 x x  

Thesolutionsetis 2 ,2 3

33.

32 32 2 2 29180 29180 2920 290 2330 xxx xxx xxx xx xxx  

 



20 2 x x   or30 3 x x   or30 3 x x  

Thesolutionsetis   3,2,3.

 22 14 14 116 11161 15 x x x x x  

   Check: 1514 164 44    T

Thesolutionsetis   15.

34.

23

Thesolutionsetis

35. 238 215xx 

MultiplybothsidesoftheequationbytheLCD. Thisyieldstheequation

Section 1.5

1. a. 2;2;1 b. -2 c. 0 d. ii,iv e. ii 2. undefined;0 3. 3;2 x-

4. True 5. False;theslopeis32. 235 35 22 yx yx

True;

12. d

13. a. 101 Slope202 

b. If x increasesby2units, y willincrease by1unit.

14. a. 101 Slope202 

b. If x increasesby2units, y willdecrease by1unit.

15. a. 121 Slope1(2)3 

b. If x increasesby3units, y willdecrease by1unit.

16. a. 211 Slope2(1)3 

b. If x increasesby3units, y willincrease by1unit.

17. 21 21 033 Slope422 yy xx

18. 21 21 422 Slope2 341 yy xx

19. 21 21 1321 Slope2(2)42 yy xx

20. 21 21 312 Slope2(1)3 yy xx

21. 21 21 1(1)0 Slope0 2(3)5 yy xx

22. 21 21 220 Slope0 549 yy xx

Section1.5: Lines

23. 21 21 224 Slopeundefined. 1(1)0 yy xx

24. 21 21 202 Slopeundefined. 220 yy xx

25. 1,2;3Pm

28.  2 1,3; 5 Pm 29. 1,3;0Pm 30. 2,4;0Pm

26. 2,1;4Pm 27.  3 2,4; 4 Pm

31. 0,3;slopeundefined P 

(note:thelineisthe y-axis)

32. 2,0;slopeundefined P 

33.   1,2;3Pm ; 23(1)yx

34. 2,1;4Pm ; 14(2)yx

35.  3 2,4; 4 Pm ; 3 4(2) 4 yx

36.  2 1,3; 5 Pm ; 2 3(1) 5 yx

37. 1,3;0Pm ; 30 y 

38. 2,4;0Pm ; 40 y

39. 4 Slope41  ;point:   1,2

If x increasesby1unit,then y increasesby4 units.

Answerswillvary.Threepossiblepointsare:



   112and246 2,6 213and6410 3,10 314and10414 4,14 xy xy xy

 

40. 2 Slope21  ;point:  2,3

If x increasesby1unit,then y increasesby2 units.

Answerswillvary.Threepossiblepointsare:

   211and325 1,5 110and527 0,7 011and729 1,9 xy xy xy   

41. 33 Slope22  ;point:  2,4

If x increasesby2units,then y decreasesby3 units.

Answerswillvary.Threepossiblepointsare:



   224and437 4,7 426and7310 6,10 628and10313 8,13 xy xy xy





42. 4 Slope3  ;point:  3,2

If x increasesby3units,then y increasesby4 units.

Answerswillvary.Threepossiblepointsare:



 330and246 0,6 033and6410 3,10 336and10414 6,14 xy xy xy



 



43. 2 Slope21  ;point:  2,3

If x increasesby1unit,then y decreasesby2 units.

Answerswillvary.Threepossiblepointsare:

44. 1 Slope11  ;point:  4,1

If x increasesby1unit,then y decreasesby1 unit.

Answerswillvary.Threepossiblepointsare:

45. (0,0)and(2,1)arepointsontheline. 101 Slope202

-interceptis0;using: yymxb   1 0 2 2 02 1 20or 2 yx

46. (0,0)and(–2,1)arepointsontheline. 1011 Slope2022

1 0 2 2 20 1 20or 2 yx yx xy x yyx

47. (–1,3)and(1,1)arepointsontheline. 11 132 Slope1 1(1)2

Using() yymxx

11(1) 11 2 2or2 yx yx yx xyyx

48. (–1,1)and(2,2)arepointsontheline. 11 211 Slope2(1)3

Using() yymxx

   1 1(1) 3 1 1(1) 3 11 1 33 14 33 14 34or 33 yx yx yx yx xyyx 

49. 11(),2yymxxm  32(3) 326 23 23or23 yx yx yx xyyx



50. 11(),1yymxxm  21(1) 21 3 3or3 yx yx yx xyyx

51. 11 1 (),2yymxxm  1 2(1) 2 11 2 22 15 22 15 25or 22 yx yx yx xyyx

  



52. 11(),1yymxxm  11((1)) 11 2 2or2 yx yx yx xyyx

53. Slope=3;containing(–2,3) 11() 33((2)) 336 39 39or39 yymxx yx yx yx xyyx

54. Slope=2;containingthepoint(4,–3) 11() (3)2(4) 328 211 211or211 yymxx yx yx yx xyyx

55. Slope= 1 2;containingthepoint(3,1) 11() 1 1(3) 2 13 1 22 11 22 11 21or 22 yymxx yx yx yx xyyx

56. Slope= 2 3;containing(1,–1) 11() 2 (1)(1) 3 22 1 33 21 33 21 231or 33 yymxx yx yx yx xyyx

57. Containing(1,3)and(–1,2) 2311 1122 m  11() 1 3(1) 2 11 3 22 15 22 15 25or 22 yymxx yx yx yx xyyx

58. Containingthepoints(–3,4)and(2,5) 541 2(3)5 m

 

 

 11() 1 5(2) 5 12 5 55 123 55 123 523or 55 yymxx yx yx yx xyyx



59. Slope=–3; y-intercept=3 33 33or33 ymxb yx xyyx







60. Slope=–2; y-intercept=–2 2(2) 22or22 ymxb yx xyyx







61. x-intercept=–4; y-intercept=4 Pointsare(–4,0)and(0,4) 404 1 0(4)4 m  14 4 4or4 ymxb yx yx xyyx





 

62. x-intercept=2; y-intercept=–1 Pointsare(2,0)and(0,–1) 1011 0222 m

63. Slopeundefined;containingthepoint(2,4) Thisisaverticalline.

2Noslope-interceptform. x 

64. Slopeundefined;containingthepoint(3,8) Thisisaverticalline.

3Noslope-interceptform. x 

65. Horizontallineshaveslope0 m  andtakethe form yb  .Therefore,thehorizontalline passingthroughthepoint 3,2is2 y  .

66. Verticallineshaveanundefinedslopeandtake theform x a  .Therefore,theverticalline passingthroughthepoint 4,5is4 x 

67. Parallelto2 y x  ;Slope=2 Containing(–1,2) 11() 22((1)) 22224 24or24 yymxx yx yxyx xyyx

68. Parallelto3 y x  ;Slope=–3;Containingthe point(–1,2) 11() 23((1)) 23331 31or31 yymxx yx yxyx xyyx

69. Parallelto25 xy ;  1 Slope;Containingthepoint0,0 2  11() 11 0(0)22 1 20or 2 yymxx yxyx xyyx

70. Parallelto22 xy ;Slope=2 Containingthepoint(0,0) 11() 02(0) 2 20or2 yymxx yx yx x yyx

71. Parallelto5 x  ;Containing(4,2) Thisisaverticalline. 4Noslope-interceptform. x 

72. Parallelto5 y  ;Containingthepoint(4,2) Thisisahorizontalline.Slope=0 2 y 

73. Perpendicularto 1 4; 2 yx Containing(1,–2)

Slopeofperpendicular=–2 11() (2)2(1) 2222 20or2 yymxx yx yxyx xyyx

74. Perpendicularto23 yx ;Containingthe point(1,–2) 1 Slopeofperpendicular2  11() 1 (2)(1) 2 1113 2 2222 13 23or 22 yymxx yx yxyx xyyx

75. Perpendicularto25 xy ;Containingthe point(0,4) Slopeofperpendicular=–2 24 24or24 ymxb yx xyyx 

Chapter1: Graphs

76. Perpendicularto22 xy ;Containingthe point(–3,0) 1 Slopeofperpendicular2  11() 113 0((3))222 13 23or 22

77. Perpendicularto8 x  ;Containing(3,4) Slopeofperpendicular=0(horizontalline) 4 y 

78. Perpendicularto8 y  ; Containingthepoint(3,4) Slopeofperpendicularisundefined(vertical line).3 x  Noslope-interceptform.

79. 23yx ;Slope=2; y-intercept=3

80. 34yx ;Slope=–3; y-intercept=4

81. 1 1 2 yx ;22 yx Slope=2; y-intercept=–2 82. 1 2 3 xy ; 1 2 3 yx

1 Slope3  ; y-intercept=2

1 2 2 yx ; 1 Slope2  ; y-intercept=2 84. 1 2 2 yx ;Slope=2; 1 -intercept2 y 

85. 24xy ; 1 242 2 yxyx  1 Slope2  ; y-intercept=2

86. 36xy  ; 1 362 3 yxyx

1 Slope3  ; y-intercept=2

87. 236 xy ; 2 3262 3 yxyx

89. 1 xy ;1 y x 

Slope=–1; y-intercept=1

90. 2 xy ;2 yx

Slope=1; y-intercept=–2

Section1.5: Lines

2 Slope3  ; y-intercept=–2 88. 326 xy ; 3 2363 2 yxyx

91. 4 x  ;Slopeisundefined y-intercept-none

Chapter1: Graphs

92. 1 y  ;Slope=0; y-intercept=–1

93. 5 y  ;Slope=0; y-intercept=5

94. 2 x  ;Slopeisundefined y-intercept-none

95. 0 yx ; yx  Slope=1; y-intercept=0

96. 0 xy ; yx  Slope=–1; y-intercept=0

97. 230 yx ; 3 23 2 yxyx  3 Slope2  ; y-intercept=0

98. 320 xy ; 3 23 2 yxyx  3 Slope2  ; y-intercept=0 99. a. x-intercept:

Thepoint 3,0isonthegraph.

Thepoint 0,2isonthegraph.

b.

100. a. x-intercept:

3206

Thepoint 2,0isonthegraph.

intercept:

Thepoint 0,3isonthegraph.

b.

101. a. x-intercept:  45040 440 10 x x

Thepoint 10,0isonthegraph. y-intercept:  40540 540 8 y y y

Thepoint 0,8isonthegraph. b.

102. a. x-intercept:  64024 624 4 x x x   

Thepoint 4,0isonthegraph.

y-intercept:  60424 424 6 y y y   

Thepoint 0,6isonthegraph.

b.

103. a. x-intercept:  72021 721 3 x x x   

Thepoint 3,0isonthegraph.

y-intercept:  70221 221 21 2 y y y   

Thepoint 21 0, 2    isonthegraph.

104. a. x-intercept:  53018 518 18 5 x x x   

Thepoint18,0 5    isonthegraph.

y-intercept:  50318 318 6 y y y   

Thepoint 0,6isonthegraph. b.

105. a. x-intercept:  11 01 23 1 1 2 2 x x x   

Thepoint   2,0isonthegraph.

y-intercept:  11 01 23 1 1 3 3 y y y   

Thepoint   0,3isonthegraph.

106. a. x-intercept:  2 04 3 4 x x  

Thepoint 4,0isonthegraph.

y-intercept:  2 04 3 2 4 3 6 y y y   

Thepoint 0,6isonthegraph.

107. a. x-intercept:  0.20.501 0.21 5 x x x   

Thepoint 5,0isonthegraph.

y-intercept:  0.200.51 0.51 2 y y y   

Thepoint 0,2isonthegraph.

b.

Section1.5: Lines

b.

108. a. x-intercept:  0.30.401.2

Thepoint   4,0isonthegraph.

b.

Thepoint 0,3isonthegraph.

109. Theequationofthe x-axisis0 y  .(Theslope is0andthe y-interceptis0.)

110. Theequationofthe y-axisis0 x  .(Theslope isundefined.)

111. Theslopesarethesamebutthe y-interceptsare different.Therefore,thetwolinesareparallel.

112. Theslopesareopposite-reciprocals.Thatis,their productis1.Therefore,thelinesare perpendicular.

113. Theslopesaredifferentandtheirproductdoes notequal1.Therefore,thelinesareneither parallelnorperpendicular.

114. Theslopesaredifferentandtheirproductdoes notequal1(infact,thesignsarethesameso theproductispositive).Therefore,thelinesare neitherparallelnorperpendicular.

115. Intercepts: 0,2and 2,0.Thus,slope=1. 2or2yxxy

116. Intercepts: 0,1and 1,0.Thus,slope=–1. 1or1yxxy 

117. Intercepts: 3,0and 0,1.Thus,slope= 1 3 1 1or33 3 yxxy 

118. Intercepts: 0,1and 2,0.Thus, slope= 1 2 1 1or22 2 yxxy  119.

Since121 mm ,thelinesegments12 PP and 23PP areperpendicular.Thus,thepoints1 P ,2 P , and3 P areverticesofarighttriangle.

Eachpairofoppositesidesareparallel(same slope)andadjacentsidesarenotperpendicular. Therefore,theverticesareforaparallelogram.

Oppositesidesareparallel(sameslope)and adjacentsidesareperpendicular(productofslopes is1).Therefore,theverticesareforarectangle.

22 1210301910d

22 2341239110 d 

22 3434121910 d 

22 1430109110d

Oppositesidesareparallel(sameslope)and adjacentsidesareperpendicular(productof slopesis1).Inaddition,thelengthofallfour sidesisthesame.Therefore,theverticesarefora square.

123. Let x =numberofmilesdriven,andlet C =cost indollars.

Totalcost=(costpermile)(numberofmiles)+ fixedcost

0.6039Cx

When x =110,  0.6011039$105.00 C 

When x =230,  0.6023039$177.00 C 

124. Let x =numberofpairsofjeansmanufactured, andlet C =costindollars.

Totalcost=(costperpair)(numberofpairs)+ fixedcost 201200Cx

When x =400,  204001200$9200 C .

When x =740,  207401200$16,000 C

125. Let x =numberofmilesdrivenannually,and let C =costindollars.

Totalcost=(approxcostpermile)(numberof miles)+fixedcost 0.144252Cx

126. Let x =profitindollars,andlet S =salaryin dollars.

Weeklysalary=(%shareofprofit)(profit)+ weeklypay 0.05525Sx

127. a. 0.09058.28Cx ;01000 x 

b.

c. For200kWh,   0.09052008.28$26.38  C

d. For500kWh,  0.09055008.28$53.53  C

e. Foreachusageincreaseof1kWh,the monthlychargeincreasesby$0.0905 (thatis,9.05cents).

128. a. 0.62320.26Cx

b. For90therms,  0.6239020.26$76.33  C

c. For150therms,  0.62315020.26$113.71  C

d.

e. Foreachusageincreaseof1thermthe monthlychargeincreasesby$0.623 (thatis,62.3cents).

129. (,)(0,32);(,)(100,212) CFCF  slope212321809 10001005 9 32(0) 5 9 32() 5 5(32) 9 FC FC CF 

If70 F  ,then 55 (7032)(38)99 21.1 C C

130. a. º273KC

b. 5 º(º32) 9 CF 5 9(32)273 5160 º273 99 52297 º 99 KF KF KF

131. a. The y-interceptis(0,30),so b =30.Since therampdrops2inchesforevery25inches ofrun,theslopeis 22 2525 m  .Thus, theequationis 2 30 25 yx .

b. Let y =0.  2 030 25 2 30 25 25225

The x-interceptis(375,0).Thismeansthat therampmeetsthefloor375inches(or 31.25feet)fromthebaseoftheplatform.

c. No.Frompart(b),therunis31.25feetwhich exceedstherequiredmaximumof30feet.

d. First,designrequirementsstatethatthe maximumslopeisadropof1inchforeach 12inchesofrun.Thismeans1 12 m 

Section1.5: Lines

Second,therunisrestrictedtobenomore than30feet=360inches.Forariseof30 inches,thismeanstheminimumslopeis 301 36012  .Thatis,112 m  .Thus,the onlypossibleslopeis112 m  .The diagramindicatesthattheslopeisnegative. Therefore,theonlyslopethatcanbeusedto obtainthe30-inchriseandstillmeetdesign requirementsis112 m  .Inwords,for every12inchesofrun,therampmustdrop exactly 1inch.

132. a. Let x representthepercentofinternetad spending.Let y representthepercentof printadspending.Thenthepoints (0.19,0.26)and(0.35,0.16)areontheline. Thus, 162610 0.625 351916  m .Using thepoint-slopeformulawehave 260.625(19) 260.62511.875 0.62537.875

yx yx yx

60.6 

b. x-intercept:00.62537.875 37.8750.625

 x x x y-intercept:0.625(0)37.875 37.875   y Theinterceptsare(60.6,0)and(0,37.875).

c y-intercept:WhenInternetadsaccountfor 0%ofU.S.advertisementspending,print adsaccountfor37.875%ofthespending. x-intercept:WhenInternetadsaccountfor 60.6%ofU.S.advertisementspending,print adsaccountfor0%ofthespending.

d.Let x =39.2.

0.625(39.2)37.87513.4% y

133. a. Let x =numberofboxestobesold,and A =money,indollars,spentonadvertising. Wehavethepoints 11 (,)(100,000,40,000); xA 

Chapter1: Graphs

22 (,)(200,000,60,000) xA 

slope60,00040,000 200,000100,000 20,0001 100,0005 1 40,000100,000 5 1 40,00020,000 5 1 20,000 5 Ax Ax Ax

b. If x =300,000,then

1300,00020,000$80,000 5 A 

c. Eachadditionalboxsoldrequiresan additional$0.20inadvertising.

134. 2 x yC

Graphthelines: 24 20 22 xy xy xy

Allthelineshavethesameslope,2.Thelines areparallel.

135. Puteachlinearequationinslope/interceptform. 2523400 25324 1524 2233

xyxyaxy yxyxyax yxyx Iftheslopeof  yax equalstheslopeofeither oftheothertwolines,thennotriangleisformed. So, 11 22  aa and 22 33  aa

Alsoifallthreelinesintersectatasinglepoint,

 xx x x



 

thennotriangleisformed.So,wefindwhere 1524 and 2233  yxyx intersect. 1524 2233 77 66 1 15 (1)222

Thetwolinesintersectat(1,2).If  yax also containsthepoint(1,2),then 212  aa

Thethreenumbersare 12 ,,and-2. 23

136. Theslopeofthelinecontaining  , ab and  , ba is 1 ab ba

Theslopeoftheline yx  is1.

Thetwolinesareperpendicular. Themidpointof(,)and(,) abba is , 22 abba M     

Sincethe x and y coordinatesof M areequal,M liesontheline yx 

Note: 22 abba  

137. Thethreemidpointsare 0000 ,,0,,, 2222222



aaabcabc and00,, 2222

bcbc

1from(0,0)to,22 0 2; 0 2 0(0)

1

  abc Line c c m ab ab c yx ab c yx ab

bc Line cc c m bba ba a c yxa ba c yxa ba

2from(a,0)to,22 0 22 22 22 0() 2 2()

a Linebc cc m a ba b ca yx ba ca yx ba

3from,0to(,) 2 02 2 2 2 0 22 2 22

Substituteintoline1:

So,line1andline2intersectat,. 33

Showthatline3containsthepoint,33

cabacbac y baba So thethreelinesintersectat,. 33 

138. RefertoFigure43.Assume121  mm .Then 222 12 2 12 22 1122 22 12 22 12 (,)(11)() () 2 2(1) 2

dABmm mm mmmm mm mm

Now,   2222 11 2222 22 (,)(10)(0)1 (,)(10)(0)1

dOBmm dOAmm , So

dOBdOAmm mmdAB

2222 12 222 12 (,)(,)11 2(,)

BytheconverseofthePythagoreanTheorem, AOB isarighttrianglewithrightangleat vertex O.ThuslinesOAandOBare perpendicular.

139. (b),(c),(e)and(g) Thelinehaspositiveslopeandpositive y-intercept.

140. (a),(c),and(g) Thelinehasnegativeslopeandpositive y-intercept.

141. (c)

Theequation2 xy hasslope1and yintercept(0,2).Theequation1 xy hasslope 1and y-intercept(0,1).Thus,thelinesare parallelwithpositiveslopes.Onelinehasa positive y-interceptandtheotherwithanegative yintercept.

142. (d)

Theequation22 yx hasslope2and yintercept(0,2).Theequation21 xy has slope 1 2 and y-intercept 1 0,. 2 

Thelines areperpendicularsince 1 21 2

.Oneline hasapositive y-interceptandtheotherwitha negative y-intercept.

143 – 145. Answerswillvary.

146. No,theequationofaverticallinecannotbe writteninslope-interceptformbecausetheslope isundefined.

147. No,alinedoesnotneedtohavebothan xinterceptanda y-intercept.Verticaland horizontallineshaveonlyoneintercept(unless theyareacoordinateaxis).Everylinemusthave atleastoneintercept.

148. Twolineswithequalslopesandequal y-interceptsarecoincidinglines(i.e.thesame).

149. Twolinesthathavethesame x-interceptand yintercept(assumingthe x-interceptisnot0)are thesamelinesincealineisuniquelydefinedby twodistinctpoints.

150. No.Twolineswiththesameslopeanddifferent xinterceptsaredistinctparallellinesandhaveno pointsincommon.

AssumeLine1hasequation1 ymxb  andLine 2hasequation2 ymxb  ,

Line1has x-intercept1 b m and y-intercept1 b .

Line2has x-intercept2 b m and y-intercept2 b

AssumealsothatLine1andLine2haveunequal x-intercepts.

Ifthelineshavethesame y-intercept,then12 bb  . 1212 12 bbbb bb

Line1andLine2havethe same x-intercept,whichcontradictstheoriginal assumptionthatthelineshaveunequal x-intercepts. Therefore,Line1andLine2cannothavethesame y-intercept.

151. Yes.Twodistinctlineswiththesame y-intercept, butdifferentslopes,canhavethesame x-intercept ifthe x-interceptis0 x 

AssumeLine1hasequation1ymxb  andLine 2hasequation2ymxb  ,

Line1has x-intercept 1 b m and y-intercept b

Line2has x-intercept 2 b m and y-intercept b

AssumealsothatLine1andLine2haveunequal slopes,thatis12 mm  . Ifthelineshavethesame x-intercept,then 12 bb mm

12 21 210 bb mm mbmb mbmb 

2112 1212 But00 0 or0 mbmbbmm b mmmm

Sinceweareassumingthat12 mm  ,theonlyway thatthetwolinescanhavethesame x-interceptis if0. b 

152. Answerswillvary.

153.  21 21 4263 1342 yy m xx

Itappearsthatthestudentincorrectlyfoundthe slopebyswitchingthedirectionofoneofthe subtractions.

Section 1.6

1. add; 12 21025 

2.  2 29 29 23 23 x x x x 

Thesolutionsetis{1,5}.

3. a. Center:(0,0);radius1;221 xy

b. 229 xy

c. 2225 xy

d. Center:(2,1);  22 2(1)9xy

e. Center:(2,1);  22 2(1)9xy

f. Center:(2,2);  22 2(2)9xy

g. Center:(5,7);radius6

4. a. Center:(4,0);  22 49xy ;No yintercepts; x-intercepts:1,7

b. Center:(4,3);  22 4(3)9xy ;No y-intercepts; x-intercepts:4

c.  22 4(4)9xy ;No y-intercepts;No x-intercepts

d. One x-intercept

e. No y-intercepts

5. False.Forexample,222280 xyxy isnotacircle.Ithasnorealsolutions.

6. radius

7. True;293 rr

8. False;thecenterofthecircle  22 3213xy is 3,2.

9. d

10. a

11. Center=(2,1)

Radiusdistancefrom(0,1)to(2,1) (20)(11)42  

22

Equation:22(2)(1)4 xy

12. Center=(1,2)

Radiusdistancefrom(1,0)to(1,2) (11)(20)42  

22

Equation:22(1)(2)4 xy

13. Center=midpointof(1,2)and(4,2)

 14225 222,,2   2 2 5 Radiusdistance2from,2to(4,2)

593 4(22)242 

Equation: 2 2 59 (2) 24xy

 

14. Center=midpointof(0,1)and(2,3)  0213 ,1,2 22   

22 Radiusdistancefrom1,2to(2,3) 21(32)2  

Equation:  22 1(2)2xy

15. 222()() x hykr  222 22 (0)(0)2 4 xy xy  

Generalform:2240 xy

16. 222()() x hykr  222 22 (0)(0)3 9 xy xy  

Generalform:2290 xy

Chapter1: Graphs

17. 222()() x hykr  222 22 (0)(2)2 (2)4 xy xy  

Generalform:22 22 444 40 xyy xyy  

18. 222()() x hykr  222 22 (1)(0)3 (1)9 xy xy  

Generalform:22 22 219 280 xxy xyx  

19. 222()() x hykr  222 22 (4)((3))5 (4)(3)25 xy xy  

Generalform: 22 22 8166925 860 xxyy xyxy  

20. 222()() x hykr  222 22 (2)((3))4 (2)(3)16 xy xy  

Generalform:22 22 446916 4630 xxyy xyxy  

21. 222()() x hykr   222 22 (2)(1)4 (2)(1)16 xy xy  

Generalform:22 22 442116 42110 xxyy xyxy  

22. 222()() x hykr   222 22 (5)((2))7 (5)(2)49 xy xy  

23.

25. 222()() x hykr 

222 22 (5)((1))13 (5)(1)13

26. 222()() x hykr 

222 22 (3)(2)25 (3)(2)20

Generalform:22 22 694420 6470 

27. 224xy

222 2 xy

a. Center:(0,0);Radius2 

b.

c. x-intercepts:  22 2 04 4 42 x x x    y-intercepts:  22 2 04 4 42 y y y   

Theinterceptsare  2,0,2,0, 0,2, and 0,2.

28. 22(1)1xy 222 (1)1xy

a. Center:(0,1);Radius1 

b.

c. x-intercepts:22 2 2 (01)1 11 0 00 x x x x     y-intercepts:  22 2 0(1)1 (1)1 11 11 11 y y y y y  

2or0yy

Theinterceptsare 0,0and 0,2.

29.  22 2328 xy  22 34xy

a. Center:(3,0);Radius2 

b.

c. x-intercepts:   22 2 304 34

32 x x x x x      5or1 x x 

30.  22 31316 xy

a. Center:(–1,1);Radius=2

b.

c. x-intercepts:

c. x-intercepts:

y-intercepts:

(01)(2)3 (1)(2)3

 222

Theinterceptsare   15,0,15,0,   0,222,and  0,222. 

32. 2242200 xyxy 22 22 222 4220 (44)(21)2041 (2)(1)5 xxyy xxyy xy

 a. Center:(–2,–1);Radius=5

b.

c. x-intercepts:222 2 2 (2)(01)5 (2)125 (2)24 224 226 226 x x x x x x 

y-intercepts:222 2 2 (02)(1)5 4(1)25 (1)21 121 121 y y y y y 

Theinterceptsare  226,0,  226,0,  0,121,and  0,121. 

33. 22 22 22 222 4410 441 (44)(44)144 (2)(2)3 xyxy xxyy xxyy xy







a. Center:(–2,2);Radius=3

b. y

c. x-intercepts:222 2 2 (2)(02)3 (2)49 (2)5 25 25 x x x x x   



 y-intercepts:222 2 2 (02)(2)3 4(2)9 (2)5 25 25 y y y y y

Theinterceptsare  25,0,

25,0,

0,25,and  0,25.  34. 22 22 22 222 6290 629 (69)(21)991 (3)(1)1 xyxy xxyy xxyy xy

a. Center:(3,–1);Radius=1

b.

c. x-intercepts:  222 2 2 (3)(01)1 (3)11 30 30 3 x x x x x 

y-intercepts:  222 2 2 (03)(1)1 9(1)1 18 y y y    Norealsolution.

Theinterceptonlyinterceptis  3,0

b.

c.

c. x-intercepts:

Center:(–2,0);Radius= 2 2

39.

c. x-intercepts:

Norealsolutions.

Theinterceptsare 2 2,0 2

and 2 2,0. 2     

22 22 22 222 2820 40 4404 22 xxy xxy xxy xy

a. Center: 2,0;Radius:2 r 

b.

c. x-intercepts: 

40.  22 22 22 22 33120 40 4404 24 xyy xyy xyy

a. Center: 0,2;Radius:2 r 

b.

c.

Section1.6: Circles

41. Centerat(0,0);containingpoint(–2,3).

22 20304913 r 

Equation:  222 22 (0)(0)13 13 xy xy  

42. Centerat(1,0);containingpoint(–3,2).

22 31201642025 r 

Equation:  222 22 (1)(0)20 (1)20 xy xy  

43. Endpointsofadiameterare(1,4)and(–3,2). Thecenterisatthemidpointofthatdiameter:

Center:  1(3)42,1,3 22   

Radius:22(1(1))(43)415 r 

Equation:  222 22 ((1))(3)5 (1)(3)5 xy xy 

44. Endpointsofadiameterare(4,3)and(0,1). Thecenterisatthemidpointofthatdiameter:

Center:  4031 ,2,2 22    

Radius:22(42)(32)415 r 

Equation:  222 22 (2)(2)5 (2)(2)5 xy xy  

45. 2 162 8       Cr r r  222 22 (2)((4))8 (2)(4)64   xy xy

46. 2 492 7       A r r r

 222 22 ((5))(6)7 (5)(6)49

  xy xy

47. (c);Center: 1,2;Radius=2

48. (d);Center: 3,3;Radius=3

49. (b);Center: 1,2;Radius=2

50. (a);Center: 3,3;Radius=3

51. Thecentersofthecirclesare:(4,-2)and(-1,5). Theslopeis5(2)77 1455  m .Usethe slopeandonepointtofindtheequationofthe line.

53. Considerthefollowingdiagram:

Therefore,thepathofthecenterofthecirclehas theequation2 y 

54. Considerthefollowingdiagram:

7 (2)(4) 5 728 2 55 510728 7518



yx yx yx xy

52. Findthecentersofthetwocircles: 22 22 22 4640 (44)(69)449 (2)(3)9 xyxy xxyy xy

Center:  2,3 22 22 22 6490 (69)(44)994 (3)(2)4 xyxy xxyy xy

Center:  3,2

Findtheslopeofthelinecontainingthecenters: 2(3)1 325 m

Findtheequationofthelinecontainingthe centers: 1 3(2) 5 5152 513 5130 yx yx xy xy

Thereforethepathofthecenterofthecirclehas theequation7  x .

55. Lettheupper-rightcornerofthesquarebethe point  ,x y .Thecircleandthesquareareboth centeredabouttheorigin.Becauseofsymmetry, wehavethat x y  attheupper-rightcornerof thesquare.Therefore,weget

Thelengthofonesideofthesquareis2 x .Thus, theareais

56. Theareaoftheshadedregionistheareaofthe circle,lesstheareaofthesquare.Lettheupperrightcornerofthesquarebethepoint   ,x y Thecircleandthesquarearebothcenteredabout theorigin.Becauseofsymmetry,wehavethat x y  attheupper-rightcornerofthesquare. Therefore,weget

Thelengthofonesideofthesquareis2 x .Thus, theareaofthesquareis  2 23272  square units.Fromtheequationofthecircle,wehave 6 r  .Theareaofthecircleis

squareunits. Therefore,theareaoftheshadedregionis

squareunits.

57. ThediameteroftheFerriswheelwas250feet,so theradiuswas125feet.Themaximumheight was264feet,sothecenterwasataheightof 264125139  feetabovetheground.Sincethe centerofthewheelisonthe y-axis,itisthepoint (0,139).Thus,anequationforthewheelis:

222 22 0139125 13915,625

58. Thediameterofthewheelis520feet,sothe radiusis260feet.Themaximumheightis550 feet,sothecenterofthewheelisataheightof 550260290  feetabovetheground.Since thecenterofthewheelisonthe y-axis,itisthe point(0,290).Thus,anequationforthewheel is:

222 22 0290260 29067,600

59.

Refertofigure.Sincetheradiusofthebuilding is60.5mandtheheightofthebuildingis110m, thenthecenterofthebuildingis49.5mabove theground,sothey-coordinateofthecenteris 49.5.Theequationofthecircleisgivenby 222(49.5)60.53660.25 xy

60. Completethesquaretofindtheequationofthe circlerepresentingtheformulaforthebuilding. 22 222 781521184315213364 (39)58 

Refertofigure.Theycoordinateofthecenteris 39.Theradiusis58.Thustheheightofthe buildingis58+39=97m.

61. Centerat(2,3);tangenttothe x-axis.

3 r 

Equation:222 22 (2)(3)3 (2)(3)9 xy xy 

62. Centerat(–3,1);tangenttothe y-axis.

3 r 

Equation:222 22 (3)(1)3 (3)(1)9 xy xy

63. Centerat(–1,3);tangenttotheline y =2. Thismeansthatthecirclecontainsthepoint (–1,2),sotheradiusis r =1.

Equation:222 22 (1)(3)(1) (1)(3)1 xy xy 

64. Centerat(4,–2);tangenttotheline x =1. Thismeansthatthecirclecontainsthepoint (1,–2),sotheradiusis r =3. Equation:222

(4)(2)(3) (4)(2)9 xy

65. a. Substitute222 into: y mxbxyr

2222 () 2 (1)20 x mxbr x mxbmxbr mxbmxbr

Thisequationhasonesolutionifandonlyif thediscriminantiszero.

b. Frompart(a)weknow 2222 (1)20 mxbmxbr  .Usingthe quadraticformula,sincethediscriminantis zero,weget:

2 2(1) bmbmbmrmr x b mb b r mr ymb b mrmrbr b bbb

2

Thepointoftangencyis

c. Theslopeofthetangentlineis m . Theslopeofthelinejoiningthepointof tangencyandthecenter(0,0)is: 2 2 22 0 1 0

Thetwolinesareperpendicular.

66. Let(,) hk bethecenterofthecircle. 240 24 1 2 2 xy yx yx

Theslopeofthetangentlineis 1 2.Theslope from(,) hk to(0,2)is–2. 2 2 0 22 k h kh

Theothertangentlineis27 yx ,andithas slope2.

Theslopefrom(,) hk to(3,–1)is 1 2 . 11 32 223 21 12 k h kh kh hk

Solvethetwoequationsinandhk : 22(12) 224 30 0 kk kk k k

12(0)1 h 

Thecenterofthecircleis(1,0).

67. Theslopeofthelinecontainingthecenter(0,0) and  1,22is 220 22 10  .Thentheslopeofthetangent lineis 12 224 

Sotheequationofthetangentlineis:  2 221 4 22 22 44 48222 2492

yx yx yx xy

68. 224640 xyxy 22 22 (44)(69)449 (2)(3)9 xxyy xy

Center:(2,–3) Theslopeofthelinecontainingthecenterand

69. Thecenterofthecircleis1212 , 22

Thentheslopeofthetangentlineis: 12 224  So,theequationofthetangentlineis

2 223(3) 4 232 223 44 48212232 2411212

70. Completethesquaretoget

Chapter1: Graphs

71. (b),(c),(e)and(g)

Weneed,0 hk  and 0,0onthegraph.

72. (b),(e)and(g)

Weneed0 h  ,0 k  ,and hr 

73. Answerswillvary.

74. Thestudenthasthecorrectradius,butthesigns ofthecoordinatesofthecenterareincorrect.The studentneedstowritetheequationinthe

Chapter 1 Review

1.     0,0,4,2

a.  22distance4020 16420 25  

b.

040242 midpoint,,2,1 2222

c. 2021 slope4042 y x

d. When x increasesby2units, y increasesby 1unit.

2.  1,1,2,3

a.

22distance2131 916255

b.  1213 midpoint,22 121 ,,1 222

22 222 3216 324 xy xy 

Thus,  ,3,2hk  and4 r 

c.  3144 slope2133 y x  

d. When x increasesby3units, y decreasesby 4units.

3.  4,4,4,8

a.   22distance4484 014414412

b.  4448midpoint,22 84 ,4,2 22

c.  8412 slope,undefined 440 y x  

d. Undefinedslopemeansthepointslieona verticalline,inthiscase4 x  .

4.  2,1,3,1

a.    22distance321(1) 250255

b. 231(1)midpoint,22 121 ,,1 222

c.  1(1)0 slope0 325 y x

d. Slope=0meansthepointslieona horizontalline,inthiscase1 y 

5.  4,0,0,0,2,0,  0,2,0,0,0,2

6. 215 yx

Theinterceptsare 0,15, 3.87,0,and  3.87,0

7. 236 326 2 2 3 xy yx yx 

2306 26 3 x x

8. 29 yx x-intercepts:y-intercept:

10. 232 x y 

x-axis:  2 2 23 23same xy xy  

y-axis:  2 2 23 23different xy xy

origin:  2 2 23 23different xy xy

Therefore,thegraphoftheequationhasx-axis symmetry.

11. 22416xy

x-axis:  22 22 416 416same xy xy   y-axis:  22 22 416 416same xy xy

origin:  22 22 416 416same xy xy

Therefore,thegraphoftheequationhasx-axis, y-axis,andoriginsymmetry.

12. 4234yxx x-intercepts: y-intercepts:

Theinterceptsare(2,0),(2,0),(0,4),and (0,2).

Test x-axissymmetry:Let yy  42 42 34 34different yxx yxx

Test y-axissymmetry:Let x x 

42 42 34 34same yxx yxx

Testoriginsymmetry:Let x x  and yy 

42 42 42 34 34 34different yxx yxx yxx

Therefore,thegraphwillhave y-axissymmetry.

13. 3 y xx

x-axis:  3 3different yxx yxx

y-axis:  3 3different yxx yxx

origin:  3 3 3 same yxx yxx yxx   

Therefore,theequationofthegraphhasorigin symmetry.

14. 2220 xxyy



x-axis: 22 22 20 20different xxyy xxyy



y-axis: 22 22 20 20different xxyy xxyy





origin:

 22 22 20 20different xxyy xxyy 



Therefore,thegraphoftheequationhasnoneof thethreesymmetries.

16. 3530xx

UsetheZerooptionfromtheCALCmenu.

Thesolutionsetis

17. 4321 x x

UsetheIntersectoptionontheCALCmenu.

Thesolutionsetis  1.14,1.64

18. Slope=–2;containing(3,–1) 11() (1)2(3) 126 25 25or25 yymxx yx yx yx xyyx

19. Slope=0;containingthepoint(–5,4) 11() 40((5)) 40 4 yymxx yx y y

Chapter1: Graphs

20. Slopeundefined;containing(–3,4). Thisisaverticalline. 3 x  Noslope-interceptform. 5 (3,0) (3,4) 5 5 y x 5

21. x-intercept=2orthepoint(2,0); Containingthepoint(4,–5) 5055 4222

11 5 02 2 5 5 2 5 5210or5 2 yymxx yx yx xyyx

22. y-intercept=–2;containing(5,–3) Pointsare(5,–3)and(0,–2) 2(3)11 0555 m

1 2 5 1 510or2 5 ymxb yx xyyx 

23. Containingthepoints(3,–4)and(2,1) 1(4)55 231 m 

 11 (4)53 4515 511 511or511 yymxx yx yx yx xyyx 

24. Parallelto234 xy ; 2 Slope;containing(–5,3) 3  11() 22103((5))3333 219 33 219 2319or 33 yymxx yxyx yx xyyx

25. Perpendicularto34 xy ; 1 Slopeofperpendicular3 

Containingthepoint(–2,4) 11() 1 4((2)) 3 12 4 33 110 33 110 310or 33 yymxx yx yx

26. 222()() x hykr 

222 22 234 2316 xy xy  

27. 222()() x hykr 

  222 22 121 121 xy xy  

28. 222440 xyxy 22 22 22 222 244 (21)(44)414 (1)(2)9 (1)(2)3 xxyy xxyy xy xy     Center:(1,–2)Radius=3

 22 2 024040 240 xx xx  

 2 22414220 212 225 15 2 x   

  22 2 020440 440 yy yy  

 2 44414432 212 442 222 2 y     

Intercepts:  15,0,  15,0  ,  0,222,and  0,222 

29. 22 336120 xyxy

22 22 22 22 222 240 240 (21)(44)14 (1)(2)5 (1)(2)5 xyxy xxyy xxyy xy xy

Center:(1,–2)Radius=5

22 2 33061200 360 320 xx xx xx 

xx

22 2 30360120 3120 340 yy yy yy

0or4yy

Intercepts:

0,0, 2,0,and  0,4

30. Giventhepoints (2,0),(4,4),(8,5)ABC  .

a. Findthedistancebetweeneachpairof points.    22 22 22 ,(4(2))(40) 4162025 ,(8(4))(54) 1441145 ,(8(2))(50) 1002512555

dAB dBC dAC







  222 20125145 20125145 145145

ThePythagoreanTheoremissatisfied,so thisisarighttriangle.

b. Findtheslopes:   4042 4(2)2 541 8412 5051 82102 AB BC AC m m m

1 21 2 mmABAC

Sincetheproductoftheslopesis–1,the sidesofthetriangleareperpendicularand thetriangleisarighttriangle.

31. slope15of1; 62 slope11of1 86 AB BC





Sincelines AB and BC areparallel,and haveapointincommon(B),theyarethe sameline.Therefore, A , B ,and C are collinear.

32. Acirclewithcenter 1,2hasequation

22212 x yr

point2,42142 9413

point3,53152 4913 Ar rr Br rr Cr rr 

Thereforethepoints A, B and C lieonacircle withcenterpoint 1,2andradius=13.

33. Endpointsofthediameterare(–3,2)and(5,–6). Thecenterisatthemidpointofthediameter: Center:

Radius:22(1(3))(22)1616 3242 r

Equation:

222 22 22 (1)(2)42 214432 24270 xy xxyy xyxy

34. Usingthedistanceformulaonthepoints(–3,2) and(5, y)yields

222 (5(3))(2)64(2)dyy  Nowset10andsolvefor. dy

2 2 22 2 2 1064(2) 1064(2) 10064(2) 36(2) 62 so268 and264 y y y y y yy yy

35. slope= 2 3,containingthepoint(1,2)

36. Answerswillvary.

37. a. 0 x  isaverticallinepassingthroughthe origin,thatis,0 x  istheequationofthe y-axis.

b. 0 y  isahorizontallinepassingthrough theorigin,thatis,0 y  istheequationof the x-axis.

c. 0 xy impliesthat yx  .Thus,the graphof0 xy isthelinepassing throughtheoriginwithslope=–1.

d. 0 xy  impliesthateither0 x  ,0 y  ,or bothare0.0 x  isthey-axisand0 y  is thex-axis.Thus,thegraphof0 xy  isa graphconsistingofthecoordinateaxes.

e. 220xy impliesthatboth0 x  and 0 y  .Thus,thegraphof220 xy isa graphconsistingofasinglepoint-the origin.

Chapter 1 Test

1. a.

22 2121 22 22 4253 68 3664 100 10

25 yx

33543,4 11541,4

4. 32 2210 xxx

Sincethisequationhas0ononeside,wewill usetheZerooptionfromtheCALCmenu.Itwill beimportanttocarefullyselectthewindow settingssoasnottomissanysolutions.

Thesolutionstotheequationare1,0.5,and1.

5. 42580xx

Sincethisequationhas0ononeside,wewill usetheZerooptionfromtheCALCmenu.

Thesolutions,roundedtotwodecimalplaces, are2.50and2.50.

6. 327233xxxx 

Sincetherearenonzeroexpressionsonboth sidesoftheequation,wewillusetheIntersect optionfromtheCALCmenu.Entertheleftside oftheequationinY1andtherightsideinY2.

Thesolutions,roundedtotwodecimalplaces, are2.46,0.24,and1.70

7. a.

b. If x increasesby3units, y willdecrease by2units.

8. 2 y x  y

9. 29xy x-intercepts: y-intercept: 2 2 09 9 3 x

Test x-axissymmetry:Let yy 

2 2 9 9different xy xy

Test y-axissymmetry:Let x x 

2 2 9 9same xy xy

Testoriginsymmetry:Let x x  and yy 

 2 2 9 9different xy xy  

Therefore,thegraphwillhave y-axissymmetry.

10. Slope=2;containing(3,4) 11() (4)2(3) 426 22 yymxx yx yx yx 

11. 222()() x hykr    222 22 4(3)5 4325 xy xy  

Generalform:  22 22 22 4325 8166925 860 xy xxyy xyxy   

Chapter1: Graphs

12. 22 22 22 222 4240 424 (44)(21)441 (2)(1)3 xyxy xxyy xxyy xy

Center:(–2,1);Radius=3 y

Parallelline

Anylineparallelto236 xy hasslope

Chapter 1 Project

Internet-based Project

Perpendicularline

Anylineperpendicularto236

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.