Solutions for Developmental Mathematics 10Th Us Edition by Bittinger

Page 1


Chapter1

WholeNumbers

ExerciseSet1.1

RC2. In615,702,thenumber615isinthethousandsperiod.

RC4. Thenumber721iswritteninstandard notation.

CC2. Awordnamefor42,000,000isforty-twomillion.

CC4. Awordnamefor18,000,000,000iseighteenbillion.

CC6. Awordnamefor40,000,000,000,000isfortytrillion.

2. 5tenthousands

4. 5hundredthousands

6. 9

8. 3

10. 6thousands+6hundreds+8tens+8ones

12. 1thousand+7hundreds+8tens+6ones

14. 3tenthousands+8thousands+4hundreds+5tens+ 3ones

16. 1hundredthousand+3tenthousands+5thousands+ 0hundreds+8tens+0ones,or1hundredthousand+ 3tenthousands+5thousands+8tens

18. 1billion+2hundredmillions+6tenmillions+6 millions+8hundredthousands+8tenthousands+3 thousands+5hundreds+9tens+8ones

20. 3hundredmillions+2tenmillions+3millions+9hundredthousands+9tenthousands+5thousands+5 hundreds+2tens+8ones

22. Forty-eight

24. Forty-fivethousand,ninehundredeighty-seven

26. Onehundredeleventhousand,thirteen

28. Forty-threebillion,fivehundredfiftymillion,sixhundred fifty-onethousand,eighthundredeight

30. Ninety-ninethousand,eighthundredfifty-three

32. Twohundredtwenty-sixmillion,onethousand,twohundredeighty-eight

34. 354,702

36. 17,112

38. 19,610,439

40. 700,000,000

42. 26,000,000,000

44. 200,017

46. 2,793,000,000

48. 32 > 0

50. 28 > 18

52. 77 < 117

54. 999 > 997

56. 345 < 456

58. 12 < 32

60. 1, 014, 023 > 758, 708,or758, 708 < 1, 014, 023

62. 843, 393 > 842, 583,or842, 583 < 843, 393

64. Alldigitsare9’s.Answersmayvary.Foran8-digitreadout,forexample,itwouldbe99,999,999.Thisnumberhas threeperiods.

ExerciseSet1.2

RC2. Inthesubtraction18 5=13,thenumber5isthe subtrahend

RC4. Thedistancearoundanobjectisitsperimeter

CC2. 910 100 / ✥✥ 7 93

CC4. 10 1 /0/00 400 600

9910 1000 / ✥✥✥ 999 1 2. 1521

8. 1 3654 +2700 6354

10. 1 271 +3338 3609

12. 1 280 +34, 902 35, 182

14. 111 45, 879 +21, 786 67, 665

16. 1111 99, 999 +112 100, 111 18. 1111 42, 487 83, 141 +36, 712 162, 340

20. 22 989 566 834 920 +703 4012

22. Perimeter=14mi+13mi+8mi+10mi+47mi+ 22mi

Wecarryouttheaddition.

Theperimeterofthefigureis114mi.

24. 90ft+90ft+90ft+90ft=Perimeter Wecarryouttheaddition. 90 90 90 +90 360

Thebattertravels360ftwhenahomerunishit.

26. 87 34 53

/ 5375 2989

52. 7913 803✥✥ 418 385

54. 3915 9405 / ✥✥ 258 9147

56. 14 64 / 910 7 /500 / ✥✥ 3604 3896

58. 6913 84, 703 / ✥✥ 298 84, 405

60. 14 4 / 10017 1 /5 /, 0 /1/7 / 7809 7208

62. 79913 8003 / ✥✥✥ 599 7404

64. 69910 17, 000 / ✥✥✥ 11, 598 5402

66. 399916 40, 006 / ✭✭✭✭ 147 39, 859

68. 299914 30, 004 / ✭✭✭✭ 6749 23, 255

70. Ninebillion,threehundredforty-sixmillion,threehundred ninety-ninethousand,fourhundredsixty-eight

72. Onemethodisdescribedintheanswersectioninthetext. Anothermethodis:1+100=101,2+99=101, ,50 +51=101.Thenthesumof50101’sis5050.

ExerciseSet1.3

RC2. Inthemultiplication4 × 3=12,12istheproduct.

RC4. Theproductof1 andanynumber a is a

RC6. dividend

RC8. divisor

CC2. 1000

22. 22 615 11 8928 × 3172 17856 624960 892800 26784000 28, 319, 616

24. 24 24 13 6408 × 6064 25632 384480 38448000 38, 858, 112

26. 11 44 44 355 × 299 3195 31950 71000 106, 145

28. 1 2 2 41 6521 × 3449 58689 260840 2608400 19563000 22, 490, 929

30. 34 44 4506 × 7800 3604800 31542000 35, 146, 800

32. 1 2 6009 × 2003 18027 12018000 12, 036, 027

34. A = l × w =129yd × 65yd=8385sqyd

36. A = l × w =200ft × 85ft=17, 000sqft

38. 54 ÷ 9=6because54=9 6.

40. 37 37 =1Anynonzeronumberdividedbyitselfis1.

42. 56 1 =56Anynumberdividedby1isthatsamenumber.

44. 0 32 =0Zerodividedbyanynonzeronumberis0.

46. 74 ÷ 0isnotdefined,becausedivisionby0isnotdefined.

48. 20 4 =5because20=4 5.

50. 233 3 699 6 9 9 9 9 0

Theansweris233. 52. 108 8 869 8 69 64 5

Theansweris108R5. 54. 708 3 2124 21 24 24 0

Theansweris708.

Theansweris1012R2.

Theansweris194R1.

Theansweris146R5.

62. 2009 3 6027 6 27 27 0

Theansweris2009.

64. 517 8 4139 40 13 8 59 56 3

Theansweris517R3.

66. 1270 100 127, 000 100 270 200 700 700 0 0 0

Theansweris1270.

68. 426 10 4260 40 26 20 60 60 0

Theansweris426.

70. 289 20 5798 40 179 160 198 180 18

Theansweris289R18.

72. 24 40 987 80 187 160 27

Theansweris24R27.

74. 40 23 942 92 22

Theansweris40R22.

76. 50 54 2729 270 29

Theansweris50R29.

78. 55 102 5612 510 512 510 2

Theansweris55R2.

80. 107 7 749 7 49 49 0

Theansweris107.

82. 808 9 7273 72 73 72 1

Theansweris808R1.

84. 1010 7 7074 70 7 7 4

Theansweris1010R4.

86. 301 24 7242 72 42 24 18

Theansweris301R18.

88. 102 48 4899 48 99 96 3

Theansweris102R3. Copyright c 2020PearsonEducation,Inc.

90. 210 36 7563 72 36 36 3

Theansweris210R3.

92. 803 36 28, 929 288 129 108 21

Theansweris803R21.

94. 984 90 88, 560 810 756 720 360 360 0

Theansweris984.

96. 2904 306 888, 888 612 2768 2754 1488 1224 264

Theansweris2904R264.

98. 7002 803 5, 622, 606 5621 1606 1606 0

Theansweris7002.

100. 530

102. 8950

104. 50

106. 800

108. 900

110. 700

112. 4600

114. 198,400

116. 5000

118. 2000

120. 736,000

122. 6,713,000

124. 6260 97100 4650 +81+80 290 126. 673670 28 30 640

128. 568600 472500 938900 +402+400 2400

130. 94389400 2787 2800 6600

132. 76488000 93489000 78428000 +2222+2000 27,000

134. 84,89085,000 11,110 11,000 74,000

136. 5150 × 78 × 80 4000

138. 6360 × 54 × 50 3000

140. 355400 × 299 × 300 120,000

142. 789800 × 434 × 400 320,000

144. 454 ÷ 87 ≈ 450 ÷ 90=5

146. 1263 ÷ 29 ≈ 1260 ÷ 30=42

148. 3641 ÷ 571 ≈ 3600 ÷ 600=6

150. 32, 854 ÷ 748 ≈ 32, 900 ÷ 700=47

152. $498$500 289300 +145+100 $900

154. $498$500 289300 62100 159200 +320+300 $1400

Thebudgetcoversthechoices.

156. Answerswillvarydependingontheoptionschosen.

158. a) Totalcostofattending:

$250 490=$122, 500

Totalcostofhotelrooms:

$170 · 2 · 320=$108, 800

Totalamountspent:

$122, 500+$108, 800=$231, 300

b) Totalcostofattending:

$200 500=$100, 000

Totalcostofhotelrooms:

$200 2 300=$120, 000

Totalamountspent:

$100, 000+$120, 000=$220, 000

160. 9002 +4587 13, 589

162. 13 23/ 10818 3 /4/0 /, 79/8 / 86, 679 254, 119

164. 1tenthousand+2thousands+8hundreds+4tens+ 7ones

166. Perimeter=62yd+39yd+54yd+46yd+28yd Wecarryouttheaddition. 2 62 39 54 46 +28 229

Theperimeterofthefigureis229yd.

168. Pairsoffactorswhoseproductis36are: 1and36 2and18 3and12 4and9 6and6

a)Thepairabovewhosesumis13is4and9.

b)Thepairabovewhosedifferenceis0is6and6.

c)Thepairabovewhosesumis20is2and18.

d)Thepairabovewhosedifferenceis9is3and12.

170. 34, 584, 132 ÷ 76 =4 , 386

Considertherelatedmultiplicationsentence: 4 , 386 76 =34, 584, 132 Sincetheonesdigitoftheproductis2,themissingones digitmustbeeither2or7(6 2=12and6 7=42).

Wetry2: 34, 584, 132 ÷ 762=45, 386 Weseethatthemissingonesdigitis2andthemissing thousandsdigitis5.

ExerciseSet1.4

RC2. (a)

RC4. (b)

CC2. 672=6 n 672?6 112 672TRUE 112isasolution.

CC4. 5462=3189+ t 5462?3189+2327 5516FALSE 2327isnotasolution.

2. 25

4. 8

6. t =5678+9034=14, 712

8. m =9007 5667=3340

10. z =34 · 15=510

12. w =256 ÷ 16=16

14. t =22 15=7

16. t =16 16=0

18. x =57 20=37

20. w =53 17=36

22. x = 42 6 =7

24. m = 162 9 =18

26. y = 96 4 =24

28. t = 741 3 =247

30. y =9281 8322=959

32. p =92 56=36

34. y =23 × 78=1794

36. z =133 67=66

38. w = 3404 4 =851

40. x =807 438=369

42. q =10, 534 ÷ 458=23

44. x = 6080 19 =320

46. x = 1500 20 =75

48. t =9281 8322=959

50. n =3004 1745=1259

52. n = 660 12 =55

54. x = 22, 135 233 =95

56. z =512 63=449

58. 142 9 1278 9 37 36 18 18 0

Theansweris142.

60. 334 17 5689 51 58 51 79 68 11

Theansweris334R11.

62. 342 > 339

64. 0 < 11

66. 6,375,600

68. x = 14, 332, 388 48, 916 =293

Chapter1Mid-ChapterReview

1. Thestatementisfalse.Forexample,8 5=3,but5is notequalto8+3.

2. True

3. Thestatementisfalse.Forexample,3 0=0and0isnot greaterthan3.Also,1 1=1and1isnotgreaterthan1.

4. Itistruethatzerodividedbyanynonzeronumberis0.

5. Thestatementisfalse.Anynumberdividedby1isthe numberitself.Forexample, 27 1 =27.

6. 95 ,406 ,237 ↑↑↑

Ninety-fivemillion, fourhundredsixthousand, twohundredthirty-seven

7. 5914 604 / ✥✥ 497 107

8. 2 6 98

Thedigit6namesthenumberofhundreds.

9. 6 1,204

Thedigit6namesthenumberoftenthousands.

10. 14 6 ,237

Thedigit6namesthenumberofthousands.

11. 58 6

Thedigit6namesthenumberofones.

12. 306,458,1 2 9

Thedigit2namesthenumberoftens.

13. 30 6 ,458,129

Thedigit6namesthenumberofmillions.

14. 306,4 5 8,129

Thedigit5namesthenumberoftenthousands.

15. 306,458, 1 29

Thedigit1namesthenumberofhundreds.

16. 5602=5thousands+6hundreds+0tens+2ones,or5 thousands+6hundreds+2ones

17. 69,345=6tenthousands+9thousands+3hundreds+ 4tens+5ones

18. Awordnamefor136isonehundredthirty-six.

19. Awordnamefor64,325issixty-fourthousand,threehundredtwenty-five.

20. Standardnotationforthreehundredeightthousand,seven hundredsixteenis308,716.

21. Standardnotationforfourmillion,fivehundredsixtyseventhousand,twohundredninety-oneis4,567,291.

22. Since61istotherightof16onthenumberline,61 > 16.

23. Since100istotheleftof101onthenumberline, 100 < 101.

24. Since0istotheleftof18onthenumberline,0 < 18. Copyright c 2020PearsonEducation,Inc.

25. Since380istotherightof327onthenumberline, 380 > 327.

26. 4 b =72 4 b 4 = 72 4 b =18

Thenumber18checks.Itisthesolution.

27. 45=23+ x 45 23=23+ x 23 22= x Thenumber22checks.Itisthesolution.

28. t =725 ÷ 25 t =29Doingthedivision

Thenumber29checks.Itisthesolution.

29. 3902 260= y 3642= y Doingthesubtraction

Thenumber3642checks.Itisthesolution.

30. 316 +482 798

31. 11 593 +437 1030

32. 11 2638 +5284 7922

33. 111 4617 2436 +481 7534

34. 786 321 465

35. 11 51 / 14 6 /2/4 / 285 339

36. 15 25 / 912 3 /602 / ✥✥ 1748 1854

37. 49914 5004 / ✥✥✥ 676 4328

3 36 × 6 216

11 55 567 × 28 4536 11340 15, 876

2 1 3 407 × 325 2035 8140 122100 132, 275

223 1 9435 × 602 18870 5661000 5, 679, 870 42. 253 4 1012 8 21 20 12 12 0 Theansweris253.

43. 112 38 4261 38 46 38 81 76 5

Theansweris112R5. 44. 23 60 1399 120 199 180 19

Theansweris23R19.

45. 144 56 8095 56 249 224 255 224 31 Theansweris144R31.

46. Perimeter=10m+4m+8m+3m=25m

47. A =4in. × 2in.=8sqin.

48. Round647tothenearesthundred. 6 4 7 ↑

Thedigit6isinthehundredsplace.Considerthenext digittotheright.Sincethedigit,4,is4orlower,round down,meaningthat6hundredsstaysas6hundreds.Then changethedigitstotherightofthehundredsdigittozeros. Theansweris600.

49. Round823,502tothenearestthousand. 823, 5 02 ↑

Thedigit3isinthethousandsplace.Considerthenext digittotheright.Sincethedigit,5,is5orhigher,round3 thousandsupto4thousands.Thenchangethethedigits totherightofthethousandsdigittozeros. Theansweris824,000.

50. Roundedto thenearesthundred 218900 × 865 × 200 180,000 ← Estimatedanswer

51. Byroundingpricesandestimatingtheirsumashopper canestimatethetotalgrocerybillwhileshopping.Thisis particularlyusefuliftheshopperwantstospendnomore thanacertainamount.

52. Commasseparatetheperiodsandmakethenumberseasier toread.

53. Answerswillvary.Supposeonecoatcosts$150.Thenthe multiplication4 · $150givesthecostoffourcoats. Supposeonereamofcopypapercosts$4.Thenthemultiplication$4 150givesthecostof150reams.

54. Usingthedefinitionofdivision,0 ÷ 0= a suchthat a 0=0. Weseethat a couldbe any numbersince a · 0=0forany number a.Thus,wecannotsaythat0 ÷ 0=0.Thisis whyweagreenottoallowdivisionby0.

ExerciseSet1.5

RC2. Translate.

RC4. Check.

CC2. Let x =thenumberofmilesbywhichWednesday’s driveexceededThursday’sdrive.Thenwehave500= x +125.Thecorrectansweris(b).

CC4. Let x =thetotalamountspentongroceriesinMay andJune.Thenwehave500+125= x.Thecorrect answeris(a).

2. Let w =thenumberofpoundsbywhichthewastegeneratedannuallypercapitaintheUnitedStatesexceedsthe wastegeneratedinDenmark.

Solve:1473+ w =1606 w =123lb

4. Let w =thenumberofpoundsofwastegeneratedannually percapitainIceland.

Solve: w +531=1713 w =1182lb

6. Let n =thenumberofentriesineachrow.

Solve:504 ÷ 36= n n =14entries

8. Let r =thenumberofactiverotaryoilrigsin2007.

Solve: r +687=984 r =297rigs

10. Let n =thenumberofmilesbywhichthelengthofthe NileexceedsthelengthoftheMissouri-Mississippi.

Solve:3860+ n =4135 n =275mi

12. Let p =thetotalnumberofsquaresinthepuzzle.

Solve:15 15= p p =225squares

14. Let c =thenumberofmilligramsofcaffeineina20-oz bottleofCocaCola.

Solve:25+32= c c =57milligrams

16. Let m =thenumberofminutesinaday.

Solve:60 24= m m =1440minutes

18. Let r =theamountbywhichtheaveragemonthlyrentin AtlantaexceedstheaveragemonthlyrentinIndianapolis.

Solve:905+ r =1401 r =$496permonth

20. Let r =theamountofrenteachsisterpays.

Solve:2r =936 r =$468permonth

22. Let r =theamountofrentatenantwouldpayforaonebedroomapartment,onaverage,inSeattleduringa6monthperiod.

Solve:6 · 2063= r r =$12, 378

24. Let s =thespeedlimitfortrucks.

Solve: s +10=75 s =65mph

26. Let q =thenumberofquiresinaream.

Solve:25 q =500 q =20quires

28. Let s =theamountbywhichspendingbyvisitorstothe UnitedStatesexceededspendingbyAmericanstraveling abroad.

Solve:110, 500, 000, 000+ s =153, 700, 000, 000 s =$43, 200, 000, 000

30. Let c =thetotalcostofthepurchase.

Solve:96 88= c c =$8448

32. Let w =thenumberoffullweeksthatwillpassbeforethe stationmustbeginre-airingepisodes.

Solve:5 · w =208 w =41R3,so41fullweekswillpassand3episodeswillbe shownthefollowingweekbeforepreviouslyairedepisodes arererun.

34. Let l =thenumberoflabelsoneachsheet.

Solve:25 · l =750 l =30labels

36. Let g =thenumberofgallonsrequiredfor3795miofcity driving.

Solve:3795 ÷ 23= g g =165gal

38. a) Let A =theareaofthecourt,insquarefeet.

Solve: A =94 50 A =4700squarefeet

b) Let P =theperimeterofthecourt,infeet.

Solve: P =94+50+94+50 P =288ft

c) Let a =theamountbywhichtheareaofacollegecourtexceedstheareaofahighschoolcourt, insquarefeet.

Solve:4200+ a =4700 a =500squarefeet

40. Let c =thenumberofcartonsneeded.

Solve:528 ÷ 12= c c =44cartons

42. Let m =thedistanceonthemap,ininches,betweentwo citiesthat,inreality,are2016miapart.

Solve:2016 ÷ 288= m m =7in.

Let r =thedistanceinmiles,inreality,betweentwocities thatare8in.apartonthemap.

Solve:288 8= r r =2304mi

44. Let m =thenumberofmonthsrequiredtopayoffthe loan.

Solve:7824 ÷ 163= m m =48months

46. Let n =thenumberof100’sin3500.

Solve:3500 ÷ 100= n n =35

Let t =thenumberofminutesyoumustgolf,walking,in ordertoloseonepound.

Solve: t =35 20 t =700min;wecouldalsoexpressthisas11hr,40min.

48. Let n =thenumberofnewjobsthatwillbecreatedfor marketingmanagersandaccountants.

n =19, 700+142, 400=162, 100

Let s =thenumberofnewjobsthatwillbecreatedfor salesmanagers.

Solve: s +143, 100=162, 100

s =19, 000jobs

50. Let F =thenumberofseatsinfirstclass, E =thenumber ofseatsineconomyclass,and T =thetotalnumberof seats.

Solve:3 4= F ,23 6= E ,and T = F + E F =12, E =138, T =12+138=150seats

52. Let c =thetotalcostofthe5videogames.

Solve:5 64= c c =$320

Thenlet n =thenumberof$20billsrequired.

Solve:320 ÷ 20= n n =16$20bills

54. Let b =thenewbalance.

Solve:749 34 65+123= b b =$773

56. Let l =thetotallengthofthebookshelves,infeet.

Solve:6 3= l l =18ft

Sincethetotallengthofthebookshelvesisgreaterthan 16ft,theshelvescannotbeputsidebysideonthe16-ft wall.

58. 15 85 / 912 9 /602 / ✥✥ 1843 7759

60. 147 32 4708 32 150 128

4

Theansweris147R4.

62. A = l × w =211ft × 46ft=9706sqft

64. x =81 15=66

66. Consideronestudenttakingoneclassa“student-class unit.”Thenlet s =thetotalnumberofstudent-classunits and p =thenumberofstudentstaughtbyeachinstructor.

Solve:1200 5= s,4 30= p s =6000, p =120

Nowlet n =thenumberofinstructors.

Solve:6000 ÷ 120= n n =50instructors

ExerciseSet1.6

RC2. Theexpression92 canberead“ninesquared.”

RC4. Tofindtheaverageof7,8,and9,weaddthenumbers anddividethesumby3

CC2. Division

CC4. Multiplication

2. 25

4. 133 6. 92 8. 14 10. 125 12. 64

14. 100,000 16. 64

18. (12+6)+18=18+18 =36

20. (52 40) 8=12 8 =4

22. (1000 ÷ 100) ÷ 10=10 ÷ 10 =1

24. 256 ÷ (64 ÷ 4)=256 ÷ 16 =16

26. 22 +52 =4+25 =29

28. (32 27)3 +(19+1)3 =53 +203 =125+8000 =8125

30. 23+18 20=23+360 =383

32. 10 7 4=70 4 =66 34. 90 5 5 2=90 50 =40

36. 82 8 2=64 8 2 =64 16 =48

38. 1000 ÷ 25 (15+5)=1000 ÷ 25 20 =40 20 =20

40. 3 · 8+5 · 8=24+40 =64

42. 144 ÷ 4 2=36 2 =34

44. 7 · (10 3)2 2 · (3+1)2 =7 · 72 2 · 42 =7 49 2 16 =343 32 =311

46. 62 34 ÷ 33 =36 81 ÷ 27 =36 3 =33

48. 72 +20 4 (28+9 2) =72 +20 · 4 (28+18) =72 +20 4 46 =49+20 4 46 =49+80 46 =83

50. 8 × 9 (12 8) ÷ 4 (10 7) =8 × 9 4 ÷ 4 3 =72 1 3 =68

52. 80 24 15 ÷ (7 5 45 ÷ 3) =80 24 15 ÷ (35 15) =80 24 · 15 ÷ 20 =80 16 15 ÷ 20 =80 240 ÷ 20 =80 12 =68

54. 27 ÷ 25 24 ÷ 22 =128 ÷ 32 16 ÷ 4 =4 · 16 ÷ 4 =64 ÷ 4 =16

56. 86+92+80+78 4 = 336 4 =84

58. $1025+$775+$2062+$942+$3721 5 = $8525 5 =$1705

60. 72 ÷ 6 −{2 × [9 (4 × 2)]}

=72 ÷ 6 −{2 × [9 8]}

=72 ÷ 6 −{2 × 1}

=72 ÷ 6 2 =12 2 =10

62. [92 × (6 4) ÷ 8]+[7 × (8 3)]

=[92 × 2 ÷ 8]+[7 × 5] =[184 ÷ 8]+35 =23+35 =58

64. (18 ÷ 2) ·{[(9 9 1) ÷ 2] [5 20 (7 9 2)]}

=9 ·{[(81 1) ÷ 2] [5 20 (63 2)]}

=9 ·{[80 ÷ 2] [5 20 61]}

=9 ·{40 [100 61]}

=9 ·{40 39} =9 ·{1} =9

66. 15(23 4 2)3 ÷ (3 25) =15(23 8)3 ÷ 75Multiplyinginsideparentheses

=15 · 153 ÷ 75Subtractinginsideparentheses =15 3375 ÷ 75Evaluatingtheexponential expression

=50, 625 ÷ 75Doingallmultiplicationand =675divisionsinorderfromlefttoright

68. (19 24 )5 (141 ÷ 47)2 =(19 16)5 32 =35 32 =243 9 =234

70. x =5032 4197=835

72. y = 1554 42 =37

74. t = 10, 000 100 =100

76. Let g =thetotalnumberofgallonsofgasolinepurchased.

Solve:23+24+26+25= g g =98gallons

78. 12 ÷ 4+2 3 2=3+6 2 =7Correctanswer 12 ÷ (4+2) · (3 2)=2

80. Answersmayvary.Onecorrectansweris

9 8+7 6 5 4+3 2 1=100.

ExerciseSet1.7

RC2. 6isafactor of42.

RC4. 42isamultiple of3.

RC6. Onefactorization of42is2 21.

CC2. True;30=2 15.

CC4. Thenumber1isnotprimebecauseitdoesnothave twodifferentfactors.Thestatementisfalse.

CC6. Thenumber10isnotprime(10=2 5),sothestatementisfalse.

2. 4 13 52 52 0

Theremainderis0,so13isafactorof52.

4. 42 16 680 64 40 32 8

Theremainderisnot0,so16isnotafactorof680.

6. 1,2,4,8,16

8. 1,2,3,4,6,8,12,16,24,48

10. 1,3,9

12. 1,13

14. 1,2,4,5,10,20,25,50,100

16. 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120

18. 11,22,33,44,55,66,77,88,99,110

20. 50,100,150,200,250,300,350,400,450,500

22. 5,10,15,20,25,30,35,40,45,50

24. 13,26,39,52,65,78,91,104,117,130

26. 6,12,18,24,30,36,42,48,54,60

28. 14,28,42,56,70,84,98,112,126,140

30. 6 8 48 48 0 48isdivisibleby8.

32. 1409 3 4227 3 12 12 27 27 0 4227isdivisibleby3. Copyright c

34. 25 4 102 8 22 20 2 102isnotdivisibleby4.

36. 591 7 4143 35 64 63 13 7 6 4143isnotdivisibleby7.

38. Thenumber2isprime.Ithasonlythefactors1and2.

40. Thenumber19isprime.Ithasonlythefactors1and19.

42. Thenumber27hasfactors1,3,9,and27.Itiscomposite.

44. Thenumber49hasfactors1,7,and49.Itiscomposite.

46. 2 2 2 2

48. 3 · 5

50. 2 2 2 2 2

52. 2 2 2 5

54. 2 31

56. 2 2 5 7

58. 2 · 5 · 11

60. 2 5 7

62. 2 43

64. 3 3 11

66. 2 2 11 11

68. 7 · 13

70. 2 2 2 3 3 5 5

72. 3 3 3 5 5

74. 3 3 5 11 13

76. 4millions

78. 4tenthousands

80. 34,600

82. 2,428,500

ExerciseSet1.8

RC2. Anumberisdivisibleby3ifthesumofitsdigitsis divisibleby3.Thecorrectansweris(a).

RC4. Anumberisdivisibleby5ifitsonesdigitis0or5. Thecorrectansweris(d).

RC6. Anumberisdivisibleby8ifthenumbernamedbyits lastthreedigitsisdivisibleby8.Thecorrectanswer is(h).

RC8. Anumberisdivisibleby10ifitsonesdigitis0.The correctansweris(e).

2. Because4+6+7=17and17isnotdivisibleby9,467is notdivisibleby9.

4. Theonesdigitiseven; 2+0+0+4=6and6is divisible by3.Thus2004isdivisibleby6.

6. 6120isdivisibleby5becausetheonesdigitis0.

8. Because3+2+8+6=19and19isnotdivisibleby3, 3286isnotdivisibleby3.

10. 64,091isnotdivisibleby10becausetheonesdigitisnot 0.

12. 9840isdivisibleby2becausetheonesdigitiseven.

14. Becausethenumbernamedbythelastthreedigits,106, isnotdivisibleby8,thenumber546,106isnotdivisible by8.

16. Becausethenumbernamedbythelasttwodigits,36,is divisibleby4,thenumber298,736isdivisibleby4.

18. 12,600isdivisibleby2becausetheonesdigitiseven.

Because 1+2+6+0+0=9and9is divisibleby3,then 12,600isdivisibleby3.

12,600isdivisibleby4becausethenumbernamedbyits lasttwodigits,00,isdivisibleby4.

12,600isdivisibleby5becausetheonesdigitis0.

12,600isdivisibleby2andby3(seeabove),soitisdivisibleby6.

12,600isdivisibleby8becausethenumbernamedbyits lastthreedigits,600,isdivisibleby8.

Becausethesumofthedigitsisdivisibleby9(seeabove), 12,600isdivisibleby9.

12,600isdivisibleby10becausetheonesdigitis0.

20. 2916isdivisibleby2becausetheonesdigitiseven.

Because2+9 +1+6=18and18is divisibleby3,2916 isdivisibleby3.

2916isdivisibleby4becausethenumbernamedbyits lasttwodigits,16,isdivisibleby4.

2916isnotdivisibleby5becausetheonesdigitisneither 0nor5.

2916isdivisibleby2andby3(seeabove),soitisdivisible by6.

2916isnotdivisibleby8becausethenumbernamedby itslastthreedigits,916,isnotdivisibleby8.

Becausethesumofthedigitsisdivisibleby9(seeabove), 2916isdivisibleby9.

2916isnotdivisibleby10becausetheonesdigitisnot0.

22. 25,088isdivisibleby2becausetheonesdigitiseven.

Because2+5+0+8+8=23and23isnotdivisibleby 3,then25,088isnotdivisibleby3.

25,088isdivisibleby4becausethenumbernamedbyits last2digits,88,isdivisibleby4.

25,088isnotdivisibleby5becausetheonesdigitisneither 0nor5.

25,088isnotdivisibleby6becauseitisnotdivisibleby3 (seeabove).

25,088isdivisibleby8becausethenumbernamedbyits lastthreedigits,088,isdivisibleby8.

25,088isnotdivisibleby9becausethesumofthedigits isnotdivisibleby9(seeabove).

25,088isnotdivisibleby10becausetheonesdigitisnot 0.

24. 143,507isnotdivisibleby2becausetheonesdigitisnot even.

Because1+4+3+5+0+7=20and20isnotdivisible by3,then143,507isnotdivisibleby3.

143,507isnotdivisibleby4becausethenumbernamed byitslasttwodigits,07,isnotdivisibleby4.

143,507isnotdivisibleby5becausetheonesdigitisneither0nor5.

143,507isnotdivisibleby6becauseitisnoteven.

143,507isnotdivisibleby8becausethenumbernamed byitslastthreedigits,507,isnotdivisibleby8.

143,507isnotdivisibleby9becausethesumofthedigits isnotdivisibleby9(seeabove).

143,507isnotdivisibleby10becausetheonesdigitisnot 0.

26. Thenumbersforwhichtheonesdigitisevenare56,324, 784,200,42,812,and402.Thesenumbersaredivisibleby 2.

28. Thenumbersforwhichthelasttwodigitsaredivisible by4are56,324,784,200,and812.Thesenumbersare divisibleby4.

30. Thenumbersthataredivisiblebyboth2and3are324, 42,and402.Thesenumbersaredivisibleby6.

32. Theonlynumberforwhichthesumofthedigitsisdivisible by9is324.Thisnumberisdivisibleby9.

34. Thenumbersforwhichthesumofthedigitsisdivisibleby 3are1101,313,332,111,126,876,1110,9990,and126,111.

36. Thenumbersforwhichtheonesdigitis0or5are305, 13,025,1110,64,000,and9990.

38. Thenumbersforwhichthelastthreedigitsaredivisible by8are7624,5128,and64,000.

40. Thenumbersforwhichthelasttwodigitsaredivisibleby 4are313,332,7624,876,5128,and64,000.

42. y +124=263 y =263 124=139

44. 18 t =1008 t = 1008 18 =56

46. 338= a · 26 338 26 = a 13= a

48. Let m =thenumberofminutesin72hours. Solve:60 · 72= m m =4320minutes.

50. 2520isdivisibleby2:2520=2 1260;1260isdivisibleby 2:2520=2 2 630;630isdivisibleby2:2520=2 2 2 315; 315isnotdivisibleby2,butitisdivisibleby3:2520= 2 2 2 3 105;105isdivisibleby3:2520=2 2 2 3 3 35; 35isnotdivisibleby3,butitisdivisibleby5:2520= 2 2 2 3 3 5 7.Since7isaprimenumber,thelast factorizationistheprimefactorization.

52. 1998isdivisibleby2:1998=2 · 999;999isnotdivisible by2,butitisdivisibleby3:1998=2 3 333;333is divisibleby3:1998=2 3 3 111;111isdivisibleby3: 1998=2 3 3 3 37.Since37isaprimenumber,thelast factorizationistheprimefactorization.

54. Thenumbermustbeamultipleof11.Wetrynumbersof theform11 n where n isaprimenumbergreaterthan5. Thesmallestmultiplethatmeetsthecriteriais11 11,or 121.Thisisthenumber.

ExerciseSet1.9

RC2. True

RC4. False

CC2. 20=2 2 5, 24=2 2 2 3

TheLCMis2 2 2 3 5,or120.

CC4. 36=2 · 2 · 3 · 3, 600=2 2 2 3 5 5

TheLCMis2 2 2 3 3 5 5,or1800.

CC6. 15=3 · 5, 40=2 · 2 · 2 · 5 28=2 2 7

125=5 5 5

TheLCMis2 2 2 3 5 5 5 7,or21,000.

InthissectionwewillfindtheLCMusingthelistof multiplesmethodinExercises2-20andtheprimefactorizationmethodinExercises22-50.

2. a)15isamultipleof3,soitistheLCM. c)TheLCM=15.

4. a)15isnotamultipleof10.

b)Checkmultiples:

2 15=30Amultipleof10

c)TheLCM=30.

6. a)12isnotamultipleof8.

b)Checkmultiples:

2 12=24Amultipleof8

c)TheLCM=24.

8. a)Wenoticeattheoutsetthat9and11havenocommon primefactor.Therefore,theLCMistheproductofthe twonumbers.

c)TheLCM=9 11,or99.

10. a)36isnotamultipleof24.

b)Checkmultiples:

2 36=72Amultipleof24

c)TheLCM=72.

12. a)27isnotamultipleof21.

b)Checkmultiples:

2 · 27=54Notamultipleof21

3 27=81Notamultipleof21

4 27=108Notamultipleof21

5 27=135Notamultipleof21

6 27=162Notamultipleof21

7 27=189Amultipleof21

c)TheLCM=189.

14. a)18isnotamultipleof12.

b)Checkmultiples:

2 18=36Amultipleof12

c)TheLCM=36.

16. a)45isnotamultipleof35.

b)Checkmultiples:

2 45=90Notamultipleof35

3 · 45=135Notamultipleof35

4 45=180Notamultipleof35

5 45=225Notamultipleof35

6 45=270Notamultipleof35

7 45=315Amultipleof35

c)TheLCM=315.

18. a)20isnotamultipleof18.

b)Checkmultiples:

2 20=40Notamultipleof18

3 20=60Notamultipleof18

4 20=80Notamultipleof18

5 20=100Notamultipleof18

6 · 20=120Notamultipleof18

7 20=140Notamultipleof18

8 20=160Notamultipleof18

9 20=180Amultipleof18

c)TheLCM=180.

20. a)48isnotamultipleof36.

b)Checkmultiples:

2 48=96Notamultipleof36

3 · 48=144Amultipleof36

c)TheLCM=144.

22. Notethateachofthenumbers3,5,and7isprime.They havenocommonprimefactor.Whenthishappens,the LCMisjusttheproductofthenumbers.

TheLCMis3 5 7,or105.

24. a) 6=2 3 12=2 2 3 18=2 3 3

b)TheLCMis2 · 2 · 3 · 3,or36.

26. a) 8=2 2 2 16=2 · 2 · 2 · 2 22=2 11

b)TheLCMis2 2 2 2 11,or176.

28. a) 12=2 2 3 18=2 · 3 · 3 40=2 2 2 5

b)TheLCMis2 2 2 3 3 5,or360.

30. a) 8=2 2 2 16=2 2 2 2 12=2 2 3

b)TheLCMis2 2 2 2 3,or48.

32. a) 18=2 · 3 · 3 30=2 3 5 50=2 5 5 48=2 2 2 2 3

b)TheLCMis2 · 2 · 2 · 2 · 3 · 3 · 5 · 5,or3600.

34. 16isafactorof32,sotheLCMis32.

36. 12isafactorof72,sotheLCMis72.

38. 13and14havenocommonprimefactor,sotheLCMis 13 14,or182.

40. 23and25havenocommonprimefactor,sotheLCMis 23 25,or575.

42. a) 56=2 2 2 7 72=2 2 2 3 3

b)TheLCMis2 · 2 · 2 · 3 · 3 · 7,or504.

44. a) 75=3 5 5 100=2 2 5 5

b)TheLCMis2 2 3 5 5,or300.

46. a) 22=2 11 42=2 3 7 51=3 17

b)TheLCMis2 · 3 · 7 · 11 · 17,or7854.

48. a) 625=5 5 5 5

75=3 5 5

500=2 2 5 5 5

25=5 · 5

b)TheLCMis2 2 3 5 5 5 5,or7500.

50. a)

300=2 2 3 5 5 4000=2 2 2 2 2 5 5 5

b)TheLCMis2 2 2 2 2 3 5 5 5,or12,000.

52. ThetimeittakesUranustomakeacompleterevolution, 84yr,isamultipleofthetimeittakesJupiter,12yr,so JupiterandUranusappearinthesamedirectioninthe nightskyonceevery84years.

54. Jupiter:12=2 2 3

Saturn:30=2 3 5

Uranus:84=2 2 3 7

TheLCMis2 2 3 5 7,or420.Thus,Jupiter,Saturn, andUranuswillappearinthesamedirectioninthenight skyonceevery420years.

56. 1,2,4,23,46,92

58. 1,2,4,5,10,22,44,55,110,220

60. 64 ÷ (16 ÷ 4)=64 ÷ 4=16

62. 799914 80, 004 / ✭✭✭✭ 2305 77, 699

64. 8=2 2 2 12=2 2 3

a)No;theLCMhasonemore2andoneless3.

b)No;theLCMneedsonemore2.

c)No;theLCMneedstwomore2’sandoneless3. d)Yes;theLCMhasthree2’sandone3.

Chapter1VocabularyReinforcement

1. Thedistancearoundanobjectisitsperimeter.

2. Since20=4 5,wesaythat4 5isafactorization of20.

3. Inthesentence10 × 1000=10, 000,10and1000arecalled factors and10,000iscalledtheproduct

4. Thenumber0iscalledtheadditive identity.

5. Anaturalnumberthathasexactlytwodifferentfactors, onlyitselfand1,iscalledaprime number.

6. Theleastcommonmultiple oftwonumbersisthesmallest numberthatisamultipleofbothnumbers.

7. Since20=4 5,wesaythat20isamultiple of5.

Chapter1ConceptReinforcement

1. a ÷ a = a a =1, a =0;thestatementistrue.

2. True

3. False;theaverageofthreenumbersisthesumofthenumbersdividedby3.

4. Thestatementisfalse.Forexample,1+2=5isnota trueequation.

5. Thestatementistrue.Ifonenumberisamultipleofthe other,theLCMisthelargernumber.Ifonenumberisnot amultipleoftheother,thentheLCMcontainseachprime factorthatappearsineithernumberthegreatestnumber oftimesitoccursinanyonefactorizationand,thus,is largerthanbothnumbers.

Chapter1StudyGuide

1. 43 2 ,079 Thedigit2namesthenumberofthousands.

2. Since78istotheleftof81onthenumberline,78 < 81.

3. 111 36, 047 +29, 255 65, 302

4. 7915 4805 / ✥✥ 1568 3237

5. 21 1 73 684 × 329 6156Multiplyingby9 13680Multiplyingby20 205200Multiplyingby300 225, 036

6. 315 27 8519 81 41 27 149 135 14 Theansweris315R14.

7. Round36,468tothenearestthousand.

36, 4 68 ↑

Thedigit6isinthethousandsplace.Considerthenext digittotheright.Sincethedigit,4,is4orlower,round down,meaningthat6thousandsstaysas6thousands. Thenchangethedigitstotherightofthethousandsdigit tozeros.

Theansweris36,000.

8. 24 x =864

24 x 24 = 864 24 Dividingby24 x =36

Check:24 x =864 24 36?864 864 TRUE

Thesolutionis36.

9. 63 =6 · 6 · 6=216

10. Wefindasmanytwo-factorfactorizationsaswecan.

104=1 104104=4 26

104=2 52104=8 13

Factors:1,2,4,8,13,26,52,104

11. 13 ← 13isprime 2 26 2 52 2 104

104=2 2 2 13

12. 52=2 · 2 · 13 78=2 3 13

TheLCMis2 · 2 · 3 · 13,or156.

Chapter1ReviewExercises

1. 4,67 8 ,952

Thedigit8means8thousands.

2. 1 3 ,768,940

Thedigit3namesthenumberofmillions.

3. 2793=2thousands+7hundreds+9tens+3ones

4. 56,078=5tenthousands+6thousands+0hundreds +7tens+8ones,or5tenthousands+6thousands+ 7tens+8ones

5. 4,007,101=4millions+0hundredthousands+0ten thousands+7thousands+1hundred+0tens+1one, or4millions+7thousands+1hundred+1one

6. 67 ,819 ↑↑ Sixty-seventhousand, eighthundrednineteen

7.

2 ,781 ,427 ↑↑↑ Twomillion, sevenhundredeighty-onethousand, fourhundredtwenty-seven

8. Fourhundredseventy-sixthousand, fivehundredeighty-eight ↓↓ Standardnotationis 476, 588.

9. Onebillion, fivehundredmillion, ↓↓ Standardnotationis 1, 500,000,000.

10. Since67istotherightof56onthenumberline,67 > 56.

11. Since1istotheleftof23onthenumberline,1 < 23.

12. 11 7304 +6968 14, 272 13. 111 27, 609 +38, 415 66, 024 14. 11 2703 4125 6004 +8956 21, 788 15. 11 91, 426 +7, 495 98, 921 16. 13 793 / 15 804/5 / ✥✥ 2897 5148 17. 89911 9001 / ✥✥✥ 7312 1689 18. 59913 6003 / ✥✥✥ 3729 2274 19. 1613 26 / 3 / 915 3 /7 /, 405 / ✥✥ 19, 648 17, 757

20. 2 17, 000 × 300 5, 100, 000 Multiplyingby300 (Write00andthen multiply17,000by3.)

21. 634 7846 × 800 6, 276, 800 Multiplyingby800 (Write00andthen multiply7846by8.)

22. 13 25 24 726 × 698 5808 65340 435600 506, 748

Multiplyingby8 Multiplyingby90 Multiplyingby600

23. 32 64 587 × 47 4109Multiplyingby7 23480Multiplyingby40 27, 589

24. 8305 × 642 16610 332200 4983000 5, 331, 810

25. 12 5 63 5 13 10 3

Theansweris12R3.

26. 5 16 80 80 0

Theansweris5.

27. 913 7 6394 63 9 7 24 21 3

Theansweris913R3.

28. 384 8 3073 24 67 64 33 32 1

Theansweris384R1.

29. 4 60 286 240 46

Theansweris4R46.

30. 54 79 4266 395 316 316 0

Theansweris54.

31. 452 38 17, 176 152 197 190 76 76 0

Theansweris452.

32. 5008 14 70, 112 70 112 112 0

Theansweris5008.

33. 4389 12 52, 668 48 46 36 106 96 108 108 0

Theansweris4389.

34. Round345,759tothenearesthundred.

345, 7 5 9 ↑

Thedigit7isinthehundredsplace.Considerthenext digittotheright.Sincethedigit,5,is5orhigher,round 7hundredsupto8hundreds.Thenchangethedigitsto therightofthehundredsdigittozero.

Theansweris345,800.

35. Round345,759tothenearestten.

345, 75 9 ↑

Thedigit5isinthetensplace.Considerthenextdigitto theright.Sincethedigit,9,is5orhigher,round5tensup to6tens.Thenchangethedigittotherightofthetens digittozero.

Theansweris345,760. Copyright c 2020PearsonEducation,Inc.

36. Round345,759tothenearestthousand.

345, 7 59 ↑

Thedigit5isinthethousandsplace.Considerthenext digittotheright.Sincethedigit,7,is5orhigher,round 5thousandsupto6thousands.Thenchangethedigitsto therightofthethousandsdigittozero.

Theansweris346,000.

37. Round345,759tothenearesthundredthousand.

3 4 5, 759 ↑

Thedigit3isinthehundredthousandsplace.Consider thenextdigittotheright.Sincethedigit,4,is4orlower, rounddown,meaningthat3hundredthousandsstaysas 3hundredthousands.Thenchangethedigitstotheright ofthehundredthousandsdigittozero.

Theansweris300,000.

38. Roundedto thenearesthundred

41,34841,300 +19,749+19,700 61,000 ← Estimatedanswer

39. Roundedto thenearesthundred

38,65238,700 24,549 24,500 14,200 ← Estimatedanswer

40. Roundedto thenearesthundred 396400 × 748 × 700 280,000 ← Estimatedanswer

41. 46 · n =368

46 n 46 = 368 46 n =8

Check:46 n =368 46 8?368 368 TRUE

Thesolutionis8.

42. 47+ x =92

47+ x 47=92 47 x =45

Check:47+ x =92 47+45?92 92 TRUE

Thesolutionis45.

43. 1 y =58 y =58(1 y = y ) Thenumber58checks.Itisthesolution.

44. 24= x +24 24 24= x +24 24 0= x Thenumber0checks.Itisthesolution.

45. Exponentialnotationfor4 4 4is43

46. 104 =10 10 10 10=10, 000

47. 62 =6 · 6=36

48. 8 6+17=48+17Multiplying =65Adding

49. 10 24 (18+2) ÷ 4 (9 7) =10 24 20 ÷ 4 2Doingthecalculations insidetheparentheses =240 5 2Multiplyinganddividing

=235 2Subtractingfrom =233lefttoright

50. (80 ÷ 16) × [(20 56 ÷ 8)+(8 · 8 5 · 5)] =5 × [(20 7)+(64 25)] =5 × [13+39] =5 × 52 =260

51. Weaddthenumbersanddividebythenumberofaddends. 157+170+168 3 = 495 3 =165

52. Familiarize.Let x =theadditionalamountofmoney,in dollars,Natashaneedstobuythedesk.

Translate Money available plus Additional amount is Price ofdesk

196+ x =698

Solve.Wesubtract196onbothsidesoftheequation.

196+ x =698

196+ x 196=698 196 x =502

Check.Wecanestimate. 196+502 ≈ 200+500 ≈ 700 ≈ 698 Theanswerchecks. State.Natashaneeds$502dollars.

53. Familiarize.Let b =thebalanceinToni’saccountafter thedeposit. Translate Originalbalance plusDeposit isNewbalance

406+78= b

Solve.Weaddontheleftside.

406+78= b 484= b

Check.Wecanrepeatthecalculation.Theanswer checks.

State.Thenewbalanceis$484.

54. Familiarize.Let y =theyearinwhichthecoppercontent ofpennieswasreduced.

Original year plus73yr is Yearof copperreduction

1909+73= y

Solve.Weaddontheleftside.

1909+73= y 1982= y

Check.Wecanestimate.

1909+73 ≈ 1910+70 ≈ 1980 ≈ 1982 Theanswerchecks.

State.Thecoppercontentofpennieswasreducedin1982.

55. Familiarize.Wefirstmakeadrawing.Let c =thenumberofcartonsfilled.

12ineachrow Howmanyrows?

Translate Number ofcans divided by Number percarton is Number ofcartons

228 ÷ 12= c

Solve.Wecarryoutthedivision. 19 12 228 12 108 108 0

Thus,19= c,or c =19.

Check.Wecancheckbymultiplying:12 19=228.Our answerchecks.

State.19cartonswerefilled.

56. Familiarize.Thisisamultistepproblem.Let s =the costof13stoves, r =thecostof13refrigerators,and t = thetotalcostofthestovesandrefrigerators.

Translate.

Number ofstoves times Priceper stove is Totalcost ofstoves

13 425= s

Numberof refrigerators times Priceper refrigerator is Totalcostof refrigerators

13 620= r

Costof stoves plus Costof refrigerators isTotalcost

s + r = t

Solve.Wefirstcarryoutthemultiplicationsinthefirst twoequations.

13 425= s 13 620= r

5525= s 8060= r Nowwesubstitute5525for s and8060for r inthethird equationandthenaddontheleftside.

s + r = t

5525+8060= t 13, 585= t

Check.Werepeatthecalculations.Theanswerchecks. State.Thetotalcostwas$13,585.

57. Familiarize.Let b =thenumberofbeehivesthefarmer needs.

30ineachrow Howmanyrows?

Translate Number oftrees divided by

Numberoftrees pollinatedby eachhive is Number ofhives needed

÷ 30= b

Solve.Wecarryoutthedivision.

Thus,14= b,or b =14. Check.Wecancheckbymultiplying:30 · 14=420.The answerchecks. State.Thefarmerneeds14beehives.

58. A = l w =14ft 7ft=98squareft Perimeter=14ft+7ft+14ft+7ft=42ft

59. Familiarize.Wemakeadrawing.Let b =thenumberof beakersthatwillbefilled.

20ineachrow Howmanyrows?

Translate

Amountof alcohol divided by Amount perbeaker is Numberof beakers filled

2753 ÷ 20= b

Solve.Wecarryoutthedivision. 137 20 2753 20 75 60 153 140 13

Thus,137R13= b

Check.Wecancheckbymultiplyingthenumberof beakersby137andthenaddingtheremainder,13.

137 20=2740and2740+13=2753

Theanswerchecks.

State.137beakerscanbefilled;13mLwillbeleftover.

60. Familiarize.Thisisamultistepproblem.Let b =thetotalamountbudgetedforfood,clothing,andentertainment andlet r =theincomeremainingaftertheseallotments.

Translate

Foodand clothing budget plus Entertainment budget is Totalof theseallotments

7825+2860= b

Food,clothing, andentertainment allotments plus Remaining income is Total income

b + r =38, 283

Solve.Weaddontheleftsidetosolvethefirstequation.

7825+2860= b 10, 685= b

Nowwesubstitute10,685for b inthesecondequationand solvefor r .

b + r =38, 283

10, 685+ r =38, 283

10, 685+ r 10, 685=38, 283 10, 685 r =27, 598

Check.Werepeatthecalculations.Theanswerchecks.

State.Aftertheallotmentsforfood,clothing,andentertainment,$27,598remains.

61. Wefindasmanytwo-factorfactorizationsaswecan: 60=1 6060=4 15 60=2 3060=5 12

60=3 2060=6 10

Factors:1,2,3,4,5,6,10,12,15,20,30,60

62. Wefindasmanytwo-factorfactorizationsaswecan: 176=1 · 176176=8 · 22

176=2 88176=11 16 176=4 · 44

Factors:1,2,4,8,11,16,22,44,88,176

63. 1 8=86 8=48 2 8=167 8=56 3 8=248 8=64 4 8=329 8=72 5 · 8=4010 · 8=80

64. 84 11 924 88 44 44 0

Sincetheremainderis0,924isdivisibleby11.

65. 112 16 1800 16

8

Sincetheremainderisnot0,1800isnotdivisibleby16.

66. Theonlyfactorsof37are1and37,so37isprime.

67. 1isneitherprimenorcomposite.

68. Thenumber91hasfactors1,7,13,and91,soitiscomposite.

69. 7 ← 7isprime. 5 35 2 70 70=2 5 7

70. 5 ← 5isprime. 3 15 2 30 30=2 3 5

71. 5 ← 5isprime. 3 15 3 45 45=3 3 5

72. 5 ← 5isprime. 5 25 3 75 2 150 150=2 3 5 5

73. 3 ← 3isprime. 3 9 3 27 3 81 2 162 2 324 2 648 648=2 2 2 3 3 3 3

74. 7 ← 7isprime. 5 35 5 175 5 875 3 2625 2 5250

5250=2 3 5 5 5 7

75. Anumberisdivisibleby3ifthesumofitsdigitsisdivisible by3.Thenumberswhosedigitsaddtoamultipleof3are 4344,600,93,330,255,555,780,2802,and711.

76. Anumberisdivisibleby2ifitsonesdigitiseven.Thus, thenumbers140,182,716,2432,4344,600,330,780,and 2802aredivisibleby2.

77. Anumberisdivisibleby4ifthenumbernamedbyitslast twodigitsisdivisibleby4.Thus,thenumbers140,716, 2432,4344,600,and780aredivisibleby4.

78. Anumberisdivisibleby8ifthenumbernamedbyits lastthreedigitsisdivisibleby8.Thus,thenumbers2432, 4344,and600aredivisibleby8.

79. Anumberisdivisibleby5ifitsonesdigitis0or5.Thus, thenumbers140,95,475,600,330,255,555,and780are divisibleby5.

80. Anumberisdivisibleby6ifitsonedigitisevenandthe sumofthedigitsisdivisibleby3.Thenumberswhose onesdigitsareevenaregiveninExercise73above.Of thesenumbers,theoneswhosedigitsaddtoamultipleof 3are4344,600,330,780,and2802.

81. Anumberisdivisibleby9ifthesumofitsdigitsisdivisible by9.Thenumberswhosedigitsaddtoamultipleof9are 255,555and711.

82. Anumberisdivisibleby10ifitsonesdigitis0.Thus,the numbers140,600,330,and780aredivisibleby10.

83. a)18isnotamultipleof12.

b) Checkmultiples: 2 18=36Amultipleof12

c)TheLCMis36.

84. a)45isnotamultipleof18.

b) Checkmultiples: 2 45=90Amultipleof18

c)TheLCMis90.

85. Notethat3and6arefactorsof30.Sincethelargest number,30,hastheothertwonumbersasfactors,itisthe LCM.

86. a)Findtheprimefactorizationofeachnumber.

26=2 13

36=2 2 3 3

54=2 3 3 3

b) Createaproductbywritingeachfactorthegreatest numberoftimesitoccursinanyonefactorization.

Thegreatestnumberoftimes2occursinanyone factorizationistwotimes.

Thegreatestnumberoftimes3occursinanyone factorizationisthreetimes.

Thegreatestnumberoftimes13occursinanyone factorizationisonetime.

Sincetherearenootherprimefactorsinanyofthe factorizations,theLCMis2 2 3 3 3 13,or1404.

87. 7+(4+3)2 =7+72 =7+49 =56

AnswerBiscorrect.

88. 7+42 +32 =7+16+9 =23+9 =32

AnswerAiscorrect.

89. [46 (4 2) 5] ÷ 2+4 =[46 2 5] ÷ 2+4 =[46 10] ÷ 2+4 =36 ÷ 2+4 =18+4 =22

AnswerDiscorrect.

90. 9 a 1 2 b 1 236,421 Since250 × 1000=250, 000 ≈ 236, 421wededucethat 2b1 ≈ 250and9a1 ≈ 1000.Bytrialwefindthat a =8 and b =4.

91. 13and31arebothprimenumbers,so13isapalindrome prime.

19isprimebut91isnot(91=7 13),so19isnota palindromeprime.

16isnotprime(16=2 8=4 4),soitisnotapalindrome prime.

11isprimeandwhenitsdigitsarereversedwehave11 again,so11isapalindromeprime.

15isnotprime(15=3 5),soitisnotapalindromeprime.

24isnotprime(24=2 12=3 8=4 6),soitisnota palindromeprime.

29isprimebut92isnot(92=2 · 46=4 · 23),so29isnot apalindromeprime.

101isprimeandwhenitsdigitsarereversedweget101 again,so101isapalindromeprime.

201isnotprime(201=3 · 67),soitisnotapalindrome prime.

37and73arebothprimenumbers,so37isapalindrome prime.

92. Atthebeginningofeachdaythetunnelreaches500ft 200ft,or300ft,fartherintothemountainthanitdidthe daybefore.Wecalculatehowfarthetunnelreachesinto themountainatthebeginningofeachday,startingwith Day2.

Day2:300ft

Day3:300ft+300ft=600ft

Day4:600ft+300ft=900ft

Day5:900ft+300ft=1200ft

Day6:1200ft+300ft=1500ft

Weseethatthetunnelreaches1500ftintothemountain atthebeginningofDay6.OnDay6thecrewtunnelsan additional500ft,sothetunnelreaches1500ft+500ft,or 2000ft,intothemountain.Thus,ittakes6daystoreach thecopperdeposit.

Chapter1DiscussionandWritingExercises

1. 9432=9 1000+4 100+3 10+2 1=9(999+1)+ 4(99+1)+3(9+1)+2 1=9 999+9 1+4 99+4 1+ 3 9+3 1+2 1.Since999,99,and9areeachamultiple of9,9 999,4 99,and3 9aremultiplesof9.Thisleaves 9 · 1+4 · 1+3 · 1+2 · 1,or9+4+3+2.If9+4+3+2,the sumofthedigits,isdivisibleby9,then9432isdivisible by9.

2. Findtheproductoftwoprimenumbers.

3. Answerswillvary.AnthonyisdrivingfromKansasCity toMinneapolis,adistanceof512miles.Hestopsforgas afterdriving183miles.Howmuchfarthermusthedrive?

4. Theparenthesesarenotnecessaryintheexpression 9 (4 2).Usingtherulesfororderofoperations,the multiplicationwouldbeperformedbeforethesubtraction eveniftheparentheseswerenotpresent. Theparenthesesarenecessaryintheexpression(3 4)2 ; (3 · 4)2 =122 =144,but3 · 42 =3 · 16=48.

Chapter1Test

1. 5 46,789

Thedigit5tellsthenumberofhundredthousands.

2. 8843=8thousands+8hundreds+4tens+3ones 3. 38 ,403 ,277 ↑↑↑ Thirty-eightmillion, fourhundredthreethousand, twohundredseventy-seven

4. 6811 +3178 9989

5. 111 45, 889 +17, 902 63, 791

6. 211 1239 843 301 +782 3165

7. 6203 +4312 10, 515

8. 7983 4353 3630

9. 614 297/4 / 1935 1039

10. 8917 8907 / ✥✥ 2059 6848 11. 12 12 / 916 2 /3, 06/7✥✥ 17, 892 5175 12. 567 4568 × 9 41, 112

13. 543 8876 × 600 5, 325, 600

Addones,addtens,addhundreds, andthenaddthousands.

Subtractones,subtracttens,subtract hundreds,andthensubtractthousands.

Multiplyby6hundreds(Wewrite00 andthenmultiply8876by6.) 14. 65 × 37 455 1950 2405

Multiplyingby7 Multiplyingby30 Adding

15. 678 × 788 5424 54240 474600 534, 264

16. 3 4 15 12 3

Theansweris3R3.

17. 70 6 420 42 0 0 0 Theansweris70.

18. 97 89 8633 801 623 623 0 Theansweris97.

19. 805 44 35, 428 352 228 220 8

Theansweris805R8.

20. Round34,528tothenearestthousand. 34, 5 28 ↑

Thedigit4isinthethousandsplace.Considerthenext digittotheright,5.Since5is5orhigher,round4thousandsupto5thousands.Thenchangealldigitstothe rightofthousandstozeros. Theansweris35,000.

21. Round34,528tothenearestten. 34, 52 8 ↑

Thedigit2isinthetensplace.Considerthenextdigitto theright,8.Since8is5orhigher,round2tensupto3 tens.Thenchangethedigittotherightoftenstozero. Theansweris34,530.

22. Round34,528tothenearesthundred. 34, 5 2 8 ↑

Thedigit5isinthehundredsplace.Considerthenext digittotheright,2.Since2is4orlower,rounddown, meaningthat5hundredsstaysas5hundreds.Thenchange alldigitstotherightofhundredstozero. Theansweris34,500.

23. Roundedto thenearesthundred 23,64923,600 +54,746+54,700 78,300 ← Estimatedanswer

24. Roundedto thenearesthundred 54,75154,800 23,649 23,600 31,200 ← Estimatedanswer

25. Roundedto thenearesthundred 824800 × 489 × 500 400,000 ← Estimatedanswer

26. Since34istotherightof17onthenumberline,34 > 17.

27. Since117istotheleftof157onthenumberline, 117 < 157.

28. 28+ x =74 28+ x 28=74 28Subtracting28onbothsides x =46

Check:28+ x =74 28+46?74 74 TRUE Thesolutionis46.

29. 169 ÷ 13= n Wecarryoutthedivision.

0 Thesolutionis13.

30. 38 y =532 38 y 38 = 532 38 Dividingby38onbothsides y =14

Check:38 y =532 38 14?532 532 TRUE Thesolutionis14.

31. 381=0+ a 381= a Addingontherightside Thesolutionis381.

32. Familiarize.Let s =thenumberofcaloriesinan8-oz servingofskimmilk.

Translate

Numberof caloriesin skimmilk plus Howmany morecalories is Numberof caloriesin wholemilk

s +63=146

Solve.Wesubtract63onbothsidesoftheequation.

s +63=146

s +63 63=146 63

s =83

Check.Since63caloriesmorethan83caloriesis83+63, or146calories,theanswerchecks.

State.An8-ozservingofskimmilkcontains83calories.

33. Familiarize.Let s =thenumberofstaplersthatcan befilled.Wecanthinkofthisasrepeatedsubtraction, takingsuccessivesetsof250staplesandputtingtheminto s staplers.

Translate.

Number ofstaples divided by Numberin eachstapler is Numberof staplersfilled

5000 ÷ 250= s

Solve.Wecarryoutthedivision.

20

250 5000 500 0 0 0

Then20= s.

Check.Wecanmultiplythenumberofstaplersfilledby thenumberofstaplesineachone.

20 250=5000

Theanswerchecks.

State.20staplerscanbefilledfromaboxof5000staples.

34. Familiarize.Thisamultistepproblem.Let b =thetotal costoftheblackcartridges, p =thetotalcostofthephoto cartridges,and t =thetotalcostoftheentirepurchase.

Translate.

Fortheblackinkcartridges:

Number ofblack cartridges times Priceper cartridge is Totalcost ofblack cartridges

3 15= b

Forthephotocartridges:

Number ofphoto cartridges times Priceper cartridge is Totalcost ofphoto cartridges

2 · 25= p

Forthetotalcostoftheorder:

Costof black cartridges plus Costof photo cartridges is Total costof purchase

b + p = t

Solve.Wesolvethefirsttwoequationsandthenaddthe solutions.

3 15= b 45= b

2 25= p 50= p b + p = t 45+50= t 95= t

Check.Werepeatthecalculations.Theanswerchecks.

State.Thetotalcostofthepurchasewas$95.

35. a) WewillusetheformulaPerimeter=2 length+ 2 widthtofindtheperimeterofeachpooltablein inches.WewillusetheformulaArea=length · width tofindtheareaofeachpooltable,insqin.

Forthe50in.by100in.table:

Perimeter=2 100in.+2 50in. =200in.+100in. =300in.

Area=100in. 50in.=5000sqin. Forthe44in.by88in.table:

Perimeter=2 88in.+2 44in. =176in.+88in. =264in.

Area=88in. 44in.=3872sqin. Forthe38in.by76in.table:

Perimeter=2 76in.+2 38in. =152in.+76in. =228in.

Area=76in. 38in.=2888sqin.

b) Let a =thenumberofsquareinchesbywhichthe areaofthelargesttableexceedstheareaofthe smallesttable.Wesubtracttofind a a =5000sqin. 2888sqin.=2112sqin.

36. Exponentialnotationfor12 12 12 12is124 .

37. 73 =7 7 7=343 Copyright c 2020PearsonEducation,Inc.

38. 105 =10 10 10 10 10=100, 000

39. 35 1 28 ÷ 4+3 =35 28 ÷ 4+3Doingallmultiplicationsand =35 7+3divisionsinorderfromlefttoright =28+3Doingalladditionsandsubtractions =31inorderfromlefttoright

40. 102 22 ÷ 2 =100 4 ÷ 2Evaluatingtheexponential expressions =100 2Dividing =98Subtracting

41. (25 15) ÷ 5 =10 ÷ 5Doingthecalculationinsidetheparentheses =2Dividing

42. 24 +24 ÷ 12 =16+24 ÷ 12Evaluatingtheexponential expression =16+2Dividing =18Adding

43. 8 ×{(20 11) [(12+48) ÷ 6 (9 2)]}

=8 ×{9 [60 ÷ 6 7]}

=8 ×{9 [10 7]}

=8 ×{9 · 3}

=8 × 27

=216

44. Thenumber41isprime.Ithasonlythefactors41and1.

45. Thenumber14iscomposite.Ithasthefactors1,2,7,and 14.

46. 3 ← 3isprime. 3 9 2 18 18=2 3 3

47. Weuseafactortree.

60=2 3 2 5,or2 2 3 5

48. 1784 isdivisibleby8because784 isdivisibleby8.

49. 7+8+4=19; since19isnotdivisibleby9,784isnot divisibleby9.

50. 5552 isnotdivisibleby5becausetheonesdigit(2)isnot 0or5.

51. Theonesdigit(2)iseven;thesumofthedigits2+3+2+2, or9isdivisibleby3.Thus,2322isdivisibleby6.

52. WefindtheLCMusingalistofmultiples. a)16isnotamultipleof12.

b) Checkmultiplesof16:

1 16=16Notamultipleof12

2 16=32Notamultipleof12

3 16=48Amultipleof12

TheLCM=48.

53. WewillfindtheLCMusingprimefactorizations.

a) Findtheprimefactorizationofeachnumber.

15=3 5

40=2 2 2 5

50=2 5 5

b) Createaproductbywritingfactorsthatappearin thefactorizationsof15,40,and50,usingeachthe greatestnumberoftimesitoccursinanyonefactorization.

TheLCMis2 2 2 3 5 5,or600.

54. Weaddthenumbersandthendividebythenumberof addends.

97+99+87+89 4 = 372 4 =93

AnswerAiscorrect.

55. Familiarize.Wemakeadrawing.

12 in. 8 in. 6 in.

Observethatthedimensionsoftwosidesofthecontainer are8in.by6in.Theareaofeachis8in. 6in.andtheir totalareais2 8in. 6in.Thedimensionsoftheothertwo sidesare12in.by6in.Theareaofeachis12in. 6in. andtheirtotalareais2 12in. 6in.Thedimensionsof thebottomoftheboxare12in.by8in.anditsarea is12in. 8in.Let c =thenumberofsquareinchesof cardboardthatareusedforthecontainer.

Translate.Weaddtheareasofthesidesandthebottom ofthecontainer.

2 · 8in. · 6in.+2 · 12in. · 6in.+12in. · 8in.= c

Solve.Wecarryoutthecalculation.

2 8in. 6in.+2 12in. 6in.+12in. 8in.= c 96sqin.+144sqin.+96sqin.= c 336sqin.= c

Check.Wecanrepeatthecalculations.Theanswer checks.

State.336sqin.ofcardboardareusedforthecontainer.

56. Wecanreducethenumberoftrialsrequiredbysimplifying theexpressionontheleftsideoftheequationandthen usingtheadditionprinciple.

359 46+ a ÷ 3 × 25 72 =339

359 46+ a ÷ 3 × 25 49=339

359 46+ a 3 × 25 49=339

359 46+ 25 a 3 49=339

313+ 25 a 3 49=339

264+ 25 a 3 =339

264+ 25 a 3 264=339 264 25 a 3 =75

Weseethatwhenwemultiply a by25anddivideby3, theresultis75.Bytrial,wefindthat 25 · 9 3 = 225 3 =75, so a =9.Wecouldalsoreasonthatsince75=25 3and 9/3=3,wehave a =9.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.