LGEBRA
WITH A PPLICATIONS
TENTH EDITION
Steven J. Leon
University of Massachusetts Dartmouth
Lisette G. de Pillis
Harvey Mudd College

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Copyright © 2020, 2015, 2010 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.
ISBN-13: 978-0-13-526050-0
ISBN-10: 0-13-526050-7
Preface
Thissolutionsmanualisdesignedtoaccompanythetentheditionof LinearAlgebrawithApplications byStevenJ.LeonandLisettedePillis.Themanualcontainsthecompletesolutionstoallofthe nonroutineexercisesandChaptertestquestionsinthefirstsevenchaptersthebook.Eachofthose chaptersalsoincludesasetofMATLABcomputerexercises.MostoftheMATLABcomputations arestraightforward.andconsequentlythecomputationalresultsarenotincludedinthismanual. However,theMATLABExercisesalsoincludequestionsrelatedtothecomputations.Thepurpose ofthequestionsistoemphasizethesignificanceofthecomputations.Thismanualdoesprovidethe answerstomostofthesequestions.
Matricesand
(d)4x1 3x2 + x3 +2x4 =4 3x1 + x2 5x3 +6x4 =5 x1 + x2 +2x3 +4x4 =8 5x1 + x2 +3x3 2x4 =7
9. Giventhesystem
onecaneliminatethevariable x2 bysubtractingthefirstrowfromthesecond.Onethen obtainstheequivalentsystem
1x1 + x2 = b1 (m1 m2)x1 = b2 b1
(a)If m1 = m2,thenonecansolvethesecondequationfor x1 x1 = b2 b1 m1 m2
Onecanthenplugthisvalueof x1 intothefirstequationandsolvefor x2.Thus,if m1 = m2,therewillbeauniqueorderedpair(x1,x2)thatsatisfiesthetwoequations.
(b)If m1 = m2,thenthe x1 termdropsoutinthesecondequation 0= b2 b1
Thisispossibleifandonlyif b1 = b2.
(c)If m1 = m2,thenthetwoequationsrepresentlinesintheplanewithdifferentslopes. Twononparallellinesintersectinapoint.Thatpointwillbetheuniquesolutionto thesystem.If m1 = m2 and b1 = b2,thenbothequationsrepresentthesamelineand consequentlyeverypointonthatlinewillsatisfybothequations.If m1 = m2 and b1 = b2, thentheequationsrepresentparallellines.Sinceparallellinesdonotintersect,thereis nopointonbothlinesandhencenosolutiontothesystem.
10. Thesystemmustbeconsistentsince(0, 0)isasolution.
11. Alinearequationin3unknownsrepresentsaplaneinthreespace.Thesolutionsettoa3 × 3 linearsystemwouldbethesetofallpointsthatlieonallthreeplanes.Iftheplanesare paralleloroneplaneisparalleltothelineofintersectionoftheothertwo,thenthesolution setwillbeempty.Thethreeequationscouldrepresentthesameplaneorthethreeplanes couldallintersectinaline.Ineithercasethesolutionsetwillcontaininfinitelymanypoints. Ifthethreeplanesintersectinapoint,thenthesolutionsetwillcontainonlythatpoint.
2 ROWECHELONFORM
2. (b)Thesystemisconsistentwithauniquesolution(4, 1).
4. (b) x1 and x3 areleadvariablesand x2 isafreevariable. (d) x1 and x3 areleadvariablesand x2 and x4 arefreevariables. (f) x2 and x3 areleadvariablesand x1 isafreevariable.
5. (l)Thesolutionis(0, 1 5, 3 5).
6. (c)Thesolutionsetconsistsofallorderedtriplesoftheform(0, α,α).
7. Ahomogeneouslinearequationin3unknownscorrespondstoaplanethatpassesthrough theoriginin3-space.Twosuchequationswouldcorrespondtotwoplanesthroughtheorigin. Ifoneequationisamultipleoftheother,thenbothrepresentthesameplanethroughthe originandeverypointonthatplanewillbeasolutiontothesystem.Ifoneequationisnot amultipleoftheother,thenwehavetwodistinctplanesthatintersectinalinethroughthe
origin.Everypointonthelineofintersectionwillbeasolutiontothelinearsystem.Soin eithercasethesystemmusthaveinfinitelymanysolutions.
Inthecaseofanonhomogeneous2 × 3linearsystem,theequationscorrespondtoplanes thatdonotbothpassthroughtheorigin.Ifoneequationisamultipleoftheother,thenboth representthesameplaneandthereareinfinitelymanysolutions.Iftheequationsrepresent planesthatareparallel,thentheydonotintersectandhencethesystemwillnothaveany solutions.Iftheequationsrepresentdistinctplanesthatarenotparallel,thentheymust intersectinalineandhencetherewillbeinfinitelymanysolutions.Sotheonlypossibilities foranonhomogeneous2 × 3linearsystemare0orinfinitelymanysolutions.
9. (a)Sincethesystemishomogeneousitmustbeconsistent.
13. Ahomogeneoussystemisalwaysconsistentsinceithasthetrivialsolution(0,..., 0).Ifthe reducedrowechelonformofthecoefficientmatrixinvolvesfreevariables,thentherewillbe infinitelymanysolutions.Iftherearenofreevariables,thenthetrivialsolutionwillbethe onlysolution.
14. Anonhomogeneoussystemcouldbeinconsistentinwhichcasetherewouldbenosolutions. Ifthesystemisconsistentandunderdetermined,thentherewillbefreevariablesandthis wouldimplythatwewillhaveinfinitelymanysolutions.
16. Ateachintersection,thenumberofvehiclesenteringmustequalthenumberofvehiclesleaving inorderforthetraffictoflow.Thisconditionleadstothefollowingsystemofequations
Ifweaddallfourequations,weget
andhence
17. If(c1,c2)isasolution,then
Multiplyingbothequationsthroughby α,oneobtains
Thus(αc1,αc2)isalsoasolution.
18. (a)If x4 =0,then x1, x2,and x3 willallbe0.Thusifnoglucoseisproduced,thenthere isnoreaction.(0, 0, 0, 0)isthetrivialsolutioninthesensethatiftherearenomoleculesof carbondioxideandwater,thentherewillbenoreaction.
(b)Ifwechooseanothervalueof x4,say x4 =2,thenweendupwithsolution x1 =12, x2 =12, x3 =12, x4 =2.Notetheratiosarestill6:6:6:1.
3 MATRIXARITHMETIC
9. (b) x =(2, 1)T isasolutionsince b =2a1 + a2.Therearenoothersolutionssincetheechelon formof A isstrictlytriangular.
(c)Thesolutionto Ax = c is x =( 5 2 , 1 4 )T .Therefore c = 5 2 a1 1 4 a2
Copyright ©2020 Pearson Education, Inc.
11. Thegiveninformationimpliesthat
arebothsolutionstothesystem.Sothesystemisconsistentandsincethereismorethanone solution,therowechelonformof A mustinvolveafreevariable.Aconsistentsystemwitha freevariablehasinfinitelymanysolutions.
12. Thesystemisconsistentsince x =(1, 1, 1, 1)T isasolution.Thesystemcanhaveatmost3 leadvariablessince A onlyhas3rows.Therefore,theremustbeatleastonefreevariable.A consistentsystemwithafreevariablehasinfinitelymanysolutions.
13. (a)Itfollowsfromthereducedrowechelonformthatthefreevariablesare x2, x4, x5.Ifwe set x2 = a, x4 = b, x5 = c,then x1 =
andhencethesolutionconsistsofallvectorsoftheform x =( 2 2a 3b c,a, 5 2b 4c,b,c)T
(b)Ifwesetthefreevariablesequalto0,then x0 =( 2,
,
,
, 0)T isasolutionto Ax = b andhence
14. If w3 istheweightgiventoprofessionalactivities,thentheweightsforresearchandteaching shouldbe w1 =3w3 and w2 =2w3.Notethat
sotheweightgiventoresearchis1.5timestheweightgiventoteaching.Sincetheweights mustalladdupto1,wehave
andhenceitfollowsthat w3 =
.If C isthematrixintheexampleproblem fromtheAnalyticHierarchyProcessApplication,thentheratingvector r iscomputedby multiplying C timestheweightvector w.
15. AT isan n × m matrix.Since AT has m columnsand A has m rows,themultiplication AT A ispossible.Themultiplication AAT ispossiblesince A has n columnsand AT has n rows.
16. If A isskew-symmetric,then AT = A.Sincethe(j,j)entryof AT is ajj andthe(j,j)entry of A is ajj ,itfollowsthat ajj = ajj foreach j andhencethediagonalentriesof A must allbe0.
17. Thesearchvectoris x =(1, 0, 1, 0, 1, 0)T .Thesearchresultisgivenbythevector y = AT x =(1, 2, 2, 1, 1, 2, 1)T
The ithentryof y isequaltothenumberofsearchwordsinthetitleofthe ithbook.
18. If α = a21/a11,then
Theproductwillequal A provided
Thuswemustchoose
4 MATRIXALGEBRA
1. (a)(A + B)2 =(A + B)(A + B)=(A + B)A +(A + B)B = A2 + BA + AB + B2
Forrealnumbers, ab + ba =2ab;however,withmatrices AB + BA isgenerallynotequal to2AB. (b)
Forrealnumbers, ab ba =0;however,withmatrices AB BA isgenerallynotequal to O.
2. Ifwereplace a by A and b bytheidentitymatrix, I,thenbothruleswillwork,since (A + I)2 = A2 + IA + AI + B2 = A2 + AI + AI +
and
3. Therearemanypossiblechoicesfor A and B.Forexample,onecouldchoose
Moregenerallyif
then AB = O foranychoiceofthescalars a, b, c, d, e
4. Toconstructnonzeromatrices A, B, C withthedesiredproperties,firstfindnonzeromatrices C and D suchthat DC = O (seeExercise3).Next,foranynonzeromatrix A,set B = A + D Itfollowsthat
5. A2 × 2symmetricmatrixisoneoftheform
Chapter1 • MatricesandSystemsofEquations
Thus
If A2 = O,thenitsdiagonalentriesmustbe0.
Thus a = b = c =0andhence A = O
6. Let
Itfollowsthat
Ifweset
thenitfollowsthat
b11c11 + b12c21 b11c12 + b12c22 b21c11 + b22c21 b21c12 + b22c22
e11 = a11(b11c11 + b12c21)+ a12(
andhence
10. (a)Thematrix C issymmetricsince
(b)Thematrix D issymmetricsince
(c)Thematrix E = AB isnotsymmetricsince
andingeneral, AB = BA
(d)Thematrix F issymmetricsince
(e)Thematrix G issymmetricsince
(f)Thematrix H isnotsymmetricsince
11. (a)Thematrix A issymmetricsince
(b)Thematrix B isnotsymmetricsince
(c)Thematrix D issymmetricsince
(d)Thematrix E issymmetricsince
(e)Thematrix F issymmetricsince
(e)Thematrix G isnotsymmetric.
13. (b)
35 2 3
14. If A werenonsingularand AB = A,thenitwouldfollowthat A 1AB = A 1A andhence that B = I.Soif B = I,then A mustbesingular.
15. Since A 1A = AA 1 = I
itfollowsfromthedefinitionthat A 1 isnonsingularanditsinverseis A
16. Since
itfollowsthat
17. If Ax = Ay and x = y,then A mustbesingular,forif A werenonsingular,thenwecould multiplyby A 1 andget A 1Ax = A 1
18. For m =1,
Assumetheresultholdsinthecase m = k,thatis, (Ak) 1 =(A 1)k
Itfollowsthat
and
andtheresultfollowsbymathematicalinduction.
19. If A2 = O,then
and
I A isnonsingularand(
20. If Ak+1 = O,then
Therefore I A isnonsingularand(I A) 1 = I + A + A2 + + Ak 21. Since
and
itfollowsthat R isnonsingularand R 1 = RT 22.
23.
24. Ineachcase,ifyousquarethegivenmatrix,youwillendupwiththesamematrix.
25. (a)If A2 = A,then
(b)If A2 = A,then
26. (a)
and
Sinceeachdiagonalentryof D isequaltoeither0or1,itfollowsthat d2 jj = djj ,for j =1,...,n andhence D2 = D
(b)If A = XDX 1,then A2 =(XDX 1)(XDX 1)= XD(X 1X)DX 1 = XDX 1 = A Copyright ©2020 Pearson Education, Inc.
27. If A isaninvolution,then A2 = I anditfollowsthat B2 = 1 4 (I + A)2 = 1 4 (I +2A + A2)= 1 4 (2I +2A)= 1 2 (I + A)= B
So B and C arebothidempotent.
BC = 1 4 (I + A)(I A)= 1 4 (I +
28. (AT A)T = AT (AT )T = AT A
(AAT )T =(AT )T AT = AAT
29. Let A and B besymmetric n × n matrices.If(AB)T = AB,then
BA = BT AT =(AB)T = AB
Conversely,if BA = AB,then (AB)T = BT AT = BA = AB
30. (a) BT =(A + AT )T = AT +(AT )T = AT + A = B CT =(
(b) A = 1 2 (A + AT )+ 1 2 (A AT )
34. False.Forexample,if
however, A = B.
35. False.Forexample,if
thenitiseasytoseethatboth A and B mustbesingular,however, A + B = I,whichis nonsingular.
36. True.If A and B arenonsingular,thentheirproduct AB mustalsobenonsingular.Usingthe resultfromExercise23,wehavethat(AB)T isnonsingularand((AB)T ) 1 =((AB) 1)T .It followsthenthat
5 ELEMENTARYMATRICES
2. (a) 0 1 10 ,typeI Copyright ©2020 Pearson Education, Inc.
(b)Thegivenmatrixisnotanelementarymatrix.Itsinverseisgivenby
5. (c)Since
where F and E areelementarymatrices,itfollowsthat C isrowequivalentto A
7. A canbereducedtotheidentitymatrixusingthreerowoperations
Theelementarymatricescorrespondingtothethreerowoperationsare
andhence
(d) XA + C = X
13. (a)If E isanelementarymatrixoftypeIortypeII,then E issymmetric.Thus ET = E is anelementarymatrixofthesametype.If E istheelementarymatrixoftypeIIIformed byadding α timesthe ithrowoftheidentitymatrixtothe jthrow,then ET isthe elementarymatrixoftypeIIIformedfromtheidentitymatrixbyadding α timesthe jth rowtothe ithrow.
(b)Ingeneral,theproductoftwoelementarymatriceswillnotbeanelementarymatrix. Generally,theproductoftwoelementarymatriceswillbeamatrixformedfromthe identitymatrixbytheperformanceoftworowoperations.Forexample,if
then E1 and E2 areelementarymatrices,but
isnotanelementarymatrix.
14. If T = UR,then
Since U and R areuppertriangular
If i>j,then
Therefore T isuppertriangular.
If i = j,then
15. Ifweset x =(2, 1 4)T ,then
Thus x isanonzerosolutiontothesystem Ax = 0.Butifahomogeneoussystemhasa nonzerosolution,thenitmusthaveinfinitelymanysolutions.Inparticular,if c isanyscalar, then cx isalsoasolutiontothesystemsince
Since Ax = 0 and x = 0,itfollowsthatthematrix A mustbesingular.(SeeTheorem1.5.2)
16. If a1 =3a2 2a3,then
Therefore x =(1, 3, 2)T isanontrivialsolutionto Ax = 0.ItfollowsfromTheorem1.5.2 that A mustbesingular.
Copyright ©2020 Pearson Education, Inc.
17. If x0 = 0 and Ax0 = Bx0,then Cx0 = 0 anditfollowsfromTheorem1.5.2that C mustbe singular.
18. If B issingular,thenitfollowsfromTheorem1.5.2thatthereexistsanonzerovector x such that Bx = 0.If C = AB,then Cx = ABx = A0 = 0
Thus,byTheorem1.5.2, C mustalsobesingular.
19. (a)If U isuppertriangularwithnonzerodiagonalentries,thenusingrowoperationII, U can betransformedintoanuppertriangularmatrixwith1’sonthediagonal.Rowoperation IIIcanthenbeusedtoeliminatealloftheentriesabovethediagonal.Thus, U isrow equivalentto I andhenceisnonsingular.
(b)Thesamerowoperationsthatwereusedtoreduce U totheidentitymatrixwilltransform I into U 1.RowoperationIIappliedto I willjustchangethevaluesofthediagonal entries.WhentherowoperationIIIstepsreferredtoinpart(a)areappliedtoadiagonal matrix,theentriesabovethediagonalarefilledin.Theresultingmatrix, U 1,willbe uppertriangular.
20. Since A isnonsingularitisrowequivalentto I.Hence,thereexistelementarymatrices E1,E2,...,Ek suchthat
Itfollowsthat
and
Thesamerowoperationsthatreduce A to I,willtransform B to C.Therefore,thereduced rowechelonformof(A | B)willbe(I | C).
21. (a)Ifthediagonalentriesof D1 are α1,α2,...,αn andthediagonalentriesof D2 are β1,β2,...,βn,then D1D2 willbeadiagonalmatrixwithdiagonalentries α1β1,...,αnβn and D2D1 willbeadiagonalmatrixwithdiagonalentries β1α1,β2α2,...,βnαn.Since thetwohavethesamediagonalentries,itfollowsthat D1D2 = D2D1 (b)
AB = A(a0I + a1A + + akAk) = a0A + a1
= BA
22. If A issymmetricandnonsingular,then (A 1)T =(A 1)T (AA 1)=((A 1)
AT )A 1 = A 1
23. If A isrowequivalentto B,thenthereexistelementarymatrices E1,E2,...,Ek suchthat
Eachofthe Ei’sisinvertibleand E 1 i isalsoanelementarymatrix(Theorem1.4.1).Thus
andhence B isrowequivalentto A
24. (a)If A isrowequivalentto B,thenthereexistelementarymatrices E1,E2,...,Ek such that
Since B isrowequivalentto C,thereexistelementarymatrices H1,H2,...,Hj suchthat B = Hj Hj 1 H1C
Thus
= EkEk 1 E1Hj Hj 1 H1C
andhence A isrowequivalentto C
(b)If A and B arenonsingular n × n matrices,then A and B arerowequivalentto I.Since A isrowequivalentto I and I isrowequivalentto B,itfollowsfrompart(a)that A is rowequivalentto B.
25. If U isanyrowechelonformof A,then A canbereducedto U usingrowoperations,so A isrowequivalentto U .If B isrowequivalentto A,thenitfollowsfromtheresultin Exercise24(a)that B isrowequivalentto U
26. If B isrowequivalentto A,thenthereexistelementarymatrices E1,E2,...,Ek suchthat
Let M = EkEk 1 E1.Thematrix M isnonsingularsinceeachofthe Ei’sisnonsingular. Conversely,supposethereexistsanonsingularmatrix M suchthat B = MA.Since M isnonsingular,itisrowequivalentto I.Thus,thereexistelementarymatrices E1,E2,...,Ek suchthat
M = EkE
Itfollowsthat
Therefore, B isrowequivalentto A
27. If A isnonsingular,then A isrowequivalentto I.If B isrowequivalentto A,thenusing theresultfromExercise24(a),wecanconcludethat B isrowequivalentto I.Therefore, B mustbenonsingular.Soitisnotpossiblefor B tobesingularandalsoberowequivalentto anonsingularmatrix.
28. (a)Thesystem V c = y isgivenby
Comparingthe ithrowofeachside,wehave
c1 + c2xi + + cn+1xn i = yi Thus
p(xi)= yi i =1, 2,...,n +1
(b)If x1,x2,...,xn+1 aredistinctand V c = 0,thenwecanapplypart(a)with y = 0.Thus if p(x)= c1 + c2x + ··· + cn+1xn,then
p(xi)=0 i =1, 2,...,n +1
Thepolynomial p(x)has n +1roots.Sincethedegreeof p(x)islessthan n +1, p(x) mustbethezeropolynomial.Hence
c1 = c2 = = cn+1 =0
Sincethesystem V c = 0 hasonlythetrivialsolution,thematrix V mustbenonsingular.
Copyright ©2020 Pearson Education, Inc.
29. True.If A isrowequivalentto I,then A isnonsingular,soif AB = AC,thenwecanmultiply bothsidesofthisequationby A 1 .
1AB = A 1AC
= C
30. True.If E and F areelementarymatrices,thentheyarebothnonsingularandtheproduct oftwononsingularmatricesisanonsingularmatrix.Indeed, G 1 = F 1E 1
31. True.If a + a2 = a3 +2a4,then
Ifwelet x =(1, 1, 1, 2)T ,then x isasolutionto Ax = 0.Since x = 0 thematrix A must besingular.
32. False.Let I bethe2 × 2identitymatrixandlet A = I, B = I,and
Since B and C arenonsingular,theyarebothrowequivalentto A;however,
issingular,soitcannotberowequivalentto A
6 PARTITIONEDMATRICES
Theblockmultiplicationisperformedasfollows:
(b)Since y
=1, 2, 3,theouterproductexpansionof YX T isjustthe transposeoftheouterproductexpansionof XY T .Thus
7. Itispossibletoperformbothblockmultiplications.Toseethis,suppose A11 isa k ×r matrix, A12 isa k × (n r)matrix, A21 isan(m k) × r matrixand A22 is(m k) × (n r).Itis possibletoperformtheblockmultiplicationof AAT sincethematrixmultiplications A11AT 11, A11AT 21, A12AT 12, A12
,
22 areallpossible.Itispossibleto performtheblockmultiplicationof AT A sincethematrixmultiplications AT 11A11, AT 11A12, AT 21A21, AT 21A11, AT 12A12, AT 22A21, AT 22A22 areallpossible.
8. AX = A(x1, x2,..., xr)=(Ax1,Ax2,...,Axr)
B =(b1, b2,..., br)
AX = B ifandonlyifthecolumnvectorsof AX and B areequal Axj = bj j =1,...,r
9. (a)Since D isadiagonalmatrix,its jthcolumnwillhave djj inthe jthrowandtheother entrieswillallbe0.Thus dj = djj ej for j =1,...,n (b)
= A(d11e1,d22e2,...,dnn
10. (a)
(b)Ifwelet X = U Σ,then
anditfollowsthat
If
then
Let
Since AB = BA = I,itfollowsthat B = A 1 .
12. Let 0 denotethezerovectorin Rn.If A issingular,thenthereexistsavector x1 = 0 such that Ax1 = 0.Ifweset
then
ByTheorem1.5.2, M mustbesingular.Similarly,if B issingular,thenthereexistsavector x2 = 0 suchthat Bx2 = 0.Soifweset
then x isanonzerovectorand M x isequaltothezerovector. 15.
andhence
16. Theblockformof S 1 isgivenby
Itfollowsthat
17. Theblockmultiplicationofthetwofactorsyields
Ifweequatethismatrixwiththeblockformof A andsolvefor B and C,weget
Tocheckthatthisworksnotethat
andhence
18. Inorderfortheblockmultiplicationtowork,wemusthave
= S and YM = T
Sinceboth B and M arenonsingular,wecansatisfytheseconditionsbychoosing X = SB 1 and Y = TM 1
19. (a)
(c)Itfollowsfromparts(a)and(b)that
20. If Ax = 0 forall x ∈ Rn,then
aj = Aej = 0 for j =1,...,n andhence A mustbethezeromatrix.
21. If Bx = Cx forall x ∈ Rn then (B C)x =
ItfollowsfromExercise20that
22. (a)
then
and
MATLABEXERCISES
1. Inparts(a),(b),(c)itshouldturnoutthat A1= A4and A2= A3.Inpart(d) A1= A3 and A2= A4.Exactequalitywillnotoccurinparts(c)and(d)becauseofroundofferror.
2. Thesolution x obtainedusingthe \ operationwillbemoreaccurateandyieldthesmaller residualvector.Thecomputationof x isalsomoreefficientsincethesolutioniscomputed usingGaussianeliminationwithpartialpivotingandthisinvolveslessarithmeticthancomputingtheinversematrixandmultiplyingittimes b
3. (a)Since Ax = 0 and x = 0,itfollowsfromTheorem1.5.2that A issingular.
(b)Thecolumnsof B areallmultiplesof x.Indeed,
andhence
(c)If D = B + C,then
AD = AB + AC = O + AC = AC
4. Byconstruction, B isuppertriangularwhosediagonalentriesareallequalto1.Thus B is rowequivalentto I andhence B isnonsingular.Ifonechanges B bysetting b10,1 = 1/256 andcomputes Bx,theresultisthezerovector.Since x = 0,thematrix B mustbesingular.
5. (a)Since A isnonsingular,itsreducedrowechelonformis I.If E1,...,Ek areelementary matricessuchthat Ek E1A = I,thenthesesamematricescanbeusedtotransform (A b)toitsreducedrowechelonform U .Itfollowsthenthat
U = Ek E1(A b)= A 1(A b)=(IA 1b)
Thus,thelastcolumnof U shouldbeequaltothesolution x ofthesystem Ax = b
(b)Afterthethirdcolumnof A ischanged,thenewmatrix A isnowsingular.Examining thelastrowofthereducedrowechelonformoftheaugmentedmatrix(A b),weseethat thesystemisinconsistent.
(c)Thesystem Ax = c isconsistentsince y isasolution.Thereisafreevariable x3,sothe systemwillhaveinfinitelymanysolutions.
(f)Thevector v isasolutionsince
v = A(w +3z)= Aw +3Az = c
Forthissolution,thefreevariable x3 = v3 =3.Todeterminethegeneralsolutionjust set x = w + tz.Thiswillgivethesolutioncorrespondingto x3 = t foranyrealnumber t.
6. (c)Therewillbenowalksofevenlengthfrom Vi to Vj whenever i + j isodd.
(d)Therewillbenowalksoflength k from Vi to Vj whenever i + j + k isodd.
(e)Theconjectureisstillvalidforthegraphcontainingtheadditionaledges.
(f)Iftheedge {V6,V8} isincluded,thentheconjectureisnolongervalid.Thereisnowa walkoflength1from V6 to V8 and i + j + k =6+8+1isodd.
8. Thechangeinpart(b)shouldnothaveasignificanteffectonthesurvivalpotentialforthe turtles.Thechangeinpart(c)willeffectthe(2, 2)and(3, 2)oftheLesliematrix.Thenew valuesfortheseentrieswillbe l22 =0.9540and l32 =0.0101.Withthesevalues,theLeslie populationmodelshouldpredictthatthesurvivalperiodwilldoublebuttheturtleswillstill eventuallydieout.
9. (b) x1 = c V x2
10. (b)
Thiscanbeprovedusingmathematicalinduction.Inthecase k =1
Iftheresultholdsfor
Chapter1 • MatricesandSystemsofEquations
Itfollowsbymathematicalinductionthattheresultholdsforallpositiveintegers k. (b)
11. (a)Byconstruction,theentriesof A wereroundedtothenearestinteger.Thematrix B = ATA mustalsohaveintegerentriesanditissymmetricsince
(b)
Itfollowsthat
CHAPTERTESTA
1. Thestatementisfalse.Iftherowechelonformhasfreevariablesandthelinearsystem isconsistent,thentherewillbeinfinitelymanysolutions.However,itispossibletohavean inconsistentsystemwhosecoefficientmatrixwillreducetoanechelonformwithfreevariables. Forexample,if
then A involvesonefreevariable,butthesystem Ax = b isinconsistent.
2. Thestatementistruesincethezerovectorwillalwaysbeasolution.
3. Thestatementistrue.Amatrix A isnonsingularifandonlyifitisrowequivalenttothe I (theidentitymatrix). A willberowequivalentto I ifandonlyifitsreducedrowechelon formis I
4. Thestatementistrue.If A isnonsingular,then A isrowequivalentto I.Sothereexist elementarymatrices E1,E2,...,Ek,suchthat
5. Thestatementisfalse.Forexample,if A = I and B = I,thematrices A and B areboth nonsingular,but A + B = O issingular.
6. Thestatementisfalse.Forexample,if A isanymatrixoftheform
Then A = A 1 .
7. Thestatementisfalse. (A B)2 = A2 BA AB + B2 = A2 2AB + B2 sinceingeneral BA = AB.Forexample,if
8. Thestatementisfalse.If A isnonsingularand AB = AC,thenwecanmultiplybothsidesof theequationby A 1 andconcludethat B = C.However,if A issingular,thenitispossible tohave AB = AC and B = C.Forexample,if
9. Thestatementisfalse.Ingeneral, AB and BA areusuallynotequal,soitispossiblefor AB = O and BA tobeanonzeromatrix.Forexample,if
then
10. Thestatementistrue.If x =(1, 2, 1)T ,then x = 0 and Ax = 0,so A mustbesingular.
11. Thestatementistrue.If b = a1 + a3 and x =(1, 0, 1)T ,then
So x isasolutionto Ax = b
12. Thestatementistrue.If b = a1 + a2 +
3,then x =(1, 1, 1)T isasolutionto Ax = b,since
If a2 = a3,thenwecanalsoexpress b asalinearcombination
Thus y =(1, 0, 2)T isalsoasolutiontothesystem.However,ifthereismorethanone solution,thenthereducedrowechelonformof A mustinvolveafreevariable.Aconsistent systemwithafreevariablemusthaveinfinitelymanysolutions.
13. Thestatementistrue.Anelementarymatrix E oftypeIortypeIIissymmetric.Soineither casewehave ET = E iselementary.If E isanelementarymatrixoftypeIIIformedfrom theidentitymatrixbyaddinganonzeromultiple c ofrow k torow j,then ET willbethe elementarymatrixoftypeIIIformedfromtheidentitymatrixbyadding c timesrow j to row k
14. Thestatementisfalse.Anelementarymatrixisamatrixthatisconstructedbyperforming exactlyoneelementaryrowoperationontheidentitymatrix.Theproductoftwoelementary matriceswillbeamatrixformedbyperforming two elementaryrowoperationsontheidentity matrix.Forexample,
areelementarymatrices,however;
isnotanelementarymatrix.
Copyright ©2020 Pearson Education, Inc.
15. Thestatementistrue.Therowvectorsof A are x1yT ,x2yT ,...,xnyT .Note,alloftherow vectorsaremultiplesof yT .Since x and y arenonzerovectors,atleastoneoftheserow vectorsmustbenonzero.However,ifanynonzerorowispickedasapivotrow,thensinceall oftheotherrowsaremultiplesofthepivotrow,theywillallbeeliminatedinthefirststep ofthereductionprocess.Theresultingrowechelonformwillhaveexactlyonenonzerorow.
CHAPTERTESTB
Thefreevariablesare x
andhencethesolutionsetconsistsofallvectorsoftheform
2. (a)Alinearequationin3unknownscorrespondstoaplanein3-space.
(b)Given2equationsin3unknowns,eachequationcorrespondstoaplane.Ifoneequation isamultipleoftheother,thentheequationsrepresentthesameplaneandanypointon thethatplanewillbeasolutiontothesystem.Ifthetwoplanesaredistinct,thenthey areeitherparallelortheyintersectinaline.Iftheyareparalleltheydonotintersect,so thesystemwillhavenosolutions.Iftheyintersectinaline,thentherewillbeinfinitely manysolutions.
(c)Ahomogeneouslinearsystemisalwaysconsistentsinceithasthetrivialsolution x = 0 Itfollowsfrompart(b)thenthatahomogeneoussystemof2equationsin3unknowns musthaveinfinitelymanysolutions.Geometricallythe2equationsrepresentplanesthat bothpassthroughtheorigin,soiftheplanesaredistincttheymustintersectinaline.
3. (a)Ifthesystemisconsistentandtherearetwodistinctsolutions,thentheremustbeafree variableandhencetheremustbeinfinitelymanysolutions.Infact,allvectorsofthe form x = x1 + c(x1 x2)willbesolutionssince Ax = Ax1 + c(Ax1 Ax2)= b + c(b b)= b
(b)Ifweset z = x1 x2,then z = 0 and Az = 0.Therefore,itfollowsfromTheorem1.5.2 that A mustbesingular.
Copyright ©2020 Pearson Education, Inc.
4. (a)Thesystemwillbeconsistentifandonlyifthevector b =(3, 1)T canbewrittenasa linearcombinationofthecolumnvectorsof A.Linearcombinationsofthecolumnvectors of A arevectorsoftheform
Since b isnotamultipleof(1, 2)T thesystemmustbeinconsistent.
(b)Toobtainaconsistentsystem,choose b tobeamultipleof(1, 2)T .Ifthisisdonethe secondrowoftheaugmentedmatrixwillzerooutintheeliminationprocessandyouwill endupwithoneequationin2unknowns.Thereducedsystemwillhaveinfinitelymany solutions.
5. (a)Totransform A to B,youneedtointerchangethesecondandthirdrowsof A.The elementarymatrixthatdoesthisis
(b)Totransform A to C usingacolumnoperation,youneedtosubtracttwicethesecond columnof A fromthefirstcolumn.Theelementarymatrixthatdoesthisis
6. If b =3a1 + a2 +4a3,then b isalinearcombinationofthecolumnvectorsof A anditfollows fromtheconsistencytheoremthatthesystem Ax = b isconsistent.Infact, x =(3, 1, 4)T is asolutiontothesystem.
7. If a1 3a2 +2a3 = 0,then x =(1, 3, 2)T isasolutionto Ax = 0.ItfollowsfromTheorem1.5.2that A mustbesingular.
8. If
9. Ingeneral,theproductoftwosymmetricmatricesisnotnecessarilysymmetric.Forexample, if
then A and B arebothsymmetricbuttheirproduct
isnotsymmetric.
10. If E and F areelementarymatrices,thentheyarebothnonsingularandtheirinversesare elementarymatricesofthesametype.If C = EF ,then C isaproductofnonsingularmatrices, so C isnonsingularand C 1 = F 1E 1 11.
12. (a)Thecolumnpartitionof A andtherowpartitionof B mustmatchup,so k mustbeequal to5.Thereisreallynorestrictionon r,itcanbeanyintegerintherange1 ≤ r ≤ 9.In fact, r =10willworkwhen B hasblockstructure
(b)The(2,2)blockoftheproductisgivenby
Determinants
1 THEDETERMINANTOFAMATRIX
1. (c)det(A)= 3
7. Giventhat a11 =0and a21 =0,letusinterchangethefirsttworowsof A andalsomultiply thethirdrowthroughby a21.Weendupwiththematrix
Nowifweadd a31 timesthefirstrowtothethird,weobtainthematrix
Thismatrixwillberowequivalentto I ifandonlyif
Thustheoriginalmatrix A willberowequivalentto I ifandonlyif