Solutions for Algebra And Trigonometry 11th Us Edition by Sullivan

Page 1


Chapter 1

Equations and Inequalities

Section 1.1

1. Distributive

2. Zero-Product

3.  4 xx 

4. False.Multiplyingbothsidesofanequationby zerowillnotresultinanequivalentequation.

5. identity

6. linear;first-degree

7. False.Thesolutionis8 3

8. True 9. b

10. d 11. 721 721

Thesolutionsetis{3}. 12. 624 624 66 4 x x x

Thesolutionsetis{4}. 13. 3150 31515015 315 315 33 5 x x x x x

Thesolutionsetis{5}. 14. 6180 61818018 618 618 66 3 x x x x x

Thesolutionsetis{3}. 15. 230 23303 23 23 22 3 2 x x x x x 

Thesolutionsetis3 2

16. 340 34404 34 34 33 4 3 x x x x x 

Thesolutionsetis4 3

17. 17 420 17 44 420 287 205 

x x x

Thesolutionsetis7 5

18. 29 32 29 66 32 427 427 44 27 4 x x x x x 

Thesolutionsetis27. 4

19. 34 3444

20.

Thesolutionsetis{2}.

Thesolutionsetis{3}.

21. 263 26636 29 29 39 39 33 3 tt tt tt tttt t t t

Thesolutionsetis{3}.

Section 1.1: Linear Equations

22. 5618 566186 524 524 624 624 66 4 yy yy yy yyyy y y y

Thesolutionsetis{4}.

23. 629 66296 23 2232 33 33 33 1 xx xx xx xxxx x x x

Thesolutionsetis{1}.

24. 322 32323 21 21 1 1 11 1 xx xx xx xxxx x x x

 Thesolutionsetis{1}.

25. 3247 323473 244 24444 24 24 22 2 nn nn nn nnnn n n n        Thesolutionsetis{2}.

Chapter 1: Equations and Inequalities

26. 6231 626316 235 23353 55 55 55 1 mm mm mm mmmm m m m

 Thesolutionsetis{1}.

30. 7(21)10 72110 8210 828108 22 22 22 1 x x x x x x x

Thesolutionsetis{1}.

27. 3(53)8(1) 15988 9815888 1515815

xx xx xxxx x x Thesolutionsetis{23}.

28. 3(2)21 xx  6321 636216 327 32272 57 57 55 7 5 xx xx xx xxxx x x x

Thesolutionsetis7. 5

29. 8(32)310 xxx  832310 52310 5223102 538 53383 28 28 22 4 xxx xx xx xx xxxx x x x

Thesolutionsetis{4}.

31. 311 2 222 xx  311 222 222 341 34414 33 33 43 43 44 3 4 xx xx xx xx xxxx x x x

Thesolutionsetis3 4 

32. 12 2 33 12 332 33 62 2622 36 36 33 2 xx xx xx xxxx x x x

Thesolutionsetis{2}.

33. 13 5 24 13 454 24 2203 220232 20 20 xx xx xx xxxx x x

Thesolutionsetis{20}.

34.

1 16 2 1 2126 2 212 22122 10 10 11 10 x x x x x x x

Thesolutionsetis{10}.

35. 211 323 211 66 323 432 43323 2 pp pp pp

Thesolutionsetis{2}.

36. 114 233 p  114 66 233 328 32383 25 25 22 5 2 p p p p p p

Thesolutionsetis5. 2

37. 0.20.90.5 0.20.50.90.50.5 0.30.9 0.30.9 0.30.3 3

Thesolutionsetis{-3}.

38. 0.91 0.91 0.11 0.11 0.10.1 10 tt tttt t t t

Thesolutionsetis{10}.

39. 12 2 37 xx 

12 21212 37 713242 773642 101342 1013134213 1029 1029 1010 29 10 xx xx xx x x x x x

Thesolutionsetis29 10 

40. 21 163 3 x x    21 31633 3 21489 2499 249292 497 497 77 7 x x xx xx xxxx x x x 

Thesolutionsetis{7}.

Chapter 1: Equations and Inequalities

41. 5111 (3)2(23) 8416 10(3)324(23)11 10303281211

42. 122 3515 (1)3(4) 5(1)456(4)2 55456242 540626

wwww w w w w

Thesolutionsetis

Since y =2doesnotcauseadenominatorto equalzero,thesolutionsetis{2}. 44. 45 5 2 yy  45 252 2 8105 810858 103

Since3 10 y  doesnotcauseadenominatorto

equalzero,thesolutionsetis310

Since x =8doesnotcauseanydenominatorto equalzero,thesolutionsetis{8}.

Since6 x  doesnotcauseadenominatorto equalzero,thesolutionsetis{6}.

47. (7)(1)(1)2 xxx  22 2222 6721 6721 6721 677217 628 62282 48 48 44 2 xxxx xxxxxx xx xx xx xxxx x x x

Thesolutionsetis{2}.

48. (2)(3)(3)2 xxx  22 2222 669 669 669 66696 615 66156 715 715 77 15 7 xxxx xxxxxx xx xx xx xxxx x x x

Thesolutionsetis15 7

49. 22 2222 (23)(21)(4) 23274 2322742 374 37747 44 44 44 1 xxxx xxxx xxxxxx xx xxxx x x x

Thesolutionsetis{1}.

Section 1.1: Linear Equations

50. (12)(21)(2) xxxx  22 2222 2252 222522 52 5525 62 621 663

xxxx xxxxxx xx xxxx x x x Thesolutionsetis1 3

51. 23 33 3333 312 312 312 312 312 4 33 

ppp ppp ppppp p p p

Thesolutionsetis{4}.

52. 23 33 3333 (4)8 48 48 48 48 44 2 www www wwwww w w w

  

Thesolutionsetis{2}.

53. 2 3 22 x xx     2 322 22 322 362 462 46626 48 48 44 2 x xx xx xx xx x x x x x

     Since x =2causesadenominatortoequalzero, wemustdiscardit.Thereforetheoriginal equationhasnosolution.

Since x =–3causesadenominatortoequalzero, wemustdiscardit.Thereforetheoriginal equationhasnosolution. 55.

Since x =2causesadenominatortoequalzero,wemustdiscardit.Thereforetheoriginalequationhasnosolution.

56.

Since x =3causesadenominatortoequalzero,wemustdiscardit.Thereforetheoriginalequationhasnosolution.

Since x =–6doesnotcauseanydenominatorto equalzero,thesolutionsetis{6}.

Since x =–2doesnotcauseanydenominatorto equalzero,thesolutionsetis{2}.

Since x =41doesnotcauseanydenominatorto equalzero,thesolutionis{41}. 60.

Since1 x  doesnotcauseanydenominatortoequalzero,thesolutionsetis{1}.

Since3 x  doesnotcauseanydenominatortoequalzero,thesolutionsetis{3}.

Since6 x  doesnotcauseanydenominatortoequalzero,thesolutionsetis{14}.

Chapter 1: Equations and Inequalities

69.

Thesolutionsetisapproximately{0.41}.

Thesolutionsetisapproximately{0.94}.

73. ,0axbca axbbcb axbc axbc aa bc x a

74. 1,0 111 1 1 11 axba axb axb axb aa bb x aa

75. ,0,0, () () xxcabab ab xx ababc ab bxaxabc abxabc abxabc abab abc x ab

76. ,0 ab cc xx ab xxc xx abcx abcx cc ab x c

Chapter 1: Equations and Inequalities

77. 2166,if4 4216(4)6 421646 42162 412 412 44 3 xaaxax aaa aaa aa a a a 

78. 242,for2 22242(2) 22244 2224 42 4 2 2

79. 12 111 RRR  1212 12 1221 1221 1221 2121 12 21 111 () () RRRRRR RRR RRRRRR RRRRR RRRRR RRRR RR R RR

80. (1)APrt

APPrt

APPrt APPrt PtPt AP r Pt

82. PVnRT PVnRT nRnR PV T nR

1 Sa r  (1)(1) 1 a Srr r SSra SSrSaS SraS SraS SS Sa r S

0 0 0 00 vgtv vvgt vvgt gg

85. AmountinbondsAmountinCDsTotal 300020,000 xx

300020,000 2300020,000 223,000 11,500 xx x x x

$11,500willbeinvestedinbondsand$8500 willbeinvestedinCD's.

86. Sean'sAmountGeorge'sAmountTotal 300010,000 xx

Seanwillreceive$6500andGeorgewill receive$3500.

87. DollarsHoursMoney perhourworkedearned Regular4040 wage

Sandra’sregularhourlywageis$17.50.

88. DollarsHoursMoney perhourworkedearned Regular4040 wage Overtime1.566(1.5) wage Sunday244(2) wage xx xx xx

Leigh’sregularhourlywageis$19.00.

89. Let x representthescoreonthefinalexam. 8083716195 80 7 3902 80 7 3902560 2170 85 xx x x x x

Brookeneedsascoreof85onthefinalexam.

90. Let x representthescoreonthefinalexam. Note:sincethefinalexamcountsfortwo-thirds oftheoverallgrade,theaverageofthefourtest scorescountforone-thirdoftheoverallgrade. ForaB,theaveragescoremustbe80.

1868084902 80 343 13402 80 343 852 80 33 852 3380 33 852240 2155 77.5 x x x x x x x

Mikeneedsascoreof78toearnaB. ForanA,theaveragescoremustbe90.

1868084902 90 343 13402 90 343 852 90 33 852 3390 33 852270 2185

Mikeneedsascoreof93toearnanA.

91. Let x representtheoriginalpriceofthephone. Then0.12x representsthereductionintheprice ofthephone. Thenewpriceofthephoneis$572. originalpricereductionnewprice

xx x x

650

Theoriginalpriceofthephonewas$650. Theamountofthereduction(i.e.,thesavings)is 0.12($650)=$78.

92. Let x representtheoriginalpriceofthecar. Then0.15x representsthereductionintheprice ofthecar. Thenewpriceofthecaris$8000. listpricereductionnewprice

Thelistpriceofthecarwas$21,176.47. Theamountofthereduction(i.e.,thesavings)is 0.15($21176.47)$3176.47 

93. Let x representthepricethetheaterpaysforthe candy.

Then2.75 x representsthemarkuponthecandy. Thesellingpriceofthecandyis$4.50. suppierpricemarkupsellingprice

  xx x x Thetheaterpaid$1.20forthecandy.

94. Let x representsellingpriceforthenewcar. Thedealer’scostis0.85($24,000)$20,400. 

Themarkupis$300. sellingprice=dealer’scost+markup 20,400300$20,700 x At$300overthedealer’scost,thepriceofthe careis$20,700.

95. TicketsPriceperMoney soldticketearned Adults7.507.50 Children52004.504.50(5200) xx xx

 7.504.50520029,961 7.5023,4004.5029,961 3.0023,40029,961 3.006561 2187 xx xx x x x     

Therewere2187adultpatrons.

96. Let p representtheoriginalpricefortheboots. Then,0.30p representsthediscountedamount. originalpricediscountclearanceprice 0.30399 0.70399 570 pp p p    

Thebootsoriginallycost$570.

97. Let w representthewidthoftherectangle. Then8 w  isthelength. Perimeterisgivenbytheformula22. Plw  2(8)260 216260 41660 444 11 ww ww w w w     

Now,11+8=19. Thewidthoftherectangleis11feetandthe lengthis19feet.

98. Let w representthewidthoftherectangle. Then2 w isthelength. Perimeterisgivenbytheformula22. Plw  2(2)242 4242 642 7 ww ww w w    

Now,2(7)=14. Thewidthoftherectangleis7metersandthe lengthis14meters.

99. WewillletBbethecaloriesfrombreakfast,L thecaloriesfromlunchandDthecaloriesfrom dinner.Sowehavethefollowingequations: 125 2300 2025 BL DL BLD   

Nowwesubstitutethefirsttwointothelastone andsolveforL.

2025(125)(2300) 20254175 22004 550 LLL L L L

NowwesubstituteLintothefirsttwoequations togetBandD. 550125675 2(550)300800 B D

SoHerscheltookin675caloriesfrombreakfast, 550caloriesfromlunchand800caloriesfrom dinner.

100. WewillletBbethecaloriesfrombreakfast,L thecaloriesfromlunch,Dthecaloriesfrom dinnerandSthecaloriesfromsnacks.Sowe havethefollowingequations:

Nowwesubstitutethefirstfourintothelastone andsolveforB. 14800.5(200)(200)700 14803.5620 21003.5 600 BBBB B B B

NowwesubstituteBtogetS. 120600120480 SB

101. Judy'sAmountTom'sAmountTotal

xx x x xx x xx x x

Since22isthelargestofthenumbersthenthe largestperimeteris:

422102224032218266

Judypays$10.80andTompays$7.20.

102. Anisoscelestrianglehasthreeequalsides. Therefore:410240318  xxx .Solve eachsetseparately:

MultiplybothsidesbytheLCD80toclear fractions. 608488012064 1087258 10716 16 107

104. Ifahexagonisinscribedinacirclethenthesides ofthehexagonareequaltotheradiusofthe circle.LettheP=6rbetheperimeterofthe hexagon.Letrbetheradiusofthecircle. 610 510 2

Thusr=2inchesistheradiusofthecirclewhere theperimeterofthehexagonis10inchesmore thantheradius.

105. Tomovefromstep(6)tostep(7),wedivided bothsidesoftheequationbytheexpression 2 x .Fromstep(1),however,weknow x =2, sothismeanswedividedbothsidesofthe equationbyzero.

106– 107. Answerswillvary.

Chapter 1: Equations and Inequalities

Section 1.2 1.  25661 xxxx  2.

3.  5,3 3 4. True

5.

6. discriminant;negative

7. False;aquadraticequationmayhavenoreal solutions.

8. False;If2  xp then x couldalsobenegative.

9. b

10. d

11.

290 90 xx xx

0or90 0or9 xx xx

Thesolutionsetis{0,9}.

12. 240 (4)0 xx xx   0or40 0or4 xx xx   Thesolutionsetis{–4,0}.

13. 2250 (5)(5)0 x xx  

50or50 5or5 xx xx   Thesolutionsetis{–5,5}.

14. 290 (3)(3)0 x xx   30or30 3or3 xx xx   Thesolutionsetis{–3,3}.

15. 260 (3)(2)0 zz zz   30or20 3or2 zz zz   Thesolutionsetis{–3,2}.

16. 2760 (6)(1)0 vv vv   60or10 6or1 vv vv   Thesolutionsetis{–6,–1}

17. 2 2530 (21)(3)0 xx xx   210or30 1or3 2 xx xx 



Thesolutionsetis  1,3 2

18. 2 3520 (32)(1)0 xx xx

  320or10 2 or1 3 xx xx 



Thesolutionsetis  1,2 3

19. 2 2 51800 5(36)0 5(6)(6)0

   w w ww 60or60 6or6 

 ww ww Thesolutionsetis{–6,6}.

20. 2 2 2500 2(25)0 2(5)(5)0 y y yy 

50or50 5or5 yy yy

Thesolutionsetis{–5,5}.

21. 

2 3100 3100 (2)50

Section 1.2: Quadratic Equations

25. 2 2 2 6(1)5 665 6560 (32)(23)0 pp pp pp pp 

 320or230 23 or 32 pp pp  

Thesolutionsetis23 , 32 

xx xx

xx xx xx 20or50 2or5

Thesolutionsetis 5,2.

22. 2 (4)12 4120 (6)(2)0 xx xx xx

60or20 6or2 xx xx

Thesolutionsetis 6,2.

23. 2 2 2 4912 41290 (23)0 230 3 2 xx xx x x x     

Thesolutionsetis  3 2

24. 2 2 2 251640 2540160 (54)0 540 4 5 xx xx x x x 

Thesolutionsetis  4 5 .

26. 2 2 2(24)30 4830 (21)(23)0 uu uu uu 

210or230 13 or 22 uu uu

Thesolutionsetis13 , 22

27.  2 2 6 65 6 65 656 6560 (32)(23)0 x x xxx x xx xx xx

320or230 23 or 32 xx xx

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis23 , 32 

28. 2 2 12 7 12 7 127 7120 (3)(4)0 x x xxx x xx xx xx

30or40 3or4 xx xx

Chapter 1: Equations and Inequalities

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis{3,4}.

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis

31. 225 25 5 x x x 

Thesolutionsetis  5,5

32. 236 36 6 x x x 

Thesolutionsetis  6,6

33.  2 14 14 12 12or12 3or1 x x x xx xx 

Thesolutionsetis  1,3

34.  2 21 21 21 21or21 1or3 x x x xx xx

Thesolutionsetis  3,1

35. 12416 3 1416 3 144 3 1144or44 33 110or8 33 0or24

     h h h hh hh hh

Thesolutionsetis  24,0

36.  2 324 324 322 322or322 34or30 4or0 3

z z z zz zz zz

Thesolutionsetis  0,4 3

37.  2 2 2 421 44214 225 225 25 25 3or7 xx xx x x x x xx

Thesolutionsetis7,3.

38.

Thesolutionsetis322,322. 

Section 1.2: Quadratic Equations

The13 solutionsetis,. 44 40. 2210 33 xx 2

The1 solutionsetis1,. 3

41. 21 30 2 xx 2 2 2 2 110 36 11 36 1111 336636 17 636 17 636 17 66 17 6 xx xx xx x x x x

 The1717 solutionsetis,. 66

42. 2 2310 xx 2 2 2 310 22 31 22 3919 216216 xx xx xx

Chapter 1: Equations and Inequalities

43. 2420xx 2 1,2,13 (2)(2)4(1)(13)2452 2(1)2 2562214114 22

Thesolutionsetis114,114. 

44. 2420xx 2 1,4,2 444(1)(2)4168 2(1)2 48422 22 22 abc x

 Thesolutionsetis22,22. 

45. 2410xx 2 1,4,1 (4)(4)4(1)(1)4164 2(1)2 42042525 22 abc x 

  

 

 Thesolutionsetis25,25. 

46. 2610xx 2 1,6,1 664(1)(1)6364 2(1)2 632642 322 22 abc x 

  

 

 Thesolutionsetis322,322. 

47. 2 2530 xx 2 2,5,3 (5)(5)4(2)(3) 2(2) 525245151 444 5151 or 44 64 or 44 3or1 2 abc x xx xx xx



 

The3 solutionsetis1,. 2

48. 2 2530 xx 2 2,5,3 554(2)(3) 2(2) 525245151 444 5151 or 44 46 or 44 13 or 2 abc x xx xx xx



 

 

  



The3solutionsetis,1. 2

49. 2 420 yy 2 4,1,2 (1)(1)4(4)(2) 2(4) 1132131 88 abc y 

 Norealsolution.

50. 2 410 tt 2 4,1,1 114(4)(1) 2(4) 1116115 88 abc t

 Norealsolution.

51. 2 2 985 9850   xx xx 2 9,8,5 884(9)(5) 2(9) 8641808244 1818 8261461 189

abc x

Thesolutionsetis461461,.99

52. 2 2 212 2210 xx xx   2 2,2,1 224(2)(1)248 2(2)4 21222313 442 abc x

Thesolutionsetis1313,.22

Section 1.2: Quadratic Equations

53. 2 2 49 490 (49)0 xx xx xx    0or490 09 or 4 xx xx  

Thesolutionsetis  9 0,. 4

54. 2 2 54 045 0(45) xx xx xx    0or450 05 or 4 xx xx

Thesolutionsetis  5 0,. 4

55. 2 9610 tt 2 9,6,1 (6)(6)4(9)(1) 2(9) 63636601 18183 abc t     

Thesolutionsetis   1 3.

56. 2 4690 uu 2 4,6,9 (6)(6)4(4)(9) 2(4) 6361446108 88 abc u      Norealsolution.

57.  2 2 2 3110 442 311 440 442 320 xx xx xx 

 3,1,2abc

Chapter 1: Equations and Inequalities

 2 11432 23 112412515 666 1515 or 66 64 or 66 12 or 3 x xx xx xx

The2solutionsetis,1. 3

58. 2230 3 xx

2 2 2 3330 3 2390 2,3,9 xx xx abc

2 33429 22 397238139 444 3939 or 44 126 or 44 33 or 2 x xx xx xx

The3solutionsetis,3. 2

59. 2 2 2 2 51 33 5133 33 531 5310 xx xx xx xx

 2 5,3,1 33451 25 3920329 1010 abc x 

Thesolutionsetis329329 , 1010 

60. 2 2 2 2 31 55 3155 55 351 3510 xx xx xx xx 

2 3,5,1 55431 23 52512537 66 abc x 



Thesolutionsetis537537 , 66   

.

61. 2 2(2)3 2430 xx xx   2 2,4,3 444(2)(3)41624 2(2)4 4404210210 442 abc x 

 

Thesolutionsetis210210,.22

62. 2 3(2)1 3610 xx xx 

2 3,6,1 664(3)(1)63612 2(3)6 648643323 663

63.  2 22 2 2 11 40 11 40 410 xx xx xx

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis 117117 , 88

64. 2 83 20  xx

Section 1.2: Quadratic Equations

65. 2 22 2 314 2 31(2)4(2) 2 3()(2)48 3248 092 x xx x xxxx xx xxxxx xxxx xx

1,9,2abc 2 (9)(9)4(1)(2) 2(1) 9818973 22 x  

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis 973973 , 22 

66. 2 22 2 214 3 21(3)4(3) 3 2()(3)412 23412 02133 x xx x xxxx xx xxxxx xxxx xx 

  2,13,3abc  2 (13)(13)4(2)(3) 2(2) 131692413145 44 x  

 

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis 1314513145 , 44  

67. 24.12.20xx   2 1,4.1,2.2 4.14.1412.2 21 4.116.818.84.18.01 22 3.47or0.63 abc x xx      

Thesolutionsetis  0.63,3.47

Chapter 1: Equations and Inequalities

68. 23.91.80xx

2 1,3.9,1.8 3.93.9411.8 21 3.915.217.23.98.01 22 0.53or3.37 abc x xx

Thesolutionsetis  3.37,0.53.

69. 2330xx

Thesolutionsetis  2.80,1.07

70. 2220xx

2 1,2,2 22412 21 228210 22 0.87or2.29 abc x xx

Thesolutionsetis  2.29,0.87.

71. 20xx

 2 2 ,1, 114 2 114 2 1.17or0.85 abc x xx

Thesolutionsetis  0.85,1.17.

72. 220xx 

  2 2 ,,2 42 2 8 2 0.44or1.44 abc x xx

  Thesolutionsetis  1.44,0.44

73. 2 2670 xx

 22 2,6,7 4(6)4(2)7365620 abc bac  

Sincethe240, bac theequationhasnoreal solution.

74. 2470xx

 22 1,4,7 4(4)4(1)7162812 abc bac 

 Sincethe240, bac theequationhasnoreal solution.

75. 2 930250 xx



 22 9,30,25 4(30)4(9)259009000 abc bac

 Since240, bac theequationhasone repeatedrealsolution.

76. 2 252040 xx

 22 25,20,4 4(20)4(25)44004000 abc bac

  Since240, bac theequationhasone repeatedrealsolution.

77. 2 3580 xx



 22 3,5,8 4(5)4(3)82596121 abc bac

 Since240, bac theequationhastwo unequalrealsolutions.

78. 2 2370 xx



 22 2,3,7 4(3)4(2)795665 abc bac

 Since240, bac theequationhastwo unequalrealsolutions.

79. 2 2 50 5 5 x x x     Thesolutionsetis5,5.

80. 2 2 60 6 6 x x x     Thesolutionsetis6,6.

81.  2 16810 41410 410 1 4 xx xx x x    

Thesolutionsetis  1 . 4

82.  2 91240 32320 320 2 3 xx xx x x     Thesolutionsetis  2 3.

83.  2 1019150 53250 xx xx   530or250 35 or 52 xx xx  

Thesolutionsetis  35 ,.52

84.  2 67200 34250 xx xx   340or250 45 or 32 xx xx  

Thesolutionsetis  54 ,.23

Section 1.2: Quadratic Equations

85.  2 2 26 062 03221 zz zz zz 

  320or210 21 or 32 zz zz  

Thesolutionsetis  12 , 23

86.  2 2 26 062 03221 yy yy yy    320or210 21 or 32 yy yy 

Thesolutionsetis  21 , 32

87.

 2 2 2 2 21 2 1 20 2 1 2220 2 22210 xx xx xx xx  

 



2,22,1abc 

 2 (22)(22)4(2)1 2(2) 22882216 44 22422 42 x  

 

 

The2222 solutionsetis,22    

88.

 2 2 2 2 121 2 1210 2 1 22120 2 2220 xx xx xx xx 

 

  1,22,2abc 

Chapter 1: Equations and Inequalities

The1515 solutionsetis,. 22

91. 2 271 212 xx

xx xxxx xx xxxx xxxx xxxx xxxx xxx xx xx

Thevalue1 x  causesadenominatortoequalzero,sowedisregardit.Thus,thesolutionsetis{5}.

92.

Thevalue2 x  causesadenominatortoequalzero,sowedisregardit.Thus,thesolutionsetis1

93. Sincethisisarighttrianglethenwecanusethe PythagoreanTheorem.So 222 222 2 2 (23)(25)(7) 4129420251449 129674 01865 0(5)(13) xxx xxxxxx xxx xx xx

50or130 5or13 xx xx

Thismeansthereare2possiblethatmeetthese requirements.Substituting x intothegivensides gives:

When x =5:5m,12m,13m

When x =13:20m,21m,29m Thusthereare2solutions.

94. Sincethisisarighttrianglethenwecanusethe PythagoreanTheorem.So 222 222 2 2 (45)(313) 164025978169 6381440 2(31972)0 2(38)(9)0 xxx xxxxx xx xx xx

Thismeansthereare2possiblesolutionsthat meettheserequirements.Substituting x intothe givensidesgives:

When x =9:41m,40m,9m

When x = 8 3 atleastonesideofthetriangle hasanegativemeasurementwhichisimpossible. Thusthereisonly1trianglepossible

95. Let w representthewidthofwindow. Then2 lw representsthelengthofthe window.

Sincetheareais143squarefeet,wehave: 2 (2)143 21430 (13)(11)0 ww ww ww

or11 w 

Discardthenegativesolutionsincewidthcannot benegative.Thewidthoftherectangular windowis11feetandthelengthis13feet.

96. Let w representthewidthofwindow. Then1 lw representsthelengthofthe window.

Sincetheareais306squarecentimeters,we have:(1)306 ww  23060 (18)(17)0 ww ww

or17 w 

Discardthenegativesolutionsincewidthcannot

Chapter 1: Equations and Inequalities

benegative.Thewidthoftherectangular windowis17centimetersandthelengthis18 centimeters.

97. Let l representthelengthoftherectangle. Let w representthewidthoftherectangle. Theperimeteris26metersandtheareais40 squaremeters. 2226 13so13 lw

Thedimensionsare5metersby8meters.

98. Let r representtheradiusofthecircle. Sincethefieldisasquarewitharea1250square feet,thelengthofasideofthesquareis 1250252  feet.Thelengthofthediagonal is2r

UsethePythagoreanTheoremtosolvefor r :

Theshortestradiussettingforthesprinkleris25 feet.

99. Let x =lengthofsideoforiginalsheetinfeet.

Lengthofbox:2 x feet

Widthofbox:2 x feet

Heightofbox:1foot

Discard0 x  sincethatisnotafeasiblelength fortheoriginalsheet.Therefore,theoriginal sheetshouldmeasure4feetoneachside.

100. Let x =widthoforiginalsheetinfeet.

Lengthofsheet:2 x

Lengthofbox:22 x feet

Widthofbox:2 x feet

Heightofbox:1foot

2 2 2 42221 4264 026 03 03 Vlwh xx xx xx xx xx

0or3xx

Discard0 x  sincethatisnotafeasiblelength fortheoriginalsheet.Therefore,theoriginal sheetis3feetwideand6feetlong.

101. a. Whentheballstrikestheground,the distancefromthegroundwillbe0. Therefore,wesolve

2 2 2 9680160 1680960 560 610 tt tt tt tt 

6or1tt Discardthenegativesolutionsincethetime offlightmustbepositive.Theballwill strikethegroundafter6seconds.

b. Whentheballpassesthetopofthebuilding, itwillbe96feetfromtheground.Therefore, wesolve

2 2 2 96801696 16800 50 50 tt tt tt tt  

0or5tt Theballisatthetopofthebuildingattime 0 t  whenitisthrown.Itwillpassthetop ofthebuildingonthewaydownafter5 seconds.

102. a. Tofindwhentheobjectwillbe15meters abovetheground,wesolve 2 2 4.92015 4.920150

Theobjectwillbe15metersabovethe groundafterabout0.99seconds(ontheway up)andabout3.09seconds(ontheway down).

b. Theobjectwillstrikethegroundwhenthe distancefromthegroundis0.Therefore,we solve

Theobjectwillstrikethegroundafterabout 4.08seconds.

c. 2 2 4.920100 4.9201000 tt tt 

Thereisnorealsolution.Theobjectnever reachesaheightof100meters.

103. Let x representthenumberofcentimetersthe lengthandwidthshouldbereduced. 12 x =thenewlength,7 x =thenewwidth. Thenewvolumeis90%oftheoldvolume.

Section 1.2: Quadratic Equations

2 (19)(19)4(1)(8.4)19327.4 2(1)2 0.45or18.55 x xx

Since18.55exceedsthedimensions,itis discarded.Thedimensionsofthenewchocolate barare:11.55cmby6.55cmby3cm.

104. Let x representthenumberofcentimetersthe lengthandwidthshouldbereduced. 12 x =thenewlength,7 x =thenewwidth. Thenewvolumeis80%oftheoldvolume.

2 2 (12)(7)(3)0.8(12)(7)(3) 357252201.6 35750.40 1916.80 xx xx xx xx

2 (19)(19)4(1)(16.8)19293.8 2(1)2

0.93or18.07 x xx

Since18.07exceedsthedimensions,itis discarded.Thedimensionsofthenewchocolate barare:11.07cmby6.07cmby3cm.

105. Let x representthewidthoftheborder measuredinfeet.Theradiusofthepoolis5 feet.Then5 x  representstheradiusofthe circle,includingboththepoolandtheborder. Thetotalareaofthepoolandborderis

2 (5) T Ax Theareaofthepoolis2(5)25 PA  Theareaoftheborderis

2 (5)25 BTP AAAx Sincetheconcreteis3inchesor0.25feetthick, thevolumeoftheconcreteintheborderis

 2 0.250.25(5)25 B Ax Solvingthevolumeequation:

 

  2 2 2 0.25(5)2527 102525108 101080 x xx xx

35725.20 198.40 xx xx xx xx

2 2 2 (12)(7)(3)0.9(12)(7)(3) 357252226.8

  

 2 2 10(10)4()(108) 2()

2.71or12.71 x xx

31.42100432

 

6.28

 Discardthenegativesolution.Thewidthofthe borderisroughly2.71feet.

Chapter 1: Equations and Inequalities

106. Let x representthewidthoftheborder measuredinfeet.Theradiusofthepoolis5 feet.Then5 x  representstheradiusofthe circle,includingboththepoolandtheborder. Thetotalareaofthepoolandborderis

2 (5) T Ax

Theareaofthepoolis2(5)25 PA  .

Theareaoftheborderis

108. Let x =thewidthand2x =thelengthofthe patio.Theheightis13footandtheconcrete availableis  827216  cubicfeet.. 2 2 1 (2)216 3 2216 3 32418

2 (5)25

BTP AAAx .

Sincetheconcreteis4inches=13footthick,the volumeoftheconcreteintheborderis 112 33(5)25 B Ax

Solvingthevolumeequation:



2 2 2 1(5)2527 3 10252581 10810 x xx xx 

 2 2 10(10)4()(81) 2()

Vlwhxx x xx Thedimensionsofthepatioare18feetby36 feet.

109. Let x =thelengthofa12.9-inchiPadProina 16:94:3format. Then9 16 x =thewidthoftheiPad.Thediagonal ofthe12.9-inchiPadis9.7inches,sobythe Pythagoreantheoremwehave:

2.13or12.13 x xx   

31.42100324 6.28

 



Discardthenegativesolution.Thewidthofthe borderisapproximately2.13feet.

107. Let x representthewidthoftheborder measuredinfeet.

Thetotalareais(62)(102) T Axx 

Theareaofthegardenis61060 GA  .

Theareaoftheborderis (62)(102)60

BTG AAAxx  Sincetheconcreteis3inchesor0.25feetthick, thevolumeoftheconcreteintheborderis

 0.250.25(62)(102)60 B Axx

Solvingthevolumeequation:  2 2 2 0.25(62)(102)6027 6032460108 4321080 8270 xx xx xx xx

    2 884(1)(27)8172 2(1)2

2.56or10.56 x xx

Discardthenegativesolution.Thewidthofthe borderisapproximately2.56feet.

Sincethelengthcannotbenegative,thelengthof theiPadis42600.96337inchesandthewidthis

9 6.32 16  inches.Thus,theareaofthe iPadis42600.96942600.963371633771.11

square inches.

Let y =thelengthofa12-inch3:2format

MicrosoftSurfacePro.Then 2 3 y =thewidthof theSurfacePro.Thediagonalofa12-inch SurfaceProis12inches,sobythePythagorean theoremwehave:

Sincethelengthcannotbenegative,thelengthof theSurfaceProis10.23inchesandthewidthis 21361.61 6.82 313  inches.Thus,theareaofthe 12.3-inch3:2formatSurfaceProis

1361.611361.61 2 13313 69.83squareinches.  

TheiPadProformathasthelargerscreensince itsareaislarger.

110. Let x =thelengthofa7.9-inchiPadMiniina 4:3format.

Then3 4 x =thewidthoftheiPad.Thediagonal ofthe7.9-inchiPadis7.9inches,sobythe Pythagoreantheoremwehave:

Sincethelengthcannotbenegative,thelengthof theiPadis6.32inchesandthewidthis

3

4  inches.Thus,theareaofthe iPadis(6.32)(4.74)29.9568  squareinches. Let y =thelengthofa8-inch16:10format AmazonFireHD8™.Then10 16 y =thewidthof theFire.Thediagonalofa8-inchFireis8 inches,sobythePythagoreantheoremwehave:

Section 1.2: Quadratic Equations

Sincethelengthcannotbenegative,thelengthof theFireis163846.78399 356  inchesandthe widthis10163844.240 16356  inches.Thus,thearea oftheAmazonFireis

6.783994.24028.76squareinches.

TheiPadMini™4:3formathasthelargerscreen sinceitsareaislarger.

111. Let h be1.1.Then 2 2 2 0.04(0.04)4(0.00025)(1.1) 2(0.00025) 1.10.000250.04 00.000250.041.1 35.3ftor124.7ft



   xx xx x 124.7ftdoesnotmakesenseinthecontextof theproblem,sotheansweris35.3ft.



112. Sincedisexpressedin1000’swewillsetd=15 andsolveforxusingtheQuadraticFormula. 2 2 2 2 0.828(0.828)4(0.012)(9.25) 2(0.012) 0.828.241584 0.024 0.0120.82815.750 250.0120.82815.750 00.0120.8289.25

   dxx xx xx x xx









54.98or14.02 

Sothenearestyearwhenthedifferencewas $25,000occurredabout14yearsafter1980or 1994.Thevalue55hasnomeaningsinceitisin thefuture.

Chapter 1: Equations and Inequalities

113. Wewillsetg=2.97andsolveforhusingthe QuadraticFormula. 2

0.00060.0153.04

2.970.00060.0153.04

00.00060.0150.07 29or4.02 gxx xx xx

0.015(0.015)4(0.0006)(0.07) 2(0.0006)

0.0150.000393 0.0012

Sotheestimatednumbersofhoursworkedbya studentwithaGPAof2.97is29hours.The value-4.02hasnomeaningsinceitisnegative.

114. Letxbethenumbersofmembersinthe fraternityandsbethesharepaidbyeach member.Then1470 s x  . Ifthereare7 memberswhocannotcontributethentheshare goesupby$5.Sowehavethefollowing equation: 51470 7 s x

or 571470sx

Solvingthesetwoequationstogether:

2 5714701470 and 1470571470 10290 14705351470 10290 5350 535102900 sxs x x x x x x x xx

2 2 535102900 720580 (42)(49)0 42or49 xx xx xx xx

Sincexisthenumberofmembers,itmustbe positivesothenumberofmembersis49.

115. Let a betheagetheindividualisabletostart savingmoney.Thenweneedtofindwherethe modelsareequal.Solvingthesetwoequations together: 2 2 2 2240(2240)4(25)(38540) 2(25)

22401163600 50 252400307001607840 252240385400 22401078.7 50

22401078.722401078.7 or 5050 66.4or23.2

Since x istheagetostartsaving,itmakessense thattheanswerisapproximateatage23.

116.Wewillsettheequationequalto10andsolve: 2 2 2 0.034(0.034)4(0.003)(1.914) 2(0.003)

0.034.024124 0.006 0.0030.0348.08610 0.0030.0341.9140

0.034.15532 0.006 0.0340.155320.0340.15532 or 0.0060.006 20.22

x or31.55  x Thepercentagewillreach10%approximately32 yearsafter1960whichis1992. 117.

Sincethenumberofconsecutiveintegerscannot benegative,wediscardthenegativevalue.We mustadd37consecutiveintegers,beginningat1, inordertogetasumof703.

Sincethenumberofsidescannotbenegative,we discardthenegativevalue.Apolygonwith65 diagonalswillhave13sides.

Section 1.2: Quadratic Equations

121. Inordertohaveonerepeatedsolution,weneed thediscriminanttobe0.

Neithersolutionisaninteger,sothereisno polygonthathas80diagonals.

119. Therootsofaquadraticequationare

122. Inordertohaveonerepeatedsolution,weneed thediscriminanttobe0.

2 2 2 40 4140 160 440 bac k k kk

123. For20 axbxc : 24 2   bbac x a

For20 axbxc :

2 2 4 2 4 2

120. Therootsofaquadraticequationare

Chapter 1: Equations and Inequalities

125. If x =originalwidthand y =originallength,then 11 or xyx y .Theratioofsidelengthsis 2 1  x yy .Foldingalongthelongestsideresults insidesoflength1and2  y x y whoseratiois 2 2 12

y y y Equatingtheratiosgives

126. a. 29 x  and3 x  arenotequivalent becausetheydonothavethesamesolution set.Inthefirstequationwecanalsohave 3 x  b. 9 x  and3 x  areequivalentbecause 93  c.

1212xxx  and21 xx are notequivalentbecausetheydonothavethe samesolutionset. Thefirstequationhasthesolutionset  1 whilethesecondequationhasnosolutions.

127. Answerswillvary.Methodsmayincludethe quadraticformula,completingthesquare, graphing,etc.

128. Answerswillvary.Knowingthediscriminant allowsustoknowhowmanyrealsolutionsthe equationwillhave.

129. Answerswillvary.Onepossibility: Twodistinct:23180 xx Onerepeated:214490 xx Noreal:240 xx

130. Answerswillvary.

Section 1.3: Complex Numbers; Quadratic Equations in the Complex Number System

Section 1.3

1. Integers:  3,0 Rationals:  3,0,6 5

2. True;thesetofrealnumbersconsistsofall rationalandirrationalnumbers.

3. 

4. real;imaginary;imaginaryunit

5. False;theconjugateof25i  is25i

6. True;thesetofrealnumbersisasubsetoftheset ofcomplexnumbers.

7. False;if23i isasolutionofaquadratic equationwithrealcoefficients,thenits conjugate,23i  ,isalsoasolution.

8. b

9. a

10. c

11. (23)(68)(26)(38)85 iiii

12. (45)(82)(4(8))(52) 47 iii i

13. (32)(44)(34)(2(4)) 76 iii i

14. (34)(34)(3(3))(4(4)) 606 iii i

15. (25)(86)(28)(56) 611 iii i

16. (84)(22)(82)(4(2)) 106 iii i  

17. 3(26)618 ii

18. 4(28)832 ii

19. 2 3(76)21182118(1) 1821   iiiii i

20. 2 3(34)912912(1)129 iiiiii 

21. (34)(2)63842 654(1) 105 iiiii i i   

22. (53)(2)105632 103(1) 13 

iiiii i i

iiiii

23. (5)(5)25552 25(1) 26 

24. (3)(3)9332 9(1) 10 iiiii 

25. 2 1010343040 3434349121216 30403040 916(1)25 3040 2525 68 55 ii iiiiii ii i i

26. 2 1313512 512512512 65156 256060144 6515665156 25144(1)169 65156 169169 512 1313 i iii i iii ii i i

31. 2 1311332 2 224224 13313 (1) 42422 iii ii

22 (1)1212(1)2

23 2322122211 112 1111 () 111 (1)(1) i iiiiii iii i iii ii

39. 3 62355(1)5156ii

40. 32 444(1)4 iiiii 

41. 3532 2 64(64) (64(1))1(10)10 iiii iiii

42. 3222 421421 4(1)2(1)1 421 34 iiiii i i i 

43. 32 2 (1)(1)(1)(1)(12)(1) (121)(1)2(1) 2222(1) 22 iiiiiii iiii iii i    

44. 44 (3)181181(1)182 ii

45. 7277 (1)(1(1))(0)0 iiii

46. 42 2(1)2(1)(1(1))2(0)0 ii

47.  432 86422222 432 (1)(1)(1)1 1111 0

    iiiiiiii

48.  32 753222 32 (1)(1)(1) 0 iiiiiiiiiii iiii iiii    

49. 42i  50. 93i 

51. 255 i 

52. 648 i 

53. 124323 ii

54. 189232 ii

55. 2001002102 ii

56. 459535 ii

57. 2 (34)(43)1291612 916(1)

58. 2 (43)(34)1216912 169(1) 25 5 iiiii i

59. 2 2 40 4 4 2 x x x xi

Thesolutionsetis 2,2. ii

63. 26130xx  22 1,6,13, 4(6)4(1)(13)365216 (6)166432 2(1)2

Thesolutionsetis32,32. abc bac i xi ii

64. 2480xx 22 1,4,8 444(1)(8)163216 41644 22 2(1)2 abc bac i xi 

Thesolutionsetis  22,22 ii .

65. 26100xx 22 1,6,10 4(6)4(1)(10)36404 (6)4623 2(1)2 abc bac i xi



   

Thesolutionsetis  3,3ii

66. 2250xx 22 1,2,5 4(2)4(1)(5)42016 (2)162412 2(1)2 abc bac i xi

Thesolutionsetis  12,12 ii .

Thesolutionsetis2,2. xx xx

60. 240 x   (2)(2)0 2or2

61. 2160 x 

440 4or4

Thesolutionsetis4,4. xx xx

67. 2 251020 xx 22 25,10,2 4(10)4(25)(2)100200100 (10)100101011 505055

  abc bac i xi

Thesolutionsetis  1111 , 5555 ii

62. 2250 x   225 255

Thesolutionsetis5,5. x xi ii 

Chapter 1: Equations and Inequalities

68. 2 10610 xx 22 10,6,1 464(10)(1)36404 646231 2(10)201010

abc

bac i xi  

Thesolutionsetis  3131 , 10101010 ii

69. 2 2 512 5210 xx xx 



abc

bac i xi

22 5,2,1 424(5)(1)42016 (2)162412 2(5)1055

Thesolutionsetis  1212 , 5555 ii

70. 2 2 1316 13610 xx xx 

abc

bac i xi

 22 13,6,1 4(6)4(13)(1)365216 (6)166432 2(13)261313

Thesolutionsetis  3232 , 13131313 ii

71. 210xx 1,1,1,abc 22414(1)(1)143 131313 2(1)222

bac i xi

Thesolutionsetis1313 , 2222 ii

72. 210xx 1,1,1abc 224(1)4(1)(1)143 (1)31313 2(1)222 bac i xi



Thesolutionsetis1313 , 2222 ii 

73. 3640  x  2 2 (4)4160 404 or4160









  abc bac i xi

 xxx xx xx 22 1,4,16 444(1)(16)166448 448443 223 2(1)2

Thesolutionsetis  4,223,223. ii

74. 3270 x   2 2 (3)390 303 or390 xxx xx xx 



 22 1,3,9 4(3)4(1)(9)93627 (3)27333333 2(1)222 abc bac i xi



   

Thesolutionsetis3333333,,. 2222 ii    

75. 4 4 16 160 x x  



  22 2 440 (2)(2)40 xx xxx



 2 2 20or20or40 2or2or4 2or2or42 xxx xxx xxxi

 

Thesolutionsetis  2,2,2,2. ii

76. 4 4 1 10 x x  



 22 2 110 (1)(1)10 xx xxx 



 2 2 10or10or10 1or1or1 1or1or1 xxx xxx xxxi



 Thesolutionsetis  1,1,,. ii

77. 4213360xx

22 22 22 940 90or40 9or4 9or4 3or2 xx xx xx xx xixi

78. 42340xx

Thesolutionsetis  1,1,2,2. ii

79. 2 3340 xx 22 3,3,4 4(3)4(3)(4)94839 abc bac  

Theequationhastwocomplexsolutionsthatare conjugatesofeachother.

80. 2 2410 xx 22 2,4,1 4(4)4(2)(1)1688 abc bac





Theequationhastwounequalrealnumber solutions.

81. 2 2 234 2340 xx xx   22 2,3,4 434(2)(4)93241 abc bac

Theequationhastwounequalrealsolutions.

82. 2 2 62 260 xx xx   22 1,2,6 4(2)4(1)(6)42420 abc bac





Theequationhastwocomplexsolutionsthatare conjugatesofeachother.

83. 2 91240 xx 22 9,12,4 4(12)4(9)(4)1441440 abc bac 

 Theequationhasarepeatedrealsolution.

84. 2 41290 xx 22 4,12,9 4124(4)(9)1441440 abc bac 

 Theequationhasarepeatedrealsolution.

85. Theothersolutionis2323. ii

86. Theothersolutionis44. ii

87. 343434346zziiii 

88. 8383 83(83) 8383 066 wwii ii ii ii 

89. 2 (34)(34) (34)(34) 9121216 916(1)25 zzii ii iii

90. 34(83) 3483 57 57 zwii ii i i

91. 2 2 181834 343434 54723454754 9121216916 5075 23 25 Viii Z Iiii iiii iii i i 

Theimpedanceis23i  ohms.

92. 12 2 11111(43)(2) 243(2)(43) 626262 8643823112 ii ZZZiiii iii iiiii

Chapter 1: Equations and Inequalities

So, 2 2 11211262 626262 662212466104 3612124364

701071 4044 iii Z iii iiii iii i i

Thetotalimpedanceis71 44 i  ohms.

2222 22 22 () 2()0





 abab ab abba Anycomplexnumberoftheform  aai or aai willwork.

98. Let32  u in320  x sothat330 xu

93. ()() 2 zzabiabi abiabi a

 

   () () 2 zzabiabi abiabi abiabi bi

94. zabiabiabiz 





95. ()() ()() ()() ()() zwabicdi acbdi acbdi abicdi abicdi zw













96. 2 ()() ()() ()() zwabicdi acadibcibdi acbdadbci acbdadbci



 2 ()() ()() zwabicdi abicdi acadibcibdi acbdadbci

















  uuu x uuuuii

Then,22()()0  xuxuxu .Fromthefirst factorwefind32 xu .Fromthesecond factor,usethequadraticformulatoget 22 233 ()()41 21 33223 22222

Thesolutionsetis: 33 3223 2,22 

99. 2 (5)(5)();  xyxy let5 ux (so 5 xu and5 vy so5 yv

Substitutinggives2 () uvuv or 220 uuvv whichisquadraticinu.Using thequadraticformulagives

223 41 212     vvvvv x .Since x isarealnumber, u mustalsobearealnumber. Thisisonlypossibleifv=0whichthenmakes u =0.Therefore,055  x and 055 y ,so5510 xy

100 – 102. Answerswillvary.

103. Answerswillvary.Acomplexnumberisthe sumordifferenceoftwonumbers(realand imaginarypartsofthecomplexnumber)justasa binomialisthesumordifferenceoftwo monomialterms.Wemultiplytwobinomialsby usingtheFOILmethod,anapproachwecanalso usetomultiplytwocomplexnumbers.

97.    22 2222 222222 2222 2()2() 22 22

 abiabi aabibiaabibi aabibiaabibi aabibaabib

104. Althoughthesetofrealnumbersisasubsetof thesetofcomplexnumbers,notallrulesthat workintherealnumbersystemcanbeusedin thelargercomplexnumbersystem.Therulethat allowsustowritetheproductoftwosquare rootsasthesquarerootoftheproductonly worksintherealnumbersystem.Thatis, abab  onlywhen a and b arereal numbers.Inthecomplexnumbersystemwe mustfirstconverttheradicalstocomplexform. Inthiscasethismeansweneedtowrite9as 19913

Section 1.4

1. True 2. 33  xx 3.  322 62231 xxxx

4. False;youcanalsousetheQuadraticFormulaor completingthesquare.

5. quadraticinform

6. True

7. a 8. c 9. 211 t

Check:3(0)442

Thesolutionsetis{0}.

11. 346 t  Sincetheprincipalsquarerootisnevernegative, theequationhasnorealsolution.

12. 532 t 

Sincetheprincipalsquarerootisnevernegative, theequationhasnorealsolution.

13. 31230 x   3 333 123 123 1227 226 13 x x x x x 

Check:3312(13)32730

Thesolutionsetis{13}.

14. 31210 x   3 333 121 121 121 20 0 x x x x x  

Check:3312(0)1110

Thesolutionsetis{0}.

Check:2(1)111 Thesolutionsetis{1}.

Check:

Thesolutionsetis{1}. 16.

Check3:316916255

Check3:316916255

Thesolutionsetis

Check0:080

Check64:64864 6464

Thesolutionsetis  0,64 18.

Check0:030 00   Check9:939 99  

Thesolutionsetis  0,9 19. 152 xx

22 2 2 152 152 2150 (5)(3)0 xx xx xx xx

Check–5:152(5)2555

Check3:152(3)933

Disregard5asextraneous. Thesolutionsetis{3}. x

20. 12 xx

22 2 2 12 12 120 (4)(3)0 xx xx xx xx

  4or3xx

Check–4:12(4)1644

Check3:123933

Disregard4asextraneous. Thesolutionsetis{3}. x

21. 21xx

22 2 2 2 2 21 4(1) 44 440 (2)0 2 xx xx xx xx x x

Check:2221 22

Thesolutionsetis{2}.

Theequationhasnorealsolution.

Sincetheprincipalsquarerootisalwaysanonnegativenumber;1 3 x  doesnotcheck. Thereforethisequationhasnorealsolution.

25. 331xx  22 2 2 313 31(3) 3169 098 0(1)(8) 1or8 xx xx xxx xx xx xx      

Check1:33(1)13451

Check8:33(8)132588

  Discard1 x  asextraneous. Thesolutionsetis{8}.

26. 2122 xx

 

 22 2 2 1222 122(2) 12244 028 (2)(4)0 2or4 xx xx xxx xx xx xx

Check2:2+122(2)21662

Check4:2122(4)2444

 

Discard2 x  asextraneous.

Thesolutionsetis{4}.



27.  22 2 2 3(10)4 3(10)4 3(10)(4) 330816 0514 0(7)(2) 7or2 xx xx xx xxx xx xx xx

     

Check7:3(710)49417

Check2:3(210)436422

 

Discard7 x  asextraneous. Thesolutionsetis{2}.

Chapter 1: Equations and Inequalities

28.

0(3)(8) 3or8 xx xx xx xxx xx xx xx

22 2 2 132 15 1(5) 11025 01124

30. 3721 xx











Check3:1(3)33211

Check8:1(8)38206 

Discard8 x  asextraneous. Thesolutionsetis{-3}.

29. 3572 xx





46425616(7) 46425616112 4801440 20360 (2)(18)0 xx xx xxx xx xx xxx xxx xx xx xx

(216)47

 2or18xx



Check2:3(2)527 191322

 

Check18:3(18)5187 49257522



Discard2 x  asextraneous. Thesolutionsetis{18}.

  22 22 2 2 3712 3712 371222 2422 22 (2)2 442 320 (1)(2)0 1or2 xx xx xxx xx xx xx xxx xx xx xx



   

Check–1:3(1)712 412131



Check2:3(2)722 101011 



 Discard1 x  asextraneous. Thesolutionsetis{2}.

31. 3112 xx





  22 22 2 2 2 3121 3121 314411 2241 (22)41 48416(1) 2144 650 (1)(5)0 xx xx xxx xx xx xxx xxx xx xx







    1or5xx



Check1:3(1)111 402022





Check5:3(5)151 1644222

 Thesolutionsetis  1,5

Check3:2(3)331

Check4:Check25: 10344 10322 162 42

Discard4 x  asextraneous. Thesolutionsetis{25}.

35. 1/2 314 x     2 1/22314 3116 315 5 x x x x    

Check:  1/21/2 351164  Thesolutionsetis{5}.

36. 1/2 352 x     2 1/22352 354 39 3 x x x x    

Check:  1/21/2 33542  Thesolutionsetis{3}.

Chapter 1: Equations and Inequalities

37. 1/3 522 x 

  3 1/33522 528 510 2 x x x x    

Check:  1/31/3 52282 

Thesolutionsetis{2}.

38. 1/3 211 x 

 3 1/33211 211 22 1 x x x x 

Check: 

1/31/3 21111 

Thesolutionsetis{1}.

39. 21/295 x 

21/222 2 2 95 925 16 164 x x x x

Check4: 

21/21/2 49255 

Check4:  21/21/2 49255 

Thesolutionsetis  4,4

40. 21/2169 x 

 21/222 2 2 169 1681 97 97 x x x x

Check97:  21/21/2 9716819

Check97:  21/21/2 9716819

Thesolutionsetis

41.

42.

3/21/2 1/2 30 30 xx xx   1/20or30 0or3 xx xx  

Check0:3/21/2030000 

Check3:3/21/233333330 

Thesolutionsetis  0,3

3/41/4 1/41/2 90 90 xx xx   1/40 0 x x   or 1/29 81 x x  

Check0:3/41/4090000 

Check81:3/41/48198127270 

Thesolutionsetis  0,81

43.

 42 22 22 540 410 40or10 2or1 xx xx xx xx   



Thesolutionsetis  2,1,1,2.

44.

 42 22 2 10250 550 50 5 xx xx x x 



 

Thesolutionsetis  5,5.

45.

 42 22 6510 6110



 xx xx 22 22 610or10 61or1 Notrealor1

   xx xx x Thesolutionsetis 1,1.

46.

 42 22 25120 2340 xx xx

  22 22 230or40 23or4 Notrealor2 xx xx x

 



Thesolutionsetis 2,2.

47.  63 33 780 810 xx xx 

Section 1.4: Radical Equations; Equations Quadratic in Form; Factorable Equations

33 33 80or10 8or1 2or1 xx xx xx

Thesolutionsetis 2,1.

48.

 63 33 780 810 xx xx 

33 33 80or10 8or1 2or1 xx xx xx

Thesolutionsetis   1,2.

49.  2 272120xx

Let22 2,sothat2.uxux 

 27120 340 uu uu   30or40 3or4 23or24 5or6 uu uu xx xx 



Thesolutionsetis   6,5.

50.  2 252560 xx  Let22 25sothat25.uxux 

 260 320 uu uu 

30or20 3or2 253or252 7 1or2 uu uu xx xx

Thesolutionsetis  7,1. 2

51.  2 491049250 xx

 Let22 49sothat49.  uxux

  uu u u u x x x

 2 2 10250 50 50 5 495 414 7 2

Thesolutionsetis  7 2.

52.  2 22200 xx   Let22 2sothat2.uxux 

 2200 540 uu uu   50or40 5or4 25or24 7or2 uu uu xx xx 

Thesolutionsetis 2,7.

53.  2 21513 ss  Let22 1sothat1.usus 



 2 2 253 2530 2130 uu uu uu







  210or30 1or3 2 11or13 2 3or2 2 uu uu ss ss



Thesolutionsetis 3,2. 2

54.  2 315120 yy   Let22 1sothat1.uyuy 

 2 3520 3210 uu uu

 

Chapter 1: Equations and Inequalities

320or10 2or1 3 12or11 3 5or2 3 uu uu yy yy

Thesolutionsetis 5,2. 3 55.

40 140 xxx xx

1 4 122 4 1 16 0or140 14 xx x x x x

Check:

1111 16161616 111 16164 11 1616 0:04(0)00 00 :40 40 0 00 x x

Thesolutionsetis  1 0,. 16

56. 80xx

0or64xx

Check:0:0800 00 64:648640 64640 x x  

Thesolutionsetis  0

57. 20 xx Let2sothat. uxux 

2 2 20 200 540 uu uu uu

  5040 or 54 or or 54 notorpossible16 uu uu xx x    

Check:161620 16420  

Thesolutionsetis  16

58. 6 xx Let2sothat. uxux 

 2 2 6 60 320 uu uu uu 

  3020 or 32 or or 32 notorpossible4 uu uu xx x 



 

Check:446 426  

Thesolutionsetis   4.

59. 1/21/4210tt Let1/421/2 sothat.utut 

 2 2 1/4 210 10 10 1 1 1 uu u u u t t 

    

Check:  1/21/4 12110 1210 00   

Thesolutionsetis  1

Section 1.4: Radical Equations; Equations Quadratic in Form; Factorable Equations

60. 1/21/4440zt Let1/421/2 sothat.uzuz 

Check:

1/21/4 1641640 4840 00

Thesolutionsetis 16.

61. 1/21/4320xx Let1/421/2 sothat.uxux 

1/21/4 1/21/4 16:1631620 4620 00 1:13120 1320 00 x x   

Thesolutionsetis 1,16.

62. 1/21/4 4940 xx Let1/421/2 sothat.uxux  2 4940 uu

2 (9)(9)4(4)(4)917 2(4)8 u

1/21/444 2 2 2 917917 494

1/21/444 2 917917 4940 88 917917 4940 88 481181717729172560

Since

isafourthroot,541 2 x   isalso notreal.Therefore,wehaveonlyonepossible solutiontocheck:541: 2

Section 1.4: Radical Equations; Equations Quadratic in Form; Factorable Equations

Thesolutionsetis 4,1.

66. 22 222 332 Let3sothat3. xxxx uxxuxx

Chapter 1: Equations and Inequalities

Thesolutionsetis

Thesolutionsetis

Thesolutionsetis

77.

78.

80.

81.

or50 5 x x   or40 4 x x  

Thesolutionsetis  5,0,4

32 2 670 670 710 xxx xxx xxx

0 x  or70 7 x x   or10 1 x x  

Thesolutionsetis  7,0,1

32 2 2 10 1110 110 1110 xxx xxx xx xxx

10 1 x x   or10 1 x x  

Thesolutionsetis  1,1

82.

 

32 2 2 440 4140 410 4110 xxx xxx xx xxx

40 4 x x   or10 1 x x   or10 1 x x  

Thesolutionsetis 4,1,1.

83.   

 xxx xxx xx xxx

32 2 2 316480 31630 3160 3440 

30 3 x x   or40 4   x x or40 4   x x Thesolutionsetis 4,3,4.

84.

85.

32 2 2 330 3130 310 3110 xxx xxx xx xxx

 30 3 x x   or10 1 x x   or10 1 x x   Thesolutionsetis  1,1,3

  32 32 2 2 248 2840 214210 2140 21220 xxx xxx xxx xx xxx 

210 21 1 2 x x x    or20 2 x x   or20 2 x x  

Thesolutionsetis  1 2,,2 2

Chapter 1: Equations and Inequalities

Thesolutionsetis

370 37 7 3

x x x or 2 2 40 4 norealsolutions

Thesolutionsetis

350 35 5 3 x x x

 or 2 2 40 4 norealsolutions x

Thesolutionsetis

5 3.

1/34/322 1/3 22 1/3 22 1/3 22 3230 3230 3260 3250 xxxxx xxxxx xxxxx xxxx

1/3 22 22 30or250 30or250 30or250 05 or3or0or 2 xxxx xxxx xxxx xxxx

Thesolutionsetis

1/23/222 1/2 22 1/2 22 1/2 22 32220 23220 23240 220 xxxxx xxxxx xxxxx xxxx

1/2 22 22 20or20 20or20 20or210 01 or2or0or 2 xxxx xxxx xxxx xxxx 

Check0 x  :

1/23/222 1/23/2 3002020200 300200 00

Check2 x 

1/23/222 1/23/2 1/23/2 3(2)(2)2(2)2(2)2(2)0 3(2)442440 3(2)0200 3(2)0200 00

Check1 2 x 

1/23/222 11111 22222 1/23/2111 244 1/23/2133 244 32220 31210 320 Notreal

Thesolutionsetis

91. 1/2 1/222 420 Letsothat. xx

2 2242220 442284220 00 

Thesolutionsetis

 22 22,220.34,11.66 

92. 2/31/3 1/322/3 420 Letsothat. xx uxux

  2420uu 2 444(1)(2) 2(1) 4842222 22 u

1/31/3 33 22or22 22or22 22or22 uu xx xx

3 Check22: x

Check1142

Check1142

Thesolutionsetis5

Thesolutionsetis7,3

Thesolutionsetis52,,2 3

101.  433 4123 315 5 ww ww w w

Thesolutionsetis

102.

63212 618212 46 3 2 kk kk k

Thesolutionsetis3 2



103. 2 2 8 11 vv vv

Let 1 v u v   .Rewritetheequation:

2 2 28 280 240 uu uu uu

Thesolutionsetis4 2, 5

104. 2 6 7 11 yy yy

Thesolutionsetis17 , 26

109.

2 88443 24 811284727 882 y

42 24 42 22 56 56 560 230

424 4 5(3)65(3)6 933

Thesolutionsetis  2,3

Neitherofthesevaluescausesadenominatorto equalzero,sothesolutionsetis

113. Solvetheequation4 41100 ss 

 40 11004 1100401100 11004 27544000 ss

Let2,sothat. usus  227544000uu

2 275275414400 2 27593,225 2 15.1638or290.1638 u uu

Since us  ,itmustbepositive,so  2215.1638229.94 su

Thedistancetothewater'ssurfaceis approximately229.94feet.

114. 2 4 25 TLH 

Let4 T  and10 H  ,andsolvefor L.

2 4 4 44 4 4(10) 25 44 44 2564 64 L L L L L

Thecrushingloadis64tons.

115. 2 32 Tl  

Let16.5 T  andsolvefor l

equalzero,sothesolutionsetis  1331 ,.56

118.

x x x x x x x x

Thesolutionsetis  11

79 2 5510 1449 101010 41 102 4 10 12313 123130 121330 00

xxx xxx xxx xx

Tosolve1 2 121330 xx ,let1 2  ux 11 22 Then2121330 (43)(31)0 31 or 43 91 169     uu uu uxx xx

Thesolutionsetis  910,,169

119. 63 33 22 28270 (27)(1)0 (3)(39)(1)(1)0  

zz zz zzzzzz 30or10 3or1   zz zz

Chapter 1: Equations and Inequalities

abc x i Also abc x i Thesolutionsetis133333,1,,.

120. Answerswillvary.Oneexample:11. x 

121. Answerswillvary.Oneexample:20. xx

122. Answerswillvary.

123. Janedidnotcheckhersolutionsandincludedthe extraneoussolution,1 x 

Section 1.5

1. 2 x 

2. False.

3. closedinterval

4. multiplicationproperties(forinequalities)

5. True.Thisfollowsfromtheadditionproperty forinequalities.

6. True.Thisfollowsfromtheadditionproperty forinequalities.

7. True;.Thisfollowsfromthemultiplication propertyforinequalities.

8. False.Sincebothsidesoftheinequalityare beingdividedbyanegativenumber,thesense, ordirection,oftheinequalitymustbereversed. Thatis, ab cc  .

9. True

10. False;eitherorbothendpointscouldbeanyreal number.

11. d

12. c

13. Interval:   0,2 Inequality:02 x 

14. Interval:  1,2 Inequality:12 x 

15. Interval:   2,  Inequality:2 x 

Thesolutionsetis  3

16. Interval:   ,0 Inequality:0 x 

17. Interval:   0,3 Inequality:03 x 

18. Interval:  1,1 Inequality:11 x

19. a. 35 3353

c.

20. a. 21 2313

c.

21. a. 43 4333

b. 43 4535 18

c.

d.

43 3433

43 2423 86

22. a. 35 3353 02

b. 35 3555 810

c.

35 3335 915

d.  35 2325 610 

23. a. 212 21323 245 x x x   

b. 212 21525 243 x x x   

c.

d.

 212 32132 636 x x x   

 212 22122 424 x x x   

24. a. 125 12353 428 x x x    b. 125 12555 420 x x x   

c.

d.

25. [0,4]

 125 31235 3615 x x x   

 125 21225 2410 x x x   

 

Chapter 1: Equations and Inequalities

26. (–1,5)

27. [4,6)

(–2,0)

25 x 

35. 43 x 36. 01 x 

40. 8 x   

41. If5,then50. xx

42. If4,then40. xx

43. If4,then40. xx

44. If6,then60. xx

45. If4,then312. xx

46. If3,then26. xx

47. If6,then212. xx

48. If2,then48. xx 

49. If5,then420. xx

50. If4,then312. xx 

51. If840,then5. xx

52. If312,then4. xx

53. If13,then6. 2 xx 

54. If11,then4. 4 xx 

55. If11 05,then05  x x

56. 04,11then0 4  x x

57. 50,11then0 5  x x

58. 010,11 then010  x x

59. 15 1151 4 x x x 

4or(,4) xx   

60. 61 6616 7 x x x  

Thesolutionsetis 7or(,7) xx  .

65. 313 24 2 xx x x   

Section 1.5: Solving Inequalities

Thesolutionsetis 2or[2,) xx  .  

66. 223 5 xx x  

Thesolutionsetis 5or[5,) xx   

61. 357 510 2 

x x x

Thesolutionsetis 2or[2,)  xx .

62. 235 33 1 x x x  

Thesolutionsetis 1or[1,) xx 

63. 372 39 3 x x x   

Thesolutionsetis 3or(3,) xx  .

64. 251 24 2 x x x   

Thesolutionsetis 2or(2,) xx 

67. 2(3)8 268 214 7 x x x x 

Thesolutionsetis 7or(7,) xx  .

68. 3(1)12 3312 315 5 x x x x  

Thesolutionsetis 5or(,5) xx 

69. 43(1)3 4333 313 32 2 3 x x x x x     

Thesolutionsetis22 or, 33 xx

Chapter 1: Equations and Inequalities

70. 84(2)2 8842 42 60 0 xx xx xx x x 

Thesolutionsetis

71. 1(4)8 2 128 2 110 2 20 xx xx x x

Thesolutionsetis 20or(,20) xx 

72. 1 34(2) 3 3412 33 9122 814 7 4 xx xx xx x x

Thesolutionsetis77or(,)44 xx

73. 1 24 24 34 4 3 xx xx x x

Thesolutionsetis44or,33 xx

74. 2 36 212 12 xx xx x 

Thesolutionsetis    12or12, xx 

x x x

75. 0375 7312 74 3

Thesolutionsetis774or,433

76. 42210 228 14 x x x

Thesolutionsetis

77. 5432 932 32 3 x x x

14or1,4xx .

Thesolutionsetis223or,333 xx

78. 3329 626 33 x x x 

Thesolutionsetis

33or3,3xx

79. 21 30 4 12210 1121 111 22 x x x x 

Thesolutionsetis111 22 xx 

or 111 , 22

80. 32 04 2 0328 236 22 3 x x x x 

Thesolutionsetis222or,233 xx

81. 1 114 2 1 03 2 06or60 x x xx 

Thesolutionsetis

60or6,0xx

82. 1 011 3 1 10 3 30or03 x x xx  

Thesolutionsetis  03or0,3xx

Section 1.5: Solving Inequalities

83. 22 (2)(3)(1)(1) 61 61 5 5 xxxx xxx x x x     

Thesolutionsetis   5or,5 xx   

84. 22 (1)(1)(3)(4) 112 112 11 11 xxxx xxx x x x 



Thesolutionsetis   11or,11 xx 

85. 2 22 (43)(21) 43441 341 1 1 xxx xxxx xx x x     

Thesolutionsetis    1or1, xx  .  

86. 2 22 (95)(31) 95961 561 1 xxx xxxx xx x 



 

Thesolutionsetis   1or,1 xx   

Chapter 1: Equations and Inequalities

Thesolutionsetis1515

Thesolutionsetis1111

Thesolutionsetis11or,22 xx

91.  1 147 170 14 17(14)0 14 6280 14

x x x x x x

Thezerosandvalueswheretheexpressionis undefinedare31 144 and xx 3311 141444 22 100 422 33

Interval(,)(,)(,) Number01 Chosen Valueof6

Conclusion  f NegativePositiveNegative Wewanttoknowwhere()0 fx  ,sothe solutionsetis  31 144xxorx or,using intervalnotation,31 144 [,).Notethat14isnotin thesolutionsetbecause14isnotinthedomain of f

Thesolutionsetis  31 144 ,  

92.  1 2353 230 (35) 23(35)0 2(35) 1790 (35) x x x x x x         

Thezerosandvalueswheretheexpressionis undefinedare175 93 and xx

171755 9933 17 5

Interval Number Chosen Valueof Conclusion (,)(,)(,) 21.70 117 f PositiveNegativePositive 

Wewanttoknowwhere()0 fx  ,sothe solutionsetis   175 93xxorx or, usingintervalnotation,175 93 [,).Notethat 5 3isnotinthesolutionsetbecause27isnotin thedomainof f

Thesolutionsetis  175 93 ,  

93. 023 5 0223 and 5 x xx  

Since20 x  ,thismeansthat0 x  .Therefore, 23 5 2355 5 103 10 3 x xx x x x

Thesolutionsetis1010or,33 xx

94. 042 3 0442 and 3 x xx

Since40 x  ,thismeansthat0 x  .Therefore, 42 3 4233 3 122 6 x xx x x x

Section 1.5: Solving Inequalities

Thesolutionsetis  6or6, xx 

95.  02411 2 011 242 0111 and 24242 x x xx 

Since10 24 x  ,thismeansthat240 x  Therefore, 11 242 11 2(2)2 112(2)2(2)2(2)2 12 3 x x xx x x x 

Thesolutionsetis

3or3, xx 

96.  03611 3 011 363 0111 and 36363 x x xx 

Since10 36 x   ,thismeansthat360 x  Therefore, 11 363 11 3(2)3 113(2)3(2)3(2)3 12 1 x x xx x x x

Thesolutionsetis

1or1, xx  .

Chapter 1: Equations and Inequalities

97. If11, x  then 14414 345 x x   So,3and5. ab

98. If32, x  then 36626 964 x x   So,9and4. ab

99. If23, x  then 4(2)4()4(3) 1248 x x   So,12and8. ab

100. If40, x  then 

11140 222 1 20 2 x x  

So,2and0. ab

101. If04, x  then 2(0)2()2(4) 028 032383 32311 x x x x  

  So,3and11. ab

102. If33, x  then 2(3)2()2(3) 626 612161 7125 5127 x x x x x 



   So,5and7. ab

103. If30, x  then 34404 144 111 44 111 44 x x x x 



    So,1and1. 4 ab

104. If24, x  then 26646 462 111 462 111 264 x x x x  





So,11 and. 24 ab

105. If6312, x  then 222 2 6312 333 24 24 416 x x x x 





 So,4and16. ab

106. If026, x  then 222 2 026 222 03 03 09 x x x x 





 So,0and9. ab

107. 36 x 

Weneed360 36 2 x x x   

Tothedomainis  2 xx  or   2,.

108. 82 x 

Weneed820 28 4 x x x   

Tothedomainis  4 xx  or   4,.

109. 21<youngadult'sage<30

110. 40≤middle-aged<60

111. a. Let x =ageatdeath. 3052.2 82.2   x x Therefore,theaveragelifeexpectancyfora 30-year-oldmalein2018willbegreater thanorequalto82.2years.

b. Let x =ageatdeath.

3055.8

85.8   x x

Therefore,theaveragelifeexpectancyfora 30-year-oldfemalein2018willbegreater thanorequalto85.8years.

c. Bythegiveninformation,afemalecan expecttolive85.882.23.6  yearslonger.

112. 20 VT 

80º120º

80º120º 20 16002400 T V V

Thevolumerangesfrom1600to2400cubic centimeters,inclusive.

113. Let P representthesellingpriceand C representthecommission.

Calculatingthecommission:

45,0000.25(900,000)

45,0000.25225,000

0.25180,000

Calculatethecommissionrange,giventheprice range:

9001100 9008158151100815 85815285 0.22(85)0.228150.22(285) 18.700.2281562.7

Theamountwithheldvariesfrom$104.32to $148.32,inclusive.

116. Let x representthelengthoftimeSueshould exerciseontheseventhday. 20040450502535300 200195300 5105 x x x

SuewillstaywithintheACSMguidelinesby exercisingfrom5to105minutes.

117. Let K representthemonthlyusageinkilowatthoursandlet C representthemonthlycustomer bill.

Calculatingthebill:0.100625 CK

900,0001,100,000

0.25(900,000)0.250.25(1,100,000)

225,0000.25275,000

225,000180,0000.25180,000275,000180,000

45,00095,000 P P P P C

Theagent'scommissionrangesfrom$45,000to $95,000,inclusive.

45,000 900,000 0.055% to95,0001,100,0000.0868.6%,  inclusive.

Asapercentofsellingprice,thecommission rangesfrom5%to8.6%,inclusive.

114. Let C representthecommission. Calculatethecommissionrange: 250.4(200)250.4(3000) 1051225 C C

Thecommissionsareatleast$105andatmost $1225.

115. Let W =weeklywagesand T =taxwithheld. Calculatingthewithholdingtaxrange,giventhe rangeofweeklywages:

Calculatingtherangeofkilowatt-hours,given therangeofbills: 140.69231.23

140.69250.1006231.23

115.690.1006206.23 11502050

C W K K

Theusagevariesfrom1150.00kilowatt-hoursto 2050.00kilowatt-hours,inclusive.

118. Let W representtheamountofsewer/waterused (inthousandsofgallons).Let C representthe customercharge(indollars).

Calculatingthecharge: 23.550.40 CW

Calculatingtherangeofwaterusage,giventhe rangeofcharges: 30.3536.75

30.3523.550.4036.75

6.80.4013.2 1733

 C W K K

Therangeofwaterusagerangedfrom17,000to 33,000gallons.

Chapter 1: Equations and Inequalities

119. Youhavealreadyconsumed22gramsoffat. LetCrepresentthenumberofcookies.Thenwe havethefollowingequation: 22547 525 5

Youmayeatupto5cookiesandkeepthetotal fatcontentofyourmealnotmorethan47g.

120. Youhavealreadyconsumed145gramsof sodium.Let H representthenumberof hamburgers.Thenwehavethefollowing equation: 1453801285

Youmayeatupto3hamburgersandkeepthe totalsodiumcontentofyourmealnotmorethan 1285g.

121. a. Let T representthescoreonthelasttestand G representthecoursegrade. Calculatingthecoursegradeandsolvingfor thelasttest: 68828789 5 326 5 5326 5326

Calculatingtherangeofscoresonthelast test,giventhegraderange: 8090 4005450 745326124 74124 G G

TogetagradeofB,youneedatleasta74 onthefifthtest.

b. Let T representthescoreonthelasttestand G representthecoursegrade. Calculatingthecoursegradeandsolvingfor thelasttest: 688287892 6 3262 6 163 3 3163 GT GT GT TG

Calculatingtherangeofscoresonthelast

test,giventhegraderange: 8090 2403270 773163107 77107 G G G T     TogetagradeofB,youneedatleasta77 onthefifthtest.

122. Let T representthetestscoresofthepeoplein thetop2.5%. 1.96(12)100123.52 T  Peopleinthetop2.5%willhavetestscores greaterthan123.52.Thatis,123.52 T  or (123.52,). 

123. Since ab  , and 2222 and 22222222 and 22 abab aaababbb abab ab    

So,2ab ab   .

124. Fromproblem123,2ab ab   ,so 2 ,2222 ababababadaa     and 2 ,2222 ababbabbadbb   

Therefore,2ab  isequidistantfrom a and b.

125. If0,then ab

  22 22 22 0and0 and and ababab ababab ababab   

Therefore, aabb 

126. Showthat 2 abab     2 12 22 10,since. 2 ababaabb abab  



Therefore,2abab  

Section 1.6: Equations and Inequalities Involving Absolute Value

127. For1111 0,2 ab hab

11 2 11 2 2 ba hh hab bah ab hab ab

22 22() 2 ()0 ababaabhaa abab abaababa abab aba ab

. 22 2()2 2 ()0 bhbabbabab abab abbabbab abab bba ab

Therefore, hb

,andwehave ahb

128. Showthat

2 (geometric2 mean) arithmeticmean1() 2 ab h ab

2 1111 2 211 2 2 1() 2 hab ba habab hab ab habab abab

129. 4235 3 312695 31269and695 33514 114 4

.

Thisisequivalentto14 1 5  x .Thesolution set,inintervalnotation,is14 1,5

130. Thelargestvalueof223 x occursatthelargest valuefor x 259 34 43 34or43

x x x xx

Thelargestvaluefor223 x is 2 2(4)332329  .

131. Answerswillvary

132. Answerswillvary.Onepossibility: Nosolution:  46252 xxx  Onesolution:  35231321 xxx 

133. Since20 x  ,wehave 2 2 101 11 x x   Therefore,theexpression21 x  canneverbe lessthan5

134. Answerswillvary.

Section 1.6

22

{|55} xx

True

True

d

a

Chapter 1: Equations and Inequalities

9. 315  x 315or315 5or5

xx xx Thesolutionsetis{–5,5}.

10. 312 x  312or312 4or4 xx xx

Thesolutionsetis{–4,4}.

11. 235 x  235or235 22or28 1or4 xx xx xx

Thesolutionsetis{–4,1}.

12. 312 x  312or312 33or31 11 or 3 xx xx xx

Thesolutionsetis  1,1 3

13. 14813 145 t t

145or145 44or46 13 or 2 tt tt tt

Thesolutionsetis  1,3 2

14. 1269 123 z z

123or123 22or24 1or2 zz zz zz

Thesolutionsetis  1,2

15. 28 28 x x

28or28 4or4 xx xx

Thesolutionsetis{–4,4}.

16. 1 1 x x   1or1xx  Thesolutionsetis{–1,1}.

17. 24 24 2 x x x    Thesolutionsetis{2}.

18. 39 39 3 x x x    Thesolutionsetis{3}.

19. 83 7  x 21 8 2121 or 88   x xx

Thesolutionsetis  2121 , 88

20. 39 4 x  12 12or12 x xx   Thesolutionsetis{–12,12}.

21. 22 35 x  222or2 3535 5630or5630 524or536 2436 or 55 xx xx xx xx    

Thesolutionsetis  3624 , 55

22. 11 23 x  111or1 2323 326or326 38or34 84 or 33 xx xx xx xx

Thesolutionsetis  48 , 33 .

23. 21 2 u

Nosolution,sinceabsolutevaluealwaysyieldsa non-negativenumber.

24. 21 v  Nosolution,sinceabsolutevaluealwaysyieldsa non-negativenumber.

25. 544 41 41 

 x x x 41or41 11 or 44

Thesolutionsetis  11 , 44 .

26.

Thesolutionsetis  4,4

27. 290 x  2 2 90 9 3 x x x   

Thesolutionsetis  3,3

28. 2160 x  2 2 160 16 4 x x x    Thesolutionsetis  4,4

29. 223xx  22 22 23or23 230or230 3102412 or 2 328 or1ornorealsol. 2 xxxx xxxx xxx xxx

Thesolutionsetis  1,3

30. 212xx  22 22 12or12 120or120 3401148 or 2 3147 or4ornorealsol. 2 xxxx xxxx xxx xxx 

Thesolutionsetis  4,3

31. 211xx  22 22 11or11 20or0 120or10 1,2or0,1 xxxx xxxx xxxx xxxx





Thesolutionsetis 2,1,0,1.

32. 2322xx   22 22 2 322or322 34or30 340or30 410or0,3 4,1 xxxx xxxx xxxx xxxx xx











Thesolutionsetis  4,3,0,1

Chapter 1: Equations and Inequalities

33. 53 2 35  x x

5353 2or2 3535 53235or53235 53610or53610 7or1113 713 or 11

xx xx xxxx xxxx xx xx Neitherofthesevaluescausethedenominatorto equalzero,sothesolutionsetis  13,7. 11

34. 21 1 34 x x  

2121 1or1 3434 21134or21134 2134or2134 3or55 3or1 xx xx xxxx xxxx xx xx

35. 2232 xxxx 

2222 22 2 32or32 32or32 50or20 0or(21)0 01 or0or 2 xxxxxxxx xxxxxx xxx xxx xxx 

Thesolutionsetis 1,0. 2

36. 2226 xxxx 

2222 22 2 26or26 26or26 80or240 0or2(2)0 0or0or2 xxxxxxxx xxxxxx xxx xxx xxx

Thesolutionsetis 2,0.

37. 28 x  828 44 x x  

 44or4,4xx

  

38. 315 x  15315 55 x x  

 55or5,5xx

39. 742  x 742or742 6or6   xx xx

 6or6or,66, xxx

40. 26 x  26or26 3or3 xx xx  

 3or3or,33,xxx

41. 223 21 x x   121 13 x x  

 13or1,3xx

42. 435 42 x x   242 62 x x  

 62or6,2xx

         

43. 324 t  4324 236 22 3 t t t

Section 1.6: Equations and Inequalities Involving Absolute Value

47. 1472 145 x x   5145 644 64 44 33 1or1 22 x x x xx    

 33 122 or1, xx

44. 257 u  7257 1222 61 u u

44. 232 x  232or232 21or25 15 or 22 xx xx

46. 342 x  342or342 36or32 22 or 3 xx xx xx

222 oror,2, 33 xxx

48. 1241 123 x x   3123 422 42 22 21or12 x x x xx  

 

 12or1,2xx

     3 2

49. 527  x 527or527 212or22 6or1

   xx xx xx

 1or6or,16, xxx

50. 231 x  231or231 33or31 11 or 3 xx xx xx   

 11or1or,1,33 xxx   

3

Chapter 1: Equations and Inequalities

51. 451 451 44 x x x 

Thisisimpossiblesinceabsolutevaluealways yieldsanon-negativenumber.Theinequality hasnosolution.

52.

54. 21 x  21or21 1or3 1or3 xx xx xx

3or1

55. 32521

56.

57. 95  x

Thisisimpossiblesinceabsolutevaluealways yieldsanon-negativenumber.Nosolution.

58. 30 x 

Absolutevalueyieldsanon-negativenumber,so thisinequalityistrueforallrealnumbers,(,). 

59. 51 x 

Absolutevalueyieldsanon-negativenumber,so thisinequalityistrueforallrealnumbers,(,). 

60. 62 x 

Thisisimpossiblesinceabsolutevaluealways yieldsanon-negativenumber.Nosolution.

61. 2311 32 x 

62. 311 2 15 2 15 2 x x x

63. 8413

Thisisimpossiblesinceabsolutevaluealways yieldsanon-negativenumber.Nosolution.

64. 749

Thisisimpossiblesinceabsolutevaluealways yieldsanon-negativenumber.Nosolution.

65. 720 3  x

Sincetheabsolutevaluecannotbenegative,the onlypossiblesolutionwouldbe:

x x

Sincetheabsolutevaluecannotbenegative,the onlypossiblesolutionwouldbe: 4150 6 4150 415 15 4

 x x x x 67. 374 5  x 37374or4 55 3720or3720 313or327 13or9 3

1313or9or,9,33

68. 528 9  x 52528or8 99 5272or5272 277or267 7767 or 22 

xxx 69. 511 2 19 2 x x 

xx xx xx xx 67776777 oror,, 2222

Absolutevalueyieldsanon-negativenumber,so thisinequalityistrueforallrealnumbers,(,). 

Chapter 1: Equations and Inequalities

70. 2311 23 x 

71. Atemperature x thatdiffersfrom98.6 Fbyat least1.5F  . 98.61.5 98.61.5or98.61.5 97.1or100.1

Thetemperaturesthatareconsideredunhealthy arethosethatarelessthan97.1˚Forgreaterthan 100.1˚F,inclusive.

72. ThelengthLmustbewithin0.0025of5.375 inches..

5.3750.0025

0.00255.3750.0025

5.37255.3775

Thelengthsmustbebetween5.3725and5.3775 inches,inclusive.

73. Thepercentagemustbewithin3.9percentage pointsof64percent.Theinequalitythat representsthiswouldbe:

 x x x

60.167.9 

643.9 3.9643.9

Theactualpercentageislikelytofallbetween 60.1%and67.9%inclusive.

74. Thespeed x variesfrom707mphbyupto55 mph.

a. 70755 x 

b. 5570755 5570755 652762 x x x   

Thespeedofsoundisbetween652and762 milesperhour,dependingonconditions.

75. differs1 from3bylessthan2 x . 31 2 11 3 22 57 22 x x x    57 22 xx    

76. differsfrom4bylessthan1 x (4)1 41 141 53 x x x x  

   53xx

77. x differsfrom3bymorethan2. (3)2 32 x x   32or32 5or1 xx xx    |5or1xxx

78. x differsfrom2bymorethan3. 23 23or23 1or5 x xx xx 





 |1or5xxx

79. 13 x  313 35(1)535 248 x x x    2,8ab

80. 25 x  525 54(2)454 921 x x x 

  9,1ab

Section 1.6: Equations and Inequalities Involving Absolute Value

81. 42 x  242 62 1224 15237 x x x x 

82. 31 x  131 24 6312 73113 x x x x

83. 27 x  727 59 15101 111 1510 111 1015 x x x x x 

1,115

84. 13 x  313 42 157 111 57 111 75 x x x x x 

 1,1 7 ab

85. Giventhat0,0, ab and ab  ,show that ab  Notethat

bababa  .

Sincemeans0 abba  ,wehave

0 bababa  Therefore,0whichmeans. baab 

86. Showthat aa  Weknow0 a  .Soif a <0,thenwehave

0whichmeans. aaaa  .Now,if 0,then aaa  .So aa  .

87. Prove abab  . Notethat2ababab  .

Case1:If0,then, ababab  so 

22 22 2 2 2 byproblem86     abababab aabb aabb ab

 Thus,22 . abab abab  

Case2:If

 0,then, ababab  so

 abababab abab aabb aabb ab   Thus,22 abab abab  



22 22 2 2 2 byproblem86 

88. Prove abab 

 aabbabb  bytheTriangle Inequality,so aabb  whichmeans abab  Therefore, abab 

89. Giventhat a >0,   2 20 0 xa xa xaxa   

If xa  ,then0 xa and 20xaa .Therefore,   0 xaxa ,whichisacontradiction.

If axa ,then02xaa and 20 axa  Therefore,   0 xaxa .

Chapter 1: Equations and Inequalities

If xa  ,then20 xaa and 0 xa .Therefore,   0 xaxa , whichisacontradiction.Sothesolutionsetfor  2is xaxaxa  .

90. Giventhat a >0,   2 20 0 xa xa xaxa  



If xa  ,then0 xa and 20xaa

Therefore,   0 xaxa .

If axa ,then02xaa and 20 axa  ..Therefore,   0 xaxa ,whichisacontradiction.

If xa  ,then20 xaa and 0 xa .Therefore,   0 xaxa

Sothesolutionsetfor2xa  is  <or.xxaxa 

91. 21



95. 216 1616 44 x x x  



Thesolutionsetis  44xx .

96. 29 99 33 x x x   

Thesolutionsetis  33xx .

97. 24 4or4 2or2 x xx xx   

Thesolutionsetis  2or2xxx

98. 216 16or16 4or4 x xx xx   

Thesolutionsetis  4or4xxx

99. 3214 3214or3214 xx xxxx

11 11 x x x 



Thesolutionsetis  11xx .

92. 24 44 22 x x x 

 

Thesolutionsetis  22xx

93. 29 9or9 3or3 x xx xx   

Thesolutionsetis  3or3xxx

94. 21 1or1 1or1 x xx xx   

Thesolutionsetis  1or1xxx

  3214 3421 xx xx   2134or2134 5or2134 5or53 53 or 5 xxxx xxx xx xx     or 3214 3421 xx xx   2134or2134 3or2134 3or55 3or1 xxxx xxx xx xx     Thevalues3and3 5 areextraneous.

Thesolutionsetis   1,5.

0,1

101. 2513 2513 18 

xx xx x x 432 36 2

xx xx x or25(13) 2513 38 8 3

 y y y

y y y or 432 32 2 3

Thevalueof y x islargestusing x =18and y =2, so 21 189  y x

102. Since0  x forallrealnumbers,then 0 1   x x and11 1   x x .Thismeans 113 12 0111 12 111 12 111 12 112 01

x x x x x x x x Therefore11  x .Thesolutionsetin intervalnotationis  1,1

103 – 105. Answerswillvary.

Section 1.7

1. mathematicalmodeling

2. interest

3. uniformmotion

4. False;theamountchargedfortheuseof principalistheinterest.

5. True;thisistheuniformmotionformula.

6. a

7. b

8. c

9. Let A representtheareaofthecircleand r the radius.Theareaofacircleistheproductofπ timesthesquareoftheradius:2 Ar 

10. Let C representthecircumferenceofacircle and r theradius.Thecircumferenceofacircle istheproductofπtimestwicetheradius: 2 Cr 

11. Let A representtheareaofthesquareand s the lengthofaside.Theareaofthesquareisthe squareofthelengthofaside:2 As 

12. Let P representtheperimeterofasquareand s thelengthofaside.Theperimeterofasquareis fourtimesthelengthofaside:4Ps 

13. Let F representtheforce, m themass,and a theacceleration.Forceequalstheproductofthe masstimestheacceleration: Fma 

14. Let P representthepressure, F theforce,and A thearea.Pressureistheforceperunitarea: PF A 

15. Let W representthework, F theforce,and d thedistance.Workequalsforcetimesdistance: WFd 

16. Let K representthekineticenergy, m themass, and v thevelocity.Kineticenergyisone-half theproductofthemassandthesquareofthe velocity:2 1 2 Kmv 

17. C  totalvariablecostindollars, x  number ofdishwashersmanufactured:150Cx 

18. R  totalrevenueindollars, x  numberof dishwasherssold:250Rx 

19. Let x representtheamountofmoneyinvestedin bonds.Then50,000 x representstheamount ofmoneyinvestedinCD's.Sincethetotal interestistobe$6,000,wehave: 

0.150.07(50,000)6,000

1000.150.07(50,000)6,000100

157(50,000)600,000

15350,0007600,000

0.150.07(50,000)7,000



1000.150.07(50,000)7,000100

157(50,000)700,000 15350,0007700,000 8350,000700,000 8350,000 43,750

$43,750shouldbeinvestedinbondsat15%and $6,250shouldbeinvestedinCD'sat7%.

21. Let x representtheamountofmoneyloanedat 8%.Then12,000 x representstheamountof moneyloanedat18%.Sincethetotalinterestis tobe$1,000,wehave: 

0.080.18(12,000)1,000

1000.080.18(12,000)1,000100 818(12,000)100,000 8216,00018100,000 10216,000100,000 10116,000 11,600 xx xx

x x x

 $11,600isloanedat8%and$400isat18%.

22. Let x representtheamountofmoneyloanedat 16%.Then1,000,000 x representstheamount ofmoneyloanedat19%.Sincethetotalinterest istobe$1,000,000(0.18),wehave:

0.16190,0000.19180,000 0.03190,000180,000 0.0310,000

0.160.19(1,000,000)1,000,000(0.18) 10,000 0.03 $333,333.33 xx x x x xx x

Wendycanlend$333,333.33at16%.

x x x

8350,000600,000

8250,000 31,250

$31,250shouldbeinvestedinbondsat15%and $18,750shouldbeinvestedinCD'sat7%.

20. Let x representtheamountofmoneyinvestedin bonds.Then50,000 x representstheamount ofmoneyinvestedinCD's.Sincethetotal interestistobe$7,000,wehave:

23. Let x representthenumberofpoundsofEarl Graytea.Then100 x representsthenumberof poundsofOrangePekoetea. 64(100)5.50(100) 64004550 2400550 2150 75

xx xx x x x 75poundsofEarlGrayteamustbeblendedwith 25poundsofOrangePekoe.

24. Let x representthenumberofpoundsofthe firstkindofcoffee.Then100 x representsthe numberofpoundsofthesecondkindofcoffee. 2.755(100)4.10(100)

2.755005410

2.25500410 2.2590

40poundsofthefirstkindofcoffeemustbe blendedwith60poundsofthesecondkindof coffee.

25. Let x representthenumberofpoundsof cashews.Then60 x  representsthenumberof poundsinthemixture.

94.50(60)7.75(60) 92707.75465 1.25195

156poundsofcashewsmustbeaddedtothe60 poundsofalmonds.

26. Let x representthenumberofcaramelsinthe box.Then30 x representsthenumberof cremesinthebox.

RevenueCostProfit

12.500.250.45(30)3.00

12.500.2513.50.453.00

12.5013.50.203.00

12.5013.500.203.00

Theboxshouldcontain20caramelsand10 cremes.

27. Let r representthespeedofthecurrent. 2016 1 6033 1516 1 6044

Sincethedistanceisthesameineachdirection: 1616 34 4(16)3(16) 644483 167 162.286 7 rr

RateTimeDistance

Thespeedofthecurrentisapproximately2.286 milesperhour.

28. Let r representthespeedofthemotorboat.

RateTimeDistance Upstream3553

Downstream32.52.53 rr rr 

Thedistanceisthesameineachdirection: 5(3)2.5(3) 5152.57.5 2.522.5 9 rr rr r r 

Thespeedofthemotorboatis9milesperhour.

29. Let r representthespeedofthecurrent.

RateTimeDistance 10 Upstream1510 15 10 Downstream1510 15 r r r r  

Sincethetotaltimeis1.5hours,wehave: 2 2 2 2 10101.5 1515 10(15)10(15)1.5(15)(15) 15010150101.5(225) 3001.5(225) 200225 250 (5)(5)0 5or5 rr rrrr rrr r r r rr rr

Speedmustbepositive,sodisregard5 r  Thespeedofthecurrentis5milesperhour.

30. Let r representtherateoftheslowercar.Then 10 r  representstherateofthefastercar.

RateTimeDistance

Slowercar3.53.5 Fastercar103310 rr rr 

Chapter 1: Equations and Inequalities

3.53(10) 3.5330 0.530

Theslowercartravelsatarateof60milesper hour.Thefastercartravelsatarateof70miles perhour.Thedistanceis(70)(3)=210miles.

31. Let r representKaren’snormalwalkingspeed. RateTimeDistance

With50walkway2.550 2.5

Against50walkway2.550 2.5

Sincethetotaltimeis48seconds:

50(2.5)50(2.5)48(2.5)(2.5) 501255012548(6.25) 10048300 048100300 0122575

Speedmustbepositive,sodisregard1.67

Karen’normalwalkingspeedisapproximately 3.75feetpersecond.

32. Let r representthespeedoftheairportwalkway. RateTimeDistance

Walking280with1.5280

Standing280still280

Walkingwiththewalkwaytakes60secondsless timethanstandingstillonthewalkway:

   270or20 7or2 2 rr rr 

Speedmustbepositive,sodisregard7 2 r 

Thespeedoftheairportwalkwayis2metersper second.

33. Let w representthewidthofaregulationdoubles tenniscourt.Then26 w  representsthelength. Theareais2808squarefeet: 2 2 2 (26)2808 262808 2628080 314040 (39)(36)0 ww ww ww ww ww



  390or360 39or36 ww ww 



Thewidthmustbepositive,sodisregard39 w  Thewidthofaregulationdoublestenniscourtis36 feetandthelengthis2(36)+6=78feet.

34. Let t representthetimeittakestheBrotherHLL8350CDWtocompletetheprintjobalone. Then9  t representsthetimeittakestheXerox VersaLinkC500tocompletetheprintjobalone. 1 1 9 1 20 TimePartofjobdone todojobinoneminute Brother Xerox9 Together20

t t t t 2 2 111 920 20(9)20(9) 20180209 031180 0(36)(5)

Section 1.7: Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications

360or50 36or5

Timemustbepositive,sodisregard5  t

TheBrotherHL-L8350CDWtakes36minutesto completethejobalone,printing144040 36  pagesperminute.XeroxVersaLinkC500takes 36+9=45minutestocompletethejobalone, printing144032 45  pagesperminute.

35. Let t representthetimeittakestodothejob together.

Workingtogether,thejobcanbedonein12 minutes.

36. Let t representthetimeittakesApriltodothe jobworkingalone.

37. l  lengthofthegarden w  widthofthegarden

a. Thelengthofthegardenistobetwiceits width.Thus,2lw 

Thedimensionsofthefenceare4 l  and 4 w 

Theperimeteris46feet,so: 2(4)2(4)46 2(24)2(4)46 482846 61646 630 5 lw ww ww w w w

Thedimensionsofthegardenare5feetby 10feet.

b. Area51050 lw  squarefeet

c. Ifthedimensionsofthegardenarethesame, thenthelengthandwidthofthefenceare alsothesame(4) l  .Theperimeteris46 feet,so: 2(4)2(4)46 282846 41646 430 7.5 ll ll l l l

Thedimensionsofthegardenare7.5feetby 7.5feet.

d. Area7.5(7.5)56.25 lw  squarefeet.

38. l  lengthofthepond w  widthofthepond

a. Thepondistobeasquare.Thus, lw  . Thedimensionsofthefencedareaare6 w  oneachside.Theperimeteris100feet,so: 4(6)100 424100 476 19 w w w w     Thedimensionsofthepondare19feetby 19feet.

b. Thelengthofthepondistobethreetimes thewidth.Thus,3lw  .Thedimensionsof thefencedareaare6and6 wl .The perimeteris100feet,so:

Chapter 1: Equations and Inequalities

2(6)2(6)100

2(6)2(36)100 212612100 824100 876 9.5 3(9.5)28.5

Thedimensionsofthepondare9.5feetby 28.5feet.

c. Ifthepondiscircular,thediameteris d and thediameterofthecirclewiththepondand thedeckis6 d 

d 3 3

Theperimeteris100feet,so: (6)100 6100

Thediameterofthepondis25.83feet.

d. 2 square Area19(19)361ft lw

Thecircularpondhasthelargestarea.

39. Let t representthetimeittakesforthedefensive backtocatchthetightend. 1002525 1233 100 10 TimetorunDistance 100yards Def. Back TimeRate

Sincethedefensivebackhastorun5yards farther,wehave:

Thedefensivebackwillcatchthetightendatthe 45yardline(15+30=45).

40. Let x representthenumberofhighwaymiles traveled.Then30,000 x representsthenumber ofcitymilestraveled.

5240,0008180,000

Thereseisallowedtoclaim20,000milesasa businessexpense.

41. Let x representthenumberofgallonsofpure water.Then1 x  representsthenumberof gallonsinthe60%solution.

%gallons%gallons%gallons 01(1)0.60(1) 10.60.6 0.40.6 42 63 xx x x x

2 3gallonofpurewatershouldbeadded.

42. Let x representthenumberofliterstobe drainedandreplacedwithpureantifreeze.   %liters%liters%liters 10.40(15)0.60(15) 60.409 0.603 5 xx xx x x

  5litersshouldbedrainedandreplacedwithpure antifreeze.

43. Let x representthenumberofouncesofwater tobeevaporated;theamountofsaltremainsthe same.Therefore,weget 2 3 0.04(32)0.06(32) 1.281.920.06 0.060.64 0.64643210 0.0663 x x x x     2 3 1010.67  ouncesofwaterneedtobe evaporated.

44. Let x representthenumberofgallonsofwater tobeevaporated;theamountofsaltremainsthe same.

0.03(240)0.05(240)

96gallonsofwaterneedtobeevaporated.

45. Let x representthenumberofgramsofpure gold.Then60 x representsthenumberof gramsof12karatgoldtobeused. 12(60)(60)23 300.540 0.510 20 xx

20gramsofpuregoldshouldbemixedwith40 gramsof12karatgold.

46. Let x representthenumberofatomsofoxygen. 2 x representsthenumberofatomsofhydrogen. 1 x  representsthenumberofatomsofcarbon. 2145 444 11 xxx x

Thereare11atomsofoxygenand22atomsof hydrogeninthesugarmolecule.

47. Let t representthetimeittakesforMiketo catchupwithDan.Sincethedistancesarethe same,wehave: 11(1) 69

MikewillpassDanafter2minutes,whichisa distanceof1 3 mile.

48. Let t representthetimeofflightwiththewind. Thedistanceisthesameineachdirection: 330270(5) 3301350270 6001350

Thedistancetheplanecanflyandstillreturn safelyis330(2.25)=742.5miles.

49. Let t representthetimetheauxiliarypump needstorun.Sincethetwopumpsareemptying onetanker,wehave:

Theauxiliarypumpmustrunfor2.25hours.It mustbestartedat9:45a.m.

50. Let x representthenumberofpoundsofpure cement.Then20 x  representsthenumberof poundsinthe40%mixture.

0.25(20)0.40(20) 50.48 0.63 305 6 xx xx x x

5poundsofpurecementshouldbeadded.

51. Let t representthetimeforthetubtofillwith thefaucetsonandthestopperremoved.Since onetubisbeingfilled,wehave: 1 1520 4360 60 tt tt t

 60minutesisrequiredtofillthetub.

52. Let t bethetimethe5horsepowerpumpneeds toruntofinishemptyingthepool.Sincethetwo pumpsareemptyingonepool,wehave: 221 58 4(2)520 84520 47 1.75 t t t t t

The5horsepowerpumpmustrunforan additional1.75hoursor1hourand45minutesto emptythepool.

53. Let t representthetimespentrunning.Then 5 t representsthetimespentbiking. RateTimeDistance Run66 Bike25525(5) tt tt

Chapter 1: Equations and Inequalities

Thetotaldistanceis87miles: 625(5)87 61252587 1912587 1938 2 tt

Thetimespentrunningis2hours,sothe distanceoftherunis6(2)12  miles.The distanceofthebicycleraceis25(52)75  miles.

54. Let r representthespeedoftheeastbound cyclist.Then5 r  representsthespeedofthe westboundcyclist.

RateTimeDistance Eastbound66 Westbound566(5) rr rr 

Thetotaldistanceis246miles: 66(5)246 6630246 1230246 12216 18 rr rr r r r

Thespeedoftheeastboundcyclistis18miles perhour,andthespeedofthewestboundcyclist is18523  milesperhour.

55. Burke'srateis10012meters/sec.In9.81seconds, Burkewillrun100(9.81)81.75 12  meters.Bolt wouldwinby100-81.75=18.25meters.

56. 2 22 Arrh  .Since58.9  A square inchesand6.4  h inches, 2 2 2 22(6.4)58.9 212.858.90 212.858.90  

rr rr rr 2 12.8(12.8)4(2)(58.9) 2(2) 12.8635.04 4 3.1or9.5      r rr . Theradiusofthecoffeecanis3.1inches.

57.Lettheindividualtimestocompletetheproject beEforElaine,BforBrian,andDforeither daughter.Usingtherespectiveratesgives 1111111 , 22  EBEDD (or121 2  ED ), and111 4  BD .Fromthefirsttwoequations, 12  BD .Substitutingintothethirdequation gives211 4  DD or 3112hours. 4  D D Then1213hours 122  E E and 1116hours. 124

 B B Thecombinedrate ofElaine,Brian,andoneoftheirdaughtersis 1117 361212

 projectperhour,soitwilltake them127hourstocompletetheproject.

58. If x =litersoforiginalsolution,thentherewere originally0.2x litersofsaltand0.8litersofpure water.Overtime,thesolutionloses 0.25(0.8)0.2  xx litersofpurewater.Sheadds 20litersofsaltsothetotalamountofsaltis 0.220  x liters.Shealsoadds10litersofpure water,sothetotalamountofpurewateris 0.80.2100.610  xxx liters.Theresulting concentrationis331/3%whichmeans 0.22010.2201 or 0.2200.61030.8303    xx xxx or 0.6600.830150  xxx .Therewere initially150litersofsolutioninthevat.

59. Thespeedofthetrainrelativetothemanis30–4=26milesperhour.Thetimeis 5551 secminhh. 603600720

Thefreighttrainisabout190.67feetlong.

60. Answerswillvary.

61. Let x betheoriginalsellingpriceoftheshirt. ProfitRevenueCost 40.4020240.6040 xxxx

Theoriginalpriceshouldbe$40toensurea profitof$4afterthesale.

Ifthesaleis50%off,theprofitis: 400.50(40)204020200

At50%offtherewillbenoprofit.

62. Let12 and tt representthetimesforthetwo segmentsofthetrip.SinceAtlantaishalfway betweenChicagoandMiami,thedistancesare equal.

TheaveragespeedforthetripfromChicagoto Miamiis49.5milesperhour.

63. Thetimetraveledwiththetailwindwas: 9191.67091hours 550 t 

Sincetheywere20minutes  1 3hourearly,the timeinstillairwouldhavebeen:

1.67091hrs20min1.670910.33333hrs 2.00424hrs

Thus,withnowind,thegroundspeedis 919458.53 2.00424  .Therefore,thetailwindis 550458.5391.47knots 

64. Itisimpossibletomixtwosolutionswitha lowerconcentrationandendupwithanew solutionwithahigherconcentration.

AlgebraicSolution:

Let x =thenumberoflitersof25%solution. 

%liters%liters%liters 0.250.48200.5820 0.259.610.60.58 0.331 3.03liters (notpossible) xx xx x x

Chapter 1 Review

1. 28 3 624 18 x x x 

Thesolutionsetis{18}.

2. 2(53)845 106845 6245 6 xx xx xx x

Thesolutionsetis{6}.

Chapter 1: Equations and Inequalities

3. 6 15 566 6 x x xx x   

Since x =6doesnotcauseadenominatorto equalzero,thesolutionsetis{6}.

4. 2 (27)20 2720 2725 2725 725 2 

x x x x x

Thesolutionsetis725725 , 22

5. 2 2 (1)6 6 06 xx xx xx 

2241416 12423 bac

Therefore,therearenorealsolutions.

6. 2 2 (1)6 6 60 (3)(2)0 xx xx xx xx

Thesolutionsetis 3,2. 7.

113 2346 113 1212 2346 6292 811 11 8 x x x x xx x x

Thesolutionsetis  11 8 8.

1361 432 1361 1212 432 3(13)4(6)6 394246 1327 27 13 xx xx xx xx x x

Thesolutionsetis

2 2 (1)(23)3 233 260 (23)(2)0 xx xx xx xx 

3or2 2 xx

27 13

Thesolutionsetis  2,3 2 10. 2 2 2 234 0423 (2)(2)4(4)(3) 2(4) 2522213113 884 xx xx x 

Thesolutionsetis113113 , 44     11. 

32 333 2 2 2 12 12 18 9 3 x x x x x

Check3: x  Check3: x  32 3 3 (3)12 912 82 22

  32 3 3 (3)12 912 82 22 

Thesolutionsetis  3,3

12.

 3 2 32 3 3 3 13 1(3) 19 8 82 x x x x x     

Check2: x  3 123 93 33   

Thesolutionsetis  2

13. 2 2 (1)20 20 1(1)4(1)(2)17 2(1)2 xx xx x 



Norealsolution.

14.  42 22 22 540 410 40or10 2or1 xx xx xx xx

Thesolutionsetis  2,1,1,2

15. 2 2 233 233 2396 8120 (2)(6)0 xx xx xxx xx xx

2or6xx

Check2:2(2)32123

Check13: 2 13 23133162 2 x

Thesolutionsetis  13 2 . 17.

16.

Check6:2(6)369693

x

4 444 232 232 2316 213 13 2 x x x x x 

  444

makestheradicandnegative.

Thesolutionsetis

Thesolutionsetis  1,1 2 21.

222 2222 2222 222 2 2 20 120 xmmxnx xmmxnx xnxmxm nxmxm

 222 2 2222 2 22 22 22 (2)(2)41 21 2444 21 2422 2121 211 211 mmnm x n mmmmn n mmnmmn nn mnmn nn

  2 2 11 1111 or 11 1111 mnmnm x nnnn mnmnm x nnnn  

Thesolutionsetis ,,1,1.11 mm nn nn  

22.  222 222 102360 5180 5920 axabxb axabxb axbaxb    590 59 9 5 axb axb b x a 

or20 2 2 axb axb b x a  

Thesolutionsetis  92 5,,0. bb a aa 

Thesolutionsetis  9 . 5

24. 237 x  237or237 24or210 2or5 xx xx xx

Thesolutionsetis{–5,2}.

25. 2329 237 x x   237or237 35or39 5or3 3 xx xx xx   

Thesolutionsetis  5,3 3

26.  32 32 2 23 230 230 xx xx xx 

 20or230 03 or 2 xx xx  

Thesolutionsetis   0,3 2 .

27.    32 2 2 258200 254250 2540 xxx xxx xx 

  2 2 250or40 25or4 5or2 2 xx xx xx 





Thesolutionsetis  5,2,2 2

28. 23 2 52 2(23)10(2)5 46205 14 14 xx xx xx x x         14or14, xx 

Chapter 1: Equations and Inequalities

29. 23 97 4 362328 33231 3331 22 3133 22 x x x x x 

30. 33 26 12 243372 21369 723 x x x x

31. 1 34 2 11 34 22 97 3 22 37 26 x x x x

32. 259 x  259or259 24or214 2or7 xx xx xx

33. 2234 232 2232 430 4 0 3 x x x x x

34. 1234 235 235 235or235 73or33 7 or1 3 7 1or 3 x x x xx xx xx xx

77 1oror,1, 33 xxx

  6324623447 iiii 

36.  4335212415632 iiiii 

37. 2 33393 333933 9393 101010 ii iiiiii i i

 12 504824212111 iiiii

32 2 2 232323 412923 51223 10152436 469 iii iii ii iii i

40. 210xx

Thesolutionsetis1313 , 2222 ii

41. 2 220 xx

42.

44. 50,00095 cx

0.080.05(70,000)5000

1000.080.05(70,000)5000100

8350,0005500,000 3350,000500,000

3150,000 50,000 xx xx xx x x x

$50,000shouldbeinvestedinbondsat8%and $20,000shouldbeinvestedinCD'sat5%.

46. Using svt  ,wehave3and1100 tv . Findingthedistance s infeet: 1100(3)3300 s 

Thestormis3300feetaway.

47. 16003600 I  2 2 2 900 16003600 11 16009003600 91 164 31 42 x x x x

Therangeofdistancesisfrom0.5metersto0.75 meters,inclusive.

48. Let s representthedistancetheplanecantravel. 22 WithwindAgainstwind Rate2503028025030220 Time(/2)(/2) 280220 Dist. ss ss 

Sincethetotaltimeisatmost5hours,wehave:  /2/2 5 280220 5 560440 11145(6160) 2530,800 1232 ss ss ss s s 

Theplanecantravelatmost1232milesor616 milesonewayandreturn616miles.

45. Let x representtheamountofmoneyinvestedin bonds.Then70,000 x representstheamount ofmoneyinvestedinCD's. Sincethetotalinterestistobe$5000,wehave: 

Chapter 1: Equations and Inequalities

49. Let t representthetimeittakesthehelicopterto reachtheraft.

RaftHelicopter Rate590

Time Dist.590 tt tt

Sincethetotaldistanceis150miles,wehave: 590150 95150 1.58hours1hourand35minutes tt t t

Thehelicopterwillreachtheraftinabout1hour and35minutes.

50. Giventhat2 12803216 stt  ,

a. Theobjecthitsthegroundwhen0 s  .

2 2 012803216 2800 1080 tt tt tt 

10,8tt

Theobjecthitsthegroundafter8seconds.

b. After4seconds,theobject’sheightis

2 1280324164896 s  feet.

51. Let t representthetimeittakesClarissato completethejobbyherself.

ClarissaShawna Timetodo5 jobalone Partofjob11

done5 in1day Timeonjob66 (days) Partofjob66 donebyeach5 person tt tt tt  

Sincethetwopeoplepaintonehouse,wehave: 2 2 661 5 6(5)6(5) 63065 7300 (10)(3)0 tt tttt tttt tt tt

10or3tt IttakesClarissa10daystopaintthehousewhen workingbyherself.

52. Let t representthetimeittakesthesmaller pumptoemptythetank.

SmallPumpLargePump Timetodo4 jobalone Partofjob11 done4 in1hr Timeonjob55 (hrs)

Partofjob55 donebyeach4 pump tt tt tt

Sincethetwopumpsemptyonetank,wehave: 2 2 551 4 5(4)5(4) 52054 14200 tt tttt tttt tt

 Wecansolvethisequationfor t byusingthe quadraticformula: 2 (14)(14)4(1)(20) 2(1) 1411614229 22 72975.385 12.385or1.615(notfeasible) t tt

     

Ittakesthesmallpumpapproximately12.385 hours(12hr23min)toemptythetank.

53. Let x representtheamountofwateradded.   

%saltTot.amt.amt.ofsalt 10%640.1064 0%0.00

2%640.0264 xx xx 

256 xx x x x 

 0.10640.000.0264

6.41.280.02

5.120.02

   256ouncesofwatermustbeadded.

54. Considerthediagram w w+ 2 10

BythePythagoreanTheoremwehave

222 22 2 2 210 44100 24960 2480 860 ww www ww ww ww

8or6ww

Thewidthis6inchesandthelengthis6+2=8 inches.

55. Let x representtheamountofthe15%solution added.

%acidtot.amt.amt.ofacid 40%600.4060 15%0.15 25%600.2560 xx xx 

90cubiccentimetersofthe15%solutionmustbe added,producing150cubiccentimetersofthe 25%solution.

56. a. Considerthefollowingdiagram:

4650 42450 426 6.5 s s s s 

Thepaintingis6.5inchesby6.5inches. 612.5 s  ,sotheframeis12.5inchesby 12.5inches.

b. Considerthefollowingdiagram: w 2w

2262650 ww 1 3 2 3 41221250 626 264 6 28 ww w

Thepaintingis283inchesby143inches. Theframeis2143inchesby1103inches.

57. Let x representtheamountScottreceives.Then 3 4 x representstheamountAlicereceivesand 1 2 x representstheamountTriciareceives.The totalamountis$900,000,sowehave:  31900,000 42 31 44900,000 42 4323,600,000 93,600,000 400,000 xxx xxx xxx x x

So,  33400,000300,000 44 x  and  11400,000200,000 22 x  Scottreceives$400,000,Alicereceives $300,000,andTriciareceives$200,000.

58. Let t representthetimeittakestheolder machinetocompletethejobbyitself.

OldcopierNewcopier

Timetodo1 jobalone

Partofjob11 done1 in1hr

Timeonjob1.21.2 (hrs)

Partofjob1.21.2 donebyeach1 copier tt tt tt

Sincethetwocopierscompleteonejob,wehave:

Chapter 1: Equations and Inequalities

2 2 2 1.21.21 1 1.2(1)1.2(1) 1.21.21.2 3.41.20 51760 (52)(3)0 tt tttt

0.4or3tt

Ittakestheoldcopier3hourstodothejobby itself.(0.4hourisimpossiblesincetogetherit takes1.2hours.)

59. Let Sr representScott'srateandlet Tr represent Todd'srate.ThetimeforScotttorun95meters isthesameasforToddtorun100meters.

95100

0.95 0.950.95 ST ST SsTT rr rr dtrtrd

IfToddstartsfrom5metersbehindthestart: 105

0.950.95(105)99.75 T ST d dd 

a. Theracedoesnotendinatie.

b. Toddwinstherace.

c. Toddwinsby0.25meters.

d. Toendinatie: 1000.95(100) 100950.95 50.95 5.26meters x x x x

e. 95=0.95(100)Therefore,theraceendsina tie.

60. Wewillusetheformulaforinterest,  Iprt . Sincesheowed27060attheendoftheloanshe adaccumulated3060ininterestandtheprincipal is24000.

3060(24000)(3) 3060

3(24000)

0.0425     Iprt r r r Theinterestrateis4.25%.

Chapter 1 Test 1. 25 3212 251212 3212 865 25 5 2 xx xx xx x x 

  

Thesolutionsetis   5 2.

2. 2 2 (1)6 6 60 (3)(2)0 xx xx xx xx 

 30or20 3or2 xx xx  

Thesolutionsetis{2,3}.

3.

42 22 340 410 xx xx   22 22 40or10 4or1 2orNotreal xx xx x 

Thesolutionsetis{2,2}.

4.   22 2524 252 252 254 29 9 2 x x x x x x

Check:92524 2 9524 424 224 44

Thesolutionsetis   9 2

5.

6.

10. 2259 257 x x

 257or257 22or212 1or6 xx xx xx

1or6xxx

or

,16,.

7.

8.

Thisequationhasnorealsolutions.

11. 2 2236262 3339(1) 933 62331 10555 iii iiiiii ii i

12. 2 4450 xx 2 (4)(4)4(4)(5) 2(4) 464481 882 x i i    

Thissolutionsetis  11 ,.22 ii

Chapter 1: Equations and Inequalities

13. Let x representtheamountofthe$8-per-pound coffee.

Add263poundsof$8/lbcoffeetoget2 263 poundsof$5/lbcoffee.

Chapter 1 Projects

Project I

Internet-based Project

Project II

1.

2. Allofthetimesgiveninproblem1werein seconds,so T =0.1boardpersecondneedsto usedasthevaluefor T intheequationfoundin problem1.

1 0.1 0.22 0.220.11

40partsperboard

3. T =0.15boardpersecond

1 0.15 0.22 0.220.151

0.030.31 0.030.7 23.3partsperboard p p p p p  

Thus,only23partsperboardwillwork.

Forproblems4–6, C isrequested,sosolvefor C first:

 n T CnpLM CnpLMTn CnpTLTMTn CnpTnLTMT nLTMT C npT

4. T =0.06, n =3, p =100, M =1, L =5 

350.0610.06 0.147sec 31000.06 C 

5. T =0.06, n =3, p =150, M =1, L =5

  350.0610.06 0.098sec 31500.06 C 

6. T =0.06, n =3, p =200, M =1, L =5

  350.0610.06 0.073sec 32000.06 C 

7. Asthenumberofpartsperboardincreases,the tacttimedecreases,ifalltheotherfactorsremain constant.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.